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In recent years, dictionary learning has received more and more attention in the study of face recognition. However, most
dictionary learning algorithms directly use the original training samples to learn the dictionary, ignoring noise existing in the
training samples. For example, there are differences between different images of the same subject due to changes in illumination,
expression, etc. To address the above problems, this paper proposes the dictionary relearning algorithm (DRLA) based on locality
constraint and label embedding, which can effectively reduce the influence of noise on the dictionary learning algorithm. In our
proposed dictionary learning algorithm, first, the initial dictionary and coding coefficient matrix are directly obtained from the
training samples, and then the original training samples are reconstructed by the product of the initial dictionary and coding
coefficient matrix. Finally, the dictionary learning algorithm is reapplied to obtain a new dictionary and coding coefficient matrix,
and the newly obtained dictionary and coding coefficient matrix are used for subsequent image classification. ,e dictionary
reconstructionmethod can partially eliminate noise in the original training samples.,erefore, the proposed algorithm can obtain
more robust classification results. ,e experimental results demonstrate that the proposed algorithm performs better in rec-
ognition accuracy than some state-of-the-art algorithms.

1. Introduction

In recent years, dictionary learning has been widely applied
in various fields due to its excellent performance, such as face
recognition [1–3], image denoising [4, 5] and blurring [6, 7],
image segmentation [8, 9], and image recognition [10]. For
face recognition [11, 12], the conventional dictionary
learning method first learns a dictionary through the
training samples. ,en, given a test image, the image is
represented by the atoms in the dictionary. Finally, the
image is classified according to the result of the
representation.

According to previous studies, using a dictionary ob-
tained by the training samples to represent and classify test
samples can lead to a higher accuracy than directly using
training samples to represent and classify the test samples
[13–15]. ,e dictionary learning method has achieved very
significant performance in face recognition applications so

that researchers have proposed various dictionary learning
methods. Luo et al. proposed a multiresolution dictionary
learning method [16], which mainly resolves the problem
that the conventional dictionary learning method only fo-
cuses on a single resolution. ,e method can effectively
reduce the influence of noise and has better robustness. At
the same time, the performance of face recognition has also
been greatly improved. ,e multiview-like multiple vector
representations can provide supplementary information for
the representation object, and a robust dictionary learning
method is proposed in [17]. Wang et al. used the low-rank
structure of training data to construct a dictionary and
proposed a new dictionary learning method, namely, Dis-
criminative and Common hybrid Dictionary Learning
(DCDL) [18]. ,emethod overcomes two problems with the
Sparse Representation-based Classification (SRC). One is
that there is no major damage to the training samples, and
the other is that each subject should have enough training

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 8964321, 10 pages
https://doi.org/10.1155/2020/8964321

mailto:zyj6667@126.com
https://orcid.org/0000-0002-7534-1219
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8964321


samples. Foroughi et al. proposed a multimodal structured
low-rank dictionary learning method [19], which also has a
good recognition rate and robustness under severe illumi-
nation changes and occlusions. In addition, sparse repre-
sentation has achieved significant performance in face
recognition. For example, Xu et al. proposed an improved
collaborative representation [20]. ,e novel image repre-
sentation and score fusion scheme is effective for classifying
deformable objects, such as face images. Qian also proposed
a method for merging virtual images and training samples
[21]. Tang et al. proposed a novel algorithm, Distance
Weighted Regression Classifier (DWLRC) [22], which solves
the problem that current algorithms cannot fully utilize
sample information.

