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Abstract

Direct manipulation has become the preferred interface for controlling graphical ob-

jects. Despite its success, the ad hoc manner with which such interfaces have been

designed and implemented restricts the types of interactive controls. This dissertation

presents a new approach that provides a systematic method for implementing flexible,

combinable interactive controls. This differential approach to graphical interaction

uses constrained optimization to couple user controls to graphical objects in a manner

that permits a variety of controls to be freely combined. The differential approach pro-

vides a new set of abstractions that enable new types of interaction techniques and new

ways of modularizing applications.

The differential approach views graphical object manipulation as an equation solv-

ing problem: Given the desired values for the user specified controls, find a configura-

tion of the graphical objects that meet these constraints. To solve these equations in a

sufficiently general manner, the differential approach controls the motion of the objects

over time. At any instant in time, controls specify desired rates of change that form lin-

ear constraints on the time derivatives of the parameters. An optimization objective

selects a particular value when these constraints do not determine a unique solution.

The differential approach solves these constrained optimization problems to compute

the derivatives of the parameters. An ordinary differential equation solver uses these

rates to compute object motions.

This thesis addresses the issues in using numerical techniques to provide interac-

tive control of graphical objects. Techniques are presented to solve the constrained

optimization problems efficiently and to dynamically define equations in response to

system events. The thesis introduces an architecture, called Snap-Together Mathemat-

ics, that encapsulates these numerical needs. A graphics toolkit, constructed with Snap-

Together Mathematics, provides the features of the differential approach yet hides the

underlying machinery from the applications programmer.

The thesis demonstrates the differential approach by applying it to a variety of in-

teraction problems, including manipulation of 2D and 3D objects, lighting, and camera

control. Demonstrated interaction techniques include novel methods for some specific

interaction tasks. A number of prototype applications, including 3D object construction

and mechanisms sketching, demonstrate the tools and the approach.
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If I lost my mind, would you help me find it?

If I lost my mind, would I have to be reminded?

— Soul Assylum

Spinning
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Chapter 1

and as she stepped from out her shell

and looked around for luck;

“Quack,” said Jerusha,

“I seem to be a duck.”

— Mildred P. Merryman

“Quack!” said Jerusha[Mer50]

Introduction

Ever since computers have had graphical displays and pointing devices, graphical ma-

nipulation has been an important means of communicating between people and com-

puters. Such interfaces couple the behavior of some graphical object to the input de-

vice, continuously tracking its changes with motion. Sketchpad [Sut63], the earliest

interactive graphical application, introduced this style of interface, which has come to

be known as direct manipulation.1 Input and output devices continue to evolve from

Sketchpad’s vector display and light pen. Yet after 30 years of advancements in the

hardware for interfaces, the basic notion of direct graphical manipulation remains the

same.

As computers capable of supporting direct graphical manipulation have become

more common, it has become the dominant interaction method for configuring graphi-

cal objects. However, present approaches to realizing graphical manipulation severely

limit the types of interfaces which can be constructed. They restrict the types of in-

teractive controls that can be provided to users and provide no facilities for combining

these controls.

This thesis considers how the numerical and graphical performance of modern com-

puters can be exploited to create an approach to realizing graphical manipulation that

avoids the limitations of previous approaches. I will introduce a differential approach

to graphical interaction, in which constrained optimization is used to couple the mo-

tion of graphical objects to a user’s controls. To create such an approach to graphical

interaction, we must consider what types of mathematical techniques to employ, what

interaction techniques to build with them, and how to incorporate them into interactive

applications.

1Although the term “direct manipulation” is generally attributed to Ben Schneiderman [Sch83], the

ideas predates his work.
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2 CHAPTER 1. INTRODUCTION

1.1 Implementing Graphical Manipulation

Direct manipulation has become the dominant style of graphical interaction with good

reason: it provides a uniform mode of interaction that resembles interaction with real

objects in the real world. The controls on a graphical object are handles that the user

can grab and drag. As the user drags a handle, the object follows the motion of the

pointing device with continuous motion, providing kinesthetic correspondence.

The success of graphical manipulation leads to a desire to extend its range to a

wider variety of graphical objects, control types, and applications. However, present

approaches to implementing graphical manipulation limit this range. The task of imple-

menting direct manipulation requires mapping from the user’s actions on the handle to

changes in the program’s internal representation of the object and providing feedback

to the user of these changes. To date, the former has been implemented in an ad-hoc

manner. Each new type of handle must be specifically hand-crafted.

Hand-crafting each handle places two significant restrictions on the types of inter-

faces that can be created. First, it restricts the types of handles to those for which the

mapping to object parameters can be determined by the programmer. Second, it re-

stricts how handles can be combined, as any combination must also be hand-crafted.

Because there is no standardized mechanism for defining the mappings between han-

dles and parameters, defining new types of handles can be a difficult task.

To better illustrate these problems, consider a simple example: positioning a line

segment in a drawing program. Even with this simple graphical object, there are many

attributes that the user might want to specify, such as the positions of the endpoints, the

position of the center, the length or the orientation. Ideally, the program should permit

the user to control directly whichever attribute they desired and and mix-and-match

these controls as needed. That is, each attribute should have an associated handle so

that the user can select controls that are most convenient to their task, and a user should

be able to employ multiple, simultaneous controls to more fully specify their intents.

A simple way for a program to represent the line segment is to store its two end-

points. This representation makes it is easy to position an endpoint: simply set a pair of

parameters equal to the position of the mouse. Providing other handles is more difficult.

For example, to permit the user to manipulate the length of the line segment directly

requires the interface implementor to work out a bit of mathematics to compute the

positions of the endpoints from the length. Had a different representation been chosen,

implementing this control would have been easier. For example, if the programmer

had chosen to store the center, orientation and length of the line segment, the set of

attributes that could easily serve as handles would be different.

With the ad-hoc implementation methods, simultaneous controls, either to support

multiple input devices or to express constraints on the object changes, require explicit

hand-crafting of each combination of controls. For example, maintaining the position

of one endpoint of the line segment while the other is dragged can be implemented
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easily if the line is represented by the positions of its endpoints. However, an inter-

action that maintained an endpoint’s position while the center of the line segment is

dragged would require some mathematical work by the interface designer if either of

the representations from the previous paragraph were used.

For an object as simple as the line segment, it might be possible to predict all possi-

ble combinations of controls, or at least a sufficient set of possible combinations. How-

ever, combinatorics makes this impractical with more complicated objects. Similarly,

if we consider simultaneous control of multiple objects, the increased combinatorial

possibilities make explicit coding of all combinations impossible. Controls on mul-

tiple objects, such as relative positions or differences in size, further compound the

problem with more potential handles, more possible combinations, and less possibility

of predicting what the user will need.

Without a general mechanism for defining the mapping from a handle to the ob-

ject’s parameters, it is difficult to define new handles and combinations. As a result, all

combinations of controls must be pre-designed by the program implementor, making

experimentation with combinations of controls difficult, and dynamic combination of

controls by the user impossible.

Even if combinatorics do not make it impossible to switch representations to pro-

vide alternate combinations of controls, other issues limit possible interfaces with the

approach. Often, concerns such as numerical stability, freedom from singularities, and

implementation convenience restrict the representations that can be used for objects.

The tension between these implementation concerns and user needs leads to interfaces

where the users must manipulate non-intuitive, but mathematically convenient, con-

trols, such as B-Spline knot points, or suffer with inferior representations, such as

the singularity-ridden Euler angles used by many systems for storing 3D orientations

[Sho85].

In summary, the ad-hoc methods previously used to implement direct manipulation

have many problems. As shown in the examples of the preceding paragraphs, they

� limit the types of interactive controls that can be provided to users;

� prevent interactive controls from being freely combined as desired;

� restrict the types of representations that programmers can use inside systems to

those that user controls can be conveniently mapped to;

� fail to provide a consistent set of abstractions for defining interaction techniques;

� fail to provide a methodology for defining new controls, making it difficult to

experiment with new ideas;

� prevent the realization of some potentially desirable interface styles.
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Figure 1.1: A 3D scene in which a Luxo lamp is used not only as an object in the scene, but

also for illumination. To create this image, the user must configure the lamp so that the light

falls in the desired location. The techniques of this thesis allow the user to control the lamp by

manipulating the light’s target directly, and have the lamp be adjusted accordingly. The right

image shows an interactive scene composition system, described in Section 9.7, being used in

this manner. (Thanks to Drew Olbrich for the ray tracing.)

This thesis provides a systematic approach to implementing direct graphical manipula-

tion in a way that avoids these problems while keeping the essential benefits of direct

manipulation.

1.1.1 A Systematic Approach to Realizing Graphical Manipulation

Our goal is to have flexible interactive controls that can be freely combined. For some

interfaces, this increased power might be provided directly to users who could mix and

match controls as needed for their problem. However, the extra power also helps users

indirectly by giving interface designers more choices in what they can provide to users.

Some of the benefits of this flexibility are illustrated in the example of Figure 1.1.

Consider an interactive application that allows a user to manipulate desktop objects,

for example to create pictures of office scenes. There are many things a user may want

to do with the lamp, for instance, they might want the light to shine onto a particular

place, place the lamp in a particular position, or orient the lamp a certain way.

Inside the application, the configuration of the lamp might be represented as the

position of the base and the angles of each of the joints, or it might be represented as

the position and orientation of each part of the lamp. The former is preferable because

it maintains the connections between parts of the lamp. Unfortunately, to implement a

handle that permits the user to grab and drag the lightbulb, a programmer must some-

how devise a mechanism to update the joint angles accordingly. The ad-hoc approaches

to realizing graphical manipulation give little help in deriving such mathematics. Be-

cause the effort of deriving the handle’s implementation would most likely be very
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specific to the Luxo lamp, traditional2 direct manipulation systems would most likely

be forced to provide the user with only direct control over the joint angles. While this

is sufficient to configure the lamp, it is not necessarily convenient for tasks like posi-

tioning the light bulb or aiming the light.

This thesis presents a systematic approach for implementing direct graphical ma-

nipulation. A general-purpose mechanism maps between the handles provided to the

user and the parameters of the graphical objects. With such an approach, a user of the

Luxo lamp example could not only manipulate the joint angles, but could also grab any

part of the lamp directly, The programmer did not have to explicitly code the math-

ematics to map the manipulations into parameter changes. In fact, the flexibility in

controls permits definition of other less obvious handles that permit the user to have

direct control over attributes of interest. For example, a user interested in shining the

light onto a particular location could simple grab the target of the lamp (the center of

the spot) and drag it to the desired location. The controls can be freely combined. For

example, a user could position the light’s target and simultaneously specify the lamp’s

position on the table.

A systematic approach to realizing direct manipulation can be based on a general

purpose mechanism for mapping user controls to object parameters. Creation of such

a mechanism requires us to view graphical manipulation as a constrained optimization

problem. To solve this problem in a practical manner, we must treat it differentially, that

is to control how objects change rather than their final targets. This thesis introduces

a differential approach to graphical interaction that begins by taking the view of ma-

nipulation as a mathematical problem. To realize the approach, the thesis will provide

mathematical techniques to solve the problem, implementation techniques to address

pragmatic issues, and a system architecture to use the approach to build applications.

Example interaction techniques will be provided to show the promise of the approach,

and applications will be demonstrated to show its viability.

1.1.2 Classes of Users and Tools

There are different classes of people involved with an interactive graphical application.

As in Myers’ survey [Mye93], we will need to distinguish these into distinct categories.

Myers’ categories are users, interface designers, application programmers, and tool cre-

ators. For the purposes of this thesis, we will lump interface designers and application

programmers together as their tasks are similar: to build the application that the user

will employ in their graphical task with the tools provided by the tool creators. The

application builders will be the users of application development tools, but unless we

2The Luxo lamp is an example of an important special case: an articulated figure. Recently, sev-

eral commercial animation systems, such as SoftImage [Sof93] and Wavefront [Wav94], have included

inverse kinematic techniques to manipulate such objects by positioning end-effector points. These meth-

ods, and their limitations, will be reviewed in Section 2.2.4.
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explicitly refer to the “user of the toolkit,” the term “user” will refer to the “end user”

of the graphical application.

The work of this thesis affects all three groups. While our approach can be em-

ployed to provide conventional interfaces, it may also be used to provide new types of

interfaces for users. It gives the application programmer a new set of abstractions with

which to build interactive systems. Finally, for the toolkit builder, there is a new class

of services that must be provided, but these services can help enhance the modularity of

the tools by: providing a standard interconnection mechanism between objects; allow-

ing the internal representation of the objects to be hidden from applications program-

mers; allowing tools to be provided to the application programmer that allow pieces

to be assembled by combination and composition to form interaction techniques; and

allowing the encapsulation of numerical constraint computations.

One might consider applications where the user is exposed to the mathematics be-

hind their graphical application. For example, the CONDOR system [Kas92] allows

the user to construct mathematical expressions that define the graphical objects. Al-

though such an application can be constructed using the approach of this thesis, this

thesis focuses on applications where the user is insulated from the mathematics, in-

stead directly manipulating graphical objects. In fact, a goal of this thesis is to hide as

much of the mathematics as possible inside the applications development tools so that

only the tool creators need see it.

1.1.3 Graphical Manipulation as Equation Solving

To introduce the differential approach of this thesis, graphical manipulation must be

viewed as a constrained optimization problem. Graphical manipulation deals with how

a user configures a set of graphical objects to achieve some desired goals. For the lamp

example, the set of graphical objects consists of the Luxo lamp, the table top, and the

other objects on the table such as the blocks. I will often use the term model to refer to

the set of objects.

In the class of graphical manipulation tasks considered in this thesis, users manipu-

late objects whose configurations can be stored as a concise set of real-valued parame-

ters, called the object’s state vector. For a given object, there are potentially many sets

of parameters which might equivalently serve as a representation, as demonstrated by

the line segment example. A parameterization is a particular representation of the state

of an object.

Objects usually have many attributes that may be of interest to an observer. Since,

by definition, the state vector fully describes the configuration of the object, the at-

tributes must be determined as functions of these parameters. For this thesis, we re-

strict ourselves to the broad class of object attributes which can be computed by closed-

form, differentiable expressions over the state variables. This class includes many of

the types of models used in interactive computer graphics such as most parametric and
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implicit curve and surface representations, transformation hierarchies, virtual cameras,

and many simple shading models. We will not consider things such as combinatorial

or discrete attributes, such as the number of sides of a polygon, or attributes computed

by recursive or iterated functions such as fractals.

A control is an attribute of an object that can be specified or directly manipulated.

For example, if a system allowed the user to drag the position of the lamp’s lightbulb or

the target location of the light, these attributes of the lamp would be serving as controls.

A constraint is a control for which a fixed value is given, preventing the value of the

attribute from changing. Such controls constrain the behavior of objects by restricting

their motion so that the constraint is not violated. For the purposes of this thesis, the

terms constraint and control are nearly interchangeable: a constraint is a control with

its value fixed, a control is a constraint whose value is being specified dynamically by

the user, e.g. a value constrained to follow the mouse.

A single control generally does not uniquely determine a configuration of the object.

For example, if one endpoint of a line segment is specified, there is still a continuum of

possible configurations for the segment. To combat such under-constrained situations,

it is often desirable to use multiple controls simultaneously. In the cases where there is

only a single input device, dragging manipulation might be combined with constraints

(e.g. controls that are restricted from changing). In a sense, even a single dragging

operation can be thought of as multiple controls if we consider each axis of the pointing

device independently.

It is unreasonable to require the user to employ enough controls to uniquely de-

termine the configuration of the graphical objects. The user simply may not know or

care about some attributes of some objects, or it might be too much work to specify

everything. In such under-constrained cases, the system must somehow choose one of

the possible configurations. Without mind reading, it is impossible to reliably select

the solution that the user most desires. Systems must settle for simply trying to select a

solution that is reasonable. One version of this is the “Principle of Least Astonishment”

[BDFB+87] which suggests the system should try to select the option that will surprise

the user the least.

For an analogy, think of a model as a large machine which has a few knobs for the

user to turn and many gauges whose values the user may be interested in. Suppose

there are a few gauges for which the user desires a particular value. The graphical

manipulation task is to find settings of the knobs such that the gauges reach these desired

values. If each gauge to be specified corresponds directly to a knob, the task is easy,

because each knob can be turned and set independently. However, most gauges will

depend on complicated combinations of the knobs, making it harder to find settings of

the knobs that achieve desired values. In this metaphor, the knobs are the parameters

of the graphical objects, the gauges are attributes of the objects that the user may be

interested in, and the internals of the machine correspond to the functions that compute

the attributes from the parameters. Traditional implementations of direct manipulation
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require the user to control the knobs directly. The methods of this thesis permit the user

to use any of the gauges as controls by automatically adjusting the knobs as needed.

1.1.4 Goals for Graphical Manipulation

Treating interactive control as the specification of values for controls as in the last

section leads to a concise mathematical problem. The user would like to specify some

set of controls, p. The system needs to find some configuration of the state variables,

q, which meets this. Since the controls can be computed as a function of the state

variables, we have

p = f(q): (1:1)

Solving the manipulation problem is, at one level, as straightforward as solving this

equation for q . However, there are many difficult goals which we might want our

solution technique to meet:

1. flexibility in the types of controls, and therefore the functions which compute

them;

2. freedom to combine controls arbitrarily, “mixing-and-matching” them dynami-

cally;

3. keeping the good properties of direct manipulation, e.g. continuous motion, rapid

feedback, tight coupling of the input device to objects on the screen, : : : ; [Sch83]

4. choosing the “best” solution in under-constrained cases, and finding a “reason-

able” answer even if there is no exact solution.

To aid the application implementor, there are several other goals:

5. freedom in picking representations independently of user concerns;

6. a standard procedure for defining new controls that minimizes the amount of

difficult mathematical work in defining a new type of control;

7. a solving mechanism that is general purpose and encapsulatable so that a single

common implementation can serve a number of applications and so that the ap-

plication developers need not worry about the details of the solving mechanisms.

We would like the techniques developed to realize the approach to also:

8. work over a variety of domains;

9. be fast and scale well;

10. require only readily available, easy to code numerical algorithms. Reliance on

sophisticated numerical codes that must be purchased from commercial vendors

or developed by expert numerical analysts would be unacceptable.
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1.1.5 The Problems of Other Approaches

Our goals make solving Equation 1.1 for q impractical for three general reasons:

� in order to have flexibility in the types of controls, non-linear equations may need

to be solved. Such equations are hard to solve;

� in order to have flexibility in the number of controls that are specified, we must

permit under-constrained and over-constrained cases;

� in order to provide the desired direct manipulation interface, object must move

with continuous motion. Therefore, the solver must be fast enough and provide

continuity in the solutions.

In order to provide direct manipulation with general controls by solving Equation 1.1,

we must solve arbitrary systems of non-linear equations fast enough to allow for fre-

quent enough updates to give the user the illusion of continuous motion.

