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Abstract. Empirically, we find that, despite the class-specific features owned by

the objects appearing in the images, the objects from different categories usually

share some common patterns, which do not contribute to the discrimination of

them. Concentrating on this observation and under the general dictionary learning

(DL) framework, we propose a novel method to explicitly learn a common pat-

tern pool (the commonality) and class-specific dictionaries (the particularity) for

classification. We call our method DL-COPAR, which can learn the most com-

pact and most discriminative class-specific dictionaries used for classification.

The proposed DL-COPAR is extensively evaluated both on synthetic data and

on benchmark image databases in comparison with existing DL-based classifi-

cation methods. The experimental results demonstrate that DL-COPAR achieves

very promising performances in various applications, such as face recognition,

handwritten digit recognition, scene classification and object recognition.
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1 Introduction

Dictionary learning (DL), as a particular sparse signal model, has risen to prominence

in recent years. It aims to learn a (overcomplete) dictionary in which only a few atoms

can be linearly combined to well approximate a given signal. DL-based methods have

achieved state-of-the-art performances in many application fields, such as image de-

noising [1] and image classification [2,3].

DL methods are originally designed to learn a dictionary which can faithfully rep-

resent signals, therefore they do not work well for classification tasks. To circumvent

this problem, researchers recently develop several approaches to learn a classification-

oriented dictionary. By exploring the label information, most DL-based classification

methods learn such an adaptive dictionary mainly in two ways: either directly forc-

ing the dictionary discriminative, or making the sparse coefficients discriminative (usu-

ally through simultaneously learning a classifier) to promote the discrimination power

of the dictionary. For the first case, as an example, Ramirez et al. advocate learning

class-specific sub-dictionaries for each class with a novel penalty term to make the sub-

dictionaries incoherent [4]. Most methods belong to the latter case. Mairal et al. propose
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a supervised DL method by embedding a logistic loss function to simultaneously learn a

classifier [3]. Zhang and Li propose discriminative K-SVD method to achieve a desired

dictionary which has good representation power while supporting optimal discrimina-

tion of the classes [5]. Furthermore, Jiang et al. add a label consistence term on K-SVD

to make the sparse coefficients more discriminative, thus the discrimination power of the

dictionary is further improved. Out of these two scenarios, Yang et al. propose Fisher

discrimination DL method to simultaneously learn class-specific sub-dictionaries and

to make the coefficients more discriminative through Fisher criterion [6].

Besides, in the empirical observation, despite the highly discriminative features

owned by the objects from different categories, the images containing the objects usu-

ally share some common patterns, which do not contribute to the recognition of them.

Such common patterns include, for example, the background of the objects in object

categorization, the noses in expression recognition (the nose is almost motionless in

various expressions), and so on. Under this observation, we can see it is not feasible to

treat the (inter-category) atoms of the overall dictionary equally without discrimination.

In the inspiring work of Ramirez et al. [4], a DL method is proposed by adding a struc-

tured inherence penalty term (DLSI) to learn C sub-dictionaries for C classes (each

one corresponds to a specific class), and discarding the most coherent atoms among

these sub-dictionaries as the shared features. These shared features will confuse the

representation as a result of the coherent atoms from different sub-dictionaries can be

used for representation interchangeably. Then DLSI uses the combination of all the sub-

dictionaries as an overall dictionary for final classification. Even if some improvements

are achieved by DLSI, the common patterns are still hidden in the sub-dictionaries. In

the work of Wang et al. [7], an automatic group sparse coding (AutoGSC) method is

proposed to discover the hidden shared data patterns with a common dictionary and C
individual dictionaries for the C groups. Actually, AutoGSC is a clustering approach

based on sparse coding and is not adapted for classification.

Inspired by the aforementioned works, we propose a novel DL-based approach for

classification tasks, named DL-COPAR in this paper. Given the training data with the

label information, we expect explicitly learning the class-specific feature dictionaries

(the particularity) and the common pattern pool (the commonality). The particularity

is most discriminative for classification despite its representation power, and the com-

monality is separated out to merely contribute the representation for the data from all

classes. With the help of the commonality, the overall dictionary can be more com-

pact and more discriminative for classification. To evaluate the proposed DL-COPAR,

we extensively perform a series of experiments both on synthesis data and on bench-

mark image databases. The experimental results demonstrate DL-COPAR achieves very

promising performances in various applications, such as face recognition, handwritten

digit recognition, scene classification and object recognition.