To improve the discriminative ability of the dictionary,
the researchers proposed various constraint models, and the
most important ones are the local structure constraint model
and the label constraint model [23]. In the field of sparse
coding and dictionary learning, the use of the local structure
of data is considered to be an important way to improve
performance. In fact, the locality of the data can lead to the
sparseness of the data, but not vice versa [24]. ,erefore,
many dictionary learning methods have added local con-
straints. For example, to maintain the structural charac-
teristics of the training samples, Zheng et al. [25] proposed a
Graph-SC algorithm to generate a Laplace graph of the
training samples and used it to design the discriminant of the
dictionary. Haghiri et al. [26] also proposed a discriminative
dictionary learning method that preserves the local structure
of the training samples. Zhang et al. [27] proposed the
Locality-Constrained Projective Dictionary Learning (LC-
PDL) algorithm, which adds the local constraint of atoms to
maintain local information. Similarly, the label constraint
also plays an important role in dictionary classification.
More and more dictionary learning algorithms improve
performance by adding the label constraint. For example,
Shrivastava et al. [28] proposed a nonlinear discriminative
dictionary learning method. ,e method can learn a dic-
tionary by using both marked and unmarked data. ,e
D-KSVD [29] algorithm adds the class label of the training
samples to the discriminant, which ensures that the coding
coefficients corresponding to the training samples of the
same class also have a similarity. ,e algorithm greatly
improves the discriminative ability of the dictionary. At the
same time, the class label of the atom has also received more
attention from researchers. ,e K-SVD [30] algorithm as-
sociates each atom with label information and introduces a
new label consistency constraint. Considering the impor-
tance of the local structure and the label constraint, Li et al.
[31] proposed the Locality-Constrained and Label Embed-
ding Dictionary Learning Algorithm (LCLE-DL).

At present, most dictionary learning algorithms use the
original training samples to generate a dictionary directly.
However, the original training samples are generally col-
lected at different angles, illuminations, and facial expres-
sions. In other words, there are differences between different
face images of the same object, and we can think that there is
noise in the original image, which may reduce the dis-
criminative ability of the dictionary. Actually, noise almost

always exists [32]. ,erefore, this paper proposes the dic-
tionary relearning algorithm (DRLA) based on Locality-
Constrained and Label Embedding Dictionary Learning
Algorithm (LCLE-DL), which can partially eliminate noise
in the original image. ,e dictionary reconstruction method
is as follows: first, assume that we have obtained the initial
dictionary and encoding coefficient matrix. ,en, the
product of the initialized dictionary and the coding coeffi-
cient matrix replaces the original training samples matrix.
Finally, the dictionary learning algorithm uses the updated
training samples matrix to obtain the reconstructed dic-
tionary and coding coefficient matrix, and the reconstructed
result is used for subsequent image classification. We will
explain the proposed method in detail in the subsequent
chapters. ,e results of face recognition experiments show
that the proposed method is feasible, which can reduce the
influence of noise in the image and improve the accuracy of
face recognition.

,e other parts of the paper are organized as follows.
Section 2 introduced the work related to the proposed al-
gorithm. Section 3 explains the complete steps of the dic-
tionary relearning algorithm (DRLA). Section 4 presents and
analyzes the experimental results of the face database.
Section 5 provides the conclusions.

2. Related Works

In this section, we introduce the work related to the dic-
tionary relearning algorithm proposed in this paper. It
mainly explains how to construct the local structure and the
label embedding constraint. Besides, we introduce a dis-
criminant dictionary model with both atomic local structure
and label embedding constraints [31]. We also define some
important symbols and definitions. We represent the
training samples as Y � [Y1, Y2, . . . , YC] � [y1, y2, . . . ,
yN] ∈Rn×N. C represents the number of classes of training
samples. N is the number of training samples, and the di-
mension of each training sample is n. ,e dictionary is
represented as D � [d1, d2, . . . , dK] ∈ Rn×K, K is the
number of atoms. ,e coding coefficient matrix is recorded
as X � [x1, x2, . . . , xN] ∈ RK×N, xi represents the coding
coefficient corresponding to the training sample yi, and
xi � [xi1, xi2, . . . , xiK]

T. We refer to the transpose of the
coefficient matrix X as the profiles matrix, denoted as
P � XT ∈ RN×K. ,at is, each row of the coding coefficient
matrix represents a profile [33].

