
A dictionary of behavioral motifs reveals clusters of
genes affecting Caenorhabditis elegans locomotion
André E. X. Brown, Eviatar I. Yemini, Laura J. Grundy, Tadas Jucikas, and William R. Schafer1

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom

Edited by Cynthia Kenyon, University of California, San Francisco, CA, and approved November 16, 2012 (received for review July 6, 2012)

Visible phenotypes based on locomotion and posture have played

a critical role in understanding the molecular basis of behavior and

development inCaenorhabditis elegans andothermodel organisms.

However, it is not known whether these human-defined features

capture themost important aspects of behavior for phenotypic com-

parison or whether they are sufficient to discover new behaviors.

Here we show that four basic shapes, or eigenworms, previously

described for wild-type worms, also capture mutant shapes, and

that this representation can be used to build a dictionary of repeti-

tive behavioral motifs in an unbiased way. By measuring the dis-

tance between each individual’s behavior and the elements in the

motif dictionary,we create afingerprint that canbeused to compare

mutants to wild type and to each other. This analysis has revealed

phenotypes not previously detected by real-time observation and

has allowed clustering of mutants into related groups. Behavioral

motifs provide a compact and intuitive representation of behavioral

phenotypes.
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The study of unconstrained spontaneous behavior is the core of
ethology, and it has also made significant contributions to be-

havioral genetics in model organisms. A powerful approach has
been the careful expert observation of mutants to identify those
with visible locomotor phenotypes, as demonstrated for many
model organisms (1–6). However, as with most manually scored
experiments, subjectivity can reduce reproducibility, whereas subtle
quantitative changes or those that happen on very short or long
time-scales are likely to be missed. Furthermore, manual observa-
tions are not scalable, and this has led to a widening gap between
our ability to sequence and manipulate genomes and our ability to
assess the effects of genetic variation and mutation on behavior.
Several recent reports describe systems that begin to address

this gap by automatically recording and quantifying spontane-
ous behavior in animals ranging from worms (7–15) to flies (16–
19), fish (20, 21), and mice (22, 23). The advantage of these
approaches is that they provide a means to quantify movement
parameters such as velocity precisely and in some cases to auto-
matically detect predefined behaviors based on a manually an-
notated training data set. This automated analysis eliminates some
of the problems of a purely manual approach, but it still relies on
preselected behavioral parameters that may not be optimal for
phenotypic comparisons and precludes the discovery of new
behaviors that have not already been observed by eye. An alter-
native approach is to use unsupervised learning, which attempts to
use the inherent structure of a data set to identify informative
patterns; to do this, we first needed to extract worm postures from
movie data and have as compact and complete a representation of
worm behavior as possible.

Results and Discussion

Using eight inexpensive USB microscope-based trackers we
recorded high-resolution movie data of freely crawling worms
covering 307 different mutant strains with a total of 7,708 in-
dividual worms. Worms were transferred to the surface of agar
plates seeded with Escherichia coli OP50 and were allowed to
habituate for 30 min before being recorded for 15 min at 25
frames per second. To automatically extract worm posture, the
outline of the worm was determined after thresholding, and the

skeleton was found by tracing the midline connecting the two
points of highest curvature on the outline, which correspond to
the worm’s head and tail. The head position was determined
automatically using the distribution of pixel brightness and the
magnitude of lateral motion of the head and tail (Fig. 1A).
Skeleton coordinates were converted to a position- and orien-
tation-independent representation by taking 48 tangent angles
evenly distributed from head to tail and subtracting off the mean
angle (24).
It has been shown that the space of shapes explored by Cae-

norhabditis elegans during spontaneous behavior on agar without
bacterial food is only four-dimensional (24). In other words, just
four fundamental shapes, or eigenworms, can be added together
in different proportions to reconstruct any worm posture. Be-
cause the four eigenworms (Fig. 1B; Fig. S1) provide an essen-
tially complete description of worm posture, each frame in
a movie of worm behavior can be represented as just four
numbers, the amplitudes along each dimension when the shape is
projected onto the eigenworms (Fig. 1C).
To use this representation as a common basis in behavioral