2 Learning the Commonality and the Particularity

To derive our DL-COPAR, we first review the classical dictionary learning (DL) model.

Suppose there are N training data (possibly from different categories) denoted by xi ∈
R

d (i = 1, . . . , N ), DL learns a dictionary D ∈ R
d×K from them by alternatively
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minimizing the objective function f over D and coefficient matrix A = [a1, . . . , aN ] ∈
R

K×N :

{A,D} = argmin
D,A

{

f ≡
N∑

i=1

‖xi −Dai‖22 + λ‖ai‖1
}

s.t. ‖dk‖22 = 1, for ∀k = 1, . . . , K,

(1)

If K > d, then D is called an overcomplete dictionary. Suppose there are C classes

and X = [X1, . . . ,Xc, . . . ,XC ] ∈ R
d×N is the dataset, wherein Xc ∈ R

d×Nc

(N =
∑C

c=1Nc) represent the data from the cth class and signal xi ∈ R
d from this

class is indexed by i ∈ Ic. Although the learned dictionary D by Eq.(1) from X is

adapted for representation of the data, it is not suitable for classifying them. To obtain

a classification-oriented dictionary, an intuitive way is to learn C class-specific dic-

tionaries Dc’s for all C classes (c = 1, . . . , C), then the reconstruction error can be

used for classification [4,8]. Besides, as we observe in the real world, the class-specific

dictionaries Dc’s from different categories usually share some common patterns/atoms,

which do not contribute to classification but are essential for reconstruction in DL. Thus

these common/coherent atoms can be interchangeably used for representation of a query

datum, by which way the classification performance can be compromised. For this rea-

son, to improve classification performance, we explicitly separate the coherent atoms

by learning the commonality DC+1, which provides the common bases for all cate-

gories. Denote the overall dictionary as D = [D1, . . . ,Dc, . . . ,DC ,DC+1] ∈ R
d×K ,

in which K =
∑C+1

c=1 Kc, Dc ∈ R
d×Kc stands for the particularity of the cth class, and

DC+1 ∈ R
d×KC+1 is the commonality. I is the identity matrix with appropriate size.

First of all, a learned dictionary D ought to well represent every sample xi, i.e.

xi ≈ Dai, where the efficient ai = [θ
(1)
i ; . . . ; θ

(C)
i ; θ

(C+1)
i ] ∈ R

K and θ
(c)
i ∈ R

Kc

is the part corresponding to the sub-dictionary Dc. Despite of the overall dictionary,

it is also expected that the sample from the cth class can be well represented by the

cooperative efforts of the cth particularity Dc and the commonality DC+1. Therefore,

we renew the objective function f :

f ≡
C∑

c=1

∑

i∈Ic

{

‖xi −Dai‖22 + λ‖ai‖1 + ‖xi −Dcθ
(c)
i −DC+1θ

(C+1)
i ‖22

}

, (2)

where θ
(C)
i and θ

(C+1)
i are the corresponding coefficients of the two sub-dictionaries.

Actually, the last term of Eq.(2) is the same as the objective formulation of [7] by

ignoring the sparse penalty term. For mathematical brevity, we introduce a selection

operator Qc = [qc
1, . . . ,q

c
j , . . . ,q

c
Kc

] ∈ R
K×Kc , in which the jth column of Qc is of

the form:

q
c
j = [ 0, . . . , 0

︸ ︷︷ ︸
∑c−1

m=1 Km

,

j−1
︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0
︸ ︷︷ ︸

Kc

, 0, . . . , 0
︸ ︷︷ ︸

∑C+1
m=c+1 Km

]T . (3)

Therefore, we have QT
c Qc = I, Dc = DQc and θ

(c)
i = QT

c ai ∈ R
Kc . Let

Q̃c = [Qc,QC+1], and we have the coefficient corresponding to the particularity and
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the commonality
( θ

(c)

i

θ
(C+1)

i

)

= Q̃T
c ai ∈ R

Kc+KC+1 . By introducing a terse denotation

φ(Ac) =
∑Nc

i=1 ‖aci‖1 for Ac = [ac1, . . . , a
c
Nc

], Eq.(2) can be rewritten as:

f ≡
C∑

c=1

{
‖Xc −DAc‖2F + λφ(Ac) + ‖Xc −DQ̃cQ̃

T
c Ac‖2F .