2.1. Locality Constraint of Atoms. Previous research
[27, 30, 31] results show that the local constraint of atoms
can effectively improve the discriminative ability of the
dictionary and increase the robustness of the dictionary.
,ere is a similar relationship between atoms and profiles. If
two atoms are similar, then their corresponding profiles are
similar, and vice versa. Moreover, all elements in the same
profile correspond to the same atom. If the values of themth
and kth elements of the vector xi are not zero, then the
training sample yi is reconstructed by the atoms dm and dk,
and other atoms do not participate in the process. If profiles
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pi is a nonzero vector and the sth and tth elements are not
zero, this means that the training samples ys and yt are
represented by the atom di. To maintain the local structural
characteristics of the atom and inherit the structural features
of the training samples, the paper [31] designed a dis-
criminant dictionary model of the local constraint of atoms.
Since the graph can effectively represent the similar rela-
tionship between the atoms and the profiles, a neighbor
graphM can be constructed by the atoms. We can calculate
the weight matrix of graphM by equation (1) [34], denoted
as G:

g(i, j) �

exp −
di − dj






 





δ

 , if dj ∈ kNN di( ),
0, else,


(1)

where g(i, j) refers to the weight between the atoms di
and dj, which represents the degree of similarity between
the two atoms, kNN(di) represents the k atoms closest to
the atom di, and δ is a parameter and is equal to 4 in all
experiments. ,rough the previously constructed
neighboring graphM, we can generate a Laplacian graph
L. ,e equation for constructing a Laplacian graph is as
follows:

L � A − G, (2)

where A is a diagonal matrix, denoted as A � diag(a1, a2,
. . . , ak), and ai � ∑kj�1 g(i, j).

As the Laplace graph L is generated by the dictionary, it
has better robustness and can better reflect the similarity of
atoms [31]. According to the similar relationship between
atoms and profiles, the profile matrix P � XT and Laplacian
graph L can be used to construct the discriminant of the
dictionary, which can effectively maintain the local structure
of atoms. ,e construction method of the discriminant
dictionary model based on the locality constraint of atoms is
as follows [31]:

1

2
∑k
i�1

∑k
j�1

pi − pj






 




2g(i, j) � Tr XTLX( ). (3)

2.2. LabelEmbeddingofAtoms. ,e label constraint of atoms
can improve the discriminative ability of the dictionary,
which has been proved in previous studies [30, 31]. ,e
atoms in the dictionary should have a different recon-
struction performance when reconstructing the training
samples. If some atoms reconstruct only one class of the
training samples, then these atoms can be considered to
belong to the same class [35]. ,e K-SVD algorithm can
generate a specific class dictionary for each class of the
training samples. ,erefore, using K-SVD on the training
samples can generate a dictionary containing the atoms of
the C classes, denoted as D � [D1, D2, . . . , DC]. If the atom
di belongs to Di, then the atom can be assigned a class label
of ri � (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ RC, ri is a C-dimensional
row vector, and the value of the ith element is one, and the

values of the other elements are zero. Finally, we can get the
class label vector for each atom and construct the label
matrix of dictionary D, denoted as
R � [r1, r2, . . . , rK]

T ∈ RK×C, where K is the number of
atoms in the dictionary.

After obtaining label matrix R, the weighted label matrix
H of dictionaryD can be obtained according to the following
equation [36]:

H � R RTR( )(− 1/2) ∈ RK×C. (4)

According to [31], the profiles matrix P � VT and the
weighted label matrix H are used to construct the label
embedding constraint model of the atom as follows:

min
V
Tr VTHHTV( ) � min

V
Tr VTUV( ), (5)

where V is the coding coefficient matrix and U is called the
scaled label matrix. From equation (5), we can see that
U � HHT ∈ RK×K. Furthermore, U is a block diagonal
matrix, which causes matrix V to be a similar structure. ,is
structure increases the discrimination of coding coefficients.
,e label embedding constraint of atoms promotes the
similarity of profiles corresponding to atoms of the same
class.

