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A DIAMETER PINCHING SPHERE THEOREM

FOR POSITIVE RICCI CURVATURE

JYH-YANG WU

(Communicated by Jonathan Rosenberg)

Abstract. In this note we generalize Shiohama's volume pinching sphere the-

orem to a diameter pinching sphere theorem for positive Ricci curvature.

1. Introduction

In this paper a manifold M always means a complete connected Riemannian

manifold of dimension « and v(M) will denote the volume of M, d(M)

the diameter of M, KM the sectional curvature of M and Ricw the Ricci

curvature of M.

The sphere theorem due to Klingenberg [K] says that if M is a complete,

simply connected «-dimensional manifold with 1/4 < Km < 1 , then M is

homeomorphic to the «-sphere S" . In 1977, Grove and Shiohama [GS] proved

the generalized sphere theorem which states that a complete «-manifold M

with KM > 1 and dM > n/2 is homeomorphic to Sn .

An elegant theorem due to Myers [M] states that if the Ricci curvature of

a complete «-manifold M satisfies that RicM > « - 1, then d(M) < n and

hence M is compact and its fundamental group nx(M) is finite.

In [C], S. Y. Cheng proved the Maximal Diameter Sphere Theorem which

states that if RicM > « - 1 and dM — n , then M is isometric to the standard

sphere S" . Naturally one will ask if there is a dn < n which depends only

on « such that if Ric^ > « - 1 and d(M) > dn, M is homeomorphic to

S" . Since we can find metrics on M = S1 x S1 so that Ricw = 2j - 1 and

the diameter approaches n as j goes to oo, for the Ricci curvature case, the

dependence on « at least seems inevitable.

This problem is still open. However with some more restrictions on M,

Shiohama [S] showed the following volume pinching sphere theorem:
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Theorem. Let n be a positive integer and let k > 0 be a constant. Then there

exists an e(n,K) > 0 such that if M is an n-dimensional complete manifold

with RicM > « - 1 , KM > -K and v(M) > a(n,n - e(n,K)), then M is

homeomorphic to S" , where a(n,r) is the volume of the r-ball on Sn(\).

In this note we generalize this result to the following diameter pinching sphere

theorem:

Main Theorem. Let n be a positive integer and let k > 0, re (n/2,n). Then

there is S depending only on n,K and r such that if M is an n-dimensional

complete manifold with RicM > «— 1, KM > -k , v(M) > a(n,r) and

d(M) > n - ô, M is homeomorphic to Sn .

The author does not know if the assumption for the sectional curvature and

the volume is essentially needed. Under this assumption the radius of con-

tractible metric balls can be bounded away from 0. In our proof we show that

if the diameter of M is close to n, the contractibility radius of two particu-

lar points which realize the diameter of M will be also close to n. Then we

will be able to cover M with two contractible metric balls and appeal to the

generalized Schoenflies theorem to complete the proof, where the Generalized

Schoenflies Theorem [B] states that if M is covered by two open disks, then

M is homeomorphic to S" .

2. Estimate of contractibility radius

This section is essentially based on the paper [S] of Shiohama. Let M be

an «-dimensional manifold. For a fixed point x e M consider the distance

function dx: M —<■ R,dx(y) = d(x,y). A point y e M is called a critical

point of dx if for any nonzero tangent vector u e TMv, there is a minimizing

geodesic from y to x whose tangent vector at y makes an angle with u not

greater than n/2. Hence a critical point of y of dx belongs to the cut locus

Cx of x .

The contractible radius c(x) at x e M is defined as

c(x) = supp{r: Br(x) is contractible to x}.

The following two lemmas can be found in [S]:

Lemma 2.1. For any x e M, if Br(x) contains no critical point of dx except at

the origin x of the ball, then Br(x) is contractible to x. In other words, c(x)

is not less than the positive minimum critical value := cx (x) of dx .