}
(4)

In this way, we first guarantee the representation power of the overall dictionary, and

then require the particularity, in conjunction with the commonality, to well represent

the data of this category. However, merely doing this is not sufficient to learn a dis-

criminative dictionary, because other class-specific dictionaries may share similar bases

with that of the cth one, i.e. the atoms from different class-specific dictionaries can

still be coherent and thus be used interchangeably for representing the query data. To

circumvent this problem, we force the coefficients, except the parts corresponding to

the cth particularity and the commonality, to be zero. Mathematically, denote Q/c =

[Q1, . . . ,Qc−1,Qc+1, . . . ,QC ,QC+1] and Q̃/c = [Q1, . . . ,Qc−1,Qc+1, . . . ,QC ],

we force ‖Q̃T
/cAc‖2F = 0. Thus, we add a new term to the objective function:

f ≡
C∑

c=1

{

‖Xc −DAc‖2F + ‖Q̃T
/cAc‖2F + λφ(Ac) + ‖Xc −DQ̃cQ̃

T
c Ac‖2F

}

(5)

It is worth noting that Eq.(5) can fail in capturing the common patterns. For ex-

ample, the bases of the real common patterns may appear in several particularities,

which makes the learned particularities redundant and less discriminative. Therefore, it

is desired to drive the common patterns to the commonality and preserve the class-

specific features in the particularity. For this purpose, we add an incoherence term

Q(Di,Dj) = ‖DT
i Dj‖2F to the objective function. This penalty term has been used

among the class-specific sub-dictionaries in [4], but we also consider the incoherence

of the commonality with the particularities. Then we derive the objective function of

the proposed DL-COPAR:

f ≡
C∑

c=1

{
‖Xc −DAc‖2F + ‖Q̃T

/cAc‖2F
‖Xc −DQ̃cQ̃

T
c Ac‖2F + λφ(Ac)

}

+ η

C+1∑

c=1

C+1∑

j=1
j �=c

Q(Dc,Dj) (6)

3 Optimization Step

At the first sight, the objective function Eq.(6) is complex to solve, but we show it can

be easily optimized through an alternative optimization process.

3.1 Fix D to Update Ac

When fixing D to update Ac, we omit the terms independent of Ac from Eq.(6):

f ≡
C∑

c=1

{

‖Xc −DAc‖2F + ‖Q̃T
/cAc‖2F + λφ(Ac) + ‖Xc −DQ̃cQ̃

T
c Ac‖2F

}

=
C∑

c=1

⎧

⎨

⎩

∥
∥
∥
∥
∥

⎛

⎝

Xc

Xc

0

⎞

⎠−

⎛

⎝

D

DQ̃cQ̃
T
c

Q̃T
/c

⎞

⎠Ac

∥
∥
∥
∥
∥

2

F

+ λφ(Ac)

⎫

⎬

⎭
.

(7)
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Proposition 1. Denote X̄c =

⎛

⎝

Xc

Xc

0

⎞

⎠ and D̄ = [d̄1, . . . , d̄k, . . . , d̄K ], where d̄k is

the ℓ2-norm unitized vector of the kth column in

⎛

⎝

D

DQ̃cQ̃
T
c

Q̃T
/c

⎞

⎠, then when fixing D to

minimize Eq.(6) over Ac, the minimum is reached when Ac equals to 1√
2
Ā, wherein Ā

is the result of:

Ā = argmin
A

‖X̄c − D̄A‖2F +
λ√
2
φ(A),

Proof. Denote D′ =

⎛

⎝

D

DQ̃cQ̃
T
c

Q̃T
/c

⎞

⎠, through simple derivations, it is easy to show the

Euclidean length of each column of D′ is
√
2, then

Ac =argmin
Ac

{

‖X̄c − 1√
2
D′√2Ac‖2F + λφ(Ac)

}

=argmin
Ac

{

‖X̄c − D̄
√
2Ac‖2F + λ√

2
φ(

√
2Ac)

} (8)

Proposition 1 indicates that to update the coefficients Ac with fixed D, we can simply

solve a LASSO problem. Through this paper, we adopt the feature-sign search algo-

rithm [9] to solve this LASSO problem.

