PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 107, Number 3, November 1989

A DIAMETER PINCHING SPHERE THEOREM
FOR POSITIVE RICCI CURVATURE

JYH-YANG WU

(Communicated by Jonathan Rosenberg)

ABSTRACT. In this note we generalize Shiohama’s volume pinching sphere the-
orem to a diameter pinching sphere theorem for positive Ricci curvature.

1. INTRODUCTION

In this paper a manifold M always means a complete connected Riemannian
manifold of dimension n and v(M) will denote the volume of M, d(M)
the diameter of M, K, the sectional curvature of M and Ric,, the Ricci
curvature of M .

The sphere theorem due to Klingenberg [K] says that if M is a complete,
simply connected n-dimensional manifold with 1/4 < K, < 1, then M is
homeomorphic to the n-sphere S”. In 1977, Grove and Shiohama [GS] proved
the generalized sphere theorem which states that a complete n-manifold M
with K, > 1 and d,, > n/2 is homeomorphic to S".

An elegant theorem due to Myers [M] states that if the Ricci curvature of
a complete n-manifold M satisfies that Ric,, > n — 1, then d(M) < n and
hence M is compact and its fundamental group x,(M) is finite.

In [C], S. Y. Cheng proved the Maximal Diameter Sphere Theorem which
states that if Ric,, >n~1 and d,, = n, then M is isometric to the standard
sphere S”. Naturally one will ask if there is a d, < m which depends only
on n such that if Ric,, > n—1 and d(M) > d,, M is homeomorphic to
S". Since we can find metrics on M = S§’ x S’ so that Ric,, = 2j -1 and
the diameter approaches 7 as j goes to oo, for the Ricci curvature case, the
dependence on n at least seems inevitable.

This problem is still open. However with some more restrictions on A ,
Shiohama [S] showed the following volume pinching sphere theorem:
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Theorem. Let n be a positive integer and let k > Q0 be a constant. Then there
exists an e(n,k) > 0 such that if M is an n-dimensional complete manifold
with Ric,, > n—-1, K, > —x* and v(M) > a(n,n —e(n,x)), then M is
homeomorphic to S", where a(n,r) is the volume of the r-ball on S"(1).

In this note we generalize this result to the following diameter pinching sphere
theorem:

Main Theorem. Let n be a positive integer and let k >0, re (n/2,n). Then
there is 0 depending only on n,x and r such that if M is an n-dimensional
complete manifold with Ric,, > n—-1, K, > K%, v(M) > a(n,r) and
dM)>n—6, M is homeomorphic to S" .

The author does not know if the assumption for the sectional curvature and
the volume is essentially needed. Under this assumption the radius of con-
tractible metric balls can be bounded away from 0. In our proof we show that
if the diameter of M is close to 7, the contractibility radius of two particu-
lar points which realize the diameter of M will be also close to m. Then we
will be able to cover M with two contractible metric balls and appeal to the
generalized Schoenflies theorem to complete the proof, where the Generalized
Schoenflies Theorem [B] states that if M is covered by two open disks, then
M is homeomorphic to S”.

2. ESTIMATE OF CONTRACTIBILITY RADIUS

This section is essentially based on the paper [S] of Shiohama. Let M be
an n-dimensional manifold. For a fixed point x € M consider the distance
function d : M — R,d (y) = d(x,y). A point y € M is called a critical
point of d_ if for any nonzero tangent vector u € TMy , there is a minimizing
geodesic from y to x whose tangent vector at y makes an angle with # not
greater than 7/2. Hence a critical point of y of d, belongs to the cut locus
C, of x.

The contractible radius c¢(x) at x € M is defined as

¢(x) = supp{r: B,(x) is contractible to x }.
The following two lemmas can be found in [S]:

Lemma 2.1. Forany x € M, if B, (x) contains no critical point of d_ except at
the origin x of the ball, then Fr(x) is contractible to x . In other words, c(x)
is not less than the positive minimum critical value := c,(x) of d. .

Lemma 2.2. Let ¢ be in (0,m). Assume that Ric,, > n —1 and v(M) >
a(n,n —¢). For every point x € M and a number 6 € (0,n) and for every
unit tangent vector u € SM_ let T'(u,0) = {w € TM_: <(u,w) < 6}. Then
there exists a positive smooth function r — 6(r,n,e),0 <r < —¢ such that if
every w € I'(u,0)N C_ has norm |lw| < r, then 6 < 6(r,n,e). O(r,n,e) is
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obtained as the solution of
6(r,n ) ne2 n el
c”_z/o sin tdt/ sin.  tdt=a(n,e),
r

where ¢, is the volume of S™(1).

Remark. For 6 € (¢,n/2),0(mn—2d,n,¢e)<m/2.
We are now in a position to estimate ¢, (x).

Theorem 2.3. Let n be a positive integer and let k¥ > 0 and ¢ € (0,n/2) be
given. Then there exists for a fixed number o € (¢,n/2) a constant cg(n,k ,€) >
0 such that if M is a complete n-dimensional manifold with

. 2
Ric,, >n-1, K, >2-k", v(M)2a(n,n-c¢),
Then c,(x) > cs(n,x &) for every point x € M . The constant is given by

cs(n, k&) = min{x — 26,k tanh™'[tanh(z — 28)k cos §(n — 28, n,€)]} .

