
A Dichotomy in the Intensional Expressive Power of
Nested Relational Calculi augmented with Aggregate

Functions and a Powerset Operator

Limsoon Wong
School of Computing

National University of Singapore
13 Computing Drive, Singapore 117417

wongls@comp.nus.edu.sg

ABSTRACT
The extensional aspect of expressive power—i.e., what quer-
ies can or cannot be expressed—has been the subject of
many studies of query languages. Paradoxically, although
efficiency is of primary concern in computer science, the in-
tensional aspect of expressive power—i.e., what queries can
or cannot be implemented efficiently—has been much ne-
glected. Here, we discuss the intensional expressive power
of NRC(Q , +, ·, −, ÷,

∑
, powerset), a nested relational

calculus augmented with aggregate functions and a power-
set operation. We show that queries on structures such as
long chains, deep trees, etc. have a dichotomous behaviour:
Either they are already expressible in the calculus without
using the powerset operation or they require at least ex-
ponential space. This result generalizes in three significant
ways several old dichotomy-like results, such as that of Suciu
and Paredaens that the complex object algebra of Abiteboul
and Beeri needs exponential space to implement the tran-
sitive closure of a long chain. Firstly, a more expressive
query language—in particular, one that captures SQL—is
considered here. Secondly, queries on a more general class
of structures than a long chain are considered here. Lastly,
our proof is more general and holds for all query languages
exhibiting a certain normal form and possessing a locality
property.

Categories and Subject Descriptors
H.2.3 [Languages]: Query languages; F.4.1 [Mathematical
logic]: Model theory

Keywords
Intensional expressive power; normal form; conservative ex-
tension property; locality property; dichotomy; nested rela-
tional calculus; SQL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$15.00.

1. INTRODUCTION
A function f that is expressible1 in a query language can

be implemented or executed in many different ways, each
corresponding to a different algorithm. These algorithms
may have different complexity. Some of these algorithms
for f may be expressible in the given query language, while
some of them may not be expressible in it. Even though
efficiency is a key issue in computer science, we seldom see
results that study the power of query languages from this
“intensional” perspective.

This lack of attention may be attributable to the logi-
cal vs physical separation, where a database system may
use different execution plans for the same query depending
on optimization factors such as what indices are available.
Nevertheless, the syntax of a query naturally suggests an
(unoptimized and possibly naive) implementation. Thus, as
argued by Suciu, Paredeans, and Wong [14, 15], there is
a so-called “natural operational semantics” for a query lan-
guage; and intensional expressive power can be studied with
respect to it. Yet it is significantly more difficult to study in-
tensional expressive power and, in particular, there is a very
limited repertoire of general techniques that can be applied.

Some of the papers that are in the spirit of intensional
expressive power, with respect to the respective natural op-
erational semantics of various query languages, include the
followings:

• Colson [7] shows that while the function which com-
putes the minimum of two integers in unary represen-
tation can be expressed using primitive recursion, all
such expressions have higher than O(min(m,n)) com-
plexity.

• Abiteboul and Vianu [2] show that while the parity
query can be expressed by a generic machine, all such
expressions have higher than PTIME complexity.

• Suciu and Wong [15] show that while sequential itera-
tion queries (called sri queries in their paper) can be
uniformly translated into data-parallel iteration queries
(called sru queries in their paper), all such uniform
translations must map some PTIME queries into ex-
ponential space ones.

1Throughout this paper, when we use the term “expressive
power” without explicitly indicating whether it is the exten-
sional aspect or the intensional aspect, we mean the exten-
sional aspect.

285

• Suciu and Paredaens [14] show that while the transitive
closure of a long chain can be expressed in the com-
plex object algebra of Abiteboul and Beeri, all such
expressions must use exponential space.

• Van den Bussche [6] shows that, when retricted to
unary database schemas (i.e., when the input relations
all have exactly one column), every query in the com-
plex object algebra of Abiteboul and Beeri is either
already expressible without using the powerset opera-
tor or must use exponential space.

• Biskup et al. [3] show that while the parity query can
be expressed in what they called the equation algebra,
all such expressions must use exponential space.

These are impressive results and their proofs are tour de
force undertakings. Unfortunately, they are also query spe-
cific; and the proofs are complex and not easily“portable” to
other queries. Therefore, more light ought to be shed on the
structure of the query languages concerned or the structure
of inefficient queries in these query languages that make the
cause of the inefficiency clear.

In this paper, we study the intensional expressive power of
NRC(Q , +, ·, −, ÷,

∑
, powerset), a nested relational cal-

culus endowed with aggregate functions and a powerset op-
eration. This calculus can express all the usual SQL queries
such as group-by, count, average, etc. So it is a query lan-
guage that is considerably more expressive than the com-
plex object algebra of Abiteboul and Beeri [1]. Moreover,
we study the intensional expressive power of NRC(Q , +, ·,
−, ÷,

∑
, powerset) in a non-query-specific setting.

Our main result is a Dichotomy Theorem that, all queries
on a general class of structures—which includes deep trees,
long chains, etc.—are either already expressible in NRC(Q ,
+, ·, −, ÷,

∑
, powerset) without using its powerset op-

eration or must use an exponential amount of space. Since
NRC(Q , +, ·, −, ÷,

∑
, powerset) is more general than

the complex object algebra of Abiteboul and Beeri and the
class of structures includes long chains, this result is a power-
ful generalization of the old result of Suciu and Paredaens [14]
and also that of Van den Bussche [6]. Furthermore, our proof
of this Dichotomy Theorem factors through a locality prop-
erty [9] and the normal form induced by the conservative
extension property [16]. Thus it holds also for any query
language exhibiting a similar normal form and the locality
property, offering a high potential for generalization to many
other query languages. We demonstrate this last aspect on
the equation algebra of Biskup and colleagues [3].

The organization of this paper is as follows. Section 2
presents the query language NRC(Q , +, ·, −, ÷,

∑
,

powerset). Section 3 presents the conservative extension
property, its associated rewrite rules, and the locality prop-
erty. Section 4 proves our main result, the Dichotomy The-
orem. Section 5 concludes the paper with an extensive dis-
cussion on how the Dichotomy Theorem generalizes the re-
sults of Suciu and Paredeans [14], Van den Bussche [6], and
Biskup and colleagues [3].

2. NRC, AGGREGATES, AND POWERSET
The ambient language for our study is NRC(Q , +, ·, −,
÷,

∑
, powerset). This query language is built upon the

nested relational calculus NRC from Buneman et al. [5], by

augmenting it with arithmetic operations, a summation op-
eration, and a powerset operation. The base language NRC
is equivalent to the usual nested relational algebra [5]. The
extension of NRC by arithmetic operations and the sum-
mation operation makes it into NRC(Q , +, ·, −, ÷,

∑
),

which is able to express group-by and aggregate functions,
and captures the expressive power of SQL [13].

The types and expressions in NRC are given in Figure 1.
The type superscripts in the figure are conventionally omit-
ted because they can be inferred. The semantics of a type
is just a set of complex objects—i.e., a set of objects built
up by nesting sets and records of base type objects:

• There are some base types b, as well as the usual base
types bool (i.e., Booleans) and Q (i.e., numbers).

• An object of type s1×· · ·×sn is a tuple (i.e., a record)
whose ith component is an object of type si, for 1 ≤
i ≤ n.

• An object of type {s} is a finite set whose elements
are objects of type s. An object of type {s} is called a
“relation”. Moreover, if s = b× · · · × b, then an object
of type {s} (or s) is called a “flat relation”. However,
if s contains some set brackets, then an object of type
{s} is called a“nested relation”. More generally, a type
s containing n levels of nested set brackets is said to be
of height n; e.g., b× b has height 0, {b× b} has height
1, and {b× {b}} has height 2.