3.2 Fix Ac to Update D

To update the overall dictionary D = [D1, . . . ,DC ,DC+1], we turn to an iterative

approach, i.e. updating Dc by fixing all the other Di’s. Despite the cth class-specific

dictionary, the common pattern pool also contributes to fitting the signals from the cth

class. Thus there are differences in optimizing DC+1 and Dc. We elaborate the opti-

mization steps as below.

Update the Particularity Dc. Without loss of generality, we concentrate on the opti-

mization of the cth class-specific dictionary Dc by fixing the other Di’s. Specifically,

we denote A
(i)
c = QT

i Ac for i = 1, . . . , C + 1. By dropping the unrelated terms, we

update the cth particularity Dc as below:

Dc =argmin
Dc

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖Xc −
C+1∑

i=1
i�=c

DiA
(i)
c −DcA

(c)
c ‖2F+

‖Xc −DC+1A
(C+1)
c −DcA

(c)
c ‖2F + 2η

C+1∑

i=1
i�=c

Q(Dc,Di)

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9)

Let X̄c = Xc −DC+1A
(C+1)
c , Ȳc = Xc −

∑C+1
i=1,i�=c DiA

(i)
c and B = DQ/c, then

we have:

Dc = argmin
Dc

‖Ȳc −DcA
(c)
c ‖2F + ‖X̄c −DcA

(c)
c ‖2F + 2η‖DT

c B‖2F . (10)
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We propose to update Dc = [d1
c , . . . ,d

Kc

c ] atom by atom, i.e. updating dk
c while

fixing other columns. Specifically, denote A
(c)
c = [a(1); . . . ; a(Kc)] ∈ R

Kc×Nc ,

wherein a(k) ∈ R
1×Nc is the kth row of A

(c)
c . Let Ŷc = Ȳc −

∑

j �=k d
j
ca(j) and

X̂c = X̄c −
∑

j �=k d
j
ca(j), then we get:

d
k
c =argmin

dk
c

{

g(dk
c ) ≡ ‖Ŷc − d

k
ca(k)‖2F + ‖X̂c − d

k
ca(k)‖2F + 2η‖dk

c

T
B‖2F

}

. (11)

Let the first derivative of g(dk
c ) w.r.t. dk

c equal zero, i.e. ∂g(dk
c )/∂d

k
c = 0, then we

obtain the updated dk
c as below:

d
k
c =

1

2
(‖a(k)‖22I+ ηBB

T )−1(Ŷc + X̂c)a
T
(k). (12)

Note as an atom of dictionary, it ought to be unitized, i.e. d̂k
c = dk

c/‖dk
c‖2. Along with

this, the corresponding coefficient should be multiplied ‖dk
c‖2, i.e. â(k) = ‖dk

c‖2a(k).

Update the Shared Feature Pool DC+1. Denote B = DQ/C+1, i.e. B =
[D1, . . . ,DC ], by dropping the unrelated terms, we update DC+1 as below:

DC+1 = argmin
DC+1

C∑

c=1

{

‖Xc −
C∑

i=1

DiA
(i)
c −DC+1A

(C+1)
C+1 ‖2F+

‖Xc −DcA
(c)
c −DC+1A

(C+1)
C+1 ‖2F

}

+ 2η‖DT
C+1B‖2F .

(13)

Denote Ȳc = Xc −
∑C

i=1 DiA
(i)
c and X̄c = Xc −DcA

(c)
c (note X̄c and Ȳc here are

different from the ones in the optimization of Dc), then we have:

DC+1 = argmin
DC+1

‖Ȳ −DC+1A
(C+1)‖2F + ‖X̄−DC+1A

(C+1)‖2F + 2η‖DT
C+1B‖2F ,

(14)

where A(C+1) = [A
(C+1)
1 , . . . ,A

(C+1)
C ], X̄ = [X̄1, . . . , X̄C ], and Ȳ =

[Ȳ1, . . . , ȲC ]. As well, we choose to update DC+1 atom by atom, and the kth col-

umn is updated by:

d
k
C+1 =

1

2
(‖a(k)‖22I+ ηBB

T )−1(X̂+ Ŷ)aT
(k), (15)

where A(C+1) = [a(1); . . . ; a(KC+1)] ∈ R
KC+1×N , Ŷ = Ȳ − ∑

j �=k d
j
C+1a(j), and

X̂ = X̄ − ∑

j �=k d
j
C+1a(j). Similarly, we unitize dk

C+1 to get the unit-length atom

d̂k
C+1, with scaled coefficients â(k) = ‖dk

C+1‖2a(k).
The overall algorithm is summarized in Algorithm 1. Note that the value of the ob-

jective function decreases at each iteration, therefore the algorithm converges.
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Algorithm 1. Learning the Commonality and Particularity