genetics experiments, it must also capture mutant worm shapes,
even though many mutants adopt postures that appear very
different from those of wild-type animals. Even in wild type,
locomotion is known to depend on environment; in particular,
the presence of a bacterial food lawn significantly affects many
aspects of locomotion (25, 26). Nonetheless, using data from
wild-type (N2) worms tracked on food, we found that four
eigenworms were sufficient to capture 93 ± 3% (mean ± SD) of
the variance of worm shapes (Fig. 1D). Likewise, when we pro-
jected behavioral data from 307 mutant strains (n = 7,708) onto
the wild-type–derived eigenworms and used the four amplitudes
to reconstruct the skeleton angles, the fit of the mutant data was
comparable to wild type—92 ± 4% of the variance, including
mutant shapes, is captured by the wild-type eigenworms (Fig.
1D). Even eigenworms derived directly from mutant data (Fig.
1B) show a remarkable reproducibility and similarity to the wild-
type–derived eigenworms.
The fact that the wild-type–derived eigenworms also capture

mutant postures may reflect fundamental constraints on worm
behavior, with even highly uncoordinated mutants exploring
different regions of essentially the same shape space. It is not
clear what constrains worm behavior, but the mutant strains that
are least-well fit by the wild-type eigenworms suggest some
possibilities (Fig. S2). Among the worst-fit mutants are lon-2
(e67) which is longer than wild type, suggesting a role for body
mechanics, and unc-4(gk705) and unc-34(e566), which affect
synaptic specificity (27, 28), suggesting that neural circuit archi-
tecture also plays a role. Though these mutants may give insight
into behavioral constraints, they are not alone sufficient to
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escape them completely: 86 ± 6% of the variance of unc-
2(gk366) shapes (the worst-fit mutant in terms of rmsd) is still
captured by the wild-type eigenworms.
Having established a compact and common basis for repre-

senting worm shapes, we next turn to the problem of automatic
behavior detection. To avoid subjectivity, we used what might be
considered a minimal definition of stereotyped behavior and
simply searched for the most repetitive subsequence of a given
length in a movie (Fig. 2A); in the amplitude representation, this
is equivalent to time series motif-finding (29), and so we call
these subsequences behavioral motifs. We used the minimum
rmsd to define the best match and used either a brute force
search or the MK algorithm (30) to find exact motifs.
We constructed a dictionary of 2,223 behavioral motifs by

searching for motifs in movies sampled across all mutant strains

(SI Methods). Each motif is a behavior performed by a single
individual at two different times. The dictionary contains a wide
range of behaviors, including short motifs essentially consisting
a single posture (Fig. 2B, motifs 1–3) as well as long and
sometimes seemingly irregular behaviors that are nonetheless
almost perfectly repeated (Fig. 2B, motif 14). Bouts of forward
locomotion are relatively common but can have widely different
frequencies and amplitudes (Fig. 2B, motifs 11–13). Finally,
some motifs contain subtle behaviors that may not be picked in
a manual inspection for stereotyped behaviors such as motif 9,
which contains a pause interrupted by a small head bend.
We next used the motif dictionary to construct a quantitative

phenotypic fingerprint for each recording. The fingerprint for
each individual is a vector of distances between that worm’s be-
havior and each dictionary element (illustrated for three strains
and 14 motifs in Fig. 2C). The distance between the fingerprints
averaged over a strain provides a quantitative measure of their
phenotypic dissimilarity. More specifically, for each element in
the motif dictionary, we identified the best matching subsequence
in the movie of interest and used the rmsd as the distance be-
tween a motif and a time series (31). To compare hundreds of
strains, we found the distance between all of the motifs in the
dictionary and each of the movies in the database. We then used
a minimum redundancy maximum relevance (mRMR) criterion
(32) to select 700 motifs for clustering. Reducing the number of
motifs saves computational time, but the method is robust to
exactly how features are selected: a random selection of 700
motifs also performs well. The results do not depend sensitively
on the number of motifs. Qualitatively similar results are found
using 300 motifs. Affinity propagation (33) was used to cluster
mutants into phenotypically related groups using inverse Maha-
lanobis distance between strains as the similarity measure. We
then resampled individuals from each group with replacement,
recalculated the distance, repeated the clustering 100 times, and
determined the frequency with which strains were in the same
cluster. We kept only the most frequent 10% of connections, and
illustrated these as edges in a phenotypic similarity network (Fig.
3; see Fig. S3 for a version with node labels).
The nodes in Fig. 3 are colored by phenotypic or molecular