The meaning of the expression constructs are described
below:

• The expression c denotes constants of a base type, i.e.,
the atomic objects.

• The expressions true, false, and if e1 then e2 else e3
have their usual meaning.

• The expression (e1, . . . , en) forms a tuple whose ith
component is the object denoted by ei, for 1 ≤ i ≤ n.

• The expression πi e extracts the ith component of the
tuple e.

• The expressions {}, {e}, and e1 ∪ e2 have their usual
meaning as set operations.

• The expression
⋃
{e1 | x ∈ e2} forms the set obtained

by first applying the function f(x) = e1 to each object
in the set e2 and then taking their union. That is,⋃
{e1 | x ∈ e2} = f(C1) ∪ . . . ∪ f(Cn), where f(x) =

e1 and {C1, . . . , Cn} is the set denoted by e2. This
construct is the sole means in NRC for iterating over
a set.

• The expression e1 = e2 denotes an equality test be-
tween e1 and e2. Here, e1 and e2 denote objects of the
same base type. With this construct, it is straightfor-
ward to define in NRC equality tests for all types.

• The expression isempty e tests whether a set e is empty.
Here, e denote a set of tuples of objects of base types.
With this construct, it is straightforward to define in
NRC emptiness tests for all set types.

286

Types in NRC

B ::= b | bool | Q s ::= B | s1 × · · · × sn | {s}

Expressions in NRC

c : B xs : s
e1 : s1 . . . en : sn

(e1, . . . , en) : s1 × · · · × sn

e : s1 × · · · × sn

πi e : si
1 ≤ i ≤ n

{}s : {s}
e : s
{e} : {s}

e1 : {s} e2 : {s}
e1 ∪ e2 : {s}

e1 : {s} e2 : {t}⋃
{e1 | xt ∈ e2} : {s}

true : bool false : bool
e1 : bool e2 : s e3 : s
if e1 then e2 else e3 : s

e1 : B e2 : B
e1 = e2 : bool

e : {B1 × · · · ×Bn}
isempty e : bool

Arithmetics and Aggregate Functions in NRC(Q, +, ·, −, ÷,
∑

)

e1 : Q e2 : Q
e1 + e2 : Q

e1 : Q e2 : Q
e1 − e2 : Q

e1 : Q e2 : Q
e1 · e2 : Q

e1 : Q e2 : Q
e1 ÷ e2 : Q

e1 : Q e2 : {s}∑
{|e1 | xs ∈ e2|} : Q

Powerset Operator in NRC(Q, +, ·, −, ÷,
∑

, powerset)

e : {b× · · · × b}
powerset e : {{b× · · · × b}}

Figure 1: NRC and its extensions NRC(Q, +, ·, −, ÷,
∑

) and NRC(Q, +, ·, −, ÷,
∑

, powerset).

There is a straightforward translation between this syntax
and the comprehension syntax [4] of the form {e | δ1, . . . , δn}
where each δi either has the form xi ∈ ei or the form ei. The
translation is given by:

• {e | x1 ∈ e1,∆} =df

⋃
{{e | ∆} | x1 ∈ e1};

• {e | e1,∆} =df if e1 then {e | ∆} else {}; and

• {e | } =df {e}.
We use the comprehension syntax to write examples, but
the reader should understand these examples as syntactic
sugars of the actual NRC expressions.

Example 1. Let X : {employee× salary × dept} be a re-
lation that records the annual salary of employees in a com-
pany. Let Y : {employee × {employee}} be a relation that
records the set of immediate reportees of each manager.

• The managers in the company can be expressed in
NRC as Π1(Y) =df {π1 y | y ∈ Y }.

• A flat version of the manager-reportee relation can be
expressed as unnest(Y) =df {(π1 y, x) | y ∈ Y, x ∈
π2 y}.

• The annual salary of managers in the company can be
expressed as join(X,Y) =df {(y, π2 x) | y ∈ Π1(Y), x ∈
X, y = π1 x}.

• A nested version of the salary relation where employees
are grouped by department is nest(X) =df {(π3 x,
{(π1 y, π2 y) | y ∈ X,π3 y = π3 x}) | x ∈ X}.

While all the operations of the usual nested relational alge-
bra can be expressed inNRC [5], aggregate functions usually
encountered in SQL queries are not expressible in NRC. So
we augment NRC with the usual arithmetic operations +,
−, · and ÷ and a summation construct

∑
{|e1 | x ∈ e2|}

to give the query language NRC(Q , +, ·, −, ÷,
∑

).
The summation construct

∑
{|e1 | x ∈ e2|} first applies

the function f(x) = e1 to each object in the set e2 and
sums the resulting numbers; that is,

∑
{|e1 | x ∈ e2|} =

f(C1) + · · · + f(Cn), where f(x) = e1 and {C1, . . . , Cn} is
the set denoted by e2. Here are some illustrative examples
showing how this construct captures the usual group-by and
aggregate functions in SQL queries.

Example 2. As before, let X : {employee×salary×dept}
be a relation that records the annual salary of employees in
a company.

• The number of employees in the company can be ex-
pressed in NRC(Q , +, ·, −, ÷,

∑
) as count(X) =df∑

{|1 | x ∈ X|}.

• The annual EOM budget of the company can be ex-
pressed as sum(X) =df

∑
{|π2 x | x ∈ X|}.

• The mean annual salary of employees of the company
can be expressed as ave(X) =df sum(X)÷ count(X).

• Finally, the mean annual salary of each department
can be produced by dept ave(X) =df {(π1 x, ave(π2 x))
| x ∈ nest(X)}.

287

Let us use the notation e[~R] to mean the an expression

e with free variables ~R. However, when it is not important
to explicitly list the free variables, we write it simply as
e. For a list of objects ~O that conform to the types of ~R,
we use the notation e[~O/~R] for the expression obtained by

substituting ~O for ~R. We think of the expression e[~R] as a

“query” where ~R are its input; equivalently, we can think of
it as a function f(~R) = e[~R]. The expression e[~R] is said to

be a “flat relational query” if each R in ~R is a flat relation
and e[~R] : {b× · · · × b}. Recall that a flat relation can have
type {b×· · ·× b} or type b×· · ·× b. So, we use the notation

e[~R, ~x] when it is important to explicitly separate the two
kinds of variables in a flat relational query.

Below are some well-known results [5, 16, 13, 8, 10].

Proposition 1. 1. NRC is in PTIME.

2. NRC is equivalent to the classical nested relational al-
gebra.

3. NRC restricted to flat relational queries is equivalent
to the classical relational algebra.

4. NRC(Q, +, ·, −, ÷,
∑

) is in PTIME.

5. NRC(Q, +, ·, −, ÷,
∑

) restricted to flat relational
queries is equivalent to the aggregate logic Laggr(Q, +,
·, −, ÷,

∑
).

6. NRC(Q, +, ·, −, ÷,
∑

) cannot express recursive
queries such as transitive closure.

Due to the equivalence of NRC(Q , +, ·, −, ÷,
∑

) and
Laggr(Q , +, ·, −, ÷,

∑
) on flat relational queries, every

flat relational query e[~R, ~x] in NRC(Q , +, ·, −, ÷,
∑

) can

be translated to a logic formula ϕ
~R
e (~x, y) in Laggr(Q , +, ·,

−, ÷,
∑

). So, for any objects ~O, ~o, {o′} conforming to the

types of ~R, ~x, and e, it is the case that o′ ∈ e[~O/~R,~o/~x] if

and only if [~O/~R,~o/~x, o′/y] |= ϕ
~R
e (~x, y).