,rough the above locality and label embedding con-
straint, a discriminant dictionary model with both con-
straints can be constructed as follows:

min
D,X,V,L

‖Y−DX‖22 +αTr X
TLX( )+‖Y−DV‖22 +βr VTUV( )

+c‖X−V‖22

s.t. d2i � 1, i� 1, . . . ,K,

(6)
where α, β, and c are parameters. ,e second and fourth
terms correspond to the locality constraint and the label
embedding constraint of atoms, respectively. ,e fifth
term ensures that the coding coefficient matrices X and V
should be as close as possible so that the structural fea-
tures and the discriminating information can be con-
verted to each other.

3. The Dictionary Relearning Algorithm

In this section, we will explain in detail the proposed
method, i.e., the dictionary relearning algorithm (DRLA).

,e specific steps of the algorithm are as follows:

Step 1: the K-SVD algorithm is exploited to obtain the
initial dictionary D and the coding coefficient matrix X
based on the training samples Y. In particular, we apply
the K-SVD algorithm to training samples of each class
to generate a specific class dictionary Di. ,erefore,
dictionary D is defined as D � [D1, D2, . . . , DC] �

[d1, d2, . . . , dK], C is the number of classes, and K is the
number of atoms. Meanwhile, the coding coefficient
matrix obtained by the K-SVD algorithm can be
expressed as X � [X1, X2, . . . , XC] � [x1, x2, . . . , xN],
where N is the number of the training samples.
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Step 2: we record the label matrix of the training
samples as T � [t1, t2, . . . , tN], where ti is a C-di-
mensional column vector and N is the number of the
training samples. ti represents the class label vector of
training sample yi, a member of the training sample set
of the ith class, then ti � [0, . . . , 0, 1, 0, . . . , 0]

T. Only
the value of the ith element of ti is one, and the values of
other elements are zero. When using the K-SVD al-
gorithm to generate a specific class dictionary for each
class of the training samples, we construct the class
label of the atom of this class dictionary through the
matrix T. Finally, we can get the label matrix R of
dictionary D, and Section 2.2 describes the structure of
R.

Step 3: we can construct the weight label matrix H of
the dictionary D according to the label matrix R. ,e
construction formula is equation (4), that is,
H � R(RTR)(− 1/2). At the same time, the scaled label
matrix U is obtained, and the calculation method is
U � HHT.

Step 4: we construct the Laplacian graph L using the
initialized dictionary D. ,e construction methods are
equations (1) and (2).

Step 5: in this step, we explain how to update the
dictionary D and the sparse coding matrices X and V.
According to the objective function (6) of the locality
constraint and the label embedding constraint, we only
regard the coding coefficient matrix V as a variable, and
other variables in the equation are regarded as con-
stants. ,erefore, the formula for calculating V can be
solved as follows:

V � DTD + βU + cI( )− 1
DTY + cX( ). (7)

Here, I is an identity matrix.

Similarly, we can get the update formula of the dic-
tionary D and the coding coefficient matrix X as
follows:

D � Y XT
+ VT( ) XXT

+ VVT( )− 1
, (8)

X � DTD + αL + cI( )− 1
DTY + cV( ). (9)

After obtaining the updated dictionaryD, the Laplacian
graph L is updated by equations (1) and (2). ,e step
should be performed continuously until the termina-
tion condition is satisfied.

Step 6 (reconstruction of the training samples): the
reconstruction method is implemented as follows:

Z � DX . (10)

Step 7: using reconstructed training sample matrix Z,
we reobtain dictionary D and coding coefficient ma-
trices X and V by equations (7)–(9), respectively.

Step 8: classification parameter B is calculated and the
test samples are classified.We record the label matrix of
the test set as Ht and use it and the reobtained coding
coefficient matrix X above to calculate classification
parameter B. ,e calculation equation is as follows:

B � HtX
T XXT

+ I( )− 1
. (11)

For each test sample y, we use the OMP algorithm [37] to
obtain its corresponding coding coefficient, denoted as x′.
,e classification result vector F is calculated by the fol-
lowing equation:

F � Bx′. (12)

Suppose that F � [f1, . . . , fk]. If ft is the maximum
value of F, then the test sample is classified into the tth class.
,e algorithm only needs to iterate from step 1 to step 8 once
to obtain the classification result.