Require: training dataset [X1, . . . ,XC ] with labels, the size of the C + 1 desired sub-

dictionaries Kc’s, and λ;

Ensure: ‖di‖2 = 1, for ∀i = 1, . . . ,K;

1: initialize Dc for c = 1, . . . , C, C + 1;

2: while stop criterion is not reached do

3: update the coefficients Ac by solving LASSO problem Eq.(8);

4: update Dc atom-by-atom through Eq.(12) with unitization process and correspondingly

scale the related coefficients;

5: update DC+1 atom-by-atom through Eq.(15) with unitization process and correspond-

ingly scale the related coefficients;

6: end while

7: return the learned dictionaries D1, . . . ,DC ,DC+1.

4 Experimental Validation

In this section, we perform a series of experiments to evaluate the proposed DL-

COPAR. First, a synthetic dataset is used to demonstrate the powerfulness of our

method in learning the commonality and particularity. Then, we conduct experiments

to compare our method with some state-of-the-art approaches on four public available

benchmarks for four real-world recognition tasks respectively, i.e. face, hand-written

digit, scene, and object recognition.

4.1 Experimental Setup

We employ K-SVD algorithm [10] to initialize the particularities and the commonality.

In detail, to initialize the cth class-specific dictionary, we perform K-SVD on the data

from the cth category, and to initialize the common pattern pool, we perform K-SVD

on the whole training set. Note that we adopt feature-sign search algorithm [9] for the

sparse coding problem throughout our experiments.

In classification stage, we propose to adopt two reconstruction error based classifi-

cation schemes and the linear SVM classifier for different classification tasks. The two

reconstruction error based classification schemes are used for the face and hand-written

digit recognition, one is a global classifier (GC) and the other is a local classifier (LC).

Note throughout our experiments, the sparsity parameter γ as below is tuned to make

about 20% elements of the coefficient be nonzero.

GC For a testing sample y, we code it over the overall learned dictionary

D, a = argmina ‖y − Da‖22 + γ‖a‖1, where γ is a constant. Denote a =

[θ(1); . . . ; θ(C); θ(C+1)], where θ
(c) is the coefficient vector associated with sub-

dictionary Dc. Then the reconstruction error by class c is ec = ‖y − D̂cθ̂
(c)‖22, where

D̂c = [Dc,DC+1] and θ̂
(c)

= [θ(c); θ(C+1)]. Finally, the predicted label ĉ is calculated

by ĉ = argminc ec.
LC For a testing sample y, we directly calculate C reconstruction error for the

C classes: ec = minâc
‖y − D̂câc‖22 + γ‖âc‖1, where D̂c = [Dc,DC+1]. The final

identity of y is ĉ = argminc ec.
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The linear SVM is used for scene and object recognition with spatial pyramid match-

ing (SPM) framework [11]. But in the dictionary learning stage, we adopt the proposed

DL-COPAR. In detail, we first extract SIFT descriptors (128 in length) [12] from 16×16
pixel patches, which are densely sampled from each image on a dense grid with 8-pixels

stepsize. Over the extracted SIFT descriptors from different categories, we use the pro-

posed DL-COPAR to train an overall dictionary D ∈ R
128×K concatenated by the

particularities and the commonality. Then we encode the descriptors of the image over

the learned dictionary. By partitioning the image into into 2l × 2l segments in differ-

ent scales l = 0, 1, 2, we use max pooling technique to pool the coefficients over each

segment into a single vector. Thus, there are 1 + 2 × 2 + 4 × 4 = 21 pooled vectors,

which are concatenated into the 21K-dimensional vector for final representation. Note

that different from pooling process in the existing SPM-based methods, we only use

the coefficients which correspond to the particularities by discarding the ones to the

commonality. Finally, we concatenate all the intercepted pooled vectors as the repre-

sentation of the image. In all the four recognition experiments, we run 10 times of each

experiment and report the average recognition rate.