The formula ϕ
~R
e (~x, y) in Laggr(Q , +, ·, −, ÷,

∑
) ac-

tually only has variables on atomic objects. For ease of
understanding and cross-referencing:

• We use the convention of treating each variable xi in
NRC(Q , +, ·, −, ÷,

∑
) as a tuple of variables xi,1,

..., xi,n in Laggr(Q , +, ·, −, ÷,
∑

), where each xi,j

is to take on the value of the jth component of the
value taken on by xi.

• We adopt the convention of using R1, R2, ... to name
the input relations in both NRC(Q , +, ·, −, ÷,

∑
)

and Laggr(Q , +, ·, −, ÷,
∑

).

• We use x1, x2, ... to name the free variables in a query
in NRC(Q , +, ·, −, ÷,

∑
), which represent the

input variables of the query.

• We use y (actually, y,1, y,2, ...) to name the free vari-

ables in a translated logic formula ϕ
~R
e (~x, y) that corre-

sponds to the outputs of the original query e[~R, ~x].

• We write ϕe and even ϕ instead of ϕ
~R
e (~x, y) when there

is no confusion.

As noted in Proposition 1, recursive queries such as tran-
sitive closure are inexpressible in NRC(Q , +, ·, −, ÷,∑

). In an influential paper [1], Abiteboul and Beeri suggest
augmenting NRC with a powerset operation, resulting in
the query language NRC(powerset), to enable such queries
to be expressed without resorting to explicit recursion. So
we also augment NRC(Q , +, ·, −, ÷,

∑
) with a power-

set operation on flat relations to obtain the query language
NRC(Q , +, ·, −, ÷,

∑
, powerset), as shown in Figure 1.

Here, powerset e produces a set containing all the subsets of
the set denoted by e, provided e is a flat relation. NRC(Q ,
+, ·, −, ÷,

∑
, powerset) can express recursive queries such

as transitive closure, as illustrated in the following example.

Example 3. Let Y : {employee × employee} be a rela-
tion that the direct reportees of each employee. The direct
and indirect reportees of each employee can be expressed in
NRC(Q , +, ·, −, ÷,

∑
, powerset) as

tc(Y) =df

⋂
{X | X ∈ powerset cp(dom(Y)),

subset(Y,X), closed(X)},

where

• dom(Y) =df {π1 y | y ∈ Y } ∪{π2 y | y ∈ Y },

• cp(Z) =df {(u, v) | u ∈ Z, v ∈ Z},

• subset(Y,X) =df isempty {y | y ∈ Y , isempty {y | x ∈
X, y = x}},

• closed(Z) =df subset({π1 u, π2 v) | u ∈ Z, v ∈ Z,
π2 u = π1 v}, Z), and

•
⋂

(Z) = {u | u ∈ Z, subset({subset(u, v) | v ∈ Z},
{true})}.

As our interest is in the intensional aspect of expressive
power, we need to know how each expression in NRC(Q ,
+, ·, −, ÷,

∑
, powerset) is executed. We specify this ex-

plicitly in Figure 2, as a call-by-value operational semantics.
A call-by-value operational semantics is widely adopted in
programming languages and has also been used for several
variations of NRC in earlier works [14, 15] on intensional
expressive power.

In Figure 2, the notation e ⇓ C means the closed expres-
sion e is evaluated to the object C. The notation C1∪· · ·∪Cn

means the set of objects obtained by the union of the sets
C1, . . . , Cn. The notations C1+C2, C1−C2, C1 ·C2, C1÷C2

mean the objects obtained as the sum, difference, product,
and division of C1 and C2 respectively. This evaluation is
sound in the sense that, when e : s and e ⇓ C, then C is an
object of type s and e = C. Hence each e : s evaluates to
a unique C. We use the notation e ⇓ to refer to the unique
evaluation tree of e.

Here, we do not define the space complexity sizeof (e ⇓)
of an evaluation in terms of the size of the evaluation tree.
Instead, we define it in terms of the size of the largest object
in the evaluation tree—viz., sizeof (e ⇓) = max{sizeof (C) |
the object C occurs in the evaluation tree e ⇓}. The size
of an object is the number of atomic objects (i.e., objects
of base type b) that it contains. This way of defining the
complexity of evaluation has also been used in earlier works
on intensional expressive power [14, 15].

Analogously, we define the time complexity timeof (e ⇓) of
an evaluation in terms of time complexity of the largest node

288

c ⇓ c
e1 ⇓ C1 . . . en ⇓ Cn

(e1, . . . , en) ⇓ (C1, . . . , Cn)
e ⇓ (C1, . . . , Cn)

πi e ⇓ Ci
1 ≤ i ≤ n

{} ⇓ {}
e ⇓ C
{e} ⇓ {C}

e1 ⇓ C1 e2 ⇓ C2

e1 ∪ e2 ⇓ C1 ∪ C2

e2 ⇓ {C1, . . . , Cn} e1[C1/x] ⇓ C′1 · · · e1[Cn/x] ⇓ C′n⋃
{e1 | x ∈ e2} ⇓ C′1 ∪ · · · ∪ C′n

true ⇓ true false ⇓ false
e1 ⇓ true e2 ⇓ C

if e1 then e2 else e3 ⇓ C
e1 ⇓ false e3 ⇓ C

if e1 then e2 else e3 ⇓ C

e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ true
C1 = C2

e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ false
C1 6= C2

e ⇓ C
isempty e ⇓ true

C = {} e ⇓ C
isempty e ⇓ false

C 6= {}

e1 ⇓ C1 e2 ⇓ C2

e1 + e2 ⇓ C1 + C2

e1 ⇓ C1 e2 ⇓ C2

e1 − e2 ⇓ C1 − C2

e1 ⇓ C1 e2 ⇓ C2

e1 · e2 ⇓ C1 · C2

e1 ⇓ C1 e2 ⇓ C2

e1 ÷ e2 ⇓ C1 ÷ C2

e2 ⇓ {C1, . . . , Cn} e1[C1/x] ⇓ C′1 · · · e1[Cn/x] ⇓ C′n∑
{|e1 | x ∈ e2|} ⇓ C′1 + · · ·+ C′n

e ⇓ {C1, . . . , Cn}
powerset e ⇓ {C′1, . . . , C′2n}

where C′1, . . . , C
′
2n are the subsets of {C1, . . . , Cn}

Figure 2: A call-by-value operational semantics of NRC(Q, +, ·, −, ÷,
∑

, powerset).

in the evaluation tree—viz., timeof (e ⇓) = max{timeof (e′ ⇓
C′) | the node e′ ⇓ C′ occurs in the evaluation tree of e ⇓
}. Here, the time complexity timeof (e′ ⇓ C′) of a node is
defined in general as the number of branches that the node
has. For example, in Figure 2, timeof (e1 +e2 ⇓ C1 +C2) = 2
and timeof (

⋃
{e1 | x ∈ e2} ⇓ C1∪· · ·∪C′n) = n+1. However,

for primitive operations, we assign them their expected time
complexity. For example, timeof (powerset e ⇓ C) = 2n,
where n is the cardinality of e.

The deep result below is due to Suciu and Paredaens [14].

Proposition 2. Let e[R] be a query that implements the
transitive closure of an input flat relation R : {b × b} in
NRC(powerset). Let O be a sufficiently long chain of type

{b × b}. Then sizeof (e[O/R] ⇓) is Ω(2|O|). Thus every
implementation of transitive closure in NRC(powerset) re-
quires exponential space.