Lemma 2.2. Let e  be in  (0,n).   Assume that RicM > « - 1   and v(M) >

a(n ,n - e).  For every point x e M and a number 8 e (0,n) and for every

unit tangent vector u e SMx let V(u,6) = {w e TMx: <(u,w) < 6}.  Then

there exists a positive smooth function r —► d(r, « , e) ,0 < r < n - e such that if

every w eT(u,d)nCx has norm \\w\\ < r, then 6<0(r,n,e).   6(r,n,e) is
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obtained as the solution of

cn_2 / sin"    tdt /   sin      tdt = a(n,e),

where c    is the volume of Sm(\).

Remark. For S e (e, n/2), 6(n - 2ô, n , e) < n/2 .

We are now in a position to estimate c, (x).

Theorem 2.3. Let n be a positive integer and let k > 0 and e e (0,n/2) be

given. Then there exists for a fixed number ô e (s, n/2) a constant cg(n,K ,e) >

0 such that if M is a complete n-dimensional manifold with

RicM>«-l,        Km>-k2,        v(M)>a(n,7i-e),

Then cx (x) > c&(n ,k ,e) for every point x e M. The constant is given by

cs(n,K, e) = min{7T - 26, k~ tanh- [tanh(7r - 26)k cos 6(n - 26, « , e)]}.

Proof. Let rx —n-26 and let jc e M be a fixed point and y a critical point of

dx with the positive minimum critical value rQ = cx(x). Let u e SMx be the

unit vector tangent to a minimizing geodesic yu: [0,rQ] —* M with y„(0) = x ,

yu(ro) = y ■

By the above lemma and the continuity of the map w e SMx -* the distance

from x to the cut point of x along the geodesic / —> expx tw, there is a

w e SMx with the properties <(u,w) < 6(rx ,n,e) and yw has the cut point

to x along it at yw(t\) with t, > r,. If rQ > rx , then we are done. Hence we

can assume that rQ < rx . The Toponogov Comparison Theorem implies that if

a — <(u,w) and if r, = d(y, z) where z = yw(tx), then

coshr2K < cosh txK coshr0tc - sinh/,Arsinhr0rCcosa.

Since y is a critical point of dx, there is, for a minimizing geodesic from y

to z , a minimizing geodesic from y to x (possibly different from yu ) whose

angle at y is not greater than 7i/2 . Thus again by the Toponogov Comparison

Theorem, one has

cosh/,«: < coshrQKcoshr2K .

Eliminate r2 from the above inequalities to obtain

cosh / ! k tanh r0K > cos a .

Insert a < 6(r{, n , e) < n/2 and i, > r, = n — 23 to complete the proof.

Remark. This theorem is basically due to Shiohama. In [S], he proved this for

£€(0,71/3).
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3. The proof of Main Theorem

Before we start to prove the main theorem let's recall the Bishop-Gromov

Volume Comparison Theorem [G].

Let M be a complete manifold of dimension « with Ricw > -(« - l)/c ,

where k is a real or a pure imaginary number. Let M(-k2) be the complete

simply connected «-dimensional space form of constant sectional curvature

-K . For a point x e M and for an r > 0 let Br(x) be the metric r-ball

centered at x. A metric r-ball in M(-k ) is denoted by Br. With these

notations the Bishop-Gromov Volume Comparison Theorem is stated as

Lemma 3.1. For any fixed x e M and 0 < r < R,

v(Br(x)) > v(Br)

v(BR(x)) - v(BR) '

Let {Mk} be a sequence of complete manifolds with Ricw > « - 1, KM >

-k and v(Mk) > a(n , r) where k , r are as in the Main Theorem and assume

that dk = d(Mk) —► n as /c-»oo.

Let pk and qk be in Mk with d(pk,qk) - dk . Now we are going to investigate

the contractibility radius of pk and qk . Choose yk e Mk to be a critical point of

d with the positive minimum critical value rk = cx(pk) and let tk — d(yk ,qk).

By Theorem 2.3, rk > rQ for some positive number rQ . Without loss of gener-

ality, we can assume that lim rk = a > rQ and lim tk = ß . Since rk + tk > dk,

a + ß > n.

Claim 1.   ß = n - a .