In order to meet goal 1, the equation solver must be able to handle a wide range of

functions, including non-linear equations. Without knowledge about the functions to be

solved, sets of equations are difficult to solve. Not only is good information hard to find

in general, but each combination of equations might also require specific knowledge.

Because of this, [PFTV86, Chapter 9] argues that not only does no reliable, general,

non-linear solver exist, but that one cannot exist.

Without global information about functions and combinations, solving techniques

must rely on local information, effectively searching for solutions. Almost all non-

linear solvers are iterative methods that take an initial guess as to the solution and

repeatedly update the guess until they find a solution. Such a solver can never determine

that there is not a solution: if it fails to find a solution it might simply mean that it has

not searched hard enough. These solvers will be discussed further in Section 2.2.2.

As computers grow faster, it might become practical to consider using a sophis-

ticated non-linear equation solver to provide direct manipulation. However, such an

approach is unlikely to succeed for a number of reasons:

� despite their sophistication, the methods are heuristic and not completely reliable;

� because they are doing searches, it is difficult to predict how long it will take

them to find a solution;

� the solvers may fail to find a solution, but only after spending a long time looking

for it;

� the solvers do not degrade gracefully: it is difficult to limit the amount of time

that they spend because their intermediate states may not be close to the answer;
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When we examine the previous approaches to implementing graphical manipula-

tion, we see that they all fail to meet some of these goals. Previous work will be ex-

plored in more detail in Chapter 2.

Traditional Direct Manipulation – The traditional method for implementing direct

graphical manipulation has been to couple parameters directly to the pointing

device. For example, with the luxo lamp, a conventional direct manipulation

system would allow the user to connect a joint angle to a knob. Some mappings

between the input and the values are possible, for example to convert the linear

motion of a slider to the rotary motion of the joint, but there must be some direct

way of computing the parameter values from the inputs.

Traditional implementations have been the mainstay of direct manipulation inter-

faces. Such interfaces have been very successful, largely due the fact that it meets

goals 3 and 9. However, its limitations have restricted the types of interfaces

that have been constructed. Traditional direct manipulation severely restricts the

types of functions which can be used as controls (goal 1) and it provides no au-

tomatic way to combine controls (goal 2). Parameters must be chosen so that

the controls will map onto them easily (failing goal 5). Because good represen-

tations must be developed for any new controls, and because these closed form

mapping for controls must be found, developing new controls can be difficult

work (violating goal 6).

Parametric Modeling Approaches – Parametric modeling is a variant of the tradi-

tional direct manipulation approach. Such schemes permit end users to create

models with parameter dependencies. These parameters are directly specified.

Parametric approaches permit a clever user to overcome some of the deficiencies

of the traditional direct approach. For example, if the designer of the Luxo lamp

knew the user would want to control the height of the lamp, but not the joint

angles, they might have devised a way of representing the configuration of the

lamp so that height is a parameter, and the joint angles are computed from that.

Parametric approaches suffer from the same failures of direct manipulation, al-

though it does permit a clever user to sometimes have some additional flexibility

in the types of controls.

Traditional Constraint-Based Approaches – A constraint-based interface3 treats

Equation 1.1 by employing an equation solver. Typically, the user specifies val-

ues for various aspects of the model and then the system solves for some value of

the state vector which meets these constraints. We call such a constraint-based

approach a “specify-then-solve” style.

3I use the term constraint-based interface to mean that constraints are an abstraction provided to the

end user of a system, rather than simply as an abstraction used by programmers.
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Although the problem of solving the equations required to meet goals 1 and 2

is difficult, a bigger problem with a specify-then-solve approach is that it fails

to meet goal 3. After the user specifies the constraints, the system solves the

equations and then displays the result to the user. Objects jump to the new con-

figuration, leaving the user to puzzle out what happened. This makes goal 4 even

more difficult. It becomes critical to pick a good solution to avoid confusing the

user. Picking the correct solution is also important because without the rapid

feedback of direct manipulation it can be difficult to explore possible solutions.

A system designer might consider using interpolation to provide the desired con-

tinuous motion in a constraint solving system. After solving for a new configu-

ration a system might make a smooth transition by interpolating between the old

state and the new. However, jumping between configurations cannot be avoiding

by simply interpolating. Unless something enforces the constraints in the inter-

mediate states, the constraints may be broken, leading to potentially undesirable

behavior.

Specialized Constraint-Based Approaches – The primary drawback of the tradi-

tional constraint-based approach is that it violates goal 3, the desire for direct

manipulation. One approach to handling this is to restrict the class of constraints

so that they can be solved faster. The best examples of this are the propagation

constraint solvers, such as DeltaBlue [FBMB90]. In essence, these algorithms

trade-off goals 1 and 2, in order to better meet goal 3. As a side effect, some of

these algorithms provide techniques, such as constraint- hierarchies [BFBW92],

to handle under-constrained cases (goal 4). Unfortunately, propagation solvers

restrict the set of possible controls and the ways controls can be combined in ways

that are unacceptable for graphical manipulation (failing goals 1 and 2). Also, for

each new control, a variety of bi-directional methods must be generated, which

may not be easy for many types of functions (failing goal 6).

The problem of determining configurations that achieve the desired attribute val-

ues is an important problem in robotics and computer animation. Such solving is

referred to as inverse kinematics. The inverse kinematics literature, examined in

Section 2.2.4, includes numerical methods that solve the systems of non-linear

equations. A problems of particular interest to robotics, namely configuring artic-

ulated figures by positioning end-effectors, is particularly well-studied. Highly

developed techniques have been developed and are commonplace enough to be

surveyed in robotics textbooks, such as those by Craig [Cra86] or Paul [Pau81].

The techniques are now appearing in commercial computer animation systems,

such as Softimage [Sof93] and Wavefront [Wav94]. The methods in such sys-

tems are not general: they only permit manipulation of a very specific control

on a very specific class of model (failing goals 1, 5 and 8), and typically provide

only a single control at a time (failing goal 2). The differential approach can be
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viewed as a use of generalized inverse kinematics to create a general approach

to implementing graphical manipulation.

1.2 The Differential Approach

Existing approaches fail to meet the goals for graphical manipulation, demanding the

development of a new approach. An advantage that we have over the developers of pre-

vious approaches is that computer hardware has advanced to the point that the machines

on which graphical applications are run have considerable computational and graphics

performance. Such machines make it possible to do non-trivial numerical calculations

in between each frame of continuous motion animation. This means that it is possible to

perform some numerical constraint calculations and still provide a continuous-motion

direct manipulation interface. This thesis presents such an approach to graphical inter-

action.

Our goals make solving the manipulation problem of Equation 1.1 difficult. Pre-

vious approaches have either restricted the equations, or restricted the desired direct

graphical interaction. In this thesis, I will present an approach which makes a differ-

ent kind of restriction: that we are interested only in direct graphical interaction and

will always demand that objects move with continuous motion, not jump between very

different configurations. The interfaces desired for graphical interaction have this prop-

erty.

Because we are considering cases where objects move continuously, it is sufficient

to control them by controlling how they change over time. By controlling how objects

are changing, rather than controlling their configurations directly, a variant of Equation

1.1 may be solved. Controls specify the attributes’ rates of change and the system

solves for the state variables’ rates of change to make this happen. I call this approach to

graphical interaction based on this control by time derivatives the differential approach.

With the differential approach, at particular instants in time a solver must determine

the time derivatives of the state vector given the time derivatives of the controls. We

refer to this as differential optimization. Solving the differential optimization is a much

more mathematically tractable problem than solving Equation 1.1 directly. This means

that it is possible to provide direct graphical interaction (meeting goal 3), while han-

dling a general class of non-linear functions (meeting goal 1), and allowing these to be

combined in arbitrary ways (goal 2). Methods for solving the differential optimization

problem address the issues of under-constrained and over-determined cases (goal 4).

The differential approach meets the implementation goals as well. By allowing

almost arbitrary non-linear functions to map between controls and parameters, it pro-

vides flexibility in selecting representations of objects independently of how they will

be manipulated (goal 5). The solving methods require little information about the con-

trol functions, in fact, all that is required can be found automatically given the control
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function (goal 6). The mechanisms behind the differential approach are general purpose

and can be encapsulated in a manner that not only hides the underlying mathematical

techniques, but also permits a single implementation to serve as a building block for

almost any type of system requiring graphical manipulation (goals 7 and 8). The tech-

niques to realize the approach perform well enough to work on current machines (goal

9), without resorting to numerical routines beyond those in standard textbooks (goal

10).

1.2.1 Direct Manipulation in the Differential Approach

Digital computers provide the illusion of continuous motion of graphical objects by

repeatedly redrawing the image. The time between these redraws must be sufficiently

small in order for the illusion to be maintained. To support direct manipulation, a

system must sample the position of the mouse and update the positions of the objects

at a rapid rate.

The differential approach breaks the numerical constraint solving problem into two

parts: computing the rates of change of the parameters at particular instants, and com-

puting the trajectory of the parameters over time, given the rates of change at particular

instants. The former problem is the differential optimization problem, and the latter is

solving an ordinary differential equation (ODE). Between each redraw, the ODE must

be solved to update the configurations of the graphical objects. Each of these solver

steps advances the configuration by solving some number of differential optimizations,

each determining the rate of change at some particular instant.

With the differential approach, the graphical objects cannot simply be moved with

the mouse. Instead, each step they move towards a target. Limitations in ODE solving,

discussed in Section 3.3, provide speed limits on how quickly objects can move, so they

may not be able to reach their target in the time provided. If the target is the position of

the mouse, this will cause the object to lag behind its target, gradually catching up as

the mouse slows down. This can make manipulation feel as if the objects are connected

to the input devices by springs, and will be discussed in Section 6.1.2. As computers

grow faster, more computation can be done between each redraw while maintaining

a rate sufficient to provide the illusion of continuous motion. This allows raising the

effective speed limits of the objects, and can reduce the lag.

1.2.2 An Alternate View of Graphical Manipulation

An alternatative view of graphical manipulation is to imagine graphical objects as phys-

ical entities that are manipulated as physical objects in the real world: by pushing and

pulling on them. With such a view, implementing direct manipulation becomes a prob-

lem of implementing an interactive physical simulation. The issues in creating such
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simulations are explored by Witkin et al.[WGW90]. The techniques presented in that

paper form the basis for this thesis.

The differential approach can be viewed as a variant of the physical simulation

approach. The physics of the “world” is modified from that of the real world in order

to facilitate manipulation. Most significantly, inertia is removed by replacing Newton’s

law of motion, f = ma; by its first derivative equivalent, f = mv: An object in motion

is only in motion while it is being acted upon by a force. For manipulation, this has the

advantage that objects remain where they are placed, rather than skidding around.

The mathematical methods used for implementing the differential approach pre-

sented in Chapter 3 are the same as those used for implementing physical simulations.

Many of the numerical methods and implementation techniques in the thesis were orig-

inally conceived for implementing interactive simulations. Presenting the differential

approach as constrained optimization, as done in this thesis, rather than presenting it as

a physical simulation, is largely a matter of taste.

1.3 An Approach to Graphical Interaction

The ultimate goal of this research is to improve the quality of graphical manipulation

interfaces. The central focus of this thesis makes an indirect step towards this goal,

providing a new set of abstractions which provide more flexibility in the type of inter-

action techniques that can be created. This increased flexibility does not necessarily

imply better interfaces — in fact, they give interface designers new ways to baffle and

confuse users. However, there are several reasons to believe that the differential ap-

proach can lead to improved interaction techniques.

The differential approach permits building interfaces which have many desirable

properties. It provides for continuous motion of the graphical objects. It permits in-

terfaces to provide controls to the user which permit directly controlling attributes of

interest. These controls need not directly connect to the parameters. It permits controls

to be combined, either by the user or by interface elements.

The example interaction techniques of Chapter 8 show the promise of the approach.

The examples which recreate prior techniques show that the abstractions provided by

the differential approach are sufficiently rich to create usable interactions. Some of the

newer techniques, such as the through-the-lens camera controls of Section 8.1.4 could

not have been considered with previous approaches to building interfaces. Some of

the examples, like the artificial horizon of Section 8.3.5, are not good interfaces. But

with the differential approach, techniques can be explored without deriving the inverse

mathematics, so it is possible to learn that they are unusable before investing a large

amount of time and effort in their development.

The differential approach provides a new set of abstractions for building graphi-

cal interaction techniques. In the remainder of this section, we briefly introduce the
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Figure 1.2: A schematic representation of a simple graphical object. The object stores a set

of parameters internally in its state vector. However, the outside world accesses the object via

its connectors, providing flexibility and parameter independence.

abstractions, along with the terminology used throughout the thesis.

1.3.1 Graphical Objects and Connectors

For the purposes of this thesis, we are concerned with what are commonly called object-

oriented graphical editors. In such applications, the user deals with finite sets of graph-

ical objects which must be manipulated to create the desired model or drawing.

For the most part, graphical objects are the visible entities that the user manipulates.

However, we will consider structural elements, such as the groups that aggregate ob-

jects or the viewing transforms that map virtual worlds to screen coordinates as objects

as well.

For a graphical object, there are two “sides” which we must consider. On one hand

is what the programmer “sees,” the object’s internal representation. An important part

of this are the parameters that determine the configuration of the object. Each object

stores this set of numbers as its state vector.

To the user, the graphical object should appear as a graphical object. We assume

that the user is interested in the graphical entity, not in the internal data structures used

by the programmer. For any object, there are many attributes that may be of interest to

the user, or to other objects in the program for that matter.

Ideally, we would like to think of a graphical object as a sealed box. Inside is the

programmer’s internal representation, including the state vector. To the outside world,

all that is visible are the many attributes which other parts of the program, or the user,

may want to observe. Our desire to think this way leads us to draw graphical objects

schematically as Figure 1.2. The central notion is that the state is internal to the object

and the object’s “outputs” are its attributes. How the object computes these attributes

is the concern of the object itself, not the outside world.

The state vector of an object fully specifies its configuration. Therefore, any at-

tribute of the object must be a function of these variables. This function must be known,

otherwise it would be impossible to compute the value of the attribute.

A graphical object may know how to compute many attributes. The set of attributes
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of an object is not necessarily fixed — an object may have many attributes, and new

attributes may be created in response to the needs of some other part of the system or

the user. The schematic of Figure 1.2 may be slightly misleading in that it should not

imply that the depicted outputs are a fixed, small set.

We will call the outputs of graphical objects connectors. As the name implies, these

are the sockets into which the outside world will connect to the object. A connector

is an attribute that an object provides for the outside world to access. Throughout this

thesis, the notion of connector will be both a conceptual idea as well as a data structure

that realizes it.

1.3.2 Compound Objects and Dependencies

Many attributes can be computed as functions of other attributes, rather than from inside

the object. For example, if we wish to know the length of a line segment, this attribute

could be computed as a function of the positions of endpoints. Therefore, if the line

segment did not know how to produce its length as a connector, we might create a

special ruler object that looks at the positions of two points and “connect” it to the

endpoint outputs of the line segment.

An important notion in the ruler example is that the ruler object takes as its “inputs”

the “outputs” of another object. The ruler measures the distance between two points,

without concern for what these points are. This is significant for three reasons:

� It means that the objects, such as the line segment, can be extended to have new

behaviors without being internally modified.

� It means that we need only one type of ruler, no matter how many different types

of objects we might be measuring.

� We are not necessarily restricted to points on a single object. Instead we could

measure the distance between two points on two different objects.

Objects like the ruler have inputs that plug in to the output connectors of other

graphical objects. Considering such dependencies leads us to draw schematic diagrams

such as Figure 1.3. The outputs of the connective objects are attributes just like the

outputs of the simpler objects. The distance output of the ruler should be a first-class

citizen, just as the position outputs of the line segments. Like the outputs on simpler

object, the connectors on the ruler object’s outputs are also functions of the state vector,

except that they are potentially functions of the state vector of the entire model (which

we will call the global state vector), rather than just the state vector of a single object.

The function that determines the attribute’s value can be built by composition: first

computing the values of the inputs and then using these values as the inputs to a function

which computes the distance.
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Figure 1.3: Compound objects are composed by plugging objects’ connectors into sockets,

like wiring together a circuit. A standardized protocol allows independence in wiring.

This picture emphasizes an important notion in the thesis: the idea of plugging

objects into the “outputs” of other objects. The facility to dynamically plug and unplug

such connections in response to user actions or other system events is an essential part

of the differential approach, and will figure prominently in the design of the machinery

to realize it.

The key element for creating the vision of snap-together objects in the differential

approach is a standard protocol for the outputs so that anything can be plugged in.

Since the connector outputs are primarily functions, the aggregate connection operation

is function composition: building more complicated functions from simpler pieces.

By supporting this operation in a dynamic environment, the machinery to realize the

differential approach can permit the needed plugging and unplugging.

Compound objects, like the ruler, can come in many forms. Typically, they are used

to compute aggregate properties of many different objects. For example, the distance

between two points, or the relative orientation of two line segments. They may also

be used to compute conversions, for example from degrees to radians. More complex

attributes can also be built this way, for example, we might compute the position of a

shadow as a compound operation that takes the position of a point, the position of a

light source, and the position of the floor as its inputs. Flexibility in building new types

of attribute outputs is a useful feature of the differential approach.
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Figure 1.4: Objects are manipulated by attaching controllers to their connectors. A controller

specifies how the value of a connector should be changing. Controllers can be plugged into

any connector. This diagram represents a model with two line segments that are attached. One

segment has its length constrained, while the other is being dragged.

1.3.3 Control of Graphical Objects

Since the attributes are the only view of an object that the programmer is given, it

follows that these attributes must also serve as the handles by which the object is con-

trolled. The vision of the differential approach is that any attribute output should be

able to serve as a mechanism to control the object, and that these controls should be

able to be freely applied as needed in any desired combination. Thus, any output should

also be able to serve as an input.

Our notion of using an output as an input can be best discussed by introducing

another kind of special object, the controller. A controller is a simple object that plugs

into a connector and specifies what behavior the outside world desires from it. With

this final abstraction, we are led to draw schematics such as Figure 1.4.

With the abstractions in place, we can now examine Figure 1.4 to see the mathemat-

ical constraint problem. We have specified the outputs of the functions that compute
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the attributes being used as controls, and must determine the inputs to these functions

(the value of the state vector) to achieve the desired values.

As discussed in Section 1.2, we cannot solve this constraint problem directly. In-

stead, we will solve it differentially. This means that rather than specifying desired

values for attributes, controllers specify how they should be changing over time. A

controller specifies a rate of change for the attribute it is connected to.

It is important to notice that the controllers cannot instantaneously affect the values

of the connectors they control, nor the state variables of the objects. Instead, they

specify how those connectors are changing, and over time, those changes will take

effect. This implies that there is a continuous flow of time over which the controllers

can act. At discrete instants, the set of active controllers may be altered, but values

cannot be changed.