One may say that, since transitive closure is inexpress-
ible in NRC, any implementation of it in NRC(powerset)
must use the powerset operation and therefore must take
exponential space. This is naive because there may exist
a clever implementation that uses the powerset operation
only on small intermediate data and, thus, achieves an over-
all PTIME complexity. Proposition 2 rules this out.

The proof of this result by Suciu and Paredaens also con-
tains an implicit proof of another result, which Van den
Bussche [6] proves explicitly in a later paper, that queries
in NRC(powerset) on unary database schemas are either
already expressible in NRC (i.e., do not use the powerset

operation) or must use exponential space (i.e., must use
the powerset operation in a non-trivial way). It is known
from Biskup et al. [3] that the parity query, which tests
whether an input set has even cardinality, must use expo-
nential space in a so-called equation algebra. The equation
algebra is equivalent to NRC(powerset), and every expres-
sion in NRC(powerset) can be translated to an expression
in the equation algebra having the same space complex-
ity [3]. Thus every query can be implemented in the equa-
tion algebra with equal or better space complexity than in
NRC(powerset). Combining these two results of Van den
Bussche and Biskup et al., we have the following result.

Proposition 3. 1. Every flat relational query on un-
ary database schemas in NRC(powerset) is either al-
ready expressible in NRC or requires exponential space.

2. In particular, every implementation of the parity query
in NRC(powerset) requires exponential space.

In the rest of this paper, we aim to generalize these two
results to a Dichotomy Theorem on a large class of flat re-
lational queries expressible in NRC(Q , +, ·, −, ÷,

∑
,

powerset). In particular, these flat relational queries ex-
pressible in NRC(Q , +, ·, −, ÷,

∑
, powerset) are shown

here to be dichotomous in the sense that either they are
already expressible in NRC(Q , +, ·, −, ÷,

∑
) or they

require at least exponential space. Hence, the extra expres-
sive power that the powerset operation buys forNRC(Q , +,
·, −, ÷,

∑
, powerset) comes strictly with an exponential

cost.

289

3. TWO POWERFUL PROPERTIES
We need the conservative extension property and the lo-

cality property to prove our main results.

3.1 Conservative Extension
The conservative extension property and its system of

rewrite rules, in Figure 3, were introduced by Wong [16]
and generalized by Libkin and Wong [12, 13]. The last rule
deserves a special mention. Consider the incorrect equation:∑
{|e | x ∈

⋃
{e1 | y ∈ e2}|} =

∑
{|
∑
{|e | x ∈ e1|} | y ∈ e2|}.

Suppose e2 evaluates to a set of two distinct objects {o1, o2};
e1[o1/y] and e1[o2/y] both evaluate to {o3}; and e[o3/x] eval-
uates to 1. Then the left-hand-side of the “equation” returns
1 but the right-hand-side yields 2. The division operation in
the last rule in Figure 3 is used to handle duplicates prop-
erly. The following properties of this system of rewrite rules
are well known [16, 12, 13].

Proposition 4 (Conservative Extension).

1. This system of rewrite rules is sound.

2. This system of rewrite rules is strongly normalizing.

3. Let e be an expression in NRC(Q, +, ·, −, ÷,
∑

,
powerset) that is in normal form with respect to this
system of rewrite rules. That is, no rule can be applied
to further rewrite e. Let e′[~R] : s be a subexpression in

e. Suppose ~R have types whose height is at most h, and
the type s has height h′. Then all the types appearing
in the type derivation of e′[~R] : s have height at most
max(h, h′), if the powerset operation does not appear

in e′[~R]; or, they have height at most max(h, h′, 2), if

the powerset operation appears in e′[~R].

This system of rewrite rules does not increase the com-
plexity of evaluation.

Proposition 5. Let e[~R] 7→ e′[~R]. Let ~O be a list of

objects conforming to the types of ~R. Then

1. sizeof (e[~O/~R] ⇓) ≥ sizeof (e′[~O/~R] ⇓).

2. timeof (e[~O/~R] ⇓) ≥ timeof (e′[~O/~R] ⇓).

3.2 Locality
The second powerful machinery needed to prove our di-

chotomy result is the locality property. We need some un-
derstanding of “τ structure”, “Gaifman graph”, “r-sphere”,
and “r-neighbourhood”, before we can explain the locality
property [11].

A signature τ is a list of symbols ~R, where ~R is to be
regarded as input for a query. Each symbol Ri in ~R has
type of the form {b × · · · × b}. A τ structure A = 〈A, ~O〉
has a universe A (which is a finite nonempty set of objects

of type b) and a list of objects ~O (and each object Oi in ~O
has the type of Ri and is the interpretation of Ri). Each

Oi in ~O is a set of tuples, and each element oi,j in a tuple
oi ∈ Oi is in the universe A. Each object in the universe is
required to be in some Oi. We use STRUCT[τ] to denote
the class of τ structures, and the symbol ' to denote the
isomorphism of τ structures. Also, we use the symbol τm to
denote the signature obtained by extending the signature τ
with m new constant symbols.

The Gaifman graph G(A) of a τ structure A = 〈A, ~O〉
is a graph whose edges are pairs (a, b) where there is a

tuple oi ∈ Oi, for some Oi in ~O, such that both a and
b are elements in oi. The distance dA(a, b) is the length
of the shortest path from a to b in G(A). Given a tuple
~a = (a1, . . . , am) of objects in A, and some r ≥ 0, the r-
sphere of ~a is defined as SAr (~a) =

⋃
1≤i≤m SAr (ai), where

SAr (ai) = {b ∈ A | dA(ai, b) ≤ r}. The r-neighbourhood of

~a is the τm structure NAr (~a) = 〈SAr (~a), ~O|SAr (~a), a1, . . . , am〉,
meaning that NAr (~a) is obtained by restricting A to the uni-
verse SAr (~a) and adding some extra constants which are the
elements of ~a.

As shown by Gaifman [9], the result of any first-order
query can be determined by considering “small neighbour-
hoods” of its input—the locality property. As shown by
Dong et al. [8], flat relational queries expressible in NRC(Q ,
+, ·, −, ÷,

∑
) also enjoy this kind of locality property,

modulo a mild restriction on input relations. It is also shown
by Hella et al. [10] and Libkin [11] that flat relational queries
in Laggr(Q , +, ·, −, ÷,

∑
) enjoy the locality property

even when it is further augmented with any collection Ω of
functions on numbers2 and any collection Θ of aggregate
functions.3 Since NRC(Q , +, ·, −, ÷,

∑
) and Laggr(Q ,

+, ·, −, ÷,
∑

) have equivalent expressive power in terms of
flat relational queries, see Proposition 1, this means that flat
relational queries in NRC(Q , +, ·, −, ÷,

∑
) actually en-

joy the locality property without any restriction, even when
the query language is further augmented with any collection
Ω of functions on numbers and any collection Θ of aggregate
functions.

Proposition 6 (Locality). Every flat relational

query e[~R] in NRC(Q, +, ·, −, ÷,
∑

) has the local-
ity property. That is, there is a finite natural number r
such that, for every A = 〈A, ~O〉 ∈ STRUCT[~R], for ev-

ery two m-ary vectors ~a and ~b of elements of A, it is the

case that NAr (~a) ' NAr (~b) implies ~a ∈ e[~O/~R] if and only if
~b ∈ e[~O/~R].

So for every flat relational query expressible in NRC(Q ,
+, ·, −, ÷,

∑
), there is some number r such that, for

every pair (~a,~b) whose neighbourhoods are isomorphic up
to radius r, they must either be both in the result of the
query or both not in the result of the query. We call the
smallest such number r the “locality index” of the query.