class. For a complete list of the strains and their corresponding
class designation, see Dataset S1. There are four broad groups of
mutants in the network: (i) on the lower left there is a cluster
primarily of monoamine related genes (e.g., receptors, putative
monoamine transporters, and enzymes involved in monoamine
synthesis) and some transient receptor potential (TRP) ion
channels; (ii) on the lower right is a cluster of neuropeptides and
G protein-coupled receptors; (iii) on the upper left is a loosely
connected uncoordinated cluster; and (iv) on the upper right is a
cluster of strains with nearly normal locomotion, including sev-
eral mutant groups and the wild-type N2 strain itself. For the last
group, it is important to emphasize that some of the mutants in
the cluster with N2 are still significantly different from N2, as we
discuss in more detail below.
To assess the clustering outcome in more detail, we compared

the proximity of strains with predicted associations at increasing
scales: loss-of-function alleles of the same gene, mutations af-
fecting different genes but disrupting the same molecular com-
plex, and at the largest scale, genes affecting a commonmolecular
pathway. There were several loss-of-function deletion, nonsense,
or splice-site mutant alleles of the same gene in the network, and
these clustered significantly closer to each other than the network
average (gene pairs are indicated by dashed red lines in Fig. 3):
they were separated by an average of 1.6 edges, significantly less
than the average network distance of 3.7 (P = 6 × 10−5, Wilcoxon
rank-sum test). These genes, with the corresponding network
distances are egl-21(n476) and egl-21(n611) (one edge); ocr-4
(tm2173) and ocr-4(vs137) (two edges); trp-2(sy691) and trp-2
(gk298) (two edges); unc-10(md1117) and unc-10(e102) (two
edges); unc-89(e1460) and unc-89(st85) (one edge); and trpa-2
(ok3189), trpa-2(tm3085), and trpa-2(tm3092) (the ok3189 allele
is two edges from the other alleles which are one edge from each
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Fig. 1. The same four basic shapes, or eigenworms, capture both wild-type

and mutant postures. (A) Worms crawling freely on a bacterial lawn on an

agar pad can be segmented and accurately skeletonized (outline and mid-

line; color indicates curvature). The green dot indicates the worm’s head,

and the red dot indicates the vulval side. (B) The four wild-type eigenworms

are shown as thick red lines. Eigenworms derived from 307 mutant strains

(gray lines) are similar to the wild type. (C) By projecting worm shapes onto

the four-dimensional basis formed by the eigenworms, a sequence of be-

havior can be compactly represented as a four-channel time series. The

images above the time series show the worm posture at the times indicated

by the red vertical lines. The blue dots indicate the worm’s head. (D) The

rmsd between the raw worm shape from the skeletonization and the worm

shape reconstructed using just the four eigenworms for 7,008 individuals. As

more eigenworms (1–4) are used, the fit improves. The rmsd distribution for

the wild-type data alone is shown in purple on the left. The fit to all of the

mutant data are comparable, as can be seen more clearly in the Inset where

the distributions have been rescaled.
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other). The unc-108(n501) and unc-108(n777) (one edge) alleles
are both dominant activating mutations in a Rab small GTPase
(34) and are therefore also expected to result in a similar phe-
notype. Although there are two loss-of-function alleles of unc-4,
these were not included in the analysis because one of them
(gk705) is not part of the main network. There are also two pairs
of genes that form subunits of the same complex: unc-38 and unc-
63 encode subunits of the same acetylcholine receptor (35, 36),
and unc-79 and unc-80 encode subunits of the NALCN neuronal
sodium leak channel (37, 38). Both pairs of mutants cluster to-
gether in the network as expected (Fig. 3, Upper Left). syg-1 is
required for specifying synaptic specificity and acts as a receptor
for syg-2; however, they are separated by three edges in the net-
work, just under the network average of 3.7.
We performed a similar analysis for genes in common mo-

