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Deontic Logic Viewed as a Variant
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1 Introduction This article proposes a new setting for deontic logic, the
logic of obligation, prohibition, and permissibility. Surveys of the several deontic
logics that were devised in the past can be found in [12], [6], [1], [3]. For those
familiar with the Dutch language, Soeteman’s thesis [18] is also certainly worth-
while reading because of its well-considered comparative study of the various
deontic systems in the literature. In our paper, deontic logic is reduced to a var-
iant of so-called dynamic logic (e.g., [8], [9], [17]). The latter can be considered
as a very weak modal logic resembling system K with additional axioms for the
behavior of the various actions, which are, by the way, strictly separated from
assertions in the system. It will appear that this last property of the syntax will
prevent us from asserting and proving in this logic many paradoxical and coun-
terintuitive propositions that often crop up in the literature (see, e.g., [6], [10],
[11], [18]). The philosophical idea behind separating actions and assertions is
the simple observation that only assertions can be asserted and only actions can
be acted or performed. So it is meaningless to state the obligation O¢ of some
proposition ¢, such as OO«, where ¢ is taken to be the assertion stating that
the action « is obligatory. Furthermore, of crucial importance is the consider-
ation that an action may change the current situation (world) and an assertion
does not. Furthermore, the fact that actions change situations implies some
notion of passing of time. This obvious remark has, of course, been observed
by other authors as well. Van Eck, for example, has given a deontic system in
[19] where time is a central notion. However, there it is used in an entirely dif-
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ferent manner: accessibility relations between worlds are still defined within one
time-slice and involve more perfect alternatives that could have existed at the
same moment. In our approach the accessibility is defined between a world
before a certain action « is performed and possible ones gffer « has been done,
i.e., between worlds with different “time-stamps.”

Dynamic Logic stems from the theory of computer science, where it is used
to prove correctness properties of computer programs. If this seems odd, one
has to realize that a computer program is in fact nothing but a sequence of
actions of a certain kind. Although we shall follow the formalism of Dynamic
Logic, we must also mention that Polish logicians such as Salwicki (see [16])
have occupied themselves with a similar logic, called Algorithmic Logic, to deal
with program correctness. Some of this work dates from as long ago as 1959
([21]).

To begin with, we shall give a formal syntax of the actions and assertions
we allow in our approach. Next, we shall present a semantics for these, in a sim-
ilar way as this is done in computer science and dynamic logic in particular.

We shall see that the modality of prohibition is less problematic to deal with
than obligation, both formally and semantically. The manner in which the asser-
tion Fa, it is forbidden to do action «, is reduced to dynamic logic, is inspired
by Anderson’s proposal (in [2]) to reduce O« to an assertion in a Lewis-modal
system, but will lack its most undesirable consequences (cf. [15]). A few
‘paradoxes’ remain derivable, such as, e.g., Ross’s paradox: Oa O O(a U 8).
But it is argued quite convincingly in the literature (e.g., [4], [18]) that these
are not real anomalies, and we propose a simple solution within our framework.
As we shall see, the paradoxes that disappear in our approach are mostly of the
kind involving a conditional under the O, P (permissibility) or F-symbol.

Finally we shall discuss several ways in which our basic system can be
extended.

2 Definition: Actions and assertions The central notion of our approach will
be represented by a modal operator [« ] associated with an action «. The expres-
sion [a] ¢ will mean the weakest precondition that is required to ensure that ¢
will hold after o has been done. So, if [a]¢ holds before « is done, ¢ will hold
afterwards. Or, alternatively, [«]¢ means simply that if action « is done, ¢ will
hold (afterwards). Hence [a]¢ is a more refined version of o D ¢ in traditional
deontic logic with the difference that now actions and assertions are separated,
and a notion of time-lag is built in. [a] will be interpreted as a modal opera-
tor of the necessity (OJ) kind in a Kripke-structure induced by the performance
of actions.

Formally, we introduce the sets Act of action expressions and Ass of asser-
tions as follows. Let A be a finite alphabet (i.e., set of symbols), denoting ele-
mentary or atomic actions. We use the letters a, b, c with possible marks to range
over A. The classes Act and Ass are the smallest sets satisfying the following
clauses:

(i)ae€ Act foreverya € A
(ii) constants & € Act, U € Act pronounced as “failure” and “whatever”,
respectively.
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For any «;, a, € Act and ¢ € Ass:

(iii) The sequential composition a, ; a, € Act, pronounced as “a; fol-
lowed by «,”.

(iv) The choice a; U a, € Act, pronounced as “oy or a,”.

(v) The joint (or simultaneous) action a; & a, € Act, pronounced as “o

together with «,”.

(vi) The conditional action ¢ — o, /a5 € Act, pronounced as “if ¢ then o
else a,”.

(vii) The negated action &; € Act, pronounced as “not-a;”.

Note: The subclass of Act without conditional actions will be denoted by Act,.

(1) Ass contains a fixed set of propositional letters.
(2) The special propositional letter V € Ass.

For any ¢, ¢, € Ass and o € Act,

(3) D1V &2, D1 A D2, &1 D 2, Oy = P2, TP; € Ass
@) [aldy, (a)d; € Ass.

Notation We use true and false as abbreviations of ¢4 v 2¢, for some arbi-
trary, but fixed, ¢, € Ass and —true, respectively. Moreover, Fa is an abbrevi-
ation of [«a]V, O« abbreviates Fa&, and Po stands for —Fa. In the sequel we
let p range over the least subset of Ass satisfying clauses (1) and (3), i.e., the sen-
tences of Propositional Calculus.

3 Informal semantics The semantics of the actions in Act given (informally)
as follows. (For a formal semantics we refer to the appendix.)

One has to imagine that one is in a state (world) o, in which certain asser-
tions hold. Then by doing an elementary action ¢ one moves to a next state ¢’.
In this state ¢’ other assertions may hold than in o, since ¢ might have changed
something. For instance, if in ¢ the proposition

¢ = “vase A has a blue color”

is true and a is the action “paint vase A red”, then the proposition ¢ clearly no
longer holds in ¢’, but

¢’ = “vase A is red”

does. We picture this as follows

- — @
o o’
ok ¢ o' k¢’

o' ko

(We assume actions to terminate after a finite amount of time.)
In general, an action o € Act may lead one into one of several possible
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states, due to the fact that we have a choice operator U in our language. So «
may map o into a set W, , of states. In a picture:

gé ! o !Wa,u

Now we can give the semantics of the various operators regarding Act:

(a) o ; op. This simply stands for doing o first and o, next. For elemen-
tary actions a,b we can picture it thus:

Qe

In general, however, we get

Wf!l 5 02,0

Weiro

Where thl ; 02,0 = UU’EWal,aWaz,a’
(b) oy & a;: we perform «; and a5, simultaneously. For elementary a, b:

a o
@ O
o b o’

(¢) a; U a3: we do either o or «, (or both):
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In general, a; U «a; is pictured as

o Wartar,a = Waq,o U Woy, o U Wa ka0

(d)

©

(This is slightly different from «; U a5, in dynamic logic, where it is
assumed that actions cannot occur in a really simultaneous manner.)
¢ — «ay/ay: if ¢ holds in the state ¢ you are in, then you perform
action «;, and otherwise action o,. It must be emphasized that this
conditional action ¢ — «; /a5 is something completely different from
the conditional action «; — «, in traditional deontic logic where only
actions are involved. o — a5, with intended meaning “if action «; is
done, a5 is done” is semantically more problematic and will be dealt
with in Section 6. g

In ¢ — /a5 the assertion ¢ is harmless in the sense that it does
not change the current world. It is not an action but just an assertion
about the current world, such as “the sun is shining (now)” or “it is
(now in the current world) forbidden to do action «”.