What a controller can do is quite limited: it can simply specify the desired rate of

change of an attribute. The diversity of interaction techniques comes not from diver-

sity in the types of controllers, but rather, from the way they are applied. Interesting

interaction techniques result from:

� attaching controllers to interesting attributes;

� connecting controllers at interesting times;

� using controllers in interesting combinations.

Interaction techniques are defined by controlling connectors over time. For exam-

ple, to drag a point, the connector that computes the point’s position is connected to a

controller when the mouse button is pressed to initiate the drag, and the controller is re-

moved when the mouse button is released. Similarly, a mechanical connection between

two points is created by using an object which computes the displacement between two

points and creating a controller which drives the displacement to zero.

The differential approach provides a basic set of abstractions from which interfaces

and interaction techniques can be built. The ability to wire together attributes and attach

controllers to them provides machinery that can be applied in a wide variety of manners.

One interface style which is enabled by the differential approach is to provide the

abstractions directly to the user, permitting them to mix and match controls as needed.

For example, in the lamp demonstration, the user would be permitted to grab and drag

many points involving the lamp, including the light’s target, the bulb, and the corners

of the base. Attributes which are not positional, such as joint angles or bulb brightness,

might be connected to sliders. The user could configure the lamp by manipulating any

of these controls, or by constraining their values. Controls are mixed-and-matched

by manipulating or locking their values. This interface style is similar to a traditional

constraint-based interface. Many of the issues which make constraint-based interfaces

difficult to design must be addressed, such as how to present the palette of options to

the user effectively.
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Another way that the differential abstractions may be employed is to build interac-

tion techniques which are more similar to the traditional direct manipulation interfaces.

An example is the 3D translation widget discussed in Section 8.3.6. To the user, the

translation handles appear as they do in other systems which provide them. However,

this interaction technique can be concisely described by defining sets of controllers

during dragging. While the differential approach is merely used to recreate an existing

technique in such cases, it does have some interesting benefits. The differential ap-

proach addresses the difficult question of how to define such interesting behaviors in a

way that is parameter independent, and easy to generalize to other controllers.

1.3.4 Impact on Application Architecture

Just as the differential approach frees the user from worrying about the object repre-

sentations, it can also hide such parameterizations from the programmers of graphi-

cal applications, helping to foster encapsulation. Objects merely expose mathematical

functional outputs for attributes that other pieces of the system may be interested in.

The program manipulates the object by placing constraints and controls on these ports,

and the differential solving mechanism takes care of adjusting the parameters accord-

ingly.

The solving mechanism needs very little information about the functions that are

being constrained and controlled. This means that objects need not expose much infor-

mation about the functions they provide. It also simplifies the composition of functions

from pieces, such as object outputs. This allows creation of a utility which permits

functions to be defined dynamically, for example in response to user actions. The core

functionality of the differential approach, the ability to define functions and place con-

straints and controls on them, can be built in a general purpose manner.

The general protocol for connecting the outputs of objects permits the creation of

general purpose objects, constraints, and interaction techniques. Objects can provide

mathematical ports without regard for what will “plug-in” to these ports. Constraints

and interaction techniques can be defined in terms of types of outputs, without regard for

the objects that are being connected to. For example, we define graphical objects that

produce outputs that are the positions of points, and define constraints and interaction

techniques in terms of point position outputs.

1.4 Thesis Roadmap

This thesis introduces the differential approach, presents techniques to realize it, and

provides examples to illustrate its power and viability. Following this introduction, the

thesis proceeds to review some relevant related work.

Chapter 3 introduces the basic set of mathematical techniques required to realize



1.4. THESIS ROADMAP 21

the differential approach. The methods treat manipulation as equation solving. This

problem is handled differentially to make it feasible to solve. The fundamental com-

putation is solving a constrained optimization problem to compute how the parameters

of objects are changing given the rates of change of the controls. Basic methods for

solving these constrained optimization problems are developed and extended to handle

under- and over- constrained cases. The chapter also considers how to use the computed

rates of change to actually create the motion, a problem of solving ordinary differential

equations from initial values. The chapter concludes with a simple example, worked

through in detail.

In order to use numerical techniques in an interactive system, there are two central

challenges that must be faced. The computations must be made to go fast enough, and

the computations must be defined dynamically in response to the users actions. These

issues are considered in Chapter 4 and Chapter 5 respectively. Chapter 4 considers

methods to achieve the needed performance in such solving. After analyzing the com-

putational bottlenecks of the approach, a variety of methods are presented to enhance

performance. One key element is exploiting the inherent sparsity of systems of equa-

tions to be solved. Other techniques include solving smaller problems while still giving

the user the illusion that the system is solving a larger problem, and trading unneeded

accuracy for speed.

Chapter 5 considers the task of dynamically defining functions in a way that they can

be rapidly evaluated with their derivatives. A tool called Snap-Together Mathematics

that allows functions to be built dynamically from smaller pieces is presented. Snap-

Together Mathematics is an important element of the differential approach because

it provides the software structure for dynamically mixing and matching controls, and

provides a mechanism for encapsulating the mathematics of the approach.

With the basic machinery in place, Chapter 6 considers how the tools are applied

to create interaction techniques. It defines the set of abstractions provided to inter-

face designers by the approach, and describes how the differential notion of time is

different than what is commonly used in interactive-systems programming. The chap-

ter provides some basic examples of how the abstractions are employed, and provides

some extensions to the basic differential techniques to permit such things as inequality

constraints.

Chapter 7 discusses how the differential approach can be encapsulated into a graph-

ics toolkit. The Bramble toolkit was designed to aid in the development of graphical

editing applications with the differential approach. Various elements of the toolkit are

described, with an emphasis on how it supports the differential approach.

Chapter 8 describes interaction techniques built using the abstractions of the differ-

ential approach. It begins by discussing some basic strategies. It then provides concrete

examples of techniques to address various interaction tasks. In addition to several novel

interaction techniques, many previous techniques are recreated, in order to show how

the Differential Approach can be applied to these problems.
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Chapter 9 presents some example applications built with the approach. The appli-

cations serve to demonstrate the viability of the approach and to give some idea of its

promise in constructing tools for users. Chapter 10 concludes the thesis by summariz-

ing the contributions, evaluating the various contents, and suggesting some directions

for future work.

1.5 The Thesis

It is the premise of this thesis that:

� The numerical and graphical performance of modern processors can be applied

to address issues in graphical manipulation.

� A differential approach to graphical interaction provides a systematic implemen-

tation of direct manipulation. This approach allows a system to provide users

with a broad class of interactive controls that can be freely combined, yet pre-

serves direct manipulation, so it does not suffer from the drawbacks of other

previous approaches.

� Mathematical techniques to realize the differential approach can be provided,

and that these techniques can be realized such that the issues of interactive sys-

tems are addressed. In particular, methods permit the computations to be defined

dynamically in response to user actions and to be performed sufficiently fast on

current generation hardware.

� The techniques of the differential approach can be encapsulated, providing a set

of abstractions with which to build interfaces as well as a general purpose imple-

mentation.

� The differential approach can have a positive impact on the way that interaction

techniques are developed and that interactive systems are constructed, by help-

ing separate manipulation from representation and by enabling general purpose

constraints and interaction techniques.

� The differential approach can lead to interesting new interaction techniques and

applications, but can also serve as a substrate for implementing existing popular

interaction techniques.

1.5.1 Contributions

The contributions of this thesis are detailed in the final chapter. Briefly and generally,

the contributions of this thesis are (in the order they will be presented in the thesis):
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� To introduce a systematic approach to graphical interaction based on the use of

numerical non-linear constraint techniques, which I call the differential approach.

� To present mathematical techniques for solving the particular constrained opti-

mization problems encountered in using the differential approach.

� To provide techniques to implement these mathematical techniques that address

the pragmatic needs of interactive systems.

� To provide a toolkit that encapsulates the differential approach, providing its fea-

tures to application developers while shielding them from the details of its im-

plementation.

� To provide new interaction techniques and examples to address problems faced

by users of interactive graphical applications, and to show how these techniques

fit in the context of graphical applications.

� To provide example applications demonstrating the viability of the approach.
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Chapter 2

I think the past is behind us. Real confusing if it was not,

but anyway.

— Blues Traveler

But Anyway

Related Work

The differential approach uses constraint techniques to realize graphical manipulation.

Like other uses of constraints in computer graphics, the differential approach must ad-

dress a number of challenges in applying, solving, and implementing constraints. This

chapter looks at previous work on applications of constraints and constraint solving

technologies. It then looks at previous work on the creation of toolkits for the con-

struction of graphical applications, as the differential approach will be used to create

such a toolkit in Chapter 7. Finally, previous work on particular 3D interaction prob-

lems used as examples Chapter 8 will be examined.

Both the basic idea of graphical manipulation, and the use of constraints to enhance

it, date back to Ivan Sutherland’s Sketchpad system [Sut63]. Englebart pioneered the

more general use of a graphical pointing device in computer interfaces, as chronicled in

[Eng86]. The style of interaction in which a pointing device controls a graphical object

in a tight coupling is commonly referred to as direct manipulation, a term generally

attributed to Ben Schneiderman [Sch83]. His classification of interfaces in terms of the

user experience led to later attempts to better define it [WR87], and even to arguments

as to why such categorizations are not helpful [WG87].

2.1 Uses of Constraints in Graphical Applications

Constraints have been used in graphical applications in many ways. Some systems

provide constraint-based interfaces, that is, the users of the system are presented with

constraints to use in completing their tasks. Constraint techniques have also been used

to aid the programmer of graphical applications, by providing them with a tool to use in

the construction of their systems. The two uses of constraints are orthogonal: it is com-

mon to write an application with a constraint-based interface using conventional tools,

and to use constraint-based tools to write applications with conventional interfaces.

25
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2.1.1 Constraint-Based Graphical Interfaces

The central idea of a constraint-based graphical interface is that the user is able to make

persistent constraints: declarations that the system maintains after they are specified.

The canonical example application of a constraint-based graphical interface is drawing.

In a constraint-based drawing program, the user specifies relationships among parts

of the drawing as persistent constraints that the system maintains during subsequent

editing. For example, a user can attach an arrow to an object, and the position of the

arrow is altered as the object is moved.

Sketchpad pioneered direct manipulation permitting users to directly manipulate

graphical objects by dragging them with the light pen. It also introduced constraint

methods, permitting users to specify relationships between parts, for example that two

lines should be parallel. Sketchpad would “relax” the drawing until the constraints were

satisfied, and continue to maintain the constraints during subsequent manipulations.

Since this ground-breaking application, graphical manipulation has been continu-

ally refined and has become standard. Constraints have not been as successful. Const-

raint-based approaches to drawing have been limited by difficulty in creating con-

straints, solving them, and displaying them to users. These interface issues, coupled

with implementation complexity and performance problems, have prevented the wide-

spread acceptance of constraint-based systems.

There have been examples of research systems for constraint based drawing such

as Juno [Nel85], IDEAL [VW82], HILS [Whi88], CoDraw [Gro89], PictureEditor

[KNK89], HotDraw [FB93], and Magrite [Gos83]. A very different use of constraints

is shown in the PED picture beautifier [PW85] that automatically places constraints on

a rough drawing and solves them to clean up the drawing. Another use of constraints

is in the Visio [Sha93] diagramming program which permits defining object semantics

with equations with a spreadsheet interface.

Recent developments such as constraint inferencing, more widely available solving

technology, and the faster computers capable of solving constraints at interactive rates

have renewed interest in constraint-based drawing. Systems such as Chimera [Kur93],

Grace [Alp93], IntelliDraw [Ald92], Rockit [KLW92], DesignView [Com92], Con-

verge [Sis91] and my own Briar (Section 9.1) all use constraint inferencing to couple

constraints and direct manipulation.

Constraint techniques have also been applied in 3D systems. Although Sketchpad

III [Joh63], the first interactive 3D application, did not have constraints, they are sug-

gested as a requirement for future systems. The Variational Geometry systems of Lin,

Gossard and Light [LGL81] renewed interest in the use of constraint techniques for

designing 3D objects. Bruderlin [Bru86] and Rossignac [Ros86] presented constraint-

based solid modelers. Constraint-based solid modelers that use direct manipulation

input are presented by Sohrt and Bruderlin [SB91] and by Fa et al [FFD93]. David

Pugh’s Viking system [Pug92], uses constraints to maintain geometrical relationships
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defined by sketching. Converge [Sis91] models 2D and 3D objects with constraints.

Constraint methods have been applied to surface modeling, allowing users to ma-

nipulate surfaces without seeing the underlying representations. Fowler [Fow92] and

Welch, Gleicher and Witkin [WGW91] present simple constraint methods for control-

ling points on B-Spline surfaces. Celniker [CG91] describes methods that optimize a

shape interactively, which are extended in [CW92] to a broader class of constraints.

Welch and Witkin [WW92] extend this work to a wider variety of constraints that per-

mit the user to stitch together pieces of surfaces.

The “energy constraints” work of Witkin et al.[WFB87] introduces the idea of mod-

elling using arbitrary functions of objects as controls. Barzel [Bar92c] discusses the

philosophical attractiveness of using physical constraints for modelling.

Specialized interactive graphics systems use constraints to help users manipulate

complex objects. Mark Surles’ SCULPT system [Sur92a, Sur92c, Sur92b] permits

the interactive manipulation of molecules. The Jack system [PB88a] uses constraint

methods to interactively position a human figure. In [PB91], the authors extend Jack

with more complicated constraints on human figures.

The differential approach and the tools created to implement it were heavily mo-

tivated by the desire to build constraint-based applications and to study the issues in-

volved. Seeing 30 year old films of Sketchpad inspired the desire to understand how

these techniques might apply in modern systems. The energy constraints work was also

particularly inspiring because it demonstrated the utility of a wide range of controls, a

central theme in the differential approach. Of the systems discussed, Briar, Converge

and Chimera best typify the applications motivating the differential approach.

2.1.2 Constraint-Based Tools for Building Graphical Applications

Tools for building graphical applications have employed constraints to ease the con-

struction process, for example, by automatically maintaining consistency multiple rep-

resentations of data or between views and data. The use of constraint methods to sim-

plify the construction of graphical applications was pioneered by Borning’s ThingLab

system [Bor81]. The early successors to Thinglab for constructing interfaces using

constraints are surveyed in [BD86]. Barth’s GROW toolkit [Bar86] was another early

use of constraints to help the programmer lay out the various elements of the interface.

The common use of constraint methods for maintaining consistency of data can

trace its origins to non-constraint-based methods. The Smalltalk Model-View-Con-

troller model [KP88] for direct manipulation implementation provided the influence for

many other systems, despite its late appearance in the published literature. The model

uses separate objects to handle input and output for application objects. A critical piece

to implement the model is a mechanism for dependencies: objects must be notified of

changes to other objects, for example to update the display when appropriate. The

dependency mechanism is a simple form of constraints known as one-way because the
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data only flows one way in the constraint. Distinctions among types of constraints will

be explained in the next section.

More sophisticated algorithms for creating one-way constraints were introduced

later, and lead to more general dependency mechanisms for interface toolkits. For

example, Hudson’s incremental attribute evaluation [Hud91] was used to create the

Apogee toolkit [HH88]. Similar one-way mechanisms were used in other toolkits such

as Coral [SM88], MEL [Hil91], and Garnet [MGD+90].

Despite the simplicity and limited expressibility of one-way constraints, they are

an extremely useful feature in interface toolkits. They are sufficient to update views

when data changes, keep dependant data consistent, and help designers lay out inter-

faces. Simple solvers are extremely popular because efficient and simple mechanisms

for creating them have been widely available. As developments in solvers make more

powerful techniques practical, newer toolkits explore their advantages. Examples in-

clude Rendezvous [HBP+93], ThingLab II [Mal91], VB2 [GBT93], and Multi-Garnet

[SB92]. Rendezvous even permits creating constraints across multiple displays, main-

taining consistency between multiple users of a shared application.

The existing constraint-based tools for developing graphical interfaces are inade-

quate for constructing the constraint-based applications and examining the interface

questions I wanted to study. The lack of support for numerical constraints in existing

tools provided a niche to be filled with the work of this thesis. It is important to explore

whether numerical constraint methods could be encapsulated and provided in a toolkit.

2.2 Constraint Solving Technologies

The wide array of uses of constraint techniques has led to the creation of an even larger

selection of constraint solving technologies. Here, we provide a brief survey. Most

systems have only used a single solving technique. Other systems, including the early

Sketchpad [Sut63] and ThingLab [Bor81], used hybrids where multiple solvers were

used to solve different parts of problems.

2.2.1 Propagation and Symbolic Methods

The simplest constraint methods allow the specification of dependencies among ele-

ments of the data. Some mechanism is provided in order to make sure that dependent

values are updated appropriately. These mechanisms can operate either by replacing ac-

cesses with function calls to recompute the data, or by having changed data notify their

dependents. This latter approach is known as local propagation because new results

first propagate to elements closely connected (i.e. local) in the dependency graph. De-

pendency schemes are called one-way because information flows only one way across

the dependencies. Despite their simplicity, one-way local propagation techniques are
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extremely popular because they are easy to implement efficiently and because they can

provide some important needs in user interface software, Efficient methods for handling

one-way constraints by minimizing the number of evaluations are discussed by Hudson

[Hud91], and extensions to one-way constraints for indirectly referencing variables are

provided by Vander Zanden et al.[VZMGS91, VZMGS94].

One way constraints describe dependencies on data. For example, consider the

constraint C=A+B. A one-way constraint would declare that C depends on A and B,

and when either A or B changes, C is updated accordingly. Multi-way constraints per-

mit the dependency to be determined based on the data, allowing C to be computed

when A and B are provided, or B to be computed when A and C are provided. Conse-

quently, multi-way solvers are more complex than one-way solver, which has hindered

their acceptance. Sophisticated multi-way local propagation solvers such as DeltaBlue

[FBMB90], SkyBlue [San94], and the methods of Vander Zanden [VZ88, VZ89], are

now becoming more readily available. Sannella et al [SMFBB93] argue that they are

as efficient as the simpler one-way solvers.

Local propagation solvers can be optimized by making them incremental, so that

only the elements affected by changes are recomputed. Efficient algorithms that recom-

pute minimal numbers of dependencies include the DeltaBlue solver [FBMB90] and its

successors such as SkyBlue [San94]. These solvers also have the interesting property

that they are hierarchical [BFBW92]: they permit declaring certain constraints to be

more important than others. The more important constraints are solved first, and less

important constraints are used only when more important constraints leave unspecified

degrees of freedom.