4.2 Synthetic Example

The synthetic dataset constitutes two classes of gray-scale images of size 30× 30. Both

categories have three common basis images denoted by FS
i for i = 1, 2, 3, as illustrated

by right panel of Fig. 1, where we use dark color to represent value zero and white

color to represent 255. Category 1 has four individual basis images denoted by FI
1i

for i = 1, . . . , 4, as shown in left panel of Fig. 1. Similarly, the four basis images of

category 2 are denoted by FI
2i for i = 1, . . . , 4 in Fig. 1. The set of images used in our

experiment are generated by adding Gaussian noise with zero mean and 0.01 variance.

Fig. 2 displays several examples from the dataset, the top row for the first class and

the bottom row for the second class. Note a similar synthetic dataset is used in [7], but

ours is different from it in two ways. We use Gaussian noise instead of uniform random

noise, and noises are added to both the dark and the white region rather than merely to

the dark region in [7]. Therefore, our synthetic data set is more difficult to separate the

common patterns from the individual features.

We compare the learned dictionaries with that learned by two closely related DL-

based classification methods. The methods used for comparison include Fisher Dis-

criminative Dictionary Learning method (FDDL) [6] and the method based on DL with

structured incoherence (DLSI) [4]. As a supervised DL method, FDDL learns class-

specific dictionaries for each class and makes them most discriminative through Fisher

criteria. Fig. 3 shows the learned dictionary by FDDL, one row for one class. It is

clear that the dictionaries learned by FDDL are much discriminative and each class-

specific dictionary can faithfully represent the signals from the corresponding class.

However, even though FDDL succeeds in learning most discriminative dictionaries, it

cannot separate the common patterns and the individual features. Thus, the dictionaries

can be too redundant for classification. DLSI can learn the common features despite the

class-specific dictionaries, as Fig. 4 shows. Actually, DLSI learns class-specific sub-

dictionaries, and then select the most coherent atoms among different individual dic-

tionaries as the common features. From this figure, we can see the learned individual
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the common basis imagesthe class-specific basis images

Fig. 1. The real class-specific features and the common patterns

Fig. 2. Examples of the synthetic dataset

F21 F22 F23 F24 F25 F26 F27

F11 F12 F13 F14 F15 F16 F17

Fig. 3. The class-specific dictionaries learned by FDDL [6]

F
S

12 F
S

13F
S

11

F
S

21 F
S

23F
S

22

the shared featuresthe learned class-specific dictionaries

Fig. 4. The class-specific dictionaries and the shared features learned by DLSI [4]

the learned particularities the learned commonalitythe initialized particularities

Fig. 5. The initialized particularities and the learned particularities and commonality by the pro-

posed DL-COPAR

dictionaries are also mixed with the common features, as well the separated common

features are too redundant.

On the contrary, as expected, the proposed DL-COPAR can correctly separate the

common features and individual features, as shown in Fig. 5. As a comparison, we also

plot the initialized particularities by K-SVD. There is no doubt that any signals can be
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Table 1. The recognition rates (%) of various methods on Extended YaleB face database

Method SRC D-KSVD LC-KSVD DLSI FDDL kNN SVM
DL-COPAR (LC)

DL-COPAR (GC)

Accuracy 97.2 94.1 96.7 96.5 97.9 82.5 96.2
96.9

98.3

well represented by the corresponding class-specific dictionary and the shared pattern

pool. This phenomenon reveals that DL-COPAR can learn the most compact and most

discriminative dictionaries for classification.

4.3 Face Recognition

Extended YaleB [13] database contains 2,414 frontal face images of 38 persons, about

68 images for each individual. It is challenging due to varying illumination conditions

and expressions, and the original images are cropped to 192× 168 pixels. We use ran-

dom faces [14,15,5] as the feature descriptors, which are obtained by projecting a face

image onto a 504-dimensional vector with a randomly generated matrix from a zero-

mean normal distribution. We randomly select half of the images (about 32 images per

individual) for training and the rest for testing. The learned dictionary consists of 570
atoms, which correspond to an average of 15 atoms for each person and the last 5 ones

as the common features. We compare the performance of our DL-COPAR with that of

D-KSVD [5], SRC [14], DLSI [4], LC-KSVD [15] and FDDL [6].