An equivalence relation ~a ≈Ar ~b is induced by NAr (~a) '
NAr (~b). Each resulting isomorphism type, also called a neigh-
bourhood type, induced by this equivalence relation is de-

finable by a first-order formula ξ(~u) such that ~a ≈Ar ~b if and

only if A, [~b/~u] |= ξ(~u). This formula can be thought of as a
“diagram” showing how objects in this neighbourhood type
are “connected” to each other and to the reference objects
(i.e., ~u). If a restriction is imposed so that G(A) has degree
at most k, the number of resulting isomorphism types re-
alised for each r > 0 is finite. This restriction, together with
the locality property, implies that the result of any flat rela-
tional query e[~R] in NRC(Q , +, ·, −, ÷,

∑
) is completely

characterized by a finite number of neighbourhood types.

2A function f ∈ Ω has type of the form Q × · · · ×Q → Q .
3An aggregate function g ∈ Θ has type of the form {|Q |} →
Q , where {|Q |} denotes the type of multiset of numbers.

290

⋃
{e | x ∈ {}} 7→ {}⋃

{e1 | x ∈ {e2}} 7→ e1[e2/x]⋃
{e | x ∈ (e1 ∪ e2)} 7→

⋃
{e | x ∈ e1} ∪

⋃
{e | x ∈ e2}⋃

{e1 | x ∈
⋃
{e2 | y ∈ e3}} 7→

⋃
{
⋃
{e1 | x ∈ e2} | y ∈ e3}⋃

{e | x ∈ (if e1 then e2 else e3)} 7→ if e1 then
⋃
{e | x ∈ e2} else

⋃
{e | x ∈ e3}

πi(e1, . . . , e2) 7→ ei

πi (if e1 then e2 else e3) 7→ if e1 then πi e2 else πi e3
if true then e2 else e3 7→ e2
if false then e2 else e3 7→ e3∑

{|e | x ∈ {}|} 7→ 0∑
{|e | x ∈ {e′}|} 7→ e[e′/x]∑

{|e | x ∈ if e1 then e2 else e3|} 7→ if e1 then
∑
{|e | x ∈ e2|} else

∑
{|e | x ∈ e3|}∑

{|e | x ∈ e1 ∪ e2|} 7→
∑
{|e | x ∈ e1|}+

∑
{|if x ∈ e1 then 0 else e | x ∈ e2|}∑

{|e | x ∈
⋃
{e1 | y ∈ e2}|} 7→

∑
{|
∑
{|(e÷

∑
{|
∑
{|if x = v then 1 else 0 | v ∈ e1|}

| y ∈ e2|})| x ∈ e1|} | y ∈ e2|}

Figure 3: A system of rewrite rules for NRC(Q, +, ·, −, ÷,
∑

, powerset).

The following proposition on objects that are connected
in a neighbourhood type is easily proved.

Proposition 7. Given a neighbourhood type ξ(u1, ..., um)
induced by some r-neighbourhood. Suppose ui and uj are
connected to each other in ξ(u1, ..., um). Then for any τm

structure A = 〈A, ~O, o1, ..., om〉 realizing ξ(u1, ..., um), it
is the case that dA(oi, oj) ≤ 2mr + 1.

4. COMPLEXITY OF QUERIES ON SEVE-
RELY DICHOTOMOUS STRUCTURES

Given a signature τ . A “motif” of radius r is a first-order
formula ρ(u) with a single free variable u and has local-
ity index r on all τ structures. We say a τ structure A is
“bounded” at threshold g by a motif ρ(u) of radius r if there
are at most rg elements in the universe of A that make ρ(u)
true—i.e., |{a ∈ A | A, [a/u] |= ρ(u)}| ≤ rg. We say a class
C of τ structures is “bounded” at threshold g by a motif
ρ(u) if ρ(u) bounds all structures in C at threshold g. On
the other hand, we say C is “unbounded” by ρ(u) if for every
g > 0, there is A ∈ C that is not bounded at threshold g by
ρ(u).

Now we define the class of dichotomous structures.

Definition 1. 1. A class C of τ structures is called “di-
chotomous” at threshold g if and only if (i) C is un-
bounded by some motifs, and (ii) C is bounded by all
other motifs at threshold g.

2. A dichotomous class C is “deep” if it is unbounded by
some motifs of radius r at every r.

3. A dichotomous class C has“severity”` if for every motif
ρ(u) that unbounds C, there is a sequence of structures
A1, A2, ..., in C having universe of increasing size, and
the ratio |{a ∈ Ai | Ai, [a/u] |= ρ(u)}|/|Ai| tends to `
as i tends to infinity.

4. A dichotomous class is “severely dichotomous” if it has
severity 1.

Given a τ structure A = 〈A, ~O〉, we define its size as
the size of its universe: |A| = |A|. We can now state and

prove our Dichotomy Theorem for NRC(Q , +, ·, −, ÷,∑
, powerset).

Theorem 1 (Dichotomy). Let e[~R] : {b × · · · × b}
be a flat relational query in NRC(Q, +, ·, −, ÷,

∑
,

powerset) and the input ~R comes from a class C where (i)
C is severely dichotomous, and (ii) the Gaifman graphs of

its structures have degree at most k. Then either e[~R] is
expressible in NRC(Q, +, ·, −, ÷,

∑
); or there is a se-

quence of structures Ai = 〈Ai, ~Oi〉 ∈ C of increasing size,

such that sizeof (e[~Oi/~R] ⇓) is Ω(2|Ai|).

Proof. Let C be severely dichotomous at threshold g,
and the Gaifman graphs of structures in it have degree at
most k. Let A = 〈A, ~O〉 ∈ C be the input to the query e[~R].

By Proposition 5, the system of rewrite rules in Figure 3
does not increase complexity. By Proposition 4, it is sound
and strongly normalizing. Thus we assume e[~R] is an expres-
sion in normal form with respect to this system of rewrite
rules.

If the powerset operation does not appear in e[~R], then the
theorem trivially holds. So, let it contain some occurrences
of the powerset operation. Suppose powerset e′[~R, ~x] is the
earliest occurrence of the powerset operation to be evaluated
when e[~R] is evaluated according to the operational seman-
tics given in Figure 2.

There are only two ways to introduce a new variable in
NRC(Q , +, ·, −, ÷,

∑
, powerset), namely the

⋃
{e1 | x ∈

e2} construct and the
∑
{|e1 | x ∈ e2|} construct. So, each

new free variable xi in ~x must have been introduced in an en-
closing expression of the form

⋃
{· · · powerset e′[~R, ~x] · · · | xi

∈ E} or the form
∑
{|· · · powerset e′[~R, ~x] · · · | xi ∈ E|}. As

the entire expression e[~R] is in normal form, and e′[~R, ~x] is
the earliest instance of the powerset operation to be evalu-
ated, E must be one of the Ri in ~R, which is a flat relation.
Hence, xi must have height 0 and has a type of the form
b × · · · × b. As the powerset operation requires its input
to be a flat relation, we know e′[~R, ~x] has type of the form

{b× · · · × b}. Therefore, e′[~R, ~x] is a flat relational query in
NRC(Q , +, ·, −, ÷,

∑
).

We need to inspect the entire expression e[~R] to extract

291

all the conditions ψ(~x) that must hold on ~x before e′[~R, ~x]
is evaluated. Let the notation � represents a subexpression
that contains the occurrence of the expression e′[~R, ~x], and
recall that ϕE denotes the formula in Laggr(Q , +, ·, −,
÷,

∑
) that the expression E in NRC(Q , +, ·, −, ÷,

∑
)

translates to. We define the extraction function
−−→
e[~R] by

induction below.