The popularity of local propagation solvers owes to their utility, their efficiency,

and the fact that arbitrary functions can be computed in the dependencies. However,

even the most sophisticated local propagation solvers have an important limitation: the

methods are local. Propagation constraints solve systems of constraints by treating the

constraints one at a time. Therefore, they can solve only sets of constraints for which

there is an ordering such that constraints depend only on previous results. In graph

terminology, propagation constraints can solve only systems that do not have cycles

in their dependency graphs; in terms of equations, local propagation solvers can only

solve triangular systems. Sophisticated local propagation solvers, such as SkyBlue

[San94] can detect when their methods are insufficient, but cannot solve simultaneous

equations.

For geometric problems, local propagation is insufficient. For example, it is unable

to handle a pair of constraints that specify that a point is equidistant from two other

points. This requires solving two constraints simultaneously. Solving two constraints

simultaneously is the backbone of geometric constructions, as it permits intersecting

figures as done in compass and straight-edge constructions. Compass and straight-

edge constructions need only to handle pairs of constraints simultaneously as only two

objects are ever intersected. However, these objects may depend on the results that are
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propagated from previous computations.

Solving pairs of constraints simultaneously, for example to permit compass and

straight-edge constructions, is an important special case that has been added to some

propagation systems. Ruler and compass construction systems allow the user to explic-

itly order dependencies on constructions. Examples include Noma’s system [NKK+88],

LEGO [FP88], DoNALD [Ben89], and GIPS [CFV88]. More sophisticated systems

have solvers that automatically plan the propagation paths. An example is the 2-forest

propagation solver used in PictureEditor [KNK89]. Even more sophisticated solvers

use rule-based systems to find sets of constraints that must be solved simultaneously

and build propagation plans that use special case solutions for the simultaneous cases.

Examples include Glenn Kramer’s TLA solver [Kra90] and Aldefeld’s system [Ald88].

Augmented term rewriting, introduced in Bertrand [Lel88] and also used in Siri [Hor91,

Hor92], generalizes and formalizes the rule based propagation approach.

The inadequacy of propagation methods was a motivation for the differential ap-

proach. The success of the methods showed that constraints could be a useful tool in

interactive systems. However, to achieve the desired flexibility of types controls and

simultaneous combinations, a new approach to using numerical constraints would be

needed.

2.2.2 Numerical Constraint Solving Techniques

Solving systems of linear equations for real numbers is a very well studied problem.

Methods must address a wide variety of issues, including precision, stability, robust-

ness, and efficiency. An excellent introduction to the field is provided in the text by

Golub and van Loan [GL89]. Solving systems of non-linear constraints is much more

difficult. In fact, for an argument that no general guaranteed method can exist, see

Chapter 9 of Press et al.[PFTV86]. Generally, non-linear methods are designed for op-

timization, rather than equation solving1. Good, general tutorials on optimization meth-

ods are given by the texts by Fletcher [Fle87] and Gill, Murray and Wright [GMW81].

Some numerical methods operate like propagation methods in that they operate

only on one constraint at a time. One example is relaxation which successively solves

each constraint. Relaxation has been used in several early constraint-based graphical

systems including ThingLab [Bor81] and Sketchpad [Sut63]. With relaxation, solving

a constraint may break previously solved ones. The process iterates over all the con-

straints until a solution is found, or the solver gives up. Other methods that treat con-

straints individually include gradient (steepest) descent and penalty methods, surveyed

by Platt [Pla92]. These simple methods do not work reliably for constraint problems

and offer slow convergence even on problems that they do solve. The poor performance

1Chapter 9 of Press et al.[PFTV86] explains why the two problems are not equivalent, and argues

why optimization is a more tractable problem.
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of these simple solvers has discouraged many people from using numerical constraint

methods for interactive graphics.

An important class of equation solving and non-linear optimization techniques op-

erate by solving a sequence of linear systems. These iterative methods take a sequence

of steps (hopefully) converging on a solution. At each iteration, a linear system is

solved to determine what step should be taken. Numerical analysis texts, such as

[PFTV86], introduce the basic varieties of these methods. The best known are Newton-

Raphson methods, which have been used in a number of constraint-based graphics sys-

tems including Juno [Nel85] and Converge [Sis91].

Methods that use linear system solving are susceptible to problems when the con-

straints are redundant, inconsistent, or ill-conditioned. A standard method to cope with

these problems is the technique known as regularization or damping. The technique

will be discussed in Section 3.2.1, but briefly, it alters the linear system by limiting

how much any particular equation can contribute to the solution. The method is the ba-

sis for the Levenberg-Marquardt method for solving non-linear equations [GMW81]. It

has also been applied to the animation of articulated figures by Maciejewski [Mac90],

and to the related problem of robotic control by Wampler [Wam86]. Damping methods

are equivalent to the robust pseudo-inverse techniques of Nakamura [Nak91].

The “snakes” work of Kass et al.[KWT88] used numerical optimization to per-

form computer vision tasks. This work pioneered the use of optimization in interactive

graphical applications. The system permitted a user to directly manipulate curves by

resolving the optimization between each redraw. User interaction is created by includ-

ing the user’s input as part of the optimization objective, a technique that will be used

in Section 3.5.

It is possible to view the methods of this thesis as a form of non-linear constrained

optimization solving in which each iteration is displayed to the user. Unlike most

solvers, the methods are more tuned towards generating smooth trajectories towards

the goals, rather than getting to the goals as quickly as possible. Because the user can

interact with the optimization process, a system can be interactively guided out of local

minima. Mark Surles used a similar approach in his SCULPT system [Sur92a, Sur92c].

He used a different alternate Lagrange multiplier formulation than the one presented in

Section 3.2.

2.2.3 Physical Simulation

The computer graphics community is becoming increasingly interested in using tech-

niques of physical simulation for animation and modelling. Physically-based mod-

elling and animation typically provide constraints in order to mimic the mechanical

and structural relationships found in the real world.

A simple method for implementing physical constraints is by using springs to at-

tach things together. This is called the penalty method because broken constraints are
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penalized to pull them back to a solved state. To model more rigid constraints, the stiff-

ness of the springs must be increased, making the equations of motion harder to solve

numerically. The penalty method and its problems are reviewed by Platt [Pla92].

Lagrangian dynamics provides a constraint method that derives new equations of

motion for constrained objects. A standard text used to introduce the methods is Gold-

stein [Gol80]. The methods effectively permit switching to a representation where the

constraints are implicit. Unfortunately, the methods are impossible to automate for gen-

eral cases as they require the ability to find algebraic solutions to systems of non-linear

equations.

A method more applicable to computer graphics is the Lagrange multiplier method.

In this method, constraints create reaction forces that cancel out any applied forces

that would cause the constraints to be broken. The constraint forces are computed

by solving a system of linear equations. Constraint stabilization methods, introduced

by Baumgarte [Bau72], also use the constraint forces to inhibit the accumulation of

numerical error due to drift.

Methods derived from constraint stabilization have been used by the computer

graphics community to find initial solutions to constraints as well as to simulate their

behavior. Barzel and Barr’s dynamic constraints [BB88] use the stabilization forces to

cause models to self assemble from various configurations. Platt and Barr’s augmented

Lagrangian constraints for flexible surfaces [PB88b] also used constraint stabilization,

but attempted to avoid solving the linear system for the Lagrange multipliers by esti-

mating them from previous values. In a later paper [Pla92], Platt explains why this was

a bad idea, and provides a more standard Lagrange multiplier derivation of dynamic

constraints.

Issues in using the Lagrange multiplier and constraint stabilization methods in in-

teractive systems were discussed by Witkin, Gleicher and Welch [WGW90]. The sys-

tem of Witkin and Welch [WW90] used the basic methods of [WGW90] to provide an

interactive system for animating deformable objects. These techniques evolved into

the differential methods of this thesis, first presented in [GW91a] and [GW92]. For

the methods described here, constraint stabilization is accomplished by choosing con-

trollers that continually “go towards” a value, rather than simply attempt to maintain a

constant value by creating a 0 derivative. This will be described in Section 6.3.

The animation system of Witkin and Welch [WW90] provided a number of inno-

vations that influenced the differential approach. The system permitted specification

of objects’ mass distributions in order to control an object’s default behavior, an idea

generalized into the use of metric definition in Section 3.4.1. The system also presented

a predecessor to the controllers of the differential approach. The paper describes a vo-

cabulary of controllers used to describe animation by specifying forces and impulses

on objects over time.

Non-interpenetration or collision constraints are a special type of physical con-

straint. They differ from other mechanical connections in that they are represented



2.2. CONSTRAINT SOLVING TECHNOLOGIES 33

by inequality rather than equality equations. Methods for simulating collisions were

first provided by Moore and Wilhelms [MW88] and Hahn [Hah88]. David Baraff

has treated the physical simulation of collisions extensively [Bar92a], first introducing

methods that properly handle collision and contact of polyhedral objects [Bar89], and

then extending this result to curved surfaces [Bar90], surfaces with friction [Bar91a],

and deformable surfaces [BW92]. Gascuel [Gas93] provides collision constraints for

other types of deformable objects.

As discussed in Section 1.2.2, the differential approach of this thesis is a descendent

of previous work in physical simulation, discussed in [WGW90]. The differential ap-

proach can be viewed as a form of physical simulation where the world has a different

set of laws than the real world. Rather than follow Newton’s f = ma laws of motion,

objects obey Aristotle’s f = mv: Objects move only when pushed, rather than having

inertia.

2.2.4 Inverse Kinematics and Dynamics

The problem of determining the configuration of parameters required to achieve de-

sired values of object attributes is called inverse kinematics. The inverse kinematics

problem is important to robotics as it is used to compute configurations of robots actua-

tors required to achieve needed end-effector positions. The problem is, therefore, well

studied, especially for the special case of most interest in robotics: articulated figures.

An articulated figure is an object made of rigid links connected by joints.

Basic robotics texts, such as those by Craig [Cra86] or Paul [Pau81] present meth-

ods for solving inverse kinematic problems for articulated figures. Craig splits solution

strategies into two broad classes, closed form solutions and numerical solutions. His

text, like many others, dismisses numerical solutions “because of their iterative nature,

numerical solutions generally are much slower than the corresponding closed form so-

lution; in fact, so much so that for most uses we are not concerned with the numerical

approach.”

Inverse Kinematics techniques are becoming well known within the computer

graphics community. Commercial systems, such as Softimage [Sof93] and Wavefront

[Wav94] now permit users to manipulate articulated figures by positioning their end ef-

fectors. Badler and et al.[BMW87] describe extensions to standard inverse kinematics

that permit positioning articulated figures by placing multiple constraints on them. Wel-

man [Wel93] surveys inverse kinematics methods and discusses how to interactively

position articulated figures using them.

More general methods for inverse kinematics use iterative numerical algorithms

to solve the non-linear equations. Nakamura presents such an approach in his text

[Nak91]. Nakamura’s techniques are very similar to those of the differential approach,

including his use of damping to handle singular systems.

Inverse dynamics, or robot control, is a related problem to inverse kinematics.
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Rather than solving for configurations, the methods determine forces and torques re-

quired to achieve desired effects. Inverse dynamics has been explored for use in com-

puter animation. Armstrong et al.[AGL87] and Wilhelms [Wil87] present systems that

use inverse dynamics to aid in the animation of articulated figures. Issacs and Cohen’s

DYNAMO system [IC87] combines inverse dynamics with kinematics using a general

formulation that can handle objects other than articulated figures.

2.2.5 Numerical Methods for Interactive Graphics

As will be further discussed in Chapters 4 and 5, there are several issues in employing

numerical techniques in interactive systems. The two main ones are fast solving and

dynamic definition of the problems.

One issue in employing numerical computations in interactive systems is that the

derivatives of the functions representing constraints must be computed. While there are

several methods for computing derivatives, such as symbolically creating the equations

or estimating the values with finite differences, the methods of Automatic Differentia-

tion have been shown by [Gri89] to be at least as efficient and accurate. An introduction

to Automatic Differentiation provided by Iri [Iri91], and a survey of tools is provided

by Juedes [Jue91].

Research in Automatic Differentiation focusses on the development of compile time

tools for large problems [BGK93]. For computer graphics, Automatic Differentiation

techniques were developed to operate on expression graphs explicitly represented in

program data structures, as will be discussed in Chapter 5. These methods permit the

functions being differentiated to be dynamically defined. An implementation of the

techniques was employed in the system built for Spacetime Constraints [WK88]. A

later system using the methods is Kass’ CONDOR [Kas92] which permitted the user

to interactively specify constrained optimization problems by direct manipulation of

expression graphs.

My implementation of Automatic Differentiation, called Snap-Together Mathemat-

ics, encapsulated the methods into an application independent toolkit and is discussed

in Chapter 5. The first version of Snap-Together Mathematics was introduced as part

of work on interactive physical simulation [WGW90]. The first C++ toolkit for Snap-

Together Mathematics was detailed in [GW91b]. Based on this paper, Kaufman repro-

duced the system [Kau91]. A variant of the original Snap-Together Mathematics was

used inside of the Briar drawing program (Section 9.1), and evolved into the current

implementation introduced in [GW93] and described in Chapter 5.

The critical performance issue in most numerical constraint methods is solving a

linear system, as discussed in Chapter 4. Exploiting sparsity, the fact that a matrix

contains many 0 elements, is a standard technique for speeding the solution of linear

systems. The text by Duff et al.[DER86] provides an introduction to the techniques.

For the differential approach, the direct methods, like those discussed Duff et al, are
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less appropriate than iterative methods. Detailed discussions of iterative methods, and

specifically the Conjugate-Gradient methods used in this thesis, are provided by [PS82]

and [She94].

Steven Sistare’s thesis describing Converge [Sis90] provides an analysis of the

performance issues in using numerical techniques in an interactive drawing system,

and includes methods for dynamically selecting linear system solvers and partition-

ing the constraint problems. Mark Surles’ work on interactive manipulation of protein

molecules extensively treated the performance issues in solving the linear systems in-

volved in solving the optimization problems [Sur92b, Sur92c]. Because his task was

to manipulate predefined models that had a very specific structure, his methods do ex-

tensive pre-analysis. The structure of the matrix found in chemistry problems permits

solutions with linear time complexity.

2.3 Graphics Toolkits

For a variety of reasons, constructing interactive applications is an extremely difficult

task [Mye94]. In order to aid with this process, a variety of tools, surveyed in [Mye93],

have been developed. The most often used are graphical interface toolkits.

Basic graphics toolkits, such as GL [Sil91], PHIGS [Com88], and X [SG86], pro-

vide drawing primitives and basic elements for interaction, such as events and windows.

Graphical interface toolkits support graphical applications by providing high level sup-

port for interaction techniques and graphical object management, aiming to insulate the

programmer from low level details such as window management as much as possible.

Such toolkits have become a part of the construction of almost all graphical applica-

tions. However, most toolkits leave the majority of the work of graphical editing to the

applications programmer.

Some research tools, such as ArtKit [HHN90], Garnet [MGD+90] and Coral [SM88]

provide support for graphical editing in addition to the more typical buttons and sliders.

Tools specifically designed to support 2D graphical editors include Unidraw [VL89],

ArtKit [HHN90], MEL [Hil91] and GRANDMA [Rub91]. Rendezvous [HBP+93] is

specifically designed for creating multi-user graphical editing applications. All of these

tools provide mechanisms for creating direct manipulation operations.

More recently, toolkits have been developed to support 3D graphical applications

at a higher level than low level graphics packages such as GL or PHIGS. Such toolkits

are almost always object oriented, and provide high level abstractions of interaction

techniques. Examples of such toolkits include MR [SLGS92], Inventor [SC92], UGA

[CSH+92], BAGS [ZCW+91], Alice [PT94], VB2 [GBT93], and GROOP [KW93].

Many of the toolkits mentioned contain support for advanced interface techniques,

such as ArtKit’s snapping, GRANDMA’s gesture recognition, or Inventor’s 3D ma-

nipulators. However, no previous high-level toolkits provide non-linear constraints or
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interaction techniques for both 2D and 3D applications. Similarly, many user interface

toolkits use constraint techniques to help programmers build interactive applications,

as discussed in Section 2.1.2. In all cases, constraint methods are limited to propaga-

tion, and the focus is on abstractions to help programmers, not necessarily to provide

constraints to the users.

Providing an embedded interpreter in an interactive application is not an uncom-

mon technique. The utility of such extension languages is discussed in [BG88], which

describes the success of the EMACS editor. Graphics toolkits which center around

such interpreters include Tk [Ous91], MR [SLGS92], Alice [PT94], UGA [CSH+92],

and ezd [Bar91b].

Previous toolkits have attempted to aid in the development of interaction tech-

niques, and their incorporation into systems. For example, Garnet provides a basic set

of interactors [Mye90] from which more complex behaviors can be constructed. UGA

[CSH+92] and Alice [PT94] allow prototyping 3D interaction techniques procedurally.

GITS [OA90] defines interaction techniques with constraints; however it is limited to

the design of 2D widgets and it precompiles constraint solutions. In [ZHR+93], inter-

action techniques are interactively linked together in a constraint-like fashion to build

more complex 3D widgets.

2.4 Interaction Techniques and Applications

Development of 3D interaction techniques was a major motivation for the differential

approach and is the source of most of the examples in the thesis.

2.4.1 Manipulating 3D Objects

Sketchpad’s 3D successor, Sketchpad III [Joh63], introduced graphical manipulation

of 3D objects and first faced the issues of manipulating 3D objects with 2D pointing

devices. Since then, many researchers have explored the issues. Catalogs of interac-

tion methods are provided by Evans et al.[ETW81], Nielson and Olsen [NO86] and

Osborn and Agogino [OA92]. The problem of specifying a 3D rotation using a mouse

has received close attention, such as the work of Chen et al.[CMS88] and Shoemake

[Sho92]. Techniques which rotate and translate objects using references to other points

of interest in the scene are explored by Bier [Bie86] and [Bie90]. Methods based on

interactions between pairs of objects are provided by [Ven93].

In order to make interfaces easier to learn and use, designers explore how to make

them self-revealing. Houde [Hou92] considers iconic handles and movements based

on the objects’ meanings. 3D Widgets [CSH+92] use graphical objects which disclose

potential behavior in the same view as the objects they manipulate. The authors have

subsequently built an interactive tool for rapidly prototyping these widgets [ZHR+93].
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Inventor [SC92] is a popular toolkit for constructing 3D applications that employ a

widget style interface.

2.4.2 Controlling Virtual Cameras

The problem of specifying a viewing transformation or virtual camera configuration

is an important problem for 3D graphics. This work deserves mention here not only

because it is a problem to which the differential approach will be applied to yield inter-

esting results (Section 8.1.4), but also because the work typifies the general problems

that the differential approach is designed to address.

Most camera formulations are built on a common underlying model for perspective

projection under which any 3-D view is fully specified by giving the center of projec-

tion, the view plane, and the clipping volume. Within this framework, camera models

differ in the way the view specification is parameterized. These parameterizations are

typically designed to provide controls that are useful for either interaction or interpo-

lation.