,e scheme presented above for reconstruction of the
training samples is inspired by the algorithm proposed in
[38]. However, the algorithm in [38] is proposed for
rerepresentation of a test sample by virtue of all training
samples, whereas our scheme is deviced for reconstruction
of the training samples. In other words, the algorithm
proposed in [38] uses the rerepresentation of a test sample
for sparse representation, while the reconstruction of
training samples in our algorithm is used for dictionary
learning.

4. Experimental and Results

In this section, we conducted experiments on several
widely used face databases. ,ese face databases are AR
face database (AR) [39], Extended Yale B face database
[40], Labeled Faces in the Wild database (LFW) [41], and
CMU PIE face database (PIE) [42]. To better reflect the
advantages of dictionary reconstruction for the algo-
rithm, we compare the proposed algorithm with other
excellent algorithms, including classical dictionary
learning and sparse representation algorithms. In all
experiments, the proposed algorithm was compared with
seven algorithms. ,ey are LCLE-DL [31], LC-KSVD2
[30], D-KSVD [29], K-SVD [43], LLC [44], Sparse Rep-
resentation-based Classification algorithm (SRC) [45],
and Linear Regression Classification algorithm (LRC)
[46]. ,e following is the experimental results and
analysis of face databases.

In our experiments, all algorithms were executed ten
times and then the average recognition rate and standard
deviation were calculated. In the experiment table, the
number in parentheses following the algorithm indicates the
number of atoms, and the symbol ± represents the standard
deviation of the average recognition rate.
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4.1. Experiments on the AR Face Database. ,e AR face
database contains 126 people with more than 4,000 color
images. ,e images are obtained under different angles,
lighting, and facial expressions. Besides, the image of each
subject is divided into occlusion and no occlusion, in other
words, whether the subject has glasses or a scarf. In this
experiment, we selected a subset of the AR face database for
experimentation. ,e subset contains a total of 3120 images
of 120 subjects, and each subject selects 26 images. Figure 1
shows examples of face images of a subject in the AR
database.

In the experiment, for each object, we randomly selected
eight images (including the first five images) as training
samples. ,e remaining images of each subject are used as
test samples. We set the parameters of the algorithm as
α � 1e − 4, β � 1e − 3, and c � 1e − 3. ,e experimental
results of the average recognition rates of different algo-
rithms are shown in Table 1. Here, we give the case where the
number of atoms is 840 and 960.

From Table 1, we can see that the DRLA achieves the best
classification performance when the number of atoms is 960
or 840. For example, when the number of atoms is 960, the
average recognition rate of the DRLA is 83.1%, which is 3.7%
and 4.3% higher than LCLE-DL and K-SVD, respectively.
Similarly, the DRLA algorithm is superior to other algo-
rithms in terms of average recognition rate. When the

number of atoms is 840, the average recognition rate of the
DRLA is 82.6%. However, the average recognition rates of
the LCLE-DL, LC-KSVD2, D-KSVD, and K-SVD algorithms
were 79.3%, 78.5%, 69.3%, and 25.5%, respectively. It can be
seen that the DRLA achieves better classification perfor-
mance. Although DRLA can be viewed as one improvement
to the locality-constrained and label embedding dictionary
learning (LCLE-DL) algorithm, DRLA attains better rec-
ognition results.

Figure 2 shows the average recognition rates of the
DRLA, LCLE-DL, LC-KSVD2, D-KSVD, and K-SVD al-
gorithms as the number of atoms increases (K� 120, 240, . . .,
600, 720). It can be clearly seen that the DRLA algorithm has
obtained the best recognition accuracy.

4.2. Experiments on the LFWFace Database. In this section,
we select a subset from the LEW database as the exper-
imental dataset. ,e subset contains 1215 images with a
total of 86 people and approximately 11–20 images per
person. We adjusted each image to a 32 × 32 pixel size.
Figure 3 shows examples of face images in the LEW
database.