Perhaps one wonders whether a binary conditional ¢ — «, mean-

ing if ¢ then do «, can also be introduced as some special case of the
ternary ¢ — «,/a5. The problem with this action ¢ — « is its status
when ¢ does not hold: it still has to be an action, but which one is it
then? We shall discuss this problem in Section 6 as well.
a@: not-a. In this section the semantics of & will not be specified fully
in terms of the semantics of o. We will not need this. It will be suffi-
cient to consider & as some action that satisfies the following axioms,
which in our opinion must reasonably hold:

(I a=«

D) arTaz=a U (o ;5 x3)
D)oy Uy =01 &
Vo &ay=a1 U

V) ¢ /oy =9 - ar/a;.

(In the appendix we present a model in which they hold, so these
axioms are consistent with each other.)

Here we continue our informal discussion of the semantics.
Observe that we do not require @ to be a set-complement of « in the
sense that o U & = Act or anything of this kind. We do not impose this
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requirement because it implies that & = Act\ {«}. This leads to trou-
ble when we consider, e.g., @ = Act\ {a} for elementary a: @ now con-
tains, for example, ac for some elementary ¢ and this action ac still
involves doing action a first. Whether one wants this or not cannot be
determined a priori. Likewise we can argue about o & @. It is very rea-
sonable to identify this joint action with the empty action & (‘failure’)
which cannot be executed. In our model this corresponds to an empty
set of successor states: Wy , = & for every state ¢. But what about
(a;01) & (&;a,)? It seems very reasonable to identify this with & as
well, for we have to start with o and & simultaneously. However, we
shall leave this unspecified in this section, and we shall see that we do
not need this exact specification to deal with many important theorems
of Deontic Logic. Moreover, for the sublogic of prohibition, involving
only F, & will not be needed at all!

(f) . The action G (‘failure’) really denotes a complete nonaction in the
sense that no action from the set of atomic actions is selected to be per-
formed. This implies that the set of successor states after performing
@ is the empty set. In other words, & denotes an impossible action,
since it “leads to nowhere”.

(g) U. The action U (‘whatever’) is complementary to J in the sense that
when U is performed, some set of atomic actions — which is chosen in
a nondeterministic manner —is performed simultaneously.

Concerning the semantics of assertions we define for ¢ € Ass:
o E ¢ iff ¢ holds in ¢
and
Fo¢ iff ¢ holds for all o € £, the universe of states.

The semantics of the traditional connectives is as usual and we shall omit this
here. For [al¢, {(a)®, and V we have:

(@) ok [a]o iff Vo' € W, ,: o' E ¢. In a picture:

¢.

(b) (aypisthe dual of [x]d: ok a)p iff oF " [a] —¢, i.e.,30' E W, ,:
¢’ F ¢; i.e., there is some way by doing action « to achieve ¢.
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g EFo

(¢) Vis a sentential constant denoting the so-called ‘undesirable state-of-
affairs’, e.g., sanction, (liable to) punishment, trouble (with conscience,
for example).

The abbreviations Fo, Oa, and Pa are justified by:

(@) 0 F Fa iff o £ [ ]V l.e., it is forbidden to do « in ¢ iff one performs
« in state ¢ one gets into trouble.

(b) 0 E O« iff ¢ k Fa; i.e., it is obligatory to do « in ¢ iff it is forbidden
to do not-« in o.

(¢) o k Pa iff o F ~1Fa; l.e., it is permitted to do « in ¢ iff it is not forbid-
den to do « in o.

The modal operator [«] is a very weak one: it is a derivative from system
K. This is the smallest logical system that can be given an interpretation with
Kripke-structures, with the additional property that k{«] frue (see {7}).

4 The basic system PD,L The system PD.L of Propositional Deontic Logic
is given by: (¢; C ¢, stands for ¢, D ¢;.)

Axioms

(PC) All tautologies of propositional calculus

(@D) Flal(ér D ¢2) D ([aldr D [a]dr)

G) Flog s azle = [eg] ([a2]9)

()] Flog Uas]e = [a]lé A [az]e

(&) Floy & a3l C [a]d v [ax]ed (provided duration (a;) =
duration (o))’

/) Fldr = a/ap] oy = (91 D [a]dz) A (7 D [aa])

©) Fadpp = 1 [a] 79

G) Flays azle =[] A [agllaz]e

W) Floy Uaple Clale v [ale (provided duration (o) =
duration (a5))

&) Flog & az]d = [a;]o A [&2]¢

/) Flé = /] ér = (¢ D [@1]¢2) A (0 D [aa]da)

) Flale = [ald

Q) +[(Dle. (‘failing’).
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Rules

(MP)

N)
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to, o D Y
H

ko
Flale

The soundness of this system is given in the appendix. Note that we do not

have

Floy & ax]é D [og]e v [az]d,

as can be seen from the following example: take

o = painting the table red,
a, = painting the table blue,
¢ = false.

Now we have that [«; & a3] ¢ is true, but neither [a;]¢ nor [a,]9 is.
We now give a list of theorems and derived rules of PD.L and most of
their proofs:

Theorems
(1) Flal true
(2) k- (a) false
3) Flal(drAdr) =lale;alale:
@) Ha)(d1v o) =<(a)p; via)d,
(5) Flal(é1Vv ) Claley v ale
6) Hoag; oo ={ad{ad
N HoyYade = adov e
B) Foy &ayd DCapdalua)d (provided duration (a5) =
duration (a,))
9 FF(oy; az) = [og] Foy
(10) FF(a; U ay) = Foy A Foy
(1) FF (o & ) C Foy v Fa, (provided duration (o) =
duration (a3))
(12) FF(¢ — aj/az) = (¢ D Fay) A (¢ D Fay)
(13) I—F(false - O(l/ay_) = Fa2
(14) FF(true - ay/o;) = Fay
(15) WF(Fa;—~ a1/as) = Foy v Fay
(16) FFay D F(oy & a5) (where duration (o) =
duration (a»)) Penitent’s Paradox I
(7)) FO(ay 5 o2) = Oay A [ay] Oy
(18) FO(a; U a3) C Oay v Oas (where duration («;) = duration («,))
(19) I‘O(O{l & Olz) = OO([ A Oa2
(20) FO(¢ = aj/ay) = (¢ D Oay) A (¢ D Owz)
21) F(Oa; A Ooz) D O(d = ar/ay) Derived Obligation I
(22) I—O(Ooq d CY[/OQ) = OC{I \ 00[2
(23) FO(oy & az) D Oxy Derived Obligation II
24) FOa; D O(a; U a3) (where duration («;) = duration (o)) Ross’s