Much of the work on interactive camera placement in computer graphics has

been concerned with direct control of these standard parameters. Several researchers

have addressed the problem through the use of 3-D interfaces, including six degree-

of-freedom pointing devices [WO90, TBGT91, BMB86] and more specialized de-

vices such as steerable treadmills [Bro86]. Issues involved in using the standard

LOOKAT/LOOKFROM model to navigate virtual spaces are considered by [MCR90].

In [DGZ92], the LOOKAT/LOOKFROM model is embedded in a procedural language

for specifying camera motions.

The difficulty with using camera parameters directly as controls is that no single

parameterization can serve all needs. For example, sometimes it is more convenient

to express camera orientation in terms of azimuth, elevation and tilt, and other times

in terms of a direction vector. These particular alternatives are common enough to be

widely available, but others are not. A good example involves the problem, addressed

by Blinn [Bli88b] of portraying a spacecraft flying by a planet. Blinn derives several

special-purpose transformations that allow the image-space positions of the spacecraft

and planet to be specified and solved for the camera position. The need for this kind of

specialized control arises frequently, but we would rather not derive and code special-

ized transformations each time it does. The differential approach permits using these

interaction techniques without deriving the inverse transformations.

Registering graphical objects and a real image by recovering camera parameters is

considered in Section 8.2.4. Problems involving the recovery of camera parameters

from image measurements have been addressed in photogrammetry2, computer vision,

and robotics. All of these are concerned with the recovery of parameter values, rather

than time derivatives. Algebraic solutions to specific problems of this kind are given

2Also see chapter 6 of [Sch59] for amazing mechanical solutions to photogrammetry problems.
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in [Mof59] and [Gan84], while numerical solutions are discussed in [Low80, Gen79,

McG89]. In [TTA91], constrained optimization is employed to position a real camera,

mounted on a robot arm, for the purpose of object recognition. Factors considered in

the optimization include depth of field, occlusion, and image resolution. The use of

constrained optimization for camera placement in animation is proposed by Witkin et

al.[WKTF88].

2.4.3 Controlling Lighting and Surface Properties

Shadows play a particularly important role in 3d images. They contribute greatly to

viewers’ abilities to perceive depth [Wan92]. Techniques for displaying special cases

of shadows can be implemented in real time on graphics workstations [Bli88a, Hud92],

and the most sophisticated graphics hardware is even capable of drawing more general

shadows in real time [SKvW+92].

Controlling scene parameters by directly manipulating illumination effects has been

explored by several researchers. A desire for appearance-based manipulation is ex-

pressed in [vWJB85]. Poulin and Fournier [PF92] describe techniques for positioning

light sources by specifying the positions of specular highlights and shadows. Dragging

drop shadows on the floor and walls is used to position objects in [HZR+92]. Hanra-

han and Haeberli [HH90] discuss techniques which allow users to paint on images and

have the surface’s colors updated appropriately. Painting with Light [SDS+93] per-

mitted controlling intensities of light sources in a similar fashion. Kawai, Painter and

Cohen’s Radioptimization [KPC93] permitted controlling light sources by specifying

the desired lighting on various surfaces. The methods used a constrained optimization

on the results of a radiosity computation.



Chapter 3

The science is in the technique, all the rest is just com-

mentary.

— Allen Newell

SCS Distinguished Lecture, Dec, 1991

Differential Techniques

This chapter introduces the basic techniques required to implement the differential

approach. We begin by reviewing how graphical manipulation can be viewed as an

equation solving problem. To solve these equations differentially, we will solve a con-

strained optimization that computes rates of change of the parameters given the desired

rates of change of the controls. Basic methods for solving these optimizations will be

discussed.

Constrained optimization computes the rate of change of object parameters. To

determine the objects’ trajectories, an ordinary differential equation (ODE) must be

solved from an initial boundary value. Some of the basic issues in solving such equa-

tions as well as some methods will be introduced.

Additional flexibility is provided by adding additional terms into the constrained

optimization problems. This is used to provide default behaviors for objects and to

permit the creation of soft controls that can be used to express preferences.

The chapter concludes with an alternate solving method that sacrifices generality for

simplicity, a simple example worked through in detail, and a summary of the symbols

and methods discussed. The subsequent chapters describe how these methods can be

implemented in an efficient and flexible manner.

3.1 The Differential Optimization Problem

In the introduction, the basic notion of treating graphical manipulation as an equation

solving problem was introduced. We control graphical objects by specifying what hap-

pens to the values of selected attributes called controls. These controls are defined by

functions,

p = f(q); (3:1)

where q is the state vector of the objects, p is the vector of values of the controls, and f

is the function that defines the controls. A full table of all mathematical symbols used

in this chapter is provided on page 62.

39
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As was discussed in Section 1.1.5, it is not practical to solve Equation 3.1 for q given

p. Instead, we take a differential approach to the problem, as described in Section 1.2.

Rather than specifying values for the controls, we will specify how they are changing

over time. At particular instants in time, we compute how the state vector must change

in order to achieve the desired changes in the controls.

Given a particular instant in time, the value for the state vector at that instant (q ),

and the desired values for the rate of change for the controls ( _p), we must compute the

necessary rate of change of the state vector( _q). We call this problem the differential

optimization. Since the value for the state and the control function are given, we also

know the value of the controls at the instant the optimization is to be solved.

Our need to deal with the time derivatives of the controls and state variables leads

us to take the derivatives of each side of Equation 3.1 to yield

_p =

dp

dt

=

df(q)

dt

: (3:2)

Applying the chain rule yields

_p =

@f

@q

dq

dt

: (3:3)

For the general case of a vector of control functions, the derivative is a matrix called

the Jacobian, which is the matrix @f=@q and is denoted by J: Using this notation, we

get

_p = J _q: (3:4)

Like the controls themselves, the Jacobian J is a function of the state variables.

The matrix of functions that compute the elements of the Jacobian can be determined

by differentiating the control functions with respect to the variables. Since the values

for the state variables are given, the value of the Jacobian is effectively given as well.

Methods for computing the Jacobian efficiently will be discussed in Section 5.2, but

for now, we simply assume we have some method to compute the Jacobian from the

variables, and treat is as if it were a given as well.

Since J is a known matrix, Equation 3.4 is a linear equation, even though p is a non-

linear function of q. The differential approach has replaced the multi-dimensional non-

linear root-finding problem with a linear system and an ordinary differential equation.

Unlike non-linear equations, for which good solving techniques are unlikely to exist,

linear systems are relatively easy to solve.

3.1.1 Underdetermined Cases

Unless enough controls are specified to uniquely determine a solution, Equation 3.4

will be underdetermined. There will be many possible ways for the state vector to

change to achieve the desired changes in the controls. As discussed in Section 1.1, the

system must select one of the ways for things to change. We must use some heuristic to
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pick a solution, because we lack any information as to what is desired. The rule chosen

for the differential approach is to minimize the amount that the configuration changes,

or, more precisely, to minimize the rate of change of the configuration. That is, if the

user’s controls don’t ask for something to change, the system should avoid changing it.

This leaves open a variety of ways to measure change that will be explored in Section

3.4. Since the rate of change of the configuration will be a linear function of the rate

of change of the variables, its magnitude will be a quadratic function, which we denote

by g:

When the linear system of Equation 3.4 does not uniquely determine _
q , it provides

constraints on its possible value. To determine the particular value of _
q, we must solve

the problem

minimize E = g(
_
q) subject to _

p = J
_
q: (3:5)

That is, we have cast the problem as a constrained optimization: minimize the value of

a quadratic objective function of _
q, subject to the linear constraints that the controls are

met. In the following sections, we discuss solution methods using standard techniques

that meet the needs of differential manipulation.

3.2 Solving the Differential Optimization

The linear/quadratic constrained optimization problems are a standard class of prob-

lems for which a wide range of techniques have been developed. Good surveys can be

found in texts such as [Fle87] and [GMW81]. A standard technique is the Lagrange

multiplier method. A form of it is reviewed here for use in the differential approach.

To begin, we consider minimizing a specific quadratic objective function, simply

minimizing one half the magnitude of _
q squared. The value of _

q that minimizes that is

the same value that minimizes the magnitude of _
q. The specific constrained optimiza-

tion problem we consider in this section is then

minimize E =

1

2

( _q � _q) subject to _p = J _q: (3:6)

We will consider the general case of quadratic objectives in Section 3.4.

To provide an intuition for how Lagrange multiplier methods work, consider an ex-

tremely simple case: a particle in 2 dimensions, with its state represented as its Carte-

sian coordinates, q � fx; yg: We will place a control on the particle that is its distance

to the origin, p = f(q) = x

2

+ y

2

: Suppose we specify _p to be 1.

As shown in Figure 3.1, there are many possible values for _
q which achieve the

desired value for _p: In this case, it is clear to see that the one with smallest magnitude

is the one which is in the same direction as the gradient of f: Any component of _
q not

along this line will not be helping to achieve the desired controls. We can therefore

restrict _
q to be some multiple of the gradient, that is, _

q can be expressed as a scaling

factor times the gradient. This scaling factor is called the Lagrange Multiplier.
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f

Figure 3.1: A point on the plane with a radial control. Many possible values of _
q will yield

the desired value of _p: The one with least magnitude has the same direction as the gradient of

f:

If there were multiple controls, each would make a contribution to _
q. For each

control, the contribution is some multiple of its gradient. We therefore have a vector of

Lagrange multipliers, which we denote by�: _q is determined by the linear combination

JT
�:

More formally, to be a solution to the constrained minimization problem, _
q must

satisfy two criteria. First, _
q must satisfy the linear constraints, given by Equation 3.4.

Secondly, _qmust minimizeE as much as possible, subject to the constraints. In the case

of an unconstrained minimization, we would require that the gradient @E=@
_
q vanish,

meaning that there is no direction to change _
q that would result in a lesser value for

E: With constraints, there might be a way to change _
q to further minimize E; but

only if these changes are prohibited by the constraints. That is, if the gradient of the

objective function is not zero, it must lie in the row space of the constraint gradients.

This requirement is expressed by defining the objective function gradient to be a linear

combination of the constraint gradients,

@E

@
_
q

= J

T

�; (3:7)

for some value of �: The vector � is an intermediate result which we call the Lagrange

multipliers.

In the case of the simple objective function of Equation 3.6, the gradient @E=@
_
q is

simply _
q, giving

_q = J

T

�: (3:8)

Substituting this into Equation 3.4, gives

_p = JJ

T

�; (3:9)

a linear system which can be solved for its one unknown, �: This intermediate result

can be substituted back into Equation 3.8 to yield the desired final result, _
q.
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3.2.1 Over-determined Cases

To this point, we have focussed on techniques that handle the cases where an insufficient

set of controls are specified to uniquely determine a solution. We now must consider

the problem of handling cases where too many controls specify the solution. Such cases

may involve redundant controls, where multiple controls all specify the same solution,

or conflicts, where there are no solutions to all of the controls.

Conflicting controls are obviously a problem as there is no solution which will meet

the controls. However, redundant controls manifest themselves in exactly the same

way. Consider a system subject to two identical controls p

1

and p

2

: The net result

should be that _
q moves in the manner specified. But _

q is created by the sum of the

contributions of p
1

and p

2

: How much does each contribute? Does p

1

contribute a little

and p

2

a lot? Does p
1

contribute a huge positive amount and p

2

a huge negative amount?

When controls are over-specified, whether their values conflict or not, they cause the

Lagrange multipliers to be under-specified. The matrix JJT will be singular. Redundant

or conflicting controls are inevitable, and are notoriously hard to detect. It is important

that our solution method be robust in the face of these singularities, and that it will do

something reasonable with conflicts.

One approach to handling the over-constrained cases would be to employ a linear

system solver which could handle Equation 3.9 even when the matrix is singular. For

example, singular value decomposition (SVD) [PFTV86] could be used. The SVD has

many attractive properties, for example it provides information as to which controls are

redundant. Unfortunately, SVD is expensive to compute. In contrast, if we can restrict

the problem so that the solver only needs to solve non-singular systems, we can exploit

this property to solve them efficiently, as will be discussed in Chapter 4.

Rather than force the solver to handle singular matrices, we will instead modify

the matrices so that they have a unique solution. We will not get an exact solution to

the original linear system, but we are trading accuracy for improved behavior in bad

cases. Because we are interested in interaction, rather than high accuracy quantitative

methods, we will make such tradeoffs often, as discussed further in Section 4.5.

The technique for making the matrices non-singular is called damping. The basic

intuition is that we generally prefer to avoid large values for the Lagrange multipliers,

therefore, in cases where the Lagrange multipliers are undetermined, we should min-

imize their magnitude. The derivation here most closely follows that of Nakamura’s

derivation of a robust pseudo-inverse [Nak91].

In cases where the controls are over-determined, the solver will not be able to

achieve all the desired values for them. Instead, we must settle for getting as close

as possible, that is, to satisfy them in a least squares sense. To find Lagrange multipli-

ers that achieve this minimum, we minimize 1=2(J

T

� � _q) � (J

T

� � _q); In addition,

we would like to minimize the magnitude of �; although since this is not as important,

we can scale this term by a small amount, which we will call �: The function we wish
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to minimize is

E =

1

2

(J

T

�� _q) � (J

T

�� _q) + �(� � �): (3:10)

The minimum of this quadratic is found by differentiating with respect to�; and setting

that equal to 0, yielding

0 = JJ

T

�� J _q + �I�; (3:11)

where I is the identity matrix. Recalling Equation 3.4, a little rearrangement yields

_p = (JJ

T

+ �I)�; (3:12)

a variant of Equation 3.9 which has small amounts added to the diagonal of the matrix.

Rather than having a single scaling factor for the magnitude of the vector of La-

grange multipliers, we could have an individual one for each individual multiplier. This

would enable damping selectively, or to damp some controls more than others. Selec-

tive damping allows the creation a a limited constraint hierarchy: if two constraints

conflict, and one is damped but the other is not, the undamped constraint will domi-

nate the damped one. When two conflicting controls are both damped, their effects are

blended. By individually adjusting their damping values, the controls can be weighted.

The larger the damping value, the less weight the control receives.

The damping technique presented here has three major drawbacks. First, it penal-

izes large values of the multipliers whether they are underdetermined or not. This can

cause a problem when the multipliers legitimately need to be large to satisfy the desired

controls. Secondly, damping is applied whether there are conflicting controls or not.

Finally, it introduces a new dimensionless parameter �: Because it has no real mean-

ing to the original problem, values for it are difficult to determine. For the differential

approach, damping values must be determined empirically.

3.3 Solving the Differential Equation

The methods of the previous section permit us to compute the rates of change of the

state vector. We now consider how to use the rates to find the trajectories of the con-

figurations over time. We must solve the problem of computing the trajectory of the

state given its initial value and time derivatives, a problem of solving an ordinary dif-

ferential equation (ODE) from an initial boundary condition. Here, we provide a brief

introduction to handling this problem in the context of the differential approach. For a

more complete, but still practical, introduction to ODE solution methods, see Chapter

15 of [PFTV86].

The value of q is actually is a function of time, defined by a function that computes

its time derivative. The form that we have this function defined in is

_q = f

0

(q; t); (3:13)
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where f0 is found by solving the differential optimization. Given the value for q (which

corresponds to q(t) for some time t), we can compute _
q . This is a standard form for

an ODE.

For the types of problems we encounter with the differential approach, we cannot

solve the ODE in closed form. Instead, we must solve it numerically by discretizing

time into a series of small steps. In computing a step, the following problem must be

solved: given the state at the current time, q(t), find the state at some time in the future,

q(t+�t): The time derivative _
q (i.e. the result of the differential optimization) does not

directly provide the solution to this problem. It only specifies how the state is changing

at the instant that it is computed. The problem of updating the state given the ability

to find its time derivatives is solving an ordinary differential equation from an initial

boundary condition.

Solving the ODE is difficult because when we perform an evaluation to find _
q for

a particular q , we are only finding out about a particular instant in time . We have no

information about the future. _q might remain constant for the duration of the step, but

it might also change drastically over the course of the step.

The simplest method for solving an ODE is to find _
q at the beginning of the step

and assume it remains constant over the course of the step. This is known as Euler’s

Method, and has the simple update rule of

q(t +�t) = q(t) + �t _q(t): (3:14)

Euler’s method approximates q(t) with as a piecewise linear function. The size of each

piece is the step size. If the step is too large, the approximation will not be good. Notice

that each step requires computing a new _
q by solving the differential optimization.

To understand what is meant by “good” in ODE solving within the context of the

differential approach, consider a simple example. Once again, we will use a point in

the plane, however, this time, we will select a control that is its angular position about

the origin. Suppose we provide a desired velocity for this control of 1 unit per unit

time, the starting configuration has the point a unit distance from the origin along the

positive x axis, and the specified derivative always points tangent to the circle. As time

progresses, we will expect the point to move around the origin in a circular path.

If an Euler’s method ODE solver is applied to this example, the problems of ODE

solving are quickly apparent. At the initial position on the x axis, the gradient of the

control points vertically. Any step in this direction will lead the point off the circle it is

expected to follow around. As more and more steps are taken, the point will continue

to spiral away from the circle, speeding off the page, as shown in Figure 3.2.

Because of error in approximation, the point spirals outward over time. However,

if smaller step sizes are taken, the behavior is better. That is, the point spirals outward

more slowly, better approximating the expected circle. This is shown in Figure 3.3. In

fact, by going more slowly, we may reach a desired destination more quickly because

we are less likely to overshoot or drift away from the target. Going slowly can be
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Figure 3.2: A point on the plane with a control that drives it tangent to a circle around the

origin. Although it should (ideally) travel in a circular path, ODE solver error causes it to spiral

off the page.

Figure 3.3: A point is pushed in a direction tangent to a circle about the origin, using an Euler

ODE solver and various step sizes. In all cases, the point spirals away from the target circle,

although with small step sizes, the point tracks the circle better.

accomplished two ways, either by reducing the duration of the step or by reducing the

velocities.

In solving the ODE, there is effectively a speed limit. If an object attempts to change

faster than this, it may speed out of control or even miss its destination entirely. For

a given velocity, solving can be made more stable by reducing the step size, in the

limit of infinitesimally small step sizes, ODE solving will be exactly correct. However,

since each step may require significant computation, the number that can be executed

is limited. Alternatively, this speed limit can be viewed with a constant step size: for

a given step size, how fast can an object go without becoming unstable. If we think

of steps as taking some fixed amount of time to compute, this translates directly to an

apparent velocity in the image.

The speed limit given by ODE solving varies according to a number of factors.