•
−−−−−−−−−−−−−−−−−−−−−−→⋃
{if E then � else F |x ∈ R} = (x, ~x′ : R, ~R′ : ϕE∧ψ),

where
−→� = (~x′ : ~R′ : ψ).

•
−−−−−−−−−−−−−−−−−−−−−−→⋃
{if E then F else � |x ∈ R} = (x, ~x′ : R, ~R′ : ¬ϕE ∧

ψ), where
−→� = (~x′ : ~R′ : ψ).

•
−−−−−−−−−−−−−−−−−−−−−−→⋃
{if � then E else F |x ∈ R} = (x, ~x′ : R, ~R′ : ψ),

where
−→� = (~x′ : ~R′ : ψ).

•
−−−−→
�∪ E =

−→� ,

•
−−−−→
E ∪ � =

−→� ,

• the remaining rules are analogous; we omit them to
avoid tedium.

By the conservative extension property (Proposition 4),

all the types that appear in the typing derivation of e′[~R, ~x]
have height at most 1 (i.e., must be flat). We note that,

by Proposition 1, e′[~R, ~x] is equivalent to a formula ϕ(~x, y)
in Laggr(Q , +, ·, −, ÷,

∑
). We extract all the condi-

tions ψ(~x) that must hold on ~x before e′[~R, ~x] is evaluated—

i.e.,
−−→
e[~R] = (~x : ~R : ψ(~x)). Let C[~x] be the expression in

NRC(Q , +, ·, −, ÷,
∑

) that is equivalent to the for-
mula ψ(~x) in Laggr(Q , +, ·, −, ÷,

∑
). Now we define

φ(~x, y) =df

∧
i Ri(xi) ∧ ψ(~x) ∧ ϕ(~x, y), which is a formula

in Laggr(Q , +, ·, −, ÷,
∑

) and corresponds to the query

{(~x, y) | x1 ∈ R1, ..., xn ∈ Rn, C[~x], y ∈ e′[~R, ~x]} inNRC(Q ,
+, ·, −, ÷,

∑
).

By the locality property (Proposition 6) of NRC(Q , +,
·, −, ÷,

∑
), let φ(~x, y)’s locality index be r. Since the

Gaifman graph of our input structure has degree at most k,
there is a finite number of r-neighbourhood types ξh(~x, y)
such that ¬(ξh(~x, y) ⇒ ¬φ(~x, y)). Thus

∨
h ξh(~x, y) if and

only if φ(~x, y). For convenience, let us refer to these neigh-
bourhood types as the “qualifying neighbourhood types”.

Let xi,j be the jth component of xi in ~x, y,l be the
lth component of y, and πlo

′ the lth component of a tu-
ple o′ of objects in A. Suppose for each y,l and qualifying
neighbourhood type ξh(~x, y), we are able to determine a
number Hh,l in a manner that is independent of A, such
that given any ~o of the appropriate types, it is the case
that |{πlo

′ | A, [~o/~x, o′/y] |= ξh(~x, y)}| < Hh,l. Then we
can make the following conclusions. There are at most
Hh,l distinct instantiations of y,l that make ξh(~x, y) true.
Thus, there are at most H∗h =

∏
l Hh,l distinct instantia-

tions of y that make ξh(~x, y) true. Thus, there are at most
H∗ =

∑
h

∏
l Hh,l distinct instantiations of y that make

φ(~x, y) true. By definition of φ(~x, y), there are at most H∗

tuples in the result of evaluating e′[~O′/~R,~o/~x] in the context

of e[~R]. In this case, this powerset operation can be elimi-

nated by replacing it with an expression powersetH∗ e
′[~R, ~x].

Here, powersetH∗ is a function for producing subsets of size
at most H∗ and is expressible in NRC(Q , +, ·, −, ÷,

∑
). We repeat the entire process above as many times as

necessary. If all occurrences of the powerset operation are
eliminated, then the original query e[~R] must already be
expressible in NRC(Q , +, ·, −, ÷,

∑
).

Now, let us show how to determine the crucial number
Hh,l. We only need to consider three situations when we
compute Hh,l. The first situation is when y,l is connected to
some xi,j in ξh(~x, y). Since ξh(~x, y) describes a r-neighbour-
hood, by Proposition 7, the distance between xi,j and y,l

is at most 2mr + 1, where m is the length of the tuple of
variables denoted by ~x, y. Since the Gaifman graph of our
input structure has degree at most k, for any instantiation
~o for ~x, there are at most k2mr+1 distinct instantiations for
y,l. So we can set Hh,l = k2mr+1 for this first situation.

On the other hand, y,l may not be connected to any xi,j

in ξh(~x, y). Let ξ′h(y,l) =df ∃~x, y,1, ... y,l−1, y,l+1, ...
y,m.ξh(~x, y). By the locality property (Proposition 6), let
the locality index of ξ′h be r′. Since the Gaifman graph has
degree at most k, there is a finite number of r′-neighbourhood
types ρh,d(y,l) such that ¬(ρh,d(y,l) ⇒ ¬ξ′h(y,l)). Thus∨

d ρh,d(y,l) if and only if ξ′h(y,l). Suppose we are able to
determine a number H ′h,l,d, in a manner that is independent
of A, such that |{a | A, [a/y,l] |= ρh,d(y,l)}| < H ′h,l,d. Then
we can set Hh,l =

∑
d H
′
h,l,d.

How do we determine H ′h,l,d? Each ρh,d(y,l) is a motif that
either bounds C at threshold g or unbounds C. This brings
us into the second and the third situation respectively.

The second situation is when ρh,d(y,l) bounds C at thresh-
old g. Recall that the locality index of ξ′h is r′. So the locality
index of ρh,d(y,l) is also r′. Then, by definition of bounding
motifs, there are at most r′g number of instantiations for y,l

that make ρh,d(y,l) true. So we can set Hh,l,d = r′g.
The third and last situation is when ρh,d(y,l) unbounds C.

As C is severely dichotomous, there is a sequence of struc-
tures A1 = 〈A1, ~O1〉, A2 = 〈A2, ~O2〉, ... in C having universe
of increasing size, such that the ratio |{a ∈ Ai | Ai, [a/y,l] |=
ρh,d(y,l)}|/|Ai| tends to 1. Note that all of the objects a in
{a ∈ Ai | Ai, [a/y,l] |= ρh,d(y,l)} must be used to instantiate
y,l as required by the locality property, because ρh,d(y,l) is
a neighbourhood type. That is, the number of instantions
for y,l is essentially |Ai|. In this case, we cannot set Hh,l,d

(and thus Hh,l) to a finite value in a manner that is inde-

pendent of the input structure to our query e[~R]. Therefore,

the powerset operation in powerset e′[~R, ~x] cannot be elim-
inated in this situation. On the other hand, the number of
instantiations for y is Ω(|Ai|) since one of its components,

y,l, has |Ai| instantiations. So, e′[~R, ~x] has Ω(|Ai|) elements.

Thus, sizeof (e[~Oi/~R] ⇓) is Ω(2|Ai|) as desired.
By the way, if C’s severity level was some ` < 1, the num-

ber of instantiations for y,l would be `|Ai|. In this case,

sizeof (e[~Oi/~R] ⇓) would be Ω(2`|Ai|).

5. REMARKS
Let us close this paper by discussing how the Dichotomy

Theorem generalizes the old results of Suciu, Paredaens, Van
den Bussche, Biskup, and others [14, 6, 3].