Paradox
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(26)
@
(28)
(29)
(30)
31
(32)
(33)

(34

(35)

(36)
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FOa, D O(a; & a5) (where duration («;) = duration («»))
Penitent’s Paradox II

FPo = (a )V

FPa = 2 0&

FP(a; ; o) = {a)Pa;

FP(o; U @3) = Py v Pay

FP(ay & as) D Paj; A Pay  (provided duration (o) = duration (a5))
FP(¢ — a)/az) = (¢ D Pay) A (7¢ D Pay)

FP(Pa; = a;/ay) = Pa; v Pay

FlogUanle = [ay Uar U (o & o)

k¢ D ¥

Flaleg D [a]d

Flajlér, Flazles

rovided duration = duration
Flon & aa] (61 1 62) (provi (o) (e2)

Flajley, Floal s

FlagUasl (¢1v éy)

Some proofs (cf. [7], [8], [9]):
(1) Directly from Ftrue and (N)

@

—~({a) false = ~{a) ~true = [a] frue

3) a. [al(d1Ad2) Dlale; A lald,.

We use rule (34) to be derived below: observe

D1 APy D 1 Fay [l (914 92) D [aldy

and
S1AD2 D ¢ bay [l (d1 A d2) D [alg,.
Therefore we have that
F(le] (@1 A ¢2) D [aldr) A ([a] (é1 A d2) D [l ).
Consequently, also
F(olal(é1 A d2) v ald) A (mlal (d1 4 é2) v Ia]¢r)
which implies
Folal (@1 A dr) v (Laldy A [a]¢r)
ie.,

Flal (o1 A ¢2) D ([aldr A [ald,).

b. [ale; A [ald, D [a] (b1 A ¢2).

&1 D (62D (61 A $2) Fgy [aldy D [a] (92D (d1 A ¢2)) F(by 0D
and MP)

lald; D ([aley, D [al (61 A d)) F ({aldy A [aldz) D

[a] (o1 A ¢2)
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4) (X (d1vey)=lal=(dvey)=-lal (¢ Ay =
“([a] ¢ A [a]1¢y) = 2 [a]l 7 v 2 [a] é, = (add viado,

(5) 61D b1V sty [aled D lal(d v ér)
b2 D 1V Py by [aldy D [a] (91 v ¢a)
Hence, Flale; v [ald; D [a] (¢ V é2)

6) (oq; a0 = [a;;a]¢=[a]lox] ¢ =[] {ar)p =
(ap{az)e

(M (lagUayd=—{ayUax]=d= (a1 A [az]¢) =
Sla] e v T lay] 7o = (adé v {andd

B (o & ayyg=la;&ar]¢ D ([o] ¢V [az]¢) =
"o ]o A ar] g = (oydo A (o) o

O F(ey; az) = [ag; aalV=[ag][en]V = [ar]Fa,

(10) F(oy Uas) = [ay U]V = [oq]VA [op]V = Fay A Fay
(13)-(15) Directly from (12).

(16) By (11)

(A7) Oaysay) =F(ay; o) =F(on U (o) ; @) =Foay A Fog ; ap) =
F&l A [QI]FI_I—Z = Oa1 A [al]Oaz

(20) O(¢ - aj/ap) =F(¢ > aj/az) = F(¢ > /) =
(¢ D [@]V) A (79 D [@z]V) = (¢ D Oay) A (¢ D Oay).

(25) Directly from (16)

(26) Pa=—Fa=-[alV=(a)y V
27) Poa=—Fa=-Fa=-0&

(30) P(Oll & (Xz) = —‘F(Oll & Otz) D "'(Fozl VFaz) =
_‘FO[I A _|F()l2 = POll A PO[Z

B P(d—ai/a)=-F(p—=a/ap)=-1(¢D[a]1V)v (¢ D [ap]V) =
(A 1oglV) v (2 A = [o3]V) = (¢ A Pay) v (7 A Pay) =
(¢ D Pay) A (7¢ D Pay).

33) [agUarU (o &ax)lo=[agloAlop]dn[ap & o] =
(since by (&): [a1]1o A [a2]1¢ D [ & az]92)
[aj]e Aoyl = [og U azle

(34) ¢DVYtanlal(eDY)F
(by (C1D) and (MP))
lal¢ D [aly
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(35 [oyld F lanléy v an]e; F
(by (&) and (MP))
fa) & az] ¢y
Likewise, [as]ds F [ & ar] s,
Finally, [o; & az] 1 A {og & ap] e +
(by 3))
[a; & az] (1 A ¢3).

(36) [ay]ley F [a1] () v ¢2) (by (5) and (MP)).
Likewise [oz] s F [a2] (¢1 V ¢2)
Finally, [a;] (¢1 Vv ¢2) A [a2] (1A ¢2) F
(by (V)
[og U az] (o7 V ¢3).

5 Remarks on the basic system and the derived theorems: Paradoxes and
pseudo-paradoxes Among the theorems of the system we find very famil-
iar ones, both evident truths and more controversial assertions. The desirable
theorems include assertions such as:

(9) Maintaining that if o, ; o, is forbidden, it is forbidden to do «; if oy

has been done already.

(10)  «; U a4 is forbidden if both are forbidden.

(17)  «; ; ay is obligatory iff «; is obligatory and « is obligatory once o, has
been done.

(199  o; & « is obligatory iff both «; and «5 are.

(26,27) It is permitted to do « iff there is a way to do « that avoids ‘trouble’ iff
it is not obligated to do not-«.

The following are also interesting:

(12)  “If ¢ then do «; else a,” is forbidden iff o, is forbidden when ¢ holds
and o, is forbidden when ¢ does not hold.

(14) It is forbidden to do true — «a,/a, iff it is forbidden to do «;. This is
indeed to be expected, since frue — «;/a; is not really a conditional
action.

(15) It is forbidden to do: “«ay if oy is forbidden or «, otherwise” iff it is
either forbidden to do «; or it is forbidden to do a,.

Likewise for obligation and permission.

Well-known ‘paradoxes’ are also among our theorems, such as Ross’s (24)
and the paradoxes of derived obligation (21), (25). However, as is also argued
in, for instance, [4], these are not real anomalies. For example, (21) is perfectly
reasonable in asserting that if both «; and o, are obligatory, then also the con-
ditional action “if ¢ then «; else «»” resulting in doing either «; or o5 (depend-
ing on the truth value of ¢) is obligatory. We shall return to Ross’s Paradox
presently, and propose a possible solution to this as well.

What is important to note, though, is that really undesirable assertions such
as “Ought implies Can”: Oa D Pa and even worse O—p D O(p - «a), Oa D
OOu«, OO0a D a, (Op A (p D Og)) D Oq, and (p D q) > O(p D q) (cf. [10},
[4], [15]) are either false or nonsensical (not even well-formed) in our system.
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Also, in some cases the paradox just vanishes. For example, consider the fol-

lowing version of the Chisholm paradox, stated in classical deontic logic as
OpAO(p—=>q)A("pDO~g)A P

with intended meaning that the following assertions hold:

It is obligatory to do p.