Proof. Supposing this is not true, one can find a positive number e <

l/4min{r0,a + ß - n} and 7V0 such that if k > N0, then tk > n - a + 3e

and a-s<rk<a + e. Hence tk > dk - rk + 2e. Thus the balls B (rk - e),

B  (dk - rk + e) and B   (e) are pairwise disjoint in Mk . This gives

v(Mk) > v(Bpk(rk - e)) + v(BQk(dk -rk + e)) + v(Byk(e.)).

Dividing by v(Mk) on both sides and using the Bishop-Gromov Volume Com-

parison Theorem, one has

1 > [a(n ,rk-e) + a(n , dk - rk + e) + a(n , e)]/a(n , n).

Now letting k —> oo,

1 > 1 + a(n,e)/a(n,7t).

This is impossible, hence ß = n - a.

Claim 2.   a = n .

Proof. Since y,  is a critical point of dn   there exists, for a minimizing geodesic
K Pk

from yk to qk a minimizing geodesic from yk to pk whose angle at yk is not

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A diameter pinching sphere theorem 801

greater than n/2. Thus the Toponogov Comparison Theorem applies for this

triangle to give

coshdkK < coshrkK cosh tkK.

Letting k —► co and using Claim 1,

cosh UK < cosh (XK COSh(7T - a)K .

This gives that a - n .

The Proof of Main Theorem. Suppose that Main Theorem is false. Then there

exists a sequence of manifolds Mk which are not homeomorphic to S" such

that RicM > « - 1 , KM > -k , v(Mk) > a(n,r) and dk = d(Mk) —> n.

Let pk and qk be in Mk with d(pk,qk) = dk . By the above argument and

Lemma 2.1, the contractibility radii c(pk) and c(qk) are greater than 27t/3 for

large k.

The minimal radius Rk of closed balls around pk and qk by which Mk

is covered satisfies dk/2 < Rk < dk and Rk = max{d(pk ,x): x e Mk,

d(pk,x) = d(x,qk)} . If xk € Mk is a point with d(pk,xk) = d(xk,qk) = Rk ,

then

v(Mk) > v(Bpk(dk/2)) + v(Bqk(dk/2)) + v(BXk(Rk - dJ2)).

Dividing by v(Mk) and again using the Bishop-Gromov Volume Comparison

Theorem ,

1 > [2q(« , dk/2) + a(n , Rk - dk/2)]/a(n , n).

Since dk —» n , we conclude that Rk -» n/2. Hence for large k , Rk < 2n/3 .

Therefore for large k, Mk can be covered by two contractible metric balls

B (2n/3) and B (2n/3). The Generalized Schoenflies Theorem implies that

Mk is homeomorphic to S" . This desired contradiction completes the proof.

Acknowledgment

I would like to thank K. Shiohama whose work is used extensively throughout

this paper.

References

[B] M. Brown A proof of the generalized Schoeflies theorem. Bull. Amer. Math. Soc. 66 (1960),

74-76.

[BC] R. Bishop and R. L. Crittendon, Geometry of manifolds, Academic Press, New York, 1974.

[C] S. Y. Cheng, Eigenvalue comparison theorem and its geometric applications, Math. Zeit. 143

(1975), 289-297.

[CE] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland,

Amsterdam and New York, 1975.

[G]    M. Gromov, Curvature, diameter and Betti numbers. Comment. Math. Helv. 56 (1981).

179-195.

[GS] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977),

201-211.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



802 JYH-YANG WU

[1]     Y. Itokawa, The topology of certain Riemannian manifolds with positive Ricci curvature, 3.

Differential Geom. 18 (1983), 151-156.

[K.]   W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment.

Math. Helv. 35 (1961), 47-54.

[M]   S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941),

401-404.

[S]     K. Shiohama, A sphere theorem for manifolds of positive Ricci curvature, Trans. Amer. Math.

Soc. 275 91983), 811-819.

Department of Mathematics, University of Chicago, 5734 South University Avenue

University, Chicago, Illinois 60637

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