Most significantly, it depends on the path that the objects take. The more non-linear

the function is, the more poorly the linear approximation will fit it. At the extreme,

if an object is truly moving in a line, Euler’s method achieves the exact motion, and

there is no speed limit. In a sense, the speed limit can be viewed as a restriction on the

types of controls used to define the motion: given that the step size is fixed, how badly

non-linear a control can be used and still have the object move at a reasonable rate.
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If we take smaller steps to achieve better performance, we might use multiple ODE

solver steps for each redraw. For example, if we would like to maintain 10 frames per

second and updating the image or solving the differential optimization takes 30ms, we

might use two Euler steps between redraws. As we will see in Chapter 4, typically the

differential optimization is the most time consuming part of the process, and becomes

more so as the problems grow larger. With a faster computer, the time to compute each

step will be decreased, so more steps can be computed per redraw, effectively raising

the speed limit.

Using multiple samples per step is what is called multi-step solving. We might

phrase the problem as follows: the starting point (t and q(t)), compute q(t + �t) as

well as possible using n samples. Using two Euler steps has n = 2; and uses a 2 piece

piecewise linear approximation.

Given that we have some number of samples that we can make in a step, we can

consider how to best use these samples to approximate q(t): For example, if we can

take 2 samples, we might use a 2 piece linear approximation by taking two Euler steps.

Alternatively, we might use these same two samples to fit a parabola. This would be

called a 2nd-order method. The particular case of a parabola is simple to create, since

a parabola has a linear function for its derivative. This is effectively done by using the

initial step as a trial step, evaluating the derivative at this point, and using this for the

duration of the step. This is called the midpoint method or the 2nd-order Runge-Kutta

method. It is applied to the example problem in Figure 3.4.

According to Press et al.[PFTV86], the most popular multi-step method is the 4th-

order Runge-Kutta method. As implied by the name, it uses 4 evaluations per step.

According to the literature, this method is generally perceived to be superior to higher

order methods. The 4th order Runge Kutta method has been the preferred solver for

the prototype implementations in this thesis.

A higher order method is only better than taking a larger number of lower order

steps if it provides a higher speed limit for the same number of evaluations. This will, of

course, depend on the problem to be solved. However, in practice, the 4th-order Runge-

Kutta method seems to be a good method for implementing the differential approach.

Empirically, it usually performs at least as well, but sometimes substantially better, than

taking 4 small Euler steps, or 2 Runge-Kutta 2 steps.

There are many other multi-step methods. Predictor-Corrector techniques [PFTV86]

are another popular strategy. Such methods use past steps to predict future values and

then correct for the error of the prediction. However, these methods are difficult to

apply in dynamic settings because the dynamic nature of the problems make it diffi-

cult to maintain a history to use in prediction. Often, there will be no history so some

technique like Runge-Kutta will be needed to start the process.

For the prototype implementations of this thesis, fourth order Runge-Kutta and Eu-

ler’s methods solvers are used.
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Figure 3.4: Left, a second order Runge-Kutta method, and right, an Euler’s method are used

in the example problem of Figure 3.2. The evaluations used by the Runge-Kutta solver are

shown in grey. Notice how the Runge-Kutta solver stays closer to the circle using the same

number of evaluations as the Euler solver.

3.3.1 Adaptive Step-Sizes

So far, we have considered solving an ODE with fixed step sizes. Instead, we might

consider adapting the step size to the problem. When a step is made, it could be checked

to see how good it was. If it caused an unacceptably large amount of error, it could be

redone with a smaller step size. Adaptive step size methods have the advantage that

they can slow down to accurately handle problems when they become difficult. Also,

because they check their results, they are less likely to cause bad errors.

Adaptive step size methods have some severe drawbacks when used with the dif-

ferential approach. The most significant problem is that they are continually adjusting

the step size which alters the amount of computation required to advance simulation

time a specified amount. If the computation rates are fixed, the apparent velocities of

objects will fluctuate. This can be disconcerting to the user. Also, the extra evaluations

to perform checks and computing alternate steps might be better spent on making more

steps since error correction is built into the controls, as controllers can adjust their val-

ues in response to what is happening as will be discussed in Section 6.3. For example,

in the example of the previous section, if the user really cared about the point staying

on the circle, an additional control that maintained this would be used.

The differential approach provides some interesting opportunities for employing

adaptive step sizes. Standard methods for ODE solving treat the equation as a black
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box, that is they cannot get any information about the problem other than asking for

evaluations of _
q . Standard adaptive ODE solvers employ methods such as taking the

same step with a higher order method to compare with.

With the differential approach, we have more information about the problem we

are solving. In particular, the functions that define the controls provide measures of

error. For example, if a controller is meant to keep a control at a particular value, at the

end of the step it can be checked to insure that the control has not changed too much.

Each different control might have its own way of defining what an acceptable amount

of error is. I call this semantic adaptation because it adapts based on the meaning of

the problem. I have experimented with some simple semantic adaptation of step size,

simply reducing the step size when a control has a value that the system finds unaccept-

able. The method works as follows: a certain set of controls are monitored. When a

step is computed, the monitored controls are examined. If any exceed a specified error

limit, the step size is shortened.

A different type of semantic adaptation is to use a different step when problems

occur. One useful variant of this is the cleanup step. In an application like constraint-

based drawing or mechanism simulation, there is typically some small number of con-

trols that cause motion and a potentially larger number that represent constraints. A

cleanup step is an extra step that is run only with the constraints. It is used when the

pulling controls have broken the other constraints to cause them to get back to their

desired configuration.

3.4 Generalized Objective Functions

The optimization objective determines which solution will be given in under-determined

cases. By selecting different optimization objectives, different default behaviors can

be given to objects. To this point, we have only consider one optimization objective:

one half the magnitude of the state vector derivative squared. This section considers

other objective functions.

The types of default behavior that we consider in the Differential Approach can be

summarized by the idea that objects should not change unless a control causes them to

change, and that when an object changes to achieve what is specified by a control, it

should do so by changing as little as possible. By altering how we measure change, we

can control the default behavior or feel of an object. For an example, consider manip-

ulating a line segment by moving one of its points, as shown in Figure 3.5. Depending

on the metric of change, the line segment will behave differently. In all cases, the line

segment achieves what is specified by the controls. However, by selecting an appro-

priate metric, the programmer can create a desirable default behavior. An appropriate

metric is not essential since if there was something that was important, it could be spec-

ified with a control. But, properly defined objectives can alleviate the need for extra
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(a) (b) (c)

Figure 3.5: A line segment is dragged by controls that specify the position of the upper point.

Different objective functions provide different behaviors: a) change in length and orientation

are minimized; b) change in the position of the center is minimized; c) change in the position

of the lower point is minimized.

specifications.

The simplest metric of change is the magnitude of the rate of change of state vector,

_
q, as was used in Section 3.2. This simple objective has been used up to this point, and

is sufficient for a wide variety of applications. It has a drawback: it causes the param-

eterization to affect the behavior of the object. Using the parameterization violates the

goal of separating manipulation from representation. Even simple decisions, such as

whether to represent an angle by degrees or radians, can affect an object’s behavior

[Wit89a]. This may be a serious problem, or an opportunity. It means that we can

choose which interactive behavior we would like by carefully choosing the representa-

tion. However, if we are not careful about choosing the representation, we might get a

less desirable behavior. The severity of this problem is limited, because the user could

always provide additional controls if they really cared what happened.

3.4.1 The Metric

In order to spare the user the increased effort of more completely specifying their intent,

and to give programmers more freedom to select representations that are convenient,

we must use a different objective function. Rather than measuring change in values of

the parameters, we could measure change in something that did not depend as closely

on the representation. We have used the functions that compute objects’ attributes to

serve as controls that are independent of representation. Similarly, we prefer to define

an object’s metric in terms of its attribute functions as well. We select a subset of the

attributes to define the metric. Just as we denote the subset of the attributes that serve

as the controls as f; we will denote the function used to define the metric by g which is

also a function of q. We denote the Jacobian @g=@q by G:

The optimization objective will be to minimize the magnitude of the change in the

attributes. This rate of change is

_g = G_q: (3:15)

Since we are searching for the minimum, we can minimize 1=2 the sum of squares of
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˙
g; rather than the magnitude. Since we might wish to emphasize some of the attributes

more than others, we also introduce a scaling factor for each to make the objective a

weighted sum of squares. Writing the scaling factors as the diagonal elements of a

matrix for notational convenience, the objective function is

E =

1

2

_q

T

G

T

SG_q; (3:16)

We will call the matrix that defines this quadratic (GTSG) term the metric because it

defines a way to measure _
q.

The simple objective function of Section 3.2 used the parameters of the objects as

the attributes that defined the metric. Since g = q; G = I and M also is the identity

matrix. Viewed this way, the advantage of using a correct metric can be seen. The

identity metric defines the behavior of the object in terms of its parameters, rather than

in terms of something that is potentially meaningful to the user.

A Particularly Useful Metric

The metric provides a method for an interface designer to define a default behavior for

an object. In effect, it allows for hand-tuning the behavior that a user sees when the ob-

ject is manipulated. However, this leaves the problem that the interface designer must

hand-tune the behavior in order to hide effects of the parameterization. Often, this is

not an issue, as the parameters provide a reasonable default behavior, or, if a specific

behavior is required, it can serve to describe a metric. However, some applications

demand an automatic method for determining a metric that provides a consistent, pa-

rameterization independent, feel for a variety of objects. Such a method is particularly

useful in cases where a user may define object behavior. An example is the parametric

curve manipulation of Section 8.1.1 and Section 9.4.

An analogy to physics provides an automatic, consistent metric for a broad class of

objects. As first suggested by Witkin [Wit89b], we can imagine an object as a physi-

cal entity with an uniform mass distribution. In effect, we can view each pixel of the

object as an atom, each with a tiny bit of mass. This mass distribution defines how the

object changes as forces are applied in particular places. Inertia causes each particle to

move as little as possible. The mass distribution serves as the metric does, defining the

behavior of objects in response to controls. Witkin and Welch [WW90] used specifi-

cation of the mass distribution to allow animators to specify the the default behaviors

of simulated objects that were acted upon by point controls.

When solving the equations of motion of a physical object in generalized coordi-

nates in order to simulate it, the mass distribution is encoded into a matrix known as

the inertia tensor or mass matrix [Gol80]. This matrix is found by accounting for the

effects of each particle on the objects’ behavior by integrating over the mass distribu-

tion. When such a matrix is determined numerically, the integral is approximated by

sampling a set of particles.
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Analogously, a metric can be defined by viewing a graphical object as a collection

of “particles” and minimizing the motion of these particles. In practice, the distribution

is estimated by a set of points. We define the metric functions to be the positions of

an evenly spaced set of points on the object. We call such a metric the mass matrix

because of its physical analog.

The mass matrix is an important metric because it can be defined independently

of the object. For any graphical object, a set of points can be evenly distributed either

along its length (for a curve) or within its area (if it is solid). Section 8.1.1 will illustrate

the utility of this, allowing default behavior to be automatically provided for a wide

variety of objects.

3.4.2 Solving the Generalized Quadratic Objective

Using a different quadratic optimization objective requires a slightly different set of

methods for solving the constrained optimization problems. In this section, we derive

the method in its full generality for the case of any quadratic objective function and

linear constraints.

The standard form of a vector quadratic equation is

E =

1

2

x

T

Mx+ b

T

x+ k; (3:17)

where x is the vector parameter ( _q for this chapter), M is the quadratic or matrix term,

the vector b is the linear term, and k is a scalar constant. Since we are not interested

in the value itself, but rather only the value of x that minimizes it, we can ignore the

constant as it goes away when we take the gradient, and we can multiply the quadratic

by 1=2 as it cancels out other values later, simplifying the equations. The linear term

permits measuring change from a point other than 0, and will be used in Section 3.5.

The methods of Section 3.2 solve the special case of this objective with an identity

matrix for M; and 0 for the linear component b:

The Lagrange multiplier derivation can again be applied, this time to Equation 3.17.

We denote the linear constraints as Ax = a: We require the gradient of the objective

function to be a linear combination of the of the constraints,

@E

@x

=Mx + bx = A

T

�: (3:18)

Solving this for x and denoting the inverse of the metricM�1 by W; gives

x =WA

T

��Wb: (3:19)

Inserting this into the constraint equationAx = a gives

AWA

T

� = a +AWb; (3:20)
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a linear system that can be solved for �: Once � is computed, it can be inserted into

Equation 3.19 to compute x:

The damping techniques of Section 3.2.1 are not taken into account by the gener-

alized quadratic objective. Using a derivation similar to that of Equation 3.12, yields

(AWA

T

+ �I)� = a+AWb: (3:21)

Using the notation of the rest of the chapter, M is the metric as defined in Section

3.4.1 and the linear constraints are given by Equation 3.4 so A = J and a =
_
p:

3.4.3 An Approximation to the Metric

Using the metric to define the default behavior of an object has several advantages. It

permits separation of manipulation and representation, and provides an abstraction for

defining the feel of an object. However, it has a significant cost: we must find the metric

and invert it. This is problematic because the metric is large. Inverting a matrix this

large would be prohibitive. One advantage to using the identity matrix as the metric is

that it is trivial to invert.

What we aim for in this section is an approximation to the metric that is inexpensive

to invert, yet provides some of the features of the full metric. The approximation we

consider is simply using the diagonal elements of the metric. This diagonal matrix is

trivial to invert — we merely take the reciprocal of all its elements — and cheap to use

in solving Equation 3.20. It still addresses some of the important issues that the full

metric addresses, particularly the selection of units.

Consider again the example of dragging a line segment in Figure 3.5. Suppose its

configuration is represented by the position of its center, its length and its orientation,

and that the simple identity metric objective function is used. If the upper left corner

of the segment is move a quarter of an inch to the left, the line segment might have its

center move, scale and rotate, or some combination of the two. Suppose that the posi-

tion of the center of the line segment was represented in micrometers from the corner

of the page, the orientation represented as radians from horizontal, and the length in

inches. To achieve the movement of the upper left point by simply moving the center

would require the parameters to change very quickly as there are many micrometers

to be covered, while achieving the movement by scaling and rotating would require

considerably smaller changes in the parameters. Because the simple optimization ob-

jective minimizes change in the parameters, the latter would be chosen. If the position

of the center were measured in miles instead, a very tiny change in the position of the

center would create the needed motion, so this would be selected by the optimization

criteria.

In the example, the simple selection of units with which to represent the position

of the center of the line segment determined the dragging behavior. The problem is
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parameters having different units. One way around this is to define an objective func-

tion which minimized the amount of change in the parameters after converting them to

some standardized units. Suppose we knew the conversion factors between the units

of the parameters and the standard units. We would have a scaling factor for each pa-

rameter. For notational convenience, we can write the scaling factors as the diagonal

elements of a diagonal matrix S; so the component-wise scaling of parameters would

simply be the multiplication Sq:

Rather than simply minimizing the magnitude of _
q, we would instead minimize the

time derivative of the scaled parameters, S _
q; giving

E =

1

2

(S _q � S _q); (3:22)

or, to use the generalized notation of Equation 3.17

M = S

T

S: (3:23)

We see that we have a diagonal metric.

The problem is to determine S to convert the parameters to the standard units. One

way to define standard units would be to require that equal changes in each variable

should affect the attributes the same amount. As for the metric, we pick a subset of

the attributes to define the objective function, and denote the function that computes

these attributes by g: However, we are only interested in the derivatives with respect

to a single variable at a time. That is we want to measure the change in all of the

attributes of g with respect to each variable independently. For a particular variable,

the scaling factor is the magnitude of the derivatives of each element of g with respect

to the variable, that is,

S

ii

=

s

g

q

i

�

g

q

i

: (3:24)

The diagonal terms in Equation 3.23 are the scaling factors squared,

M

ii

=

g

q

i

�

g

q

i

: (3:25)

These are exactly the diagonal terms of the metric in Equation 3.16.

The diagonal metric cannot take into account interactions between variables. While

it can remove differences in units between similar terms, it cannot make two different

representations seem alike. In the line segment example, it eliminates the effects of the

choice of units, however it does not remove the effect of a completely different param-

eterization. It could not, for example, express an objective function that minimized the

motion of the endpoints. Therefore, no matter what diagonal metric are chosen, a line

segment parameterized by position of center, length and orientation will feel different

than a line segment parameterized by the positions of its endpoints.
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3.5 Soft Controls

The generalized objective functions of the last section allow the creation of objective

functions that can be used to control the object. To this point, we have discussed de-

fault behaviors for objects that causes objects to minimizes their motion if controls are

causing them to change, they do not change. In this section we consider an alternative:

having objects change by default unless a control specifies otherwise. The non-zero

defaults lead to linear terms in the general quadratic optimization objective function

of Equation 3.17. Using this term will enable soft controls: controls which are over-

ridden by the regular controls. These are important because they allow us to create

behaviors such as dragging subject to constraints, where an object is manipulated by

the user but constraints will not be violated. While these techniques do not provide

general constraint hierarchies as described by Borning et al.[BFBW92], the dragging

subject to constraints that they can provide is useful in many graphical applications.

The use of optimization objective terms to provide user control was pioneered in the

vision research of Kass et al.[KWT88].

Suppose that we had some desired default value for _
q, denoted _

q

0

. Rather than

simply minimize the magnitude of _
q, we would instead minimize its difference from

the default value, so

E =

1

2

(
_
q�

_
q

0

) � (
_
q�

_
q

0

): (3:26)

In terms of the generalized objective function of Equation 3.17, the coefficients of the

linear term b in this case is _
q

0

. Similar metrics can be worked out to include a metric

as well. While the generalized solution of Section 3.4.2 can be applied, we review the

derivation for this important special case here as it provides insight.

To provide intuition for how this works, consider again the simple point example

from Section 4.3. Notice that the control specifies the behavior only in the direction of

its gradient, so the optimization objective is free to do whatever it wants in an orthog-

onal direction. Suppose that we have specified _p to be 0. This restricts _
q to lie along

the line perpendicular to the gradient, as shown in Figure 3.6. To find _
q closest to _

q

0

,

we must project _
q

0

onto this line. We do this by adding in a component of _
q which

cancels out the disallowed portion. This constraint component must be a multiple of

the gradient. This multiple is the Lagrange multiplier.

We compute _
q as the sum of two components, its default value _

q

0

and the contri-

butions of the controls, _q
c

; so

_q = _q

0

+ _q

c

: (3:27)

Since _
q must satisfy the controls, we substitute this into Equation 3.4, to yield

_p = J( _q

0

+ _q

c

): (3:28)

Since the contribution of the constraints is a linear combination of the control gradients,
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q0
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.

Figure 3.6: A hard controls constrains the distance from the point to the origin. Any move-

ment of the point must be orthogonal to the gradient of this control. When a default velocity

( _q0) is given for _q, it must be projected into the space that meets this restriction. To achieve

this, a component is added to _q
0

that projects it onto the space where _p = 0:

we define the Lagrange multipliers as

_q

c

= J

T

�: (3:29)

Which, with a little rearrangement yields

_p� J _q

0

= JJ

T

�; (3:30)

a linear system, which like Equation 3.9 can be solved for �; which in turn determines

_
q

c

by Equation 3.29, from which _
q can be computed by Equation 3.27. Notice that

when _q

0

= 0; the method of this section is exactly the same as that of Section 4.3. The

damping techniques of Section 3.2.1 also apply.