5.1 On the result of Suciu and Paredaens
Suciu and Paredaens [14] have shown earlier that all im-

plementations of the transitive closure of a single long chain
in the nested relational algebra of Abiteboul and Beeri [1],
which is equivalent to NRC(powerset), require exponential

292

space. In this paper, we have improved on this result in
several significant ways.

Firstly, our Dichotomy Theorem is not limited to a single
specific query such as the transitive closure of a chain. It
works equally well for all flat relational queries (on severely
dichotomous structures) that are inexpressible in NRC(Q ,
+, ·, −, ÷,

∑
) but expressible in NRC(Q , +, ·, −, ÷,∑

, powerset), such as the transitive closure of a set of k
single long chains, a set of k long circles, a deep full binary
tree, and many more.

Corollary 1. For any flat relational query on any
severely dichotomous class of structures whose Gaifman
graphs have degree at most k, if it is inexpressible in NRC(Q,
+, ·, −, ÷,

∑
) but is expressible in NRC(Q, +, ·, −, ÷,∑

, powerset), then all of its implementations in NRC(Q,
+, ·, −, ÷,

∑
, powerset) need exponential space.

Secondly, our Dichotomy Theorem is not limited to
NRC(powerset). We have already shown it for a more pow-
erful query language, NRC(Q , +, ·, −, ÷,

∑
, powerset),

which has aggregate functions and better captures queries
in SQL.

Thirdly, our proof technique is more general. So long
as the query language has the locality property before the
powerset operation is added to it and, after the powerset
operation is added to it, has a normal form induced by the
conversative extension property, our proof works. For ex-
ample, let Ω comprise the functions ⊗, ι, and �; and Θ
comprise the aggregate function Π as defined below:

• ⊗ : Q×Q → Q is a commutative associative function;

• ι : Q is its identity;

• � : Q ×Q → Q is a “duplicate compensator” function
satisfying

n times︷ ︸︸ ︷
(a� n)⊗ · · · ⊗ (a� n) = a;

• Π{|e2 | x ∈ e1|} is an aggregate function that applies
the function f(x) = e2 to every object in the set e1
and aggregate the results using ⊗, and so satisfying
Π{|e2 | x ∈ e1|} = f(o1) ⊗ · · · ⊗ f(om) ⊗ ι where e1 is
the set {o1, ..., om}.

Then we can prove the following more general Dichotomy
Theorem.

Theorem 2. For any flat relational query on any
severely dichotomous class of structures whose Gaifman
graphs have degree at most k, if it is inexpressible in NRC(Ω,
Θ, Q, +, ·, −, ÷,

∑
) but is expressible in NRC(Ω, Θ,

Q, +, ·, −, ÷,
∑

, powerset), then all of its implementa-
tions in NRC(Ω, Θ, Q, +, ·, −, ÷,

∑
, powerset) need

exponential space.

Proof. (Sketch) It is easy to show that NRC(Ω, Θ, Q ,
+, ·, −, ÷,

∑
, powerset) has the conservative extension

property by adding the following rules to the rewrite system:

• Π{|e | x ∈
⋃
{e1 | y ∈ e2}|} 7→ Π{|Π{|(e�

∑
{|
∑
{|if x =

v then 1 else 0 | v ∈ e1|} | y ∈ e2|})| x ∈ e1|} | y ∈ e2|},

• the other rules are analogous to those for
∑

and are
omitted.

The result of Hella et al. [10] also implies NRC(Ω, Θ, Q , +,
·, −, ÷,

∑
) has the locality property. So the proof of our

Dichotomy Theorem can be applied verbatim to conclude
this proposition.

We have also gained some further insights on the use of
powerset operation. If a function f on a severely dichoto-
mous class of structures of degree ≤ k is expressible in
NRC(Q , +, ·, −, ÷,

∑
), but an implementation e of it in

NRC(Q , +, ·, −, ÷,
∑

, powerset) uses the powerset oper-
ation, our Dichotomy Theorem actually does not guarantee
the removal of powerset operation in the implementation e.
It is perfectly reasonable for f to have an inefficient imple-
mentation in NRC(Q , +, ·, −, ÷,

∑
, powerset); i.e., the

Dichotomy Theorem is not a clever optimizer. On the other
hand, the Dichotomy Theorem is sufficient for us to con-
clude that, if f is inexpressible in NRC(Q , +, ·, −, ÷,∑

), then all of its implementation in NRC(Q , +, ·, −, ÷,∑
, powerset) have to use the powerset operation at least

once in a non-trivial way.

5.2 On the result of Van den Bussche
Definition 1 divides the severely dichotomous class of struc-

tures into two subclasses: the class of structures that are
deep and the class of structures that are not deep. The
deep class has motifs of increasingly large radius that un-
bounds the class, while in the non-deep class, all motifs that
unbound the class have small radius. Structures in the non-
deep class are basically things like an arbitrarily large set
of short chains—the class is unbounded by the number of
short chains rather than the length of these chains.

We have so far encountered examples of deep severely di-
chotomous classes of structures. Let us now give an example
of non-deep severely dichotomous classes of structures, viz.,
the class of sets of type {b} having an arbitrarily large num-
ber of elements! The following result is a simple consequence
of Corollary 1.

Corollary 2. 1. For any flat relational query on un-
ary database schemas, if it is inexpressible in
NRC(Q, +, ·, −, ÷,

∑
), but is expressible in NRC(

Q, +, ·, −, ÷,
∑

, powerset), then all of its imple-
mentations in NRC(Q, +, ·, −, ÷,

∑
, powerset)

need exponential space.

2. In particular, all implementations of the parity query
in NRC(Q, +, ·, −, ÷,

∑
, powerset) need expo-

nential space.

Proof. The first part follows immediately from Corol-
lary 1 and the fact that the class of sets of type {b} having
a large number elements is severely dichotomous.

For the second part, we observe that if the parity query
is expressible in NRC(Q , +, ·, −, ÷,

∑
), then it is also

possible to express a query in NRC(Q , +, ·, −, ÷,
∑

) to
test whether a single long chain has an even number of nodes.
By the finite-cofiniteness property of NRC(Q , +, ·, −, ÷,∑

) established by Libkin and Wong [13], the latter query
is inexpressible in NRC(Q , +, ·, −, ÷,

∑
). Thus, the

parity query is inexpressible in NRC(Q , +, ·, −, ÷,
∑

).
Since the simplest instance of the parity query is an example
of a query on unary database schemas, it follows from the
first part that exponential space is needed to implement the
parity query in NRC(Q , +, ·, −, ÷,

∑
, powerset).

293

This corollary straightforwardly generalizes the old result
of Van den Bussche (i.e., Proposition 3) to a more powerful
query language.

5.3 On the result of Biskup et al.
It is possible to capture the key feature of the equation

algebra of Biskup et al. [3] by augmenting NRC with the
following construct:

e1 : {{b× · · · × b}} e2 : {b× · · · × b}⋃
{e1 | x{b×···×b} ⊆ e2} : {{b× · · · × b}}

with the following call-by-value operational semantics:

e2 ⇓ {C1, . . . , Cn}
e1[C′1/x] ⇓ C′′1 . . . e1[C′2n/x] ⇓ C′′2n⋃

{e1 | x ⊆ e2} ⇓ C′′1 ∪ · · · ∪ C′′2n

where C′1, . . . , C
′
2n are the subsets of {C1, . . . , Cn}

The meaning of the construct
⋃
{e1 | x ⊆ e2} is the set

f(C′1)∪ · · · ∪ f(C′2n), where f(x) = e1 and C′1, ..., C′2n are
all the subsets of e2. Operationally, as in Biskup et al. [3],
this construct is executed by enumerating each subset C′i of
e2 and inserting f(Ci)

′ into the result set one by one. If most
of the f(Ci)

′ are empty or identical, the evaluation of this
construct should take only polynomial space even though
the time complexity is exponential.