It is obligatory to do g if p has been done.

If p has not been done it is obligatory to do not-q.
p is not done.

HW N =

Although its meaning is perfectly clear, it is problematical in classical deontic
logic, since it involves an obligation (3) in case some other obligation is violated.
However, the intention of it is represented in our system without any problem
by the assertion

Oa; A [a]Oay A [a1]10a;
which implies, e.g., the assertion

O(a; ; o) A lag] (VA Oas) or
O(ay 5 az) A [aq] (VA Fay):

it is in principle obligatory to do «; ; a3, but if oy is not done, then, besides
already being liable to punishment for not doing «;, one is also forbidden to do
a;. So instead of arriving at an inconsistency we get a meaningful assertion in
this case.

The so-called Paradox of Free Choice Permission can be dealt with as well.
Although we have as a theorem P(o; U «y) = Poy v Poy (just as in the stan-
dard system (cf. [6])), some authors argue that it would be far more reasonable
to have P(a; U ay) = Pa; A Pay, as follows: If one is permitted to do either «;
or a3, one may choose between «; and a,, and therefore both «; and o, must
be permitted. But, since this is not compatible with the standard system, it has
remained a paradox in the literature (sce, e.g., [20], [14]).

However, in our system this paradox can be resolved by realizing exactly
what is meant by permission. By defining Po = - Fa = (a) -V we have taken
a special (and useful) interpretation of permissibility: « is permitted iff in some
way « can be done without getting into trouble (punishment). In common use
of language, however, “it is permitted to do «” means more: besides the pos-
sibility of doing o without being punished, it also suggests that the choice of how
to perform « is left to the actor (cf. [20]). But then this more complicated notion
of permission is captured exactly by defining Pra = Pa A [a] "V =(a) VA
[a]—V; i.e., it is possible to do o without getting into trouble and every way
of doing « is allowed. This free choice permission Pr now has the following
reasonable property: Pr(a; U a3) = (Prag A [an] V) Vv (Prag A [ ] V),
meaning: every way of doing a; or «; is allowed and, moreover, there is at least
one way to do either «; or «a,.

Next in this section we propose a solution to Ross’s Paradox: O«; D
O(a; U «y). That this assertion in a traditional form such as “one is obli-
gated to post the letter implies that one is obligated to post the letter or burn
it” is felt as paradoxical, results from the following interpretation. When one
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is obliged to perform an action «, it is suggested that the way in which « is done
is left to the actor. So when O(o; U «y) is true, it must be permitted to do
either oy or «,. This suggests the following definition of a more common use
of obligation O’ by using the notion of free choice permissibility that was
discussed above: O’'a = Oa A Pra = [&]V A [a] 2V A {a)— V. For this O’ it
holds no longer that O’a; D O’ (o U a,), since it does not hold that Pray D
Pr(oy U a3).

We claim that the original notion O of obligation can still be fruitfully used
as a useful abstraction from the more involved natural language notion of obli-
gation (just as the material implication in propositional logic is a useful simplifi-
cation of the implication used in natural language). When really needed, the
latter can be simulated in the system by O’, but only if the full context is known.

Finally, a few words about axiom

F) FlQ]¢ (‘failing’).

If one is asked to do an impossible action, e.g., o & &, then there are no suc-
cessor states and consequently every assertion ¢ is true in every successor state
(since there are none). Although this axiom (F) seems to be not very meaning-
ful, it now becomes possible to prove, e.g.,

(DA) FO(a U &) (‘do anything’);
i.e., it is obligatory to do something, which is sometimes a convenient property.

Proof: [DIV=[a& alV=[aUalV=0(Ua).

6 Possible extensions of the basic system PD,L It is possible to use the
basic system as a platform for further extension in several ways:

6.1 Identities regarding joint and negated actions First, it is possible to give
a more precise specification of the joint and negated actions. This can be done
by giving identities such as the following (cf. the semantic model in the
appendix):

ar & (o U a3) = (o) & az) U () & a3)
ar U (a & a3) = (o U ay) & (ap U as)
a&a=Qand U o=«
a&aoa=aUa=a

o) & (o) 5 o) = oy 5 as.

The last identity can be explained informally by an example: “opening the door”
together with “opening the door and then leaving” is the same as “opening the
door and then leaving.”

Furthermore, if one introduces a notion of duration of an action (for exam-
ple, the maximal number of elementary actions that are sequentially composed),
we can give the following more general identity

ap & (o ; a3) = (o & az);as,

provided that duration («;) = duration («5). For example, “knocking on the
door for a minute” together with “whistling for a minute and then entering” is
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the same as “knocking on the door (for a minute) together with whistling for
a minute, and then entering”.

These semantical identities can be added as axioms yielding additional the-
orems. For instance, FO(a; U a3) A Fay; O Oas.

Proof: O(ay U az) AFoy = O(oy Uan) A Oy = O((a Yon) &) = O((on &

o) Y (o & 1)) = O(D U (o & &7)) = Oy & @7) = Oy A Oj = Oaiz A
Fay. So O(a; U as) A Fay O Oay A Fay D Oay.

6.2 Conditional actions «; — o, Secondly, we can extend our language of
actions with, for example, a conditional action «; = «,, meaning that if «; is
done, a, will be done afterwards. We can introduce o; = «; in the system by
means of the definition

ap oy =a; U (a5 o)

asserting that «; — o, means that either «; is not done or «; is done followed
by a5. In combination with the first extension involving additional semantical
identities, we can now (im)prove the analoga of the problematical

O(A—->B)=A4 - OB and
O(A - B) » (OA — OB)

of traditional deontic logic:

(37 FO(ay = az) = [a1]Oaz

and

(38) FO(aj = a2) D (Oa; D O(a; ; az)).

Proof:

(B7) O(ay= ) =0(@ U (o5 ap)) = [a; U (01 ; ap)]V =
[ &a; V=l & (@ Ua ;a)llVs=
[(ay & @) U (0 & (a1 5 @ NIV = [a) & (o 5 @)V =
[og 5 @]V = [a]0ay

(38) O(a;— ay) AOa; = [a1]Oas A Oy = O(ay 5 ay).
Regarding prohibition and permissibility of «; = «, we obtain
(39) FF(ay— az) = Oay A Flag ; @)

40) FP(o;— az) = Oa; D P(a; ; a3).

Proof:
(39) Flay—az)=[ogU (ar; a))lV=[alVa[eg]lez]V =
Oa; A F(ay ;5 a3)

(40) P(aj— az) = 7F(a; > o) = (0o A Fog 5 ap)) =
—0a; v F (e 5 ) = Oa; D Py} az).

Perhaps these results are somewhat surprising, but it indicates that the
intended meaning of a; — «; is to be considered carefully. In our view it means
that either «; ; o, is done or the “escape route” a;j! So if &y = 5 is forbidden,
the escape &; is forbidden as well! Otherwise there would be no difference
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between o; — o5 and «; ; oz ! And if oy — a5 is permitted, it is permitted to do
o or it is permitted to do «; ; ;. In other words, if one is obligated to do «a;
(and not to use the escape route) then o; ; o, must be permitted.