3.5.1 Determining the Values for Soft Controls

We now must figure out how to obtain _
q

0

. Our goal is to provide soft controls that work

as the hard controls do, except that the hard controls are given precedence over them.

Soft controls are defined as ps = fs(q); but like the hard controls, would be specified

by their derivatives, _
p

s

:

If the soft controls do not conflict with the hard controls, they can simply be treated

as hard controls. The more interesting cases, however, are when the hard controls limit

the soft controls. The ultimate goal is to have have soft controls work exactly as hard

controls do, except in the cases where there are hard controls that take precedence over

the soft controls.

We would like to satisfy the soft controls as closely as possible subject to the restric-

tion that the hard controls are specified exactly. We can define the objective function

to minimize the squared error of the soft controls meeting their desired values

minimize E =

1

2

(J

s

_q� _p

s

) � (J

s

_q� _p

s

) subject to _p = J _q: (3:31)



3.5. SOFT CONTROLS 57

p=x2-x1
p=0
. ps=x2

ps=1
.

Figure 3.7: Two points are connected by a hard control constraining their distance. The

right point is also pulled by a soft control. If the soft controls are computed independently, a

non-optimal solution may be found, as shown on the left. The soft control may specify that

the right point should move, but part of this motion might be removed by the constraints. As

shown on the right, there is a solution that both satisfied the constraints and meets the desired

values for the soft controls.

Such an objective function is the similar to the definition of the metric in Section 3.4.1,

except that rather than minimizing the magnitude squared of the change of the deriva-

tives of the functions value, we minimize the magnitude squared of the difference be-

tween the derivative’s value and a default value. Generalized sets of soft controls (e.g.

Js) will lead to M terms in Equation 3.17. The problems in using general metrics also

apply to soft controls: A sufficient number of soft controls must be specified to uniquely

determine _
q in all cases, even when there are no hard controls. If an insufficient number

of soft controls are specified, M will be singular. Problems with ill-conditioning and

efficiency in inverting M make this soft control scheme impractical. In this section, we

concentrate on methods for simpler achieving soft controls by computing values for

_
q

0

.

Two-Pass Solver

One way to find _
q

0

is to ignore the hard controls, and simply use the method used for

hard controls for the soft controls. Using this approach, two linear systems are solved:

first, a linear system is solved to compute the Lagrange multipliers that will determine

_
q

0

, then a linear system is solved to project _
q

0

into the subspace allowed by the hard

constraints.

The method of computing the soft controls independently has a serious drawback: it

does not achieve the desired solution. Consider a case where two points are connected

with a hard control constraining their distance, and a soft control pulling one of the

points to the right, depicted in Figure 3.7. The soft control alone would move one of

the points, violating the hard control. When this is projected into the legal subspace,

part of the motion world be cancelled out. However, if all the controls were treated

equally, the other point could be moved to satisfy the hard control.

An alternative is to account for the hard controls in computing _
q

0

. We compute _
q

0

using the methods we would use for the hard controls, except that we include both the

hard controls and the soft controls in the computation. Damping must be used in case
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the controls conflict. We then solve an optimization problem again using the result of

the first solution as _
q

0

, and just using the hard controls as constraints. I first used this

technique in the Briar drawing program described in Section 9.1, and therefore call it

the Briar-style solver.

In cases where all the controls, both soft and hard, are consistent, the Briar-style

solver has the nice property that both hard and soft controls behave the same. It is

also the case that the effort in solving the linear system twice can be avoided by first

checking to see if J _q
0

= _p; in which case _
q

c

will trivially be 0. When using an iterative

linear system solver, as described in Section 4.3.1, this check happens automatically.

However, if we knew that the hard and soft controls did not conflict, then there

would be no need to have soft controls. In the cases where there are conflicts, the

Briar-style solver has a few drawbacks. Most obvious is that it requires solving the

linear system twice, which can be expensive. Also, since solving the larger system will

have conflicting constraints, damping must be used. The solver does not actually solve

Equation 3.31, but instead minimizes the difference between the damped result, which

already partially accounts for the hard constraints.

Spring Controls

An alternate method to compute _
q

0

is to use gradient descent to drive the soft controls

to their desired values. We compute _
q

0

to have the direction of the gradient of the soft

control functions, and a magnitude proportional to how far from the target it is,

_
q

0

= kJ

s

(p

s

� f

s

(q)); (3:32)

where k is a scaling constant. This causes the controls to be pulled towards their desired

values with a decaying attraction: as the control nears its desired value, the rate at which

it is being pulled is decreased. In the physical analogy of Section 1.2.2, this attraction

is a spring. Equation 3.32 is the generalized force version of Hooke’s law.

I will call these spring-like controls spring controls or simply springs. Their method

can be viewed as a cheap way to estimate the Lagrange Multiplier, an attempt to use gra-

dient descent to achieve desired values for the soft controls, or as generalized springs,

if we view the optimization as a physical simulation. Despite the fact that they are a

little harder to justify, they do work very well.

3.6 An Alternate Technique

The methods presented in the last sections described Lagrange multiplier techniques

for solving constrained optimization problems with linear constraints and a quadratic

objective function. The methods build a linear system and solve for an intermediate

result, the Lagrange multipliers. The methods have the advantage that they permit the

use of any quadratic objective function.
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Often, we do not exploit generality of the Lagrange multiplier formulation. For

example, the simple objective functions of Equation 3.6 or Equation 3.26 may be suf-

ficient. In such cases, alternate, special purpose solution methods are sufficient.

The objective function that simply minimizes the magnitude of _
q gives an important

special case called a linear least squares problem. This is a very standard problem in

numerical analysis. Example solving methods include singular value decomposition

(SVD), QR factorization, and pseudo-inverses. These methods, and many others, are

discussed in [GL89]. Unfortunately, these methods are almost all extremely expensive

to compute, as they are unable to exploit properties of the problems such as sparsity

that we will use in the next chapter to speed performance.

Iterative solvers may also be used to solve the linear least squares problem. In

particular, conjugate-gradient solvers, discussed in Section 4.3.1, are relevant to im-

plementing the differential approach. Variants of conjugate-gradient find a solution to

the linear system, but have the property that the solution they provide to a linear sys-

tem is solution closest to the starting point. Therefore, if the solver is begun with a

zero starting point, the solution with least magnitude is found. The conjugate-gradient

linear system solver in the Numerical Recipes text [PFTV86] is such a solver. To im-

plement soft controls using the conjugate-gradient, Equation 3.28 is solved for _
q

c

using

the conjugate-gradient solver.

Using a least squares solver to implement the differential approach effectively solves

Equation 3.4 directly, without first computing the Lagrange multipliers. For instance,

implementing the differential approach by using a conjugate gradient algorithm works

very well. The solver given in the text of Press et al.[PFTV86] permits the two most

often used objective functions, and handles over-determined cases by providing a min-

imum norm residual solution to the linear system. Using the algorithm is a very practi-

cal way to implement the differential approach. It performs extremely well in practice.

This method served as the backbone of my early implementations, and is available by

a run-time switch even in my most current versions.

The obvious question is why bother developing a more complex technique when

the simpler approach works so well. The three main reasons for using the Lagrange

multiplier techniques in this chapter over the simpler “direct” approaches such as using

conjugate-gradient are: the intermediate result of the Lagrange multiplier techniques

(the Lagrange multipliers) will be useful in certain interaction techniques such as the

active set methods of Section 6.4; they place few restrictions on the linear system solver

that is used, so that fast algorithms can be found; and, they extend to other quadratic

objective functions. However, in cases where these advantages are not required, the

simpler approach is worth considering. The approach handles the two most often used

objective functions, those of Equation 3.6 and Equation 3.26, so it is often sufficient.
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3.7 A Concrete Example

To review the basic techniques of this chapter, we now consider a complete example in

detail. Our object will be a fixed length line segment with a unit radius, represented by

the position of its center and its orientation. The control we will create is the position

of its endpoint. The state variables are q = fq

cx

;q

cy

;q

theta

g; and the controls are

p = fp

x

;p

y

g.

The control functions are:

p

x

= f

x

(q) = q

cx

+ cosq
�

(3.33)

p

y

= f

y

(q) = q

cy

+ sinq
�

:

The core of the implementation will be the differential optimization that will com-

pute a value for _
q given a value for q and _

p . This routine must first compute the

Jacobian of the controls, J, as a function of q :

J =

"

1 0 � sinq
�

0 1 + cosq
�

#

: (3:34)

It then can compute values for the Lagrange multipliers by solving the linear system

_
p = JJ

T

� (3:35)

for �; and then computing _
q as

_
q = J

T

�: (3:36)

Suppose at the current time, the line was at a 45 degree angle with its center at the

origin (q = [0; 0; �=4]), and that the control specifies the endpoint to move right with

unit velocity ( _p = [1; 0]). The Jacobian of the controls is then

J =

"

1 0 �:707

0 1 :707

#

: (3:37)

To compute the _
q, we must first solve the linear system

"

1:5 �0:5

�0:5 1:5

#

� =

"

1

0

#

; (3:38)

then use Equation 3.36 to determine _
q. At this particular instant, � = [:75 :25]; so

_q = [:75 :25 � :35]. If we were to use an Euler step with step size .1, the configuration

at the end of the step would be q = [:075 :025 :75]:

The basic control for interaction will be to repeatedly take ODE solver steps, inter-

leaving redraw between the steps to give the illusion of motion. This solver will call the

differential optimization routine, possibly several times per iteration. The ODE solver
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will also have to provide values for _
p to the optimization routine. These values are what

accounts for the user’s motions; for example, they might be tied to the input device.

Methods for determining desired velocities will be discussed in Section 6.3, however,

one simple way of getting _
p from the input device is to use decaying attraction: we

compute the vector from the position of the control to the pointer, and use a multiple

of this for _
p.

In this example, we are already using multiple controls, one for each axis. Even

more controls could be added. For example, suppose we wanted to add two more

controls that position the other end of the line segment. These controls are computed

by

p

x2

= f

x

(q) = q

cx

� cosq
�

(3.39)

p

y2

= f

y

(q) = q

cy

� sinq
�

:

The Jacobian would now be a 4 by 3 matrix.

Since we most likely will not have two mice, rather than permitting the user to

control the position of the second point, we might want to constrain it to remain at the

origin. This would require specifying p

x2

and p

y2

to have values that caused the point

to move towards the origin, e.g. to be a negatively scaled multiple of the position of the

point.

Clearly, these controls will conflict: the mouse might attempt to pull the other end-

point away from the origin. This will cause the matrix JJT to be singular. In order

to solve the linear system, we might add damping by adding a small amount to the

diagonal elements of the 4 by 4 matrix.

We might instead wish to drag the endpoint subject to the constraint that the other

endpoint remains at the origin, that is, the mouse should not be able to rip the other

endpoint from its resting point, but other than that, should be able to drag its endpoint

as well as possible. To do this, we use soft controls.

To compute the optimization with the soft controls, we first must compute a value

for _
q

0

by computing the Jacobian of the soft controls with Equation 3.40, and multiply

this by the desired value of the soft controls. The regular controls are now just the

opposite endpoint, so the Jacobian is simply the 2x3 matrix of their derivatives. To

compute _
q we first compute the Lagrange multipliers by solving the linear system

_p� J _q

0

= JJ

T

�: (3:40)

We use that to compute _
q by

_
q =

_
q

0

+ J

T

�: (3:41)

3.8 Summary

In this section we review the techniques presented in this chapter for solving the dif-

ferential optimization problem, summarize the procedure for implementing it, and de-
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n number of controls

m number of state variables

q state vector (m-vector)

p values of the controls (n-vector)

f function to compute the controls, p = f(q)

_
q time derivative of q (m-vector)

_
p time derivative of p (n-vector)

J Jacobian of f (n�m matrix), J = @f=@q

E optimization objective

� Lagrange multipliers (n-vector)

� damping factor (scalar or n-vector)

q0 default value for q

ps soft controls

fs function computing soft controls

Js Jacobian @f

s

=@q

M metric (m�m matrix)

W inverse metric M�1 (m�m matrix)

g functions whose change is minimized to define M

G Jacobian @g=@q

Table 3.1: Symbols defined in this chapter, and used throughout the thesis.

scribe the caveats as to solving the more general, numerical optimization problem. The

symbols used throughout this chapter, and for the rest of the thesis are reviewed in Table

3.1.

The differential optimization takes the current value of the state q, and the functions

that define the controls and objectives as givens. From these givens, the current values

of the controls and the Jacobians of the controls and objective metric functions can be

computed, so they too are considered givens. The procedure is as follows:

1. Compute the _
q

0

value of the force controls, if any, using the damped spring for-

mula of Equation 3.32, or some other methods.

2. Find the metric, M; and its inverse. Often, the identity matrix is used instead.

Computing a metric involves computing the Jacobian of g:

3. Compute the Jacobian of f; J.

4. Compute the Lagrange multipliers, using some variant of Equation 3.20. Most

likely, some damping will be used on some of the controls.

5. Compute _
q , for example by Equation 3.8.
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6. If this computation was to compute both the hard and soft controls in a Briar-style

solver (as in Section 3.5.1), remove the soft controls, set _q

0

= _q; and return to

step 3. For the second time through, less damping might be used.

The differential optimization solves for _
q, given _

p and q. It makes use of the control

function (f) and its Jacobian (which is a function of q ). If a metric is to be defined, a

set of functions (g) and its Jacobian will be needed as well. The process has a single

tunable parameter, which is the amount of damping (�). � might be a vector if damping

values are to be provided for each control.

To emphasize, being able to solve the differential optimization problem

_q = O

(t;f)

(q; _p): (3:42)

is not the same as being able to solve the general control equation

q = f

�1

(p): (3:43)

In fact, being able to solve Equation 3.42 does not necessarily allow solving Equa-

tion 3.43. There are two main reasons for this: we need to know what _
p will achieve

the changes necessary to get the desired values of p; and, once we have _
q, we don’t

necessarily know what q is at some future time.

Given a desired value for p, the most obvious way to proceed differentially is to

use a _
p that changes the value as needed, e.g. if the value of a control is too high, make

it decrease. However, heading straight for the goal is only a heuristic that can often

fail, for example, if there is a local minimum. Also, there is no certainty that there is

velocity _
p that will achieve the desired controls, either if there is no way to achieve the

desired controls at all, or if there is simply no continuous path through state space.

Even if a direction for _
p is known, and the corresponding _

q that achieves it can

be found, there is no guarantee that the correct q can be found. Finding values of q

requires solving the ordinary differential equation of Equation 3.42 for q.
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Chapter 4

The secret to walking on water is knowing where the rocks

are.

— Herb Cohen

Vail Symposium 14 poster

Efficient Solution Techniques

In the previous chapter, we introduced methods for implementing the differential ap-

proach. In this chapter, we now consider how to solve the differential optimization

problems efficiently.

4.1 The Demands of Interactive Systems

Interactive systems place a different set of demands on numerical techniques than more

traditional, batch computation applications might.

One unique demand of the numerical problems in interactive systems is that they

are dynamic. Because the equations are created in response to the users’ actions, they

are not known when the system is created. More significantly, the set of equations to

be solved is continually changing in response to the user. This dynamic nature of the

numerical problem means that we must be able to define equations at run time, which

will be addressed in Chapter 5. Solution methods that rely on extensive pre-analysis are

to be avoided as the problem being solved may change before the cost of the analysis

can be amortized.

A common practice in numerical computations is to adapt the solution methods on

a per problem basis. This ranges from experimenting with different algorithms to see

which best solves a given problem, to adjusting parameters to make solvers converge.

Such per problem tweaking is unacceptable in the setting of an interactive system. Not

only is the problem continually changing, but we would like to insulate the user from the

mathematics. We do not want the user to have to learn about constrained optimization

just to draw a picture.

Speed is an important consideration for numerical routines. For the differential

approach, it is critical. If the computations are not fast enough, the system will not

be able to provide the smooth motion which is demanded by direct manipulation. We

also must be concerned with scalability, that is how the methods will perform as the

problems grow larger.

65
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Accuracy, typically an important concern in numerical analysis, is less critical to

interactive systems. This is important since there is often a tradeoff between the time

a computation takes and how accurate it is. The accuracy required is typically limited

by factors such as device resolution. In the cases where users demand sub-pixel accu-

racy, for example when designing an object that is to be manufactured, the accuracy

demands are typically known. Even in applications where high accuracy is required,

fast, inaccurate methods are useful if these results can be refined.

While accuracy is not essential for interactive applications, stability is. Numerical

instabilities can cause such undesirable effects as objects wobbling or flying off the

screen. Stability is, therefore, an important concern for interactive systems.

For the purpose of this thesis, there is an additional goal for the numerical routines.

We would prefer techniques that are simple and widely available. For several of the

numerical problems we face, for example solving linear systems and ordinary differen-

tial equations, a vast array of sophisticated software packages are available, both from

public sources and commercial vendors. Development of such algorithms is beyond the

scope of this thesis. Similarly, relying on a particular software package would make

the approach harder to reproduce and port.1

4.1.1 Basic Methods for Achieving Performance

There are a few general strategies for improving the performance of the computations.

These will be applied in various ways throughout this chapter.

Trade Accuracy for Performance — As discussed earlier, in an interactive system,

we are often willing to trade accuracy for performance. Techniques for doing this

will be discussed in Section 4.5. It is generally not acceptable to trade stability

for performance.

Trade Convergence for Iteration Rate — As a control moves towards a goal value,

it is more important that it moves with smooth motion than that it gets to its goal

in a minimum amount of time.

Exploit Sparsity — The matrices involved in the differential optimization problems

are filled mainly with zeros. It is crucial to exploit this fact, both for speed and

memory usage.

Reduce the Problem Size — In the next section, we will see that the computational

complexity of the differential methods is linear in the number of variables and

quadratic in the number of constraints. Therefore, to handle larger problems, the

size of the numerical problems actually solved must be reduced, while giving the

user the illusion that the system is solving the larger problem.

1The work of Mark Surles[Sur92a, Sur92b] has such a problem. Anyone wishing to reproduce the

results must purchase an expensive sparse matrix package on which the work relies.
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Reuse Previous Results — Many intermediate results are used by several later com-

putations. Caching such intermediate results can avoid redundant computation.

Caching will be discussed in the next chapter.

One other important method for speeding numerical computations is to exploit spe-

cial cases. For example, extremely efficient algorithms exist for solving n-body dy-

namics problems, finite elements, diagonal matrices, and the kinematics of articulated

chains. However, the goals of the differential approach demand general purpose solu-

tions. We therefore focus on general purpose methods for enhancing performance.