In the experiment, we selected the first five images of
each subject as training samples and randomly selected three
images from the remaining images of each subject to join the
training samples. In other words, each subject has eight
training samples and the remaining samples as the test
image. We set the parameters of the algorithm as α � 1e − 2,
β � 1e − 2, and c � 1e − 1. ,e experimental results on the
LFWdatabase are shown in Table 2, which shows the average
recognition rates of different algorithms. Table 2 mainly
shows the results when the number of atoms is 688. We also
give the average recognition rate of the proposed algorithm
when the number of atoms is 602.

From Table 2, we can see that when the number of atoms
is 688, the average recognition rate of the DRLA is higher
than other algorithms. For example, the average recognition
rate of the DRLA is 38.9%, which is slightly higher than
38.8% of the LCLE-DL algorithm. Moreover, the recognition
rate of the DRLA is significantly higher than 32.2% of LC-
KSVD2, 33.4% of D-KSVD, and 34.8% of LLC. In addition,
when the number of atoms is 602, the average recognition

Figure 1: Examples of images in the AR face database.

Table 1: Average recognition rates on the AR face database.

Algorithm Average recognition rates (%)

DRLA (960) 83.1 ± 0.011
DRLA (840) 82.6 ± 0.010
LCLE-DL (960) 79.4 ± 0.065
LCLE-DL (840) 79.3 ± 0.065
LC-KSVD2 (960) 74.2 ± 0.066
LC-KSVD2 (840) 78.5 ± 0.065
D-KSVD (960) 74.1 ± 0.067
D-KSVD (840) 69.3 ± 0.056
K-SVD (960) 78.8 ± 0.063
K-SVD (840) 25.5 ± 0.048
SRC (960) 72.2 ± 0.072
LLC 71.1 ± 0.06
LRC (960) 69.7 ± 0.074
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rate of the DRLA is 38.4%, which is 1.6% higher than LCLE-
DL. ,e above results show that the DRLA has good clas-
sification performance.

When the number of atoms (K� 86, 172, . . ., 430, 516)
changes, the average recognition rates of the DRLA, LCLE-
DL, LC-KSVD2, D-KSVD, and K-SVD algorithms are

shown in Figure 4. Obviously, the DRLA algorithm performs
better than the other four algorithms.

4.3. Experiments on the Yale B Face Database. ,e images of
,e Extended Yale B database are collected under different
lighting and facial expressions. ,e database contains 38
people with a total of 2,414 images and approximately 59–64
images per person. Each image is adjusted to a 32× 32 pixel
size. Figure 5 shows examples of face images in the Yale B
database.

In the experiment, for each subject, we randomly se-
lected 20 images (including the first five images) as training
samples. ,e remaining images of each subject are used for
testing. We set the parameters of the algorithm as α � 1e − 3,
β � 1e − 5, and c � 1e − 3. On the Yale B database, the
average recognition rates of different algorithms are shown
in Table 3. We mainly compare the case when the number of
atoms is 760.
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Figure 2: ,e average recognition rates with different numbers of atoms on the AR database.

Figure 3: Examples of images in the LFW face database.

Table 2: Average recognition rates on the LFW face database.

Algorithm Average recognition rates (%)

DRLA (602) 38.4 ± 0.012
DRLA (688) 38.9 ± 0.016
LCLE-DL (602) 36.8 ± 0.013
LCLE-DL (688) 38.8 ± 0.009
LC-KSVD2 (688) 32.2 ± 0.012
D-KSVD (688) 33.4 ± 0.016
K-SVD (688) 32.4 ± 0.020
SRC (688) 38.1 ± 0.011
LLC 34.8 ± 0.011
LRC (688) 37.1 ± 0.014
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From Table 3, when the number of atoms is 760 and
722, the average recognition rate of DRLA is improved by
0.2% compared with LCLE-DL. Similarly, the recognition
rate of the DRLA is still the highest compared to other
algorithms. For example, when the number of atoms is 760,
the DRLA is 0.7% and 3.6% higher than SRC and LRC,
respectively.