We denote the extensions of NRC and NRC(Q , +, ·, −,
÷,

∑
) with this contruct by NRC(eqn) and NRC(Q , +,

·, −, ÷,
∑

, eqn) respectively.
It is easy to see

⋃
{e1 | x ⊆ e2} =

⋃
{e1 | x ∈ powerset e2}

and powerset e =
⋃
{{x} | x ⊆ e}. Thus, NRC(powerset)

and NRC(eqn) have the same expressive power and, simi-
larly, NRC(Q , +, ·, −, ÷,

∑
, powerset) and NRC(Q , +,

·, −, ÷,
∑

, eqn) have the same expressive power.
If an upperbound n on the cardinality of e2 is known in

advance, we can replace
⋃
{e1 | x ⊆ e2} by an expression⋃

{e1 | x ∈ powersetn e2}. Here, powersetn e2 is an expres-
sion that enumerates all subsets of e2 upto size k, which is
obviously definable in NRC.

It follows easily from the work of Biskup et al. [3] that the
transitive closure query can be implemented in NRC(eqn)
using polynomial space. Therefore, the Dichotomy Theorem
in terms of space complexity does not hold inNRC(eqn) and
NRC(Q , +, ·, −, ÷,

∑
, eqn).

Proposition 8. 1. There is a flat relational query on
a severely dichotomous class of structures of degree at
most k that cannot be implemented in NRC(Q, +,
·, −, ÷,

∑
), but can be implemented in NRC(eqn)

using polynomial space.

2. In particular, transitive closure is such a query.

Nevertheless, it is possible to prove a general Dichotomy
Theorem in terms of time complexity for NRC(eqn) and
NRC(Q , +, ·, −, ÷,

∑
, eqn). We sketch a proof for the

latter.

Theorem 3. Let e[~R] : {b × · · · × b} be a flat relational

query in NRC(Q, +, ·, −, ÷,
∑

, eqn) and the input ~R
comes from a class C where (i) C is severely dichotomous,
and (ii) the Gaifman graphs of its structures have degree

at most k. Then either e[~R] is expressible in NRC(Q, +,
·, −, ÷,

∑
); or there is a sequence of structures Ai =

〈Ai, ~Oi〉 ∈ C of increasing size such that timeof (e[~Oi/~Ri] ⇓)

is Ω(2|Ai|).

Proof. (Sketch) It can be shown that NRC(Q , +, ·,
−, ÷,

∑
, eqn) has the conservative extension property.

Moreover, the associated rewrite rules do not increase time
complexity; see Proposition 5. So e[~R] is assumed to be
in normal form. Now, we look for the first expression of
the form

⋃
{e1 | x ⊆ e2} in e[~R] that is to be executed.

Then, by an argument similar to that in Theorem 4, we
know e2 is a flat relational query in NRC(Q , +, ·, −, ÷,∑

). Since NRC(Q , +, ·, −, ÷,
∑

) has the locality prop-
erty, again by an argument similar to that in Theorem 4,
we can either determine an upper bound n on the size of e2
independent of the universe of the input structure or show
that its size is as large as the universe of the input struc-
ture. In the first situation, the expression can be replaced by⋃
{e1 | x ∈ powersetn e2}, which is expressible in NRC(Q ,

+, ·, −, ÷,
∑

); so we make the replacement and repeat
the whole process. In the second situation, we know that
this occurrence of

⋃
{e2 | x ⊆ e2} takes exponential time to

evaluate.

Since parity, transitive closure, etc. are inexpressible in
NRC(Q , +, ·, −, ÷,

∑
), and their input can be easily re-

stricted to severely dichotomous classes of structures having
degree at most k, all their implementations in NRC(Q , +,
·, −, ÷,

∑
, eqn) require exponential time.

Corollary 3. 1. All implementations of the parity
query in NRC(Q, +, ·, −, ÷,

∑
, eqn) need ex-

ponential time.

2. All implementations of the transitive closure query in
NRC(Q, +, ·, −, ÷,

∑
, eqn) need exponential time.

6. ACKNOWLEDGEMENTS
I have not done work on query language theory for more

than a decade. I re-started on the subject when Val Tannen
asked me to contribute a book chapter to a festschrift for
Peter Buneman last year. I am grateful to both of them for
their mentorship when I was a student at UPenn and for re-
triggering my interest in query language theory. I dedicate
this paper to Peter Buneman.

I am also thankful to an anonymous referee who pointed
out the relevant works of Van den Bussche and Biskup et al.
This led me to expand this paper to include new results on
the parity query and the equation algebra. These inclusions
help provide a more complete appreciation of the Dichotomy
Theorem.

This work was supported in part by a Singapore Ministry
of Education grant MOE-T1-251RES1206.

7. REFERENCES
[1] S. Abiteboul and C. Beeri. The power of languages for

the manipulation of complex values. VLDB Journal,
4(4):727–794, 1995.

[2] S. Abiteboul and V. Vianu. Generic computation and
its complexity. In Proc. 23rd ACM Symp. Theory of
Computing, pages 209–219, 1991.

[3] J. Biskup, J. Paredaens, T. Schwentick, and J. Van
den Bussche. Solving equations in the relational
algebra. SIAM Journal on Computing,
33(5):1052–1055, 2004.

[4] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L.
Wong. Comprehension syntax. SIGMOD Record,
23(1):87–96, 1994.

294

[5] P. Buneman, S. Naqvi, V. Tannen, and L. Wong.
Principles of programming with complex objects and
collection types. Theoretical Computer Science,
149(1):3–48, 1995.

[6] J. Van den Bussche. Simulation of the nested
relational algebra by the flat relational algebra, with
an application to the complexity of evaluating
powerset algebra expressions. Theoretical Computer
Science. 254(1–2):363–377, 2001.

[7] L. Colson. About primitive recursive algorithms.
Theoretical Computer Science, 83:57–69, 1991.

[8] G. Dong, L. Libkin, and L. Wong. Local properties of
query languages. Theoretical Computer Science,
239:277–308, 2000.

[9] H. Gaifman. On local and non-local properties. In
Proc. Herbrand Symp., Logic Colloq. ’81, pages
105–135, 1982.

[10] L. Hella, L. Libkin, J. Nurmonen, and L. Wong.
Logics with aggregate operators. Journal of the ACM,
48(4):880–907, 2001.

[11] L. Libkin. On forms of locality over finite models. In
Proc. 12th IEEE Symp. Logic in Computer Science,
pages 204–215, 1997.

[12] L. Libkin and L. Wong. Conservativity of nested
relational calculi with internal generic functions.
Information Processing Letters, 49(6):273–280, 1994.

[13] L. Libkin and L. Wong. Query languages for bags and
aggregate functions. Journal of Computer and System
Sciences, 55(2):241–272, 1997.

[14] D. Suciu and J. Paredaens. The complexity of the
evaluation of complex algebra expressions. Journal of
Computer and Systems Sciences, 55(2):322–343, 1997.

[15] D. Suciu and L. Wong. On two forms of structural
recursion. In Proc. of 5th Intl. Conf. on Database
Theory, pages 111–124, 1995.

[16] L. Wong. Normal forms and conservative extension
properties for query languages over collection types.
Journal of Computer and System Sciences,
52(3):495–505, 1996.

295