Direct comparison is shown in Table 1. We can see that D-KSVD, which only uses

coding coefficients for classification, does not work well on this dataset. LC-KSVD,

which employs the label information to improve the discrimination of the learned over-

all dictionary and also uses the coefficients for the final classification, achieves better

classification performance than D-KSVD, but still no better than that of SRC. DLSI

aims to make the class-specific dictionaries incoherent and thereby facilitates the dis-

crimination of the dictionaries. It employs the reconstruction error for classification,

and achieves no better results than that of SRC. FDDL utilizes Fisher criterion to make

the coefficients more discriminative, thus improves the discrimination of the individual

dictionaries. It has achieved state-of-the-art classification performance on this database,

with the accuracy higher than that of SRC. However, our DL-COPAR with GC achieves

the best classification performance, about 0.4% higher than that of FDDL. But we can

see if DL-COPAR use LC for classification, it cannot produce satisfactory outcome. The

reason is that the size of the class-specific dictionary is too small to faithfully represent

the data, thus the collaboration of these sub-dictionaries is of crucial significance.

4.4 Hand-Written Digit Recognition

USPS 1 is a widely used handwritten digit data set with 7, 291 training and 2, 007 test-

ing images. We compare the proposed DL-COPAR with several methods including the

reconstructive DL method with linear and bilinear classifier models (denoted by REC-L

and REC-BL) reported in [3], the supervised DL method with generative training and

1
http://www-i6.informatik.rwth-aachen.de/˜keysers/usps.html

http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
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Fig. 6. The learned particularity (a) and commonalities (b) by DL-COPAR on USPS database

Table 2. Error rates (%) of various methods on USPS data set

Method SRSC
REC-L SDL-G

DLSI FDDL kNN SVM
DL-COPAR (LC)

REC-BL SDL-D DL-COPAR (GC)

Error Rate 6.05
6.83 6.67

3.98 3.69 5.2 4.2
3.61

4.38 3.54 4.70

discriminative training (denoted by SDL-G and SDL-D) reported in [3], sparse repre-

sentation for signal classification (denoted by SRSC) by [16], DLSI [4] and FDDL [6].

Additionally, some results of problem-specific methods (i.e. the kNN method and SVM

with a Gaussian kernel) reported in [4] are also listed. The original images of 16 × 16
resolution are directly used here.

Direct comparison is shown in Table 2. These results are originally reported or taken

from the paper [6]. As we can see from the table, our DL-COPAR with LC classification

scheme outperforms all the other methods except for SDL-D. Actually, the optimiza-

tion of SDL-D is much more complex than that of DL-COPAR, and it uses much more

information in the dictionary learning and classification process, such as a learned clas-

sifier of coding coefficients, the sparsity of coefficients and the reconstruction error. It

is worth noting that DL-COPAR only trains 30 codewords for each class and 8 atoms

as the shared commonality, whereas FDDL learns 90 atoms of dictionary for each digit

even though it achieves very close result with that of DL-COPAR. Fig. 6 illustrates the

learned particularities and the commonality by DL-COPAR, respectively.

4.5 Scene Recognition

We also try our DL-COPAR for scene classification task on 15-scene dataset, which is

compiled by several researchers [22,23,17]. This dataset contains totally 4484 images

falling into 15 categories, with the number of images per category ranging from 200 to

400. Following the common setup on this database [11,17], we randomly select 100 im-

ages per category as the training set and use the rest for testing. An overall 1024-visual-

words dictionary is constituted. As for DL-COPAR, a 60-visual-word particularity is

learned for each category, and the commonality consists of 124 shared pattern bases.

Thus the size of the concatenated dictionary is 15 × 60 + 124 = 1024. Note that the

size of the final representation of each image is 21 × 15 × 60 = 18900, which is less
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Table 3. The recognition rates (%) of various methods on 15-Scenes database

Method
KSPM ScSPM LLC GLP Boureau et al. Boureau et al.

DL-COPAR
[17] [11] [18] [19] [20] [21]

Accuracy 81.40 80.28 79.24 83.20 83.3 84.9 85.37

Table 4. The recognition rates (%) of various methods on Caltech101 dataset. 15 and 30 images

pre class are randomly selected for training, shown in the second and third row, respectively.