lecular pathways. Fig. 4 highlights four examples of monoamine
signaling (see Fig. S4 for acetylcholine receptors and pathways
regulating synaptic release, insulin signaling, Go/Gq signaling,

and mechanosensation). Most of the monoamine mutants are
expected to have relatively subtle behavioral phenotypes, but
they still form significantly tighter clusters than the network
overall. The exception appears to be for serotonin; however, the
outlying pair of genes cat-4 and bas-1 encode molecules required
for both serotonin and dopamine biosynthesis—indeed, they
cluster tightly with other dopamine-related genes. If we consider
only the genes involved exclusively in serotonin signaling, we find
that these too are significantly more tightly clustered than the
overall network (Fig. 4).
To determine how the different components of the algorithm

contribute to this clustering result, we repeated the analysis with
different versions of some subroutines. In each case, nothing was
changed about the analysis procedure except the specified sub-
stitution. Instead of the inverse Mahalanobis distance we used
the inverse Euclidean distance between strains as the phenotypic
similarity measure and found that the resulting network (Fig.
S5) showed fewer of the predicted associations discussed above
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Fig. 2. Unsupervised discovery of behavioral motifs. Repetitive subsequences are identified by discovering time-series motifs, which are the best-matching

subsequences of a given length. In the sample time-series shown in A, the best-matching subsequences are shown in red and blue and overlaid on the Right.

(B) Fourteen sample motifs ranging from 1.6 to 32 s (40–800 frames) representing diverse but repetitive behaviors. (C) A quantitative phenotypic profile is

generated by finding the distance between movies and each element of the sample motif dictionary shown in B. Phenotypic profiles are shown for N2 wild

type (green), a hyperactive mutant goa-1(sa734) (blue) (50, 51), and an uncoordinated mutant unc-63(ok1075) (1, 36). For each strain, the lines show the mean

distance from each motif ± the SE for a population of worms. goa-1 is significantly closer to the two relatively high-frequency bouts of forward locomotion in

motifs 8 and 11 than either N2 or unc-63, consistent with its hyperactivity; likewise, unc-63 is further from the flat posture of motif 2 because it is un-

coordinated with a tendency to have higher body curvature.
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and had lower modularity (proportional to the number of within-
group connections minus the number of connections expected
for a random network of the same degree) (39). However, when
we used 700 randomly selected motifs from the 2,223 element
dictionary instead of mRMR and repeated the clustering, the
resulting phenotypic network was of similar quality to the orig-
inal in terms of its modularity and the significant association of
molecular pathway components, although it has slightly fewer
expected allelic and molecular complex connections (Fig. S5B).
When short behaviors with the same lengths as the motifs in the
dictionary are selected at random and used for clustering, we find
a similar-quality network with three fewer expected associations
(Fig. S5C). This finding suggests that selecting a large-enough
number of behavioral sequences is almost as good for phenotypic
profiling, and that stereotyped behaviors, at least according to
our minimal definition, are not specifically required to usefully
compare mutants.
In addition to identifying broad categories and analyzing path-

ways, we want to generate specific hypotheses about functional
interactions based on phenotypic similarity. To demonstrate the
potential of this approach, we considered two degenerin/epithelial
Na+ (DEG/ENaC) channels present in the N2-like cluster: asic-2
(ok289) (n = 19) and acd-5(ok2657) (n = 20). Neither of these
genes has a known function, nor do the deletion strains have
a previously reported phenotype. We used the mRMR criterion to
find the two most-distinguishing behavioral motifs with respect

to N2 (Fig. 5). Qualitatively, in both cases we find one motif that
represents a bout of forward locomotion and another that is
a pause in a curved shape. The DEG/ENaC channel mutants are,
on average, further from the forward locomotion and closer to
the curved pause. Both differences are statistically significant
based on a Hotelling T2 test with permutation (40, 41) [asic-2
(ok289) vs. N2, P = 0.0019; acd-5(ok2657) vs. N2, P = 9 × 10−6].
Comparing the two DEG/ENaC mutants to each other (Fig. 5C),
two motifs are selected but there is no significant difference
between their distances to the motifs (P = 0.796, Hotelling T2

with permutation). In other words, these two mutants were found
to be different from N2 yet they were not distinguishable from
each other using the same procedure. It should be noted that this
is not true for all mutants in the N2-like group; for example, two