So although «o; — o, and «; ; a, are closely connected, we now have the
following discriminating theorems about them:

37 FO(a; = a3) =[] Oy

A7) FO(ay 5 az) = Oay A [a;]10ay
(39 FF(a;— az) = Oay A F(ay ;5 az)
9 FF(ap; oz) = [a) ] Fay

(40) FP(ay = az) = Oy O Pa; ; az)
28) FP(ay; a3) = {a)Pas.

Next we might introduce a binary conditional action ¢ — «, meaning if ¢
holds then do «. As we mentioned before, the problem is what this action com-
prises when ¢ does not hold, and this problem on the level of actions is grossly
underestimated in the literature. Three obvious possibilities arise:

(1) ¢ — « fails (i.e., = ) if - ¢ holds,

(2) ¢ — o when —¢ is an idle or dummy action d yielding an identical suc-
cessor state (i.e., Wy, = {0}), or

(3) we do not care what ¢ — « is when —¢ holds, i.e., in that case ¢ - «
is the universal action U = U o, so every action in Act’ will do,

aEAct’
where Act’ = {a € Act| duration («) = 1}.
So we can introduce three varieties of ¢ — a:
P a=¢>a/Q
¢ oa=¢—-ald
¢ a=¢—>a/l

To make a choice we have to consider the properties of &J, d and U: clearly
the following facts hold:

@1) Fo={(921V
and as we shall see later on, we can identify []V with true, so

42) FO = [QD1V = true
43) Fd=[dlV=V
44) FU=[UlV= M [alV

aEAct’
((44) expresses that every action is forbidden.)

45) PO =(D)> V= [V = false
46) Pd=(d)~V=-V
A7) PU=(Dy~V= Y ().

aeAct:
((47) expresses that some action is permitted.)

Furthermore, since it is reasonable to have @ = U and U = &, we obtain

(48) 0@ =[D1V=[U]V=FU
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50) oU=[0Vv=I[QDV=rtrue.
((50) expresses that it is obligatory to do something (albeit a dummy action).)

Now, using (12), (20), and (31) we find that

(51) F(¢»1a)=F(p>a/Q)=(¢DFa)r(—¢DFJ)=(¢DFa)

(52) F(¢ ma)=F(¢oa/d)y=¢DFa)Aa(n¢DV)

(53) F(¢ »3a)=F(¢ > a/U) = (¢ D Fa) A (7¢ D FU)

(54) P(o—1a)=P(p—>a/D)=(¢DPa)r (¢ DPY) =
(¢ D Pa)A(—¢ D false) = (¢ D Pa) A = ¢ A Pa

(55) P(¢ 22 a)=P(p—a/d)= (¢ D Pa)A (n¢ D V)

(56) P(¢ 3 a) =P(¢p—a/U) = (¢ D Pa)A(—¢DPU)

7)) O(p—=1a)=0(d—> /@)= (4D O0a)A(—¢D0OQY) =
(¢ D Oa) A (m¢ D FU)

(58) O(¢ = @) = O(¢p —> a/d) = (¢ D Oa) A (¢ D Od)

(59) O(¢ —3a)=0(p—>a/U)=(¢D0a)A(m¢DOU) =
(¢ D Oa) A (—¢ D true) = ¢ D Ou.

Although ¢ —; « has an intuitively sound property regarding prohibition,
it has a peculiar property regarding obligation and permissibility; e.g., P(¢ —
o) implies that ¢ holds. This can be argued as follows: if ¢ would hold the
action ¢ —; o would fail, yielding no successor state. But then it cannot be per-
missible to do ¢ - « since this guarantees that by doing ¢ —, « there is a suc-
cessor state in which — ¥ holds, i.e., where there is no liability to punishment.
So —1¢ cannot hold in case P(¢ —; «) holds.

¢ —, « has strange properties regarding all three: F, O, and P: in all three
cases there is some requirement when —¢ holds, e.g., O(¢ —, o) implies that
it is obligatory to do an idle step (to do nothing) if —¢ holds.

Personally, we find ¢ —; « the best choice. (59) and (56) are nice proper-
ties, e.g., (56) states that if —¢ holds it is permitted to do some action. Only,
(53) asserts that F(¢ —; «) is stronger than just ¢ O Fa, thus creating a differ-
ence between the prohibition of a conditional action and a conditional prohi-
bition. In this interpretation, when it is forbidden to do « if ¢ holds (and we
do not care otherwise), we have that it is also forbidden to do: “« if ¢ holds and
something unspecified otherwise”.

Anyway, this analysis shows that sometimes a too lighthearted view is taken
of conditional actions and their relationship with conditional prohibitions, obli-
gations, and permissions. It is worthwhile to ponder what it means to do a con-
ditional action, especially when the condition involved is not fulfilled, before
considering its prohibition, obligation, or permissibility.

6.3 Additional axioms Thirdly, we can add directly axioms for assertions.
For example we can augment the system by
(NCO) +10(x & &) (‘no conflicting obligations’)

which states that it is not obligatory to do some inconsistent (impossible) action.
This is not necessarily true in the basic system, since it may be the case that for
some «, both {a}V and [&]V. In a picture:
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However, this implies O& A Oa and hence also O(a & «).
Using this extra axiom we are able to derive some extra theorems such as

(60) F-F(aV a)
stating that is is not forbidden to do something: either & or «.

ﬂF((RL—&_) =-F(ay a).

Proof: "O(x & &)
(61) FOa D Pa.

When « is obligatory, it is also permissible.

Proof: "O(a & &)= 1(OanOa)=-0av-0a=0aD 0&= O« D Pa.
(62) FFa D —0a.
When « is forbidden, it is not obligatory.

Proof: Oa O Pa = - Pa D 7O« = Fo D - O0«q.
Another example of an additional axiom is the following:
(NP) FV D [alV (‘no pardon’)

stating that punishment cannot be remitted by any action.

6.4 Further extensions Further extensions can be made by introducing a new
constant R, meaning liability to some reward, and defining a new operator based
upon this R: Qo = [«a] R, expressing that doing « leads to some reward. For
this (@ it holds, e.g., that ®O(a; U as) = ®Oa; A Oas, suggesting a relationship
with Kenney’s Logic of Satisfactoriness (e.g., [13]).

By using Dynamic Logic it also becomes possible to express the executa-
bility of an action: Mo = (a) true now asserts that the action « is possible
(executable). Obviously Pa O Ma, but not conversely. This means that permis-
sibility implies possibility, which is not altogether counterintuitive.

The anonymous referee of this paper suggested one further extension, viz.
that of the DO predicate for actions. DO(«) should have the meaning of stat-
ing that « is (will be) done. First, let me draw the reader’s attention to the fact
that every assertion in PD.L states something Aypothetical about the effects of
actions: [a]¢ asserts that if (or perhaps better: whenever) « is performed, ¢ will
hold, regardless of the fact that « is or is not performed actually. So PD.L
assertions involving actions are not merely ‘material implications’. If we would
have a DO predicate, it would certainly not hold that: “DO(«) D [a]¢, for
arbitrary ¢, since the truth of [«]¢ does not depend on the actual performance
of «. This is the reason that in the translation of the Chisholm paradox into
PD.L we did not need a translation of —p (meaning action p is not done). The
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resulting PD,L formula holds whether p (¢q. ;) is done or not, and in case we
know that p (or «;) is not done, it says that one is already liable to punishment
and still forbidden to do g (cq. o).