Method
KSPM ScSPM LLC GLP Boureau et al. Boureau et al.

DL-COPAR
[17] [11] [18] [19] [20] [21]

15 training 56.44 67.00 65.43 70.34 - - 75.10

30 training 64.40 73.20 73.44 82.60 77.3 75.70 83.26

than that of other SPM methods, 21× 1024 = 21504, as a result of that we discard the

codes corresponding to the commonality.

We compare the proposed DL-COPAR with several recent methods which are

based on SPM and sparse coding. The direct comparisons are shown in Table 3.

KSPM [17], which represents the popular nonlinear kernel SPM, using spatial-pyramid

histograms and Chi-square kernels, achieves 81.40% accuracy. Compared with KSPM,

ScSPM [11], as the baseline method in our paper, employs sparse coding and max pool-

ing and linear SVM for classification. It achieves 80.28% classification rate. LLC [18]

considers locality relations for sparse coding, achieving 79.24%. GLP [19] focuses on a

more sophisticated pooling method, which learns a weight for SIFT descriptors in pool-

ing process by enhancing discrimination and incorporates local spatial relations. With

high computational cost (eigenvalue decomposition of large size matrix and gradient

ascent process), GLP achieves 83.20% accuracy on this dataset. In [21], 84.9% clas-

sification accuracy is achieved through macrofeatures, which jointly encodes a small

neighborhood SIFT descriptors and learns a discriminative dictionary.

Obviously, 85.37% accuracy achieved by our method is higher than that of all the

other methods, and is also competitive with the current state-of-the art of 88.1% re-

ported in [24] and 89.75% in [25]. It is worth noting that our DL-COPAR uses only

the SIFT descriptors and solves the classical LASSO problem for sparse coding, while

the method in [24] combines 14 different low-level features, and that in [25] involves

a more complicated coding process called Laplacian sparse coding, which requires a

well-estimated similarity matrix and multiple optimization stages.

4.6 Object Recognition

Caltech101 dataset [26] contains 9144 images in 101 object classes including animals,

vehicles, flowers, etc, and one background category. Each class contains 31 to 800 im-

ages with significant variance in shape. As suggested by the original dataset and also

by the previous studies, we randomly select 15 and 30 images respectively per class for

training and report the classification accuracies averaged over the 102 classes. The size

of the overall dictionary is set K = 2048 which is a popular set in the community, and

DL-COPAR learns 17 visual words for each category and 314 for the shared pattern
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Fig. 7. Some example images from Scene15 and Caltech101. Obviously, despite the class-specific

features, the images of different categories share some common patterns, such as the clouds in

(a) and the flora background in (b).

pool, 17×102+314 = 2048 in total. Similar to scene recognition experiment, the final

image representation vector (21 × 17 × 102 = 36414) is still much less than that of

other SPM methods (21 × 2048 = 43008), as a result of discarding the sparse codes

corresponding to the commonality.

Table 4 demonstrates the direct comparisons. It is easy to see our DL-COPAR con-

sistently outperforms other SPM-based methods, achieving 83.26% accuracy which is

competitive to the state-of-the-art performance of 84.3% achieved by a group-sensitive

multiple kernel method [27]. Compared with ScSPM, which is the baseline method in

this experiment, DL-COPAR improves the classification performance with a margin of

more than 8% and 10% when 15 and 30 images are randomly selected for training, re-

spectively. As demonstrated by Fig. 7, we conjecture the reason why our DL-COPAR

achieves such a high classification accuracy on both 15-scene and Caltech101 is that, for

example, the complex background are intensively encoded over the learned commonal-

ity, whereas the part of the coefficient corresponding to the commonality is discarded.

Thus, the omission of the common patterns will improve the classification performance.

5 Conclusion

Under the empirical observation that images (objects) from different categories usually

share some common patterns which are not helpful for classification but essential for

representation, we propose a novel approach based on dictionary learning to explic-

itly learn the shared pattern pool (the commonality) and the class-specific dictionaries

(the particularity), dubbed DL-COPAR. Therefore, the combination of the particular-

ity (corresponding to the specific class) and the commonality can faithfully represent

the samples from this class, and the particularities are more discriminative and more

compact for classification. Through experiments on a synthetic dataset and several pub-

lic benchmarks for various applications, we can see the proposed DL-COPAR achieves

very promising performances on these datasets.
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