N2
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G-protein coupled receptors
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egg-laying defective
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Fig. 3. Phenotypic association network. Nodes are mutant strains, and

edges show phenotypic connections. Edge transparency indicates the fre-

quency with which two strains cluster together after resampling from the

data with replacement (frequently clustering strains are connected by dark

edges). The network layout is determined using spring embedding with

edge weights determined by the inverse phenotypic distance. Color-coding

indicates either known phenotypic classes or molecular pathway families.

(Inset) Network around N2 with increased transparency and smaller node

labels for clarity. The DEG/ENaC mutants discussed in Fig. 5 are shown with

a red rectangle.

Dopamine and Receptors
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p = 2 x 10-31

Serotonin and Receptors
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1.8 ± 0.2, p = 2 x 10-4) 
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Fig. 4. Genes involved in monoamine pathways cluster together. In each

panel, genes in the indicated class of monoamine signaling are highlighted

in red. The mean ± SE of the shortest path connecting each pathway

member is listed below the network. Cases where the intragroup distance is

significantly smaller than the network overall based on a Wilcoxon rank-sum

test are highlighted in red. In the case of serotonin, the results are also

shown without cat-4 and bas-1 because they encode molecules required for

both serotonin and dopamine biosynthesis. Included genes are as follows:

dopamine and receptors: cat-2(e1112), dop-1(vs101), dop-1(vs100); dop-2

(vs105), dop-1(vs100); dop-2(vs105); dop-3(vs106), dop-1(vs100); dop-3

(vs106), dop-2(vs105), dop-2(vs105); dop-3(vs106), dop-3(vs106), dop-4

(tm1392), bas-1(ad446), cat-4(e1141). Serotonin and receptors: bas-1(ad446),

cat-4(e1141), ser-1(ok345), ser-4(ok512), ser-5(tm2654), ser-7(tm1325), tph-1

(mg280). Tyramine and receptors: tdc-1(n3419), tyra-2(tm1846), tyra-3(ok325),

ser-2(pk1357). Octopamine and receptors: octr-1(ok371), tdc-1(n3419), ser-6

(tm2146), tbh-1(n3247).
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other DEG/ENaC channels near each other in the same cluster
are still distinguishable using the same approach (Fig. S6). Given
that DEG/ENaC channels are known to form heteromeric com-
plexes (42), we arrive at the hypothesis that these channels share
a similar function and may even operate in the same channel
complex in some cells.
Phenotypic profiling using automatically extracted behavioral

motifs can reveal abnormal phenotypes in mutants that were not
apparent from manual observation. Furthermore, phenotypic
associations can sharpen hypotheses of gene function, especially
when combined with other information, such as sequence simi-
larity, and can therefore help guide functional experiments. Al-
though the discovery phase is unsupervised, the end result is still
an intuitive summary of a phenotype in terms of a small number
of short behaviors. Because the assumptions underlying behav-
ioral motif extraction are minimal, we expect our method to
apply generally to many model organisms. In particular, because
zebrafish larvae are of fixed length and generate body move-
ments in two dimensions, little modification would be required to
adapt the approach described here. Although a representation
based on skeleton angles would not be optimal for Drosophila
larvae, a representation based directly on outline curvature could
make Drosophila larva locomotion and in vitro cell motility
(43) amenable to unsupervised motif discovery as well. Motif-
derived phenotypes are related to functional classes but are
derived completely independently from other data; we therefore
expect them to provide complementary information that may
be usefully combined with proteomic and transcriptomic data in
the future.

Methods
Strains. All strains were maintained at 22 °C as previously described (44). A

complete strain list is included in Dataset S1.

Tracking. Single-worm tracking was performed as previously described (45,

46). Briefly, single worms were transferred to agar plates seeded with 20 μL

of OP50 bacteria using a platinum wire and allowed to habituate for 30 min.