Returning to our question about the suitability of a DO predicate, I think
that, besides not being needed, it is not an interesting predicate either. For
instance, what would one like to infer from [a]¢ A DO(«)? One cannot infer
¢, since we have not actually done « yet. However, this discussion suggests a
more meaningful predicate: DONE(«), meaning that action « has been per-
formed. This predicate appears to have interesting properties such as, e.g.,
[a]o + (DONE(«x) D ¢), [«] DONE(«), DONE(a; U «3) = DONE(¢;) v
DONE(«a;), DONE(a; & ay) = DONE(«;) A DONE(«,) and DONE(a) =
—DONE(«). It will be interesting to research this in more depth.

Finally, of course, it is also possible to extend PD.L to first-order or
higher-order logics, and it might as well be beneficial in some cases to introduce
more or less the inverse ¢[a] of [a]¢, asserting the strongest postcondition of
an action « given precondition ¢: ¢[a] holds after « has been done, if ¢ held
before «. These issues deserve further study.

7 Conclusion The system for (Propositional) Deontic Logic presented in this
paper (together with its semantics) provides a very workable framework for
reasoning with deontic concepts. It does not contain the very nasty paradoxes
that often appear in other systems in the literature, especially where the connec-
tion between actions and assertions is concerned. Although based upon Ander-
son’s idea for reduction (cf. {2], [15]), it lacks the undesirable consequences of
Anderson’s original reductions. Some of the troublesome theorems appearing
there (such as OOp D Op) are not even well-formed expressions in our system.
Instead, Anderson’s idea is used in a modified version and leads to many desir-
able results.

An interesting open technical question is whether an expression can be
found that is equivalent to [o; & a,1¢ instead of just an expression implying
it. Also, more generally, the issue of completeness is still open. Preferably, this
question should be settled upon two levels: upon the level of dynamic logic given
some action calculus and, if possible, also upon the underlying level of the action
calculus itself. However, for the latter, choices have to be made concerning the
exact interpretation of the negated and joint actions.

We remark that by the reduction to dynamic logic we need not restrict our-
selves to so-called ‘deontically perfect worlds’ to give a meaning to the deontic
expressions in our system. These perfect worlds appear quite frequently in the
literature (e.g., [6], [10]), and involve additional problems of a semantical
nature. Since we do not need them, our system can deal with conflicting obli-
gations without running into logical inconsistency. For example, O(a & @)( =
Oa A O&), more or less means that it is obligatory to do something impossible,
or to put it differently (by [a]V A [&]V): whatever one will do or try, he will
get into “trouble” (V) anyway. And this is a perfectly reasonable statement. We
regard this ability to talk about such conflicting obligations (prohibitions) as a
nice property of our logic, for once in a while obligations to impossibilities do
occur in real life and are therefore not impossible themselves.
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However, if one wants to exclude conflicting prohibitions and obligations,
one can add another axiom to the basic system:

(NCO) F-O(a & &)

which asserts that it cannot be the case that one is obliged to do conflicting
actions. When one adopts this axiom of nonconflicting obligations, additional
theorems can be obtained such as

(60) F-F(aVa)

asserting that is is not forbidden to do: either « or not-a,
(61) }+O«a D Pa,

saying that if « is obligatory, it is also permissible, and
(62) FFa D —10a,

“if some action is forbidden, it is not obligatory”.

Finally, we have seen in Section 6 that the basic system can also be extended
in other ways and provides a sound basis for the exploration of more specific
deontic problems.

Appendix: A Formal Semantics for Action Expressions

Al A semantical domain to deal with simultaneous actions Since we have
simultaneous or concurrent actions in our language, we must provide some way
of dealing with these constructs semantically. To this end we first define the
notion of a synchronicity set:

Definition A synchronicity set (s-set) is a (finite!) nonempty subset of A.

Notation We use S, S;, S,,...,S’,... for synchronicity sets, and in concrete
cases we write such a set using square brackets. For instance, the s-set consist-

. . . . . a
ing of the atomic actions « and b is written as bl The powerset of s-sets

will be denoted by ®1(A4).

A synchronicity set will be used to indicate which atomic actions are to be
executed simultaneously. We must be able to compose s-sets sequentially and
for this we introduce synchronicity traces.

Definition A synchronicity trace (s-trace) is a finite or infinite sequence
Siy...,8,,... of s-sets S;. We refer to the number of s-sets in an s-trace ¢ as
the length of t (so possibly length (¢) = ).

We use ¢, 1, t,,...,t’,... for s-traces. Synchronicity traces may be con-
catenated in the following way. If f = S5,...S,and ¢’ = §{...S;, are s-traces,
then the concatenation ¢ - ¢’ is the s-trace S;...S, S{...S,,. If ¢ is infinite, 7o
v =t

To treat the nondeterministic operator U we need for our semantic domain
(possibly infinite) sets of s-traces (or s-trace-sets). Weuse T, T3, T5,...,77,...
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to denote s-trace-sets and the standard notation T = {t,,f,, ...} for these sets.
The concatenation T~ T’ of s-trace-sets will stand for the set {z-¢'|t€ T, t' €
T'}.Notethat T- 3 =D T= .

Denotations of action expressions will be sets of infinite s-traces. Techni-
cally, this will facilitate the definitions of our semantical operators below. Intui-
tively, an action expression denotes a set of s-traces, which are specified up to
a certain length and unspecified beyond this length. This unspecified part is
always infinite corresponding with an unspecified future (cq. infinite amount of
time). To indicate which part of an s-trace is specified and which is not, we, for-
mally, use traces of pairs {S,i) where S is an s-set and i € {0,1}. {(S,1) denotes
that the s-set S is specified (or relevant), whereas (S,0) denotes that S is unspeci-
fied or irrelevant. We will view (S,i) as an s-set with additional information,
and to stress this we use the more informal notation S instead of ¢S, ). Con-
catenation of these ‘annotated’ s-sets is defined just as for s-sets. If T is a col-
lection of s-sets: T = {S), Sp,...}, TW =4 {S{”, §57,... 1.

Our semantical domain will be the collection C of set of infinite s-traces
that have a finite relevant (specified) part followed by an infinite irrelevant
(unspecified) part. The empty set & is included in C.

For example, the following sets are in C:

L [@]®D e [6]D o [c]D o [¢]@ o, ..
2. [a]D o [5]1D e PT(A) D e @T(A) D .. ..
3. [a]W o [a]D e @ (A)D e @A) D e @H(A) Dol

Not included in C are, e.g.,

4. 6]V o [a]P o @A)V e @H(A) D o, ..
5. [a]196 (1D o [c]P o [¢]D W, ...