Figure 6 shows the average recognition rates of the DRLA,
LCLE-DL, LC-KSVD2, D-KSVD, and K-SVD algorithms
with different numbers of atoms (K� 38, 76, . . ., 760). When
the number of atoms increases, the average recognition rates
of the DRLA, LCLE-DL, and LC-KSVD2 algorithms also
gradually increases, but K-SVD performs unstable.

4.4. Experiments on the CMU PIE Face Database. We select
the C05, C07, C09, C27, and C29 subsets of the PIE database
as experimental data. ,e face database subset contains a
total of 68 people, each with 170 images. ,e images of each
subject were collected under different lighting and facial
expressions. We resized all images to 32× 32 size. Figure 7
shows examples of face images in the PIE database.

In the experiment, we randomly selected ten images
(including the first 5 images) of each subject as training
samples, and the rest as test samples. We set the parameters
of the algorithm as α � 1e − 2, β � 1e − 6, and c � 1e − 2.
,e average recognition rates of different algorithms are
shown in Table 4. When the number of atoms is 680, the
DRLA algorithm achieves the best performance, which
improves the average recognition rate by 5.4% compared to
LCLE-DL.
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Figure 4: ,e average recognition rates with different numbers of atoms on the LFW database.

Figure 5: Examples of images in the Yale B face database.

Table 3: Average recognition rates on the Yale B face database.

Algorithm Average recognition rates (%)

DRLA (760) 96.0 ± 0.008
DRLA (722) 95.6 ± 0.006
LCLE-DL (760) 95.8 ± 0.005
LCLE-DL (722) 95.4 ± 0.005
LC-KSVD2 (760) 92.7 ± 0.008
LC-KSVD2 (608) 92.9 ± 0.008
D-KSVD (760) 83.0 ± 0.026
D-KSVD (456) 94.3 ± 0.005
K-SVD (760) 95.3 ± 0.016
K-SVD (456) 94.0 ± 0.005
SRC (760) 95.3 ± 0.005
LLC 88.9 ± 0.010
LRC (760) 92.4 ± 0.008
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As the number of atoms (K� 68, 136, . . ., 408, 476)
increases, the average recognition rates of the DRLA, LCLE-
DL, LC-KSVD2, D-KSVD, and K-SVD algorithms are
shown in Figure 8. Compared with the other four algo-
rithms, the performance of the DRLA algorithm is very
superior.
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Figure 6: ,e average recognition rates with different numbers of atoms on the Yale B database.

Figure 7: Examples of images in the PIE face database.

Table 4: Average recognition rates on the PIE face database.

Algorithm Average recognition rates (%)

DRLA (680) 81.0 ± 0.006
DRLA (544) 79.2 ± 0.006
LCLE-DL (680) 75.6 ± 0.009
LCLE-DL (544) 73.9 ± 0.012
LC-KSVD2 (680) 72.3 ± 0.009
D-KSVD (680) 71.9 ± 0.008
K-SVD (680) 72.4 ± 0.010
SRC (680) 72.1 ± 0.008
LLC 53.7 ± 0.016
LRC (680) 61.6 ± 0.021
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Figure 8: ,e average recognition rates with different numbers of
atoms on the PIE database.
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5. Conclusions

,ere are always noises in the original training samples. For
example, differences in face images of the same object, which
are caused by changes in lighting, facial expressions, and
posture can be viewed as noise too in terms of viewpoint of
pattern classification. We believe that these noises may
reduce the discriminative ability of the dictionary. To reduce
the influence of noise in the original training samples on
dictionary performance, this paper proposes a dictionary
relearning algorithm, which is implemented based on the
locality constraint and the label embedding constraint. A
large number of face experiments show that our proposed
algorithm can eliminate some noise in the original training
samples. ,is algorithm not only can effectively improve the
discriminative ability of the dictionary but also enhance the
robustness of the dictionary learning algorithm. In addition,
we believe that the idea of dictionary reconstruction has a
certain versatility, and it can be applied to a variety of
different dictionary learning algorithms. ,e method is also
an effective way to reduce the impact of image noise on the
performance of the algorithm.
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