Then each worm was tracked for 15 min at 25 frames per second using one

of eight trackers consisting of a USB microscope mounted on a motorized

stage. The camera was moved beneath the crawling worm, which was kept

stationary to avoid mechanically stimulating the worm. Each tracker was

controlled by a computer running home-built software written in Java

(www.mrc-lmb.cam.ac.uk/wormtracker/).

Segmentation and Skeletonization. All analysis software described below was

written in MATLAB. Each movie frame was segmented using the Otsu

threshold (47), and the worm was taken to be the largest connected com-

ponent in the resulting image. The curvature of the outline of this con-

nected component was determined, and the two points of highest curvature

were taken to be the head and the tail. The skeleton was found by tracing

the midline of the outline between these two points. The skeleton was di-

vided into 49 equally spaced points, which were used to define 48 tangent

angles. The mean of these angles was then subtracted.

Eigenworm Representation. Eigenworms were derived from at least 1 h of

pooled crawling data for each strain as previously described (24). The skeleton

angles in each frame were then projected onto the wild-type–derived eigen-

worms, and these amplitudes were used for all further behavior analysis.

Motif Dictionary. Motifs were discovered as previously described† with the

following modifications. Motifs were discovered using distances across all

four eigenworm amplitudes simultaneously, ensuring an essentially one-to-

one correspondence between a time-series motif and a segment of worm

behavior. Furthermore, no normalization was performed on the candidate

subsequences to preserve the amplitude offsets and magnitudes that are

essential for maintaining the times-series behavior mapping. Nine different

length motifs from 1.6 to 32 s (40–800 frames) were discovered in each of

1,542 movies (each 15 min long) sampled from all mutant strains, resulting in

an initial motif index with 13,878 entries. Motifs were discovered on data

downsampled by a factor of four. The 20% worst matching motifs of each

length were dropped, and from the remaining 80%, the 20% of each length

with the highest variance across all dimensions were kept, leaving 2,223

motifs in the pruned dictionary. Keeping high variance elements ensures
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Fig. 5. Maximally distinguishing behavioral motifs. For each of the indi-

cated comparisons (A–C) the two most-distinguishing behavioral motifs

from the dictionary are found using mRMR. The plots on the left show the z-

normalized distance between the compared strains and the motif (mean ±

SE). The motif amplitudes and the corresponding worm postures are shown

in gray. The colored lines show the mean-matching motifs from each of the

compared strains. For example, acd-5(ok2657) matches the first motif in A

more closely than N2 on average, and this is visible in the amplitude overlay.
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that the pruned dictionary would not contain only pauses, which tend to be

the most perfectly repeated behaviors. However, it should be emphasized

that the remaining set does contain pauses at different postures, which can

be important distinguishing features. The full-resolution versions of each

remaining motif were then recovered and used in subsequent analysis.

A feature vector for each individual was constructed by finding the best-

matching subsequence between each amplitude time-series and each motif

in the dictionary. The rmsd between the motif and its best match in the

amplitude time-series is taken as the distance between that motif and the

time series. The set of distances from eachmotif defines the feature vector for

each individual worm. The feature matrix consisting of the full set of feature

vectors was further reduced to 700 features using mRMR (32) to find the 700

most-informative motifs. The resulting feature matrix was z-normalized to

prevent outlying motifs from dominating the dissimilarity measure and al-

low subtle but potentially important differences from common motifs to

contribute. Pair-wise Mahalanobis distances were calculated between all of

the strains. Because the number of features is significantly greater than the

number of individuals in each group, the Mahalanobis distance is calculated

using a shrinkage estimate of the covariance matrix (47) for each strain.

Clustering. Clustering was performed using affinity propagation (33) with

the inverse Mahalanobis distance as the similarity measure and the median

similarity as the clustering preference factor. Individual worms were then

resampled with replacement from each strain, and the clustering was re-

peated 100 times. The clustering frequency was determined, and we kept

only the most frequent 10% of connections and illustrated these as edges in

a phenotypic similarity network. Cytoscape (48) was used to display the

network. The nodes are arranged using a force-directed layout with inverse

Mahalanobis distance as the edge weight so that more similar highly

interconnected strains are nearer to each other (49).
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