In order to compose elements in C in a meaningful way we need the fol-
lowing operator:

Definition  Let € 7 for some 7€ @, i.e., £ =S ... 58P 8%,. ...
Then cut(t) =4 Sl(l) .. .S,,“) is called the relevant (or specified) part of ¢;
S, S89, ... is called irrelevant or unspecified. For T € C, cut (T) =4

U cut(n).

teT

Definition For r € T we refer to the length of cut(#) as the relevant length
of ¢.

Example: The relevant length of £ = [a] M o [6]D o [c]D e @T(A) Do @ (A4) Do
. is 2, since cut(?) = [a]V - [b]V, which has length 2.

Next we need operations M and ~ on s-trace-sets in C that we shall use as
semantical counterparts of the syntactical operators & and respectively.

Definition (A on annotated s-sets {S;,#;) and {(S,,i») is given by:

{(S,maX(il,i2)> if S] = SZ =S

Si.ity M (Sy,in) =
Sl M €5, 12) if S, % S,.
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For t = §{8{ . .and ¢’ = §{W8312) | we define:
(A = (S A S e (S A S ).,
For T, T, € C we take:

TIHT2= U tlmtz.
HeTy
HeT,

Remark: 77 (A T, is very similar to the normal intersection 77 N 73; the only dif-
ference is that we have to state what has to be done with the relevance mark-
ings. If we have, apart from annotation, the same s-trace in both 7, and 75, it
is also in 77 A T, where the relevant length is taken to be maximal.

Examples:
[ a1 21w 210 [a1m a2l
" s }”{[b] ]“[b] m[b] '[[b] }
[ [ -
e b e
e ()
3. (el N I[Z}m} =[a]V' N [Z](l) = @, since [a] # [Z]
| el [0 []") <o smee e« | £]
4, H:b] 2! M 5 p = @. Since [c] # a1
eesea G -,y (sma 5]
b S such that b

(el e - ()

Proposition T, T, € Cimplies T1 A T, € C.

+ [e]@

Definition For S € ®*(A4), (S,id~ = (®T(A)\S,iy; ®T(A)\S is the com-
plement of S with respect to ®*(A4), and is occasionally written as S¢. For ¢ =
S{ e85 0 o8 o F= U S e85 0.0 S 0 (@F(A) ).

n<w

ForT=1\J rec:T=\L

teT teT

Proposition T € C implies T € €.
Proposition If T= 7TV o T\ o o T o  Tic®*(A),

T=UTioThe...o T o (@A) D)o,

n<w
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Example:

([a]® o (@ (A) D))~
= [a]D~ o« (T (A) V)¢ U [a]P e D o (PF(A) D)
U [a]® o (PH(A) D) e D o (PH(A) D)
U [a]P e @t (A)D e @A) Do @ o (PT(A)M) U...
= [a]~“’((P+(A)‘°))‘” Ugugugu...
={SD|a g S} (P (A ).

A2 An s-trace semantics of actions In this section we give a semantics for
unconditional actions in Act based upon s-trace-sets. The semantical function
[.1 will vield all possible s-traces that can be executed by an action. We can-
not yet consider conditional actions since this involves the evaluation of an asser-
tion in a state (world) describing the values of all possible predicates. In this stage
we do not yet have states; these will be introduced in Section AS.

Definition -1 € Acty — C is given by:
[al = {Sla€ S}V o (®F(A) D)

[a;; o] = cut(fon]) o [ozds

foy Uos] = [y U Tezls

[op & 0] = Lo A Tzl

fal = Qo1

[21 =25 [U] =@ (4)D - (®*(4) D)~

Remark 1: The action ¢ is interpreted as the collection of s-trace-sets that con-
tain a// infinite s-traces that begin with elementary action «, possibly simulta-
neous with any other elementary action. For {S|a € S} we shall sometimes write

. . . a . . . .
the informal but suggestive notation . This choice is motivated by the in-

formal usage of actions in deontic logic: if an action « is forbidden, then it is
also forbidden to do a fogether with any other action, followed by any other
action. In this case liability to punishment already arises after the doing of a set

. . |a C .
of actions in [ ], which includes the performance of a. So we denote in our

. . a al.
semantics the action g as “[ ] followed by whatever else,” where [ ] is the

relevant or specified part and “whatever else” is the irrelevant part. This choice
will render our formal system easier to use, since it keeps us closer to common
parlance. However, it is, of course, possible to give a simpler semantics of ¢ at
the expense of having more cumbersome deontic assertions, stating explicitly
which actions are to be executed jointly with @ and which actions are followed
by a.

Remark 2: The semantics of the sequential composition of two actions is
obtained by taking the relevant part of the interpretation of the first action
(which is a set of finite s-traces) and concatenating this with the semantics of
the second action. This can be illustrated by an example: For the meaning of
a ; b we use the meanings of ¢ and b:
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b

a | )
[al = [} o (P(A)?)* and [b] = [ ] o (O (A)O)e,

.

Now only the relevant part of [] is important for [a ; b] :

[a; bl = cut(lal)- [2&]
= cut(lic.l:l(l) ° ((p+(A)(0))w) ° |:I.):|(1) 3 ((P+(A)(0))w

N g e

which was to be expected.

Remark 3: In this framework the syntactical operators U, &, and ~ correspond
simply with the semantical operations U, A, and ~. This renders the semantics
compositional and similar to denotational semantics in the realm of program-
ming (see, e.g., [5]).

Remark 4: & means ‘failure’: no s-set is executed anymore.

Remark 5: The whole set-up of the model may seem terribly complicated. The
reason for this is that we want to maintain the axioms of PD.L in their precise
form. For instance, the whole model would be simpler if instead of

) o oez=a1 Y (o ; a3)
we had the axiom
Y ooz =(az; U™) U (o ; @),

where m is the duration (or length) of o, (or rather [«,]). For instance, for
elementary a, b, we would have by (II'):

a;b=(@;U)U(a;b)
instead of by (II):

|

=aVl(a;b).

However the latter formula is crucial when applied to deontic matters. For
instance, O(a ; b) = Oa A [a] Ob is perfectly intuitive and desirable, but it relies
on the fact that

KN
[y

k]

la;blV=1[aVa;blV=I[alVnala;blV,

i.e., liability to punishment (V) should occur already directly after having done
@ and not only after @ ; U which we would get if we would use (Il): [a; b1V =
[@; UUa;blV=I[a; UVAala; b]V. This point is essential for a correct
treatment of deontic assertions.

So [a] gives all possible executions of s-traces for «. However, to define
a semantics for conditional actions and also for a treatment of assertions of
properties of the actions, we need resulting states given execution started in some
initial state op. The introduction of states is discussed in Section A4.
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A3 Algebraical properties of actions From the definition of [ -] we can
easily derive the following equivalences of actions (with respect to [-]):

Dald=qa;
) alUa=a;
(i) o & o = a;
(iv)a&a= and (a; o) & (a; o) = T
W o ;o =a U (o ; &);
(i) oy U oy = &) & aip;
(Vi) o & oz = @1 U ay;
(viii) @ = «;
(ix) a; & (a3 U a3) = (o1 & @3) U () & 3);
(x) ay U (az & a3) = (1 U @3) & (o U 3).