Proof. Let r, = n—26 andlet x € M be a fixed point and y a critical point of
d, with the positive minimum critical value r; = ¢,(x). Let u € SM, be the
unit vector tangent to a minimizing geodesic y,: [0,r,] = M with y,(0) = x,
yu(r 0) =Y.

By the above lemma and the continuity of the map w € SM, — the distance
from x to the cut point of x along the geodesic ¢ — exp, tw, there is a
w € SM_ with the properties <(u,w) < 6(r,,n,¢) and y, has the cut point
to x alongitat y (z,) with ¢, >r . If r; > r , then we are done. Hence we
can assume that r, < r, . The Toponogov Comparison Theorem implies that if
a=<(u,w) and if r,=d(y,z) where z =y, (), then

coshr,k < cosht k coshryk — sinh ¢,k sinh rok cosa.

Since y is a critical point of d_, there is, for a minimizing geodesic from y
to z, a minimizing geodesic from y to x (possibly different from y, ) whose
angle at y is not greater than 7/2. Thus again by the Toponogov Comparison
Theorem, one has

cosht k < coshryk coshr,k .
Eliminate r, from the above inequalities to obtain
cosh k tanhryk > cosa.

Insert a < 6(r ,n,e) <m/2 and ¢, >r =n—26 to complete the proof.

Remark. This theorem is basically due to Shiohama. In [S], he proved this for
e€(0,m/3).
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3. THE PROOF OF MAIN THEOREM
Before we start to prove the main theorem let’s recall the Bishop-Gromov
Volume Comparison Theorem [G].
Let M be a complete manifold of dimension n with Ric,, > —(n - 1)K2 ,

where k 1is a real or a pure imaginary number. Let M (—Kz) be the complete
simply connected n-dimensional space form of constant sectional curvature
—x*. Fora point x € M and for an r > 0 let B (x) be the metric r-ball

centered at x. A metric r-ball in M (—xz) is denoted by §r. With these
notations the Bishop-Gromov Volume Comparison Theorem is stated as

Lemma 3.1. For any fixed x e M and 0<r <R,

v(B,(x)) _ v(B)
V(Bg(x)) ~ v(Bg)

Let {M,} be a sequence of complete manifolds with Ric M, 2N 1, K M, 2

—x? and v(M,) > a(n,r) where x,r are as in the Main Theorem and assume
that d, =d(M;) - as k — co.

Let p, and q, bein M, with d(p, ,q,) = d, . Now we are going to investigate
the contractibility radius of p, and q, . Choose y, € M,_ to be a critical point of
dpk with the positive minimum critical value r, = ¢,(p,) andlet t, =d(y, ,q,).
By Theorem 2.3, r, > r, for some positive number r,. Without loss of gener-
ality, we can assume that limr, = a > r, and limt, = B. Since r, +1t, > d,,
a+f>m.

Claim1l. f=n-a.

Proof. Supposing this is not true, one can find a positive number & <
1/4min{ry,a + f — n} and N, such thatif kK > N, then ¢, > 7 —a+ 3¢
and a—-¢<r, <a+¢. Hence 1, >d, —r, +2¢. Thus the balls B, (r, —¢),
qu(dk —r,+¢) and Byk (¢) are pairwise disjoint in A, . This gives

v(M,) 2 v(B, (r, —¢)) +v(B, (d, —r, +¢)+v(B, (£)).

Dividing by v(M, ) on both sides and using the Bishop-Gromov Volume Com-
parison Theorem, one has

1> [a(n,r,—¢&)+a(n,d, —r +&)+a(n,e)l/a(n,n).

Now letting k — oo,
1 >1+an,e)/a(n,n).

This is impossible, hence f =7 — «.
Claim?2. a=m.

Proof. Since y, is a critical point of dpk there exists, for a minimizing geodesic
from y, to g, a minimizing geodesic from y, to p, whose angle at y, is not
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greater than n/2. Thus the Toponogov Comparison Theorem applies for this
triangle to give
coshd, k < coshr, k cosht k.

Letting k — oo and using Claim 1,
cosh mk < cosh ak cosh(n — a)xk .

This gives that a = 7.

The Proof of Main Theorem. Suppose that Main Theorem is false. Then there
exists a sequence of manifolds A/, which are not homeomorphic to S" such
that Rich 2n-1, K, > —x?, v(M,) > a(n,r) and d, =d(M,) — =.
Let p, and g, be in M, with d(p,,q,) = d, . By the above argument and
Lemma 2.1, the contractibility radii ¢(p,) and c(q,) are greater than 2z/3 for
large k.

The minimal radius R, of closed balls around p, and g, by which M,
is covered satisfies d,/2 < R, < d, and R, = max{d(p,,x): x € M,
d(p,,x)=d(x,q,)}. If x, € M, isa point with d(p,,x,) =d(x,,q,) =R, ,
then

v(M,) > v(B, (d,/2)) + v(B, (d,/2)) +v(B (R, —d,/2)).

Dividing by v(M,) and again using the Bishop-Gromov Volume Comparison
Theorem ,
1>[2a(n,d, /2)+a(n,R, —d,/2)]/a(n,m).

Since d, — =, we conclude that R, — n/2. Hence for large k, R, < 2n/3.
Therefore for large k, M, can be covered by two contractible metric balls
Bpk(27r/ 3) and B qk(2n/ 3). The Generalized Schoenflies Theorem implies that

M, is homeomorphic to S" . This desired contradiction completes the proof.
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