Furthermore if we introduce the notions min dur (o) and max dur (o) (if
min dur (o) = max dur (o) we use the notation dur (a)) by

min dur (o) = min {length(cut(7})))

and

max dur (o) = max (length(cut (7))}

where [7}}); is a partition of [«] such that every s-trace in 7; has the same rele-
vant length and length (cut(T;)) ts the length of the s-traces in cuf(T;), then we
have the additional property

(xi) ay & (03 5 a3) = (a1 & o3); a3,
provided that max dur (a,) < min dur (o3).

This property states that if all relevant parts of «; terminate before one of the
relevant parts of o, does, then if «; is executed jointly with o, ; a3, a3 cannot
be started until «; and «, have been executed jointly, which is very clear, intui-
tively.

The soundness of all equivalences mentioned except (viii) follows directly
from the definitions. Assuming these have been proved, it is easy to prove (viii)
by induction on the complexity of action expression «.

Proof: We distinguish the diverse cases of the form of «:

V) ifa=g, [a] =0al” =] ™) =
(1 ~\ —~
[a] : ° ((P+(A)(O))“’) ) =

(D - e
”] o(@+(A)<°’)“) =<H) (PT (A =

"]“) o (@*(4) M) = [a].
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Q2)ifa=ay;a, [a] =
[a;; o] =
[a; U (o a)] =
(@ & (o ; 2] =
[og & (2 U (o 5 62))]
[op & (@ U (a1 5 )l =
[(o; & @) U () & (a1 5 ax))] =
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(by property (v):)
(by (vi):)

(by induction hypothesis and (v):)

(by induction again:)
(by (ix):)
(by (iv):)

[2 U (a1 & (a5 )] = (by ():)

foy & (a1 5 a2)] = (by (xi):)
[(c; & 1); 2]l = (by (iii):)
[oap; o]l = [al.

B)ifa=a; U, [a] =
[o; Uarll = (by (vi):)
[a; & az] = (by (vi):)
[o; Uasl = (by induction hypothesis:)

[og Uond = [a].
@Difa=a; & ay, [&]] =

lo; & as]l = (by (vii):)
[y Vasl = (by (vi):)
[oq & az]] = (by induction hypothesis:)

loy & ar] = [a].

(5) if « = &7, we remark that
[(a)~] = ([ 17)" " =
([, 177)" =)™ =
;17 = [l

The properties (i) to (xi) will be of use when we consider assertions about
the behaviour of the actions. However, we do not know whether this set of prop-
erties is complete in the sense that it specifies fully the semantical domain of
actions that we have constructed. This issue of completeness remains a topic for
further investigation.

(by induction:)

A4 A state transition semantics of actions In the last section we saw how
we could associate s-trace-sets with (unconditional) actions. Now we want to
speak about the states one can get into when pursuing these possible s-traces to
the ‘end’, that is to say the end of the relevant part. (This consists of finite s-
traces!)

To this end we assume that we have a given function »:®*(A4) » (£ > L),
where L is the universe of states (worlds), assigning values to the propositional
variables. This function gives for each s-set its behaviour in terms of state-
transitions. So 2(S) (o) yields the next state when one performs all elementary
actions in S jointly in state 0. Now we define for a finite s-trace f = S5 ¢...¢ S,
the function ® (¢) € £ — L inductively by

R(S1) (o) = 2(S1)(0)
and
®R(t; 2 1) (o) = R(£)(R(#;)(0)).
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We can extend ®R to s-trace-sets consisting of (only) finite s-traces as usual:
®R(T)(o) = {o’|0’ = R(¢)(0o) for some t € T}.
Using ® we define the desired state transition semantics:

Definition The function [ - J g: Acty— (E— @ (L)) is defined by [a] (o) =
®R(cut([ax1)) (o). This function is extended to Acty —» (®(X) - @ (X)) in the
usual way.

It is now easy to extend [ - ]|  to conditional actions. We extend [-] to
Act > (Z—-> C)and [-] g to Act = (E — L) as follows:

[al (o) = {S|a € S}V o (®F(A4) D)%
Loy ;s ol (o) = cut(o 1 (0)) o Dol (LD (0));
Loy U az] (o) = [ai] (o) U [zl (0);
[o; & az] (0) = D]l (o) M [or] (0);
[a;] (o) ifoEy;
Ly = /el () {[[az]] (0) ifoky;
[&; ] (o) = [o;] " (o) (see Remark 1.);
[<21(c) =C;
[UT (o) = @)D o (P (A4) D)

[allr(o) = R(cut(lal (a))(0);
For r € ®(X) we define:

[alr(r) = U L[alk(a).

oET

Remark 1: Note that to deal with ¥ — «;/a, we need to extend ~ to the con-
ditional case:

(if 8 then T; else T»)~ = if 8 then T, else T5.

Remark 2: Up to now ¢ was assumed to be an ordinary propositional formula.
In the next section we shall extend our language of assertions.

A5 Semantics of assertions and soundness of PD,L For the semantics of
assertions we employ the semantics [ - ] g of actions and define for ¢ € L, ¢,
Y, EAsS o F Y Vs,...,0 F Y as usual, and for « € Act, s €E L, Y € Ass

ok [alo iff Yo' € [alr(o): o’ k¥
and
oE(ayo iff 30’ € [allg(o): o’ k.

Note that it now also becomes possible to allow assertions y € Ass in the
conditional actions ¥ — a; /a5, using the definition of ¥ — o /as.
Finally we define

Ey iff vo€L:oky.

The soundness of (PC) and () with respect to our formal model is obvi-
ous; that of ((01D), (;), (V), (=/), (), and the rules (MP) and (N) is proved as
in standard dynamic logic. The axioms involving ~ follow from the algebraic
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properties of the actions in Section A3. The soundness of (&) is proved as fol-
lows. Take «; and o, such that dur («;) = dur (o«;). Suppose we have that
g t: [a‘]ll/, Le-s

Vo' € [ai;]r(0): o' E Y.

But [o; & as] = [o;] M [yl so [a; & as]l € [a;] and therefore also
[o; & cz]r(0) € [; I g(0). Hence Vo' € [[a; & ay]gr(a): ¢’ E ¥ as well,
i.e.,

ok [a; & as]y.

Consequently o E [a]¢ D [a; & a3]y. Likewise g F [az]y¥ D [ & ]y,
and so o kE [o1]¥ v [a2]¥ D [a; & az]y. This holds for all o, therefore

ok [o]¥ Vv [e2]¥ D [og & az]¥,

so (&) is sound.

The system PDL was shown to be logically complete by, e.g., [17]; i.e.,
it is possible to derive all valid formulas within the system. The natural ques-
tion arises whether PD.L is complete with respect to the semantics we have
defined. Settling this question seems to be more difficult than for PDL, since
the semantics of actions is rather more complicated than that of ‘programs’ in
the case of PDL (although we do not have the difficulty of dealing with the iter-
ative operator *). This issue is still open.

NOTE

1. The notion of duration is treated in Section 6 and the appendix.
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