4.2 Scalability of the Differential Approach

With the differential approach, it is important that the redraw steps happen fast enough

to give the illusion of continuous motion. As the number of objects and controls grows,

so does the time required to make a step. In this section, we consider how the perfor-

mance of solving in the differential approach scales as problems get larger, and identify

the bottlenecks in performance. We are primarily concerned with parts of the compu-

tation that scale worse than linearly.

The problem size of the differential approach can grow in two ways: the number

of controls (n); and the number of variables or objects (m): For complexity analysis

purposes we consider variables and objects equivalent because each object will have a

small constant number of variables. For all interesting cases, m > n; otherwise there

will certainly be redundant or conflicting controls.

We consider only the complexity of solving the differential optimization problems.

Other parts of the system might scale badly: for example, an input technique might

need to examine all pairs of objects (requiringO(m

2

) time), or a rendering computation

might require solving for interactions among all objects. However, such issues would

need to be addressed in non-differential approaches as well. ODE solving, the other

part of the differential approach’s computation, will require a small constant number

of calls to the differential optimization solver for the kinds of ODE solvers we might

consider.

With arbitrary controls, the computation costs of the differential approach are al-

most unbounded. For example, we might have a control on the average center of each

combination of 4 objects, requiring a combinatorial explosion just to enumerate the

terms in the expression. However, for analysis we make some assumptions that are

rarely violated in practice:

1. Objects are independent, therefore, the addition of another object does not change

the number of variables an object has, or the amount of time that it takes to com-

pute attributes.
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2. Controls are independent, therefore, the addition of another control does not

change the number of variables a control depends on or adversely change the

amount of time to compute a control’s value. Some optimizations, such as no-

tably common subexpression sharing, may speed evaluations.

3. Controls depend on a fixed number of variables, independently of the total num-

ber of variables or controls in the system. This restriction eliminates controls on

the aggregate of all objects, for example the center of mass of all objects in the

world.

From these three assumptions, it follows that n and m are independent. It also

follows that the time to compute the values for the controls isO(n); because computing

each of n controls cannot depend on either n or m: By a similar argument, the Jacobian

of the controls can also be computed in O(n) time.

The fact that the Jacobian of the controls (J) can be computed in O(n) time is

significant, and non-obvious. J is an n�m matrix, so it would takeO(nm) time just to

fill the matrix with 0s. The key observation is that we do not have to store all the values

in the matrix because many of them will be zero, that is, the matrix is sparse. Each row

depends only on the variables that its control depends on, which is independent of n or

m: Therefore, the entire matrix will contain only O(n) entries. By exploiting sparsity,

this can be stored and accessed in O(n) time. Exploiting sparsity is an important tool

in implementing the differential approach.

Computing the differential optimization requires solving a linear system with the

n � n matrix JJT
: This matrix can be built in O(n

2

) time because each element is

computed by the dot product of two constant length vectors. Solving the linear system,

with a standard method such as Gaussian Elimination, would be anO(n

3

) process. This

unacceptable asymptotic performance can be improved by exploiting sparsity.

For certain classes of sparse matrices, linear systems can be solved in much less

than O(n

3

) time. For example, if the matrix has constant bandwidth, solving time

is O(n): For certain configurations of controls, the matrices will have this structure.

Surles[Sur92a] describes why important problems in molecular biology and other do-

mains have this structure, and describes techniques for solving such constraint systems

using methods very similar to the differential approach [Sur92b]. Unfortunately, if we

permit constraints among arbitrary objects, as we must for the general differential ap-

proach, we do not know the structure of the matrix a priori. In fact, there is no guarantee

that the matrix JJT will be sparse.

The way to exploit sparsity without making restrictions on the way objects can be

connected is to avoid constructing JJT
: Many types of iterative linear system solvers,

such as the Conjugate-Gradient techniques discussed later, access the matrices only by

multiplying them by a vector. Using the associativity of matrices, the multiplication

JJTx can be achieved by doing two matrix by vector multiplies. Each of these would

take O(n) time because that is the number of entries are in the matrix J. Technically,
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Figure 4.1: Sparsity patterns depicted by filling potentially non-zero elements with grey. Left:

Since each object defines a few functions to contribute to the metric, and these functions depend

only on the object’s variables, the Jacobian will be block-sparse with a rectangular region for

each object. Right: When the Jacobian is multiplied by its transpose, the blocks do not interact

with each other, leading to independent squares along the diagonal of the matrix. This form of

sparsity is called block-diagonal.

these multiplies will take O(m) time because the intermediate result JTx is a vector of

length m; and m > n: However, if m� n; the vector will be sparse, so sparse vector

techniques reduce things back to O(n): Using a solver that requires only O(n) of these

matrix vector multiplies means that the linear system can be solved in O(n

2

) time.

Empirical results using a Conjugate-Gradient solver confirming this are discussed in

Appendix B.

4.2.1 Complexity of the Metric

The above discussion ignored the metric. M is an m � m matrix, so in the general

case, simply filling it or inverting it would dominate the asymptotic complexity of the

differential solving. This complexity prohibits using arbitrary metrics or using the op-

timization objective to find the soft controls as described in Section 3.5.1. With some

reasonable restrictions, metrics can be supported without adversely effecting the com-

putational complexity. To the restrictions of the previous section, we add

4. Each object defines its metric (e.g. its contributions to g) independently.

All of the arguments for evaluating the controls and their Jacobian apply to g as well.

However, since each row of G can only depend on the variables of one object, we

know that the matrix must have a block structure, depicted in Figure 4.1. When this is

multiplied by its transpose to form the metric, the matrix will be block diagonal with a

block for each object, and block sizes equal to the number of variables that each object

has.

The block sparsity of the metric is important. It has only O(m) entries, and can

be inverted in O(m) time because each of the blocks is independent. Using the same

associativity argument as for JJTx; the matrix multiplication JWJTx also will take

O(n

2

) time. The same arguments apply for the diagonal metric.
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4.3 Solving the Linear System

To compute the Lagrange multipliers, we must solve a linear system which can be

written in the standard form

A� = b; (4:1)

where A is a square matrix of size equal to the number of constraints, and is determined

by the Jacobians of the control functions, and b is a vector computed from the control

values. For example, in the simplest form of the differential optimization, A is JJT ;

and b is _
p.

In choosing a numerical algorithm to solve the linear system, we first must consider

the properties of A: First, it will always be positive semi-definite, and in the cases with

damping, positive definite. It will also always be symmetric. These properties hold

because it is created by multiplying a matrix by its transpose and altering the diagonal.

The most important property of A with regard to solving it efficiently is that it will

be sparse. Or, more precisely, it will be created by multiplying a set of sparse matrices.

This is significant because in this section we will show an algorithm which does not

actually ever build A: The structure of A relates to the constraint problem at hand. In

particular, an element of A will be non-zero if the two constraints (one corresponding

to the row, one corresponding to the column) share a variable.

Solving a linear system is an O(n

3

) process in general. Exploiting the sparsity of

the matrices is important to achieving better performance. Sparse matrix techniques

generally fall into two categories: direct and iterative methods. Direct methods take

advantage of the structure of the matrix problem to solve the linear system as quickly as

possible. For matrices where the structure is unknown, the algorithms do a pre-analysis

to find the structure of the matrix so it can be solved quickly. Direct methods are not

well suited to the purposes of this thesis for several reasons. First, because the struc-

ture of the matrix is continually changing, the pre-analysis must be done often making

its cost difficult to amortize. Secondly, direct methods’ computational complexity is

proportional to the bandwidth of the matrix, so it is possible that even for an extremely

sparse matrix, the cost will still be O(n

3

): Finally, direct methods are complicated to

implement.

Iterative methods solve linear systems by repeatedly performing a calculation that

eventually converges on the solution. Such methods offer an opportunity to trade ac-

curacy for performance by controlling the tolerance to which the solver is required

to achieve. By setting a larger tolerance, the algorithm is permitted to stop before it

achieves an exact solution. In Section 4.2, an argument was given that with an iterative

solver that does only a constant number of matrix vector multiplies per iteration, O(n

2

)

performance could be achieved for the differential approach. The particular type of al-

gorithm suggested for use in the differential approach, Conjugate-Gradient methods,

offers this performance and several other advantages.
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4.3.1 Conjugate-Gradient Linear System Solving

Conjugate-Gradient is a class of iterative algorithms for solving linear systems, non-

linear systems, and optimization problems. Surveys of Conjugate-Gradient methods

for solving linear systems are provided in [PS82] and [She94]. [GL89] also provides a

good introduction to the techniques. The actual solver I have used is adapted from the

one presented in [PFTV86]. We briefly review some of the important attributes of the

algorithm here.

Conjugate-Gradient algorithms operate by repeatedly refining an estimate to the

solution of the system of equations. Consider the current estimate as a point in n-

dimensional space. At each iteration, the algorithm chooses a direction in which to

move the estimate, computes a distance to travel in this direction, and finally updates

the estimate accordingly. This process is repeated until the estimate is sufficiently close

to being a solution, which can be quickly checked by inserting the estimate into the

equation and measuring the error.

The key piece of a Conjugate-Gradient algorithm is how it selects directions to

move its estimate in. For each iteration, a direction is chosen that is conjugate (orthog-

onal) to the preceding directions. Since a set of mutually conjugate vectors in n-space

has n elements, a conjugate gradient algorithm, under ideal situations, would require at

mostn iterations to get an exact solution. In practice, numerical inaccuracies may cause

the solver to require more iterations on ill-conditioned problems. Because we are not

as concerned with accuracy, we will settle for stopping the solver before it completely

converges in ill-conditioned cases, limiting it to O(n) iterations.

At each iteration, a conjugate gradient algorithm must compute a new direction,

find a step length in this direction, revise the estimate, and compute the error residual.

The only part of this which actually must access the matrix are the first and last step.

What is most significant for our purposes here is that in those steps, the only accesses

to the matrix are to multiply it by a vector.

The Conjugate-Gradient technique leads to a family of algorithms. Many of the

more sophisticated algorithms, such as LSQR algorithm introduced in [PS82], provide

greater precision and more tolerance of numerical errors. As discussed in the paper

introducing LSQR, the more sophisticated algorithms offer advantages only when high

accuracy is required and when the matrix is ill-conditioned. However, as discussed in

Section 4.1, the standard tradeoffs of numerical analysis do not apply to our applica-

tions. Since getting an answer quickly is more important than obtaining a high-accuracy

answer, the more traditional Conjugate-Gradient methods may be actually be more de-

sirable for our purposes.

4.3.2 Selection of a Linear System Solving Algorithm

Solving the linear system dominates the computational complexity of the differential

approach. Selecting the algorithm is, therefore, an important decision.
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From my experience, a Conjugate-Gradient solver is the best candidate for use in

the differential approach because:

1. It exploits sparsity irrespective of the form of the matrix to be solved, leading to

O(n

2

) performance in typical applications that meet the assumptions of Section

4.2.

2. It is simpler to implement than other general sparse matrix solvers such as direct

methods.

3. It does not need to form the actual matrix that defines the linear system, which

may not be sparse. Instead, it simply uses the Jacobian matrices that make it up,

avoiding multiplying the Jacobian by its transpose.

4. The only operations it requires from the Jacobian is the ability to multiply by it

and its transpose by a vector, providing freedom in choosing the representation

for J:

5. The stopping criteria can be adjusted to trade accuracy for performance by ac-

cepting solutions within a larger tolerance.

Most other approaches to solving the linear system in the differential optimiza-

tion problem fail to provide one of these advantages. Other solvers potentially offer

other advantages, for example lower overhead, more accuracy, or better tolerance of

numerical errors, however, these advantages are often outweighed by those listed for

Conjugate-Gradient. For example, a Cholesky factorization, as presented in [PFTV86],

is a very efficient way to solve linear systems with positive-definite symmetric matrices,

just what is needed for the differential approach. Such a solver has O(n

3

) performance,

but with a very small constant, and is numerically stable. For small problems, the small

constants of the Cholesky algorithm might make it a faster method. However, even in

these cases, performing the matrix multiply JJT is often expensive enough to outweigh

the performance gains in the linear system solver.

Other iterative solvers may compete with Conjugate-Gradient in some applications.

The performance of iterative solvers is very problem dependent. My experimentation

shows Conjugate-Gradient to be vastly superior than simpler Jacobi iterative solvers.

Implementing Gauss-Seidel iteration or Successive Over-Relaxation (SOR) is difficult

with the matrix representations used in my implementation (discussed in the next chap-

ter), as column operations cannot be implemented efficiently.

If the matrices to be solved have a known sparsity pattern for which an efficient,

special purpose solver exists, such a solver would probably be preferable to using

conjugate-gradient. For example, if the matrix is known to be banded with a narrow

bandwidth, linear time algorithms can be used. However, selective use of special pur-

pose solvers has not been explored in this thesis as I have tried to emphasize general

purpose techniques.
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4.3.3 Partitioning the matrix

One very important type of sparsity that will often be useful to exploit in the differential

approach is partitioning. In some cases, the rows of the linear system may not all depend

on one another, that is, they may be partitioned into separate, smaller pieces, similar to

those shown in Figure 4.1. With the differential approach, a partionable matrix occurs

whenever there are groups of objects that do not share any controls. Partitioning breaks

the large matrix into smaller pieces when they are independent.

The reasons for partitioning the matrix include:

1. Solving several smaller problems will be faster than a single large one if the

complexity is greater than linear.

2. If one of the partitions is ill-conditioned, it can have bad effects on the other

partitions.

3. Some of the partitions may be trivial to solve. This is especially true in cases like

constraint-based drawing where one partition will be receiving user input, and

the other partitions will be sitting idle.

Reason 1 is not as important with the conjugate-gradient method, described in Sec-

tion 4.3.1. In a sense, the Conjugate-Gradient algorithm solves the disconnected par-

titions in parallel. However, the solver must take the number of iterations required to

solve the largest block. The savings is, therefore, not as great as when a straight O(n

2

)

or O(n

3

) solver is used. However, the savings can be considerable when one block

requires many iterations, for example if it is large or ill-conditioned, and many other

blocks can be solved quickly, either by trivial checks or because they are small.

Reason 2 is particularly important with the conjugate gradient methods described

in Section 4.3.1. If any partition of the matrix is ill-conditioned, the steps the solver

will take will involve very small direction vectors and very large scaling factors. The

parts of the direction vector that correspond to the well-determined partitions of the

matrix will contain extremely small numbers, so the large steps should not have any

effect. However, because of floating point inaccuracy in representing the very large

and very small numbers, much error is introduced. The net effect of this in differential

manipulation is that if there are any controls which are ill-conditioned they will cause

completely disconnected graphical objects to jiggle.

An algorithm for partitioning

One of the features of partitioning is that it is simple and fast to implement. To partition

JJT
; it is sufficient to order J:

We begin with each variable in a disjoint set. For each constraint, we union the dis-

joint sets that correspond to each variable that the constraint affects. When completed,

we can then gather each set together into the state vector.
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The key piece to performing the partitioning is that we can do the disjoint set union

and find operations very quickly. In fact, using an extremely simple algorithm, the

unions and finds can be performed in nearly linear time2. The disjoint set union and

find algorithms, along with a complexity analysis, are provided in [Cor89].

The partitioning algorithm runs in time linear with the number of variables and the

number of non-zero elements of the matrix. Since the algorithm must actually have

the matrix to partition, and filling the matrix takes time proportional to the number of

non-zero elements in it, computing J is often the most expensive step in partitioning.

4.4 Reducing Problem Size

As described in Section 4.2, solving the linear system in the differential optimization

is the dominant factor in the computational complexity of the differential approach.

Without placing restrictions on the problems, it is unlikely that we can achieve better

than O(n

2

) complexity for general constraint problems. We must find ways to keep

n small, without restricting the size of the problems that the user actually works on.

That is, to find methods which give the user the illusion that the system is working on

a larger problem, while in fact, the problem’s size has been reduced.

Partitioning, described in the previous section, is an example of a method for trans-

parently reducing the problem size by solving a set of smaller problems rather than the

larger problem.

If we know how some variables are going to change by some other means, the ex-

pense of solving the differential problem is not required. For example, If we know that

an object is frozen in place, we know that it will not move, and that the time deriva-

tives of its variables are simply zero. We can implement the constraints by removing

the object’s variables from the set of variables solved for, rather than by adding more

equations.

For complexity purposes, m and n are really the number of active variables and

constraints, that is the number that might actually have an affect on the current step.

We can discount objects if there are no controls that may cause them to move or if there

is something else which requires that they do not change. We can forget a control if it

does not effect any changeable objects. We call the set of variables and constraints that

are actually participating the working set.3

In general, adding a new control or constraint adds to n and therefore makes the

differential optimization more expensive to compute. However, constraints realized by

removing variables from the working set instead reduce m rather than increasing n;

speeding computations. Such constraints are represented implicitly in the structure of

2Actually, it is inverse Ackerman worse than linear, but since the inverse Ackerman is a small constant

(< 5) for any quantity we are likely to encounter, we can consider it to be linear.
3The other obvious term, active set, already means something else.



4.4. REDUCING PROBLEM SIZE 75

the problem, rather than explicitly by an equation.

Freezing an object is a simple example of a constraint that can be implemented

implicitly. Specifying that an object is to be frozen, e.g. that it must not change, could

be represented by explicitly placing a control on each variable. However, the effects

of these controls are known: they will cause the variables not to change. Since the

variables will not change, they can be removed from the working set. Without variables

in the working set, the object is constrained not to move, however, this constraint is

represented implicitly in the structure of the problem.

Implicit constraints generalize to sets of individual variables. For example, a line

segment has four degrees of freedom. Freezing its length can be implemented by ex-

plicitly placing a controller on a length connector. However, if the line segment’s rep-

resentation included a separate independent variable for length, this variable could be

removed from the working set to implicitly represent the length constraint. This was

how the fixed length line segment of Section 3.7 was created.

Implicit constraints are representation dependent. In the example above, if the pro-

grammer had chosen a different representation for the line segment, for example to

represent it by the positions of its endpoints, the length constraint could not be imple-

mented as an implicit constraint.

Often, it is worthwhile to choose representations to maximize the number of implicit

constraints. For example, in a planar mechanisms simulator like the one described in

Section 9.2 most line segments represent rigid linkage rods. Therefore, a representation

is used that has length as a variable. This way the commonly needed constraint that the

line is a rigid length can be realized as an implicit constraint.

Finding new representations of objects is a difficult problem, especially when we

cannot anticipate the types of constraints and combinations that will be desired. In

fact, the whole differential approach is a response to the problem that representations

cannot simply be derived on demand. In terms of physical simulation methods, finding

new representations is equivalent to deriving new equations of motion with Lagrangian

dynamics techniques.

Finding new parameterizations is equivalent to symbolically solving the non-linear

systems of equations. This task is not automatable for any general class of problems.

Although it is not possible to create new representations either dynamically or in a

general, automatic way, it is possible to create multiple representations for important

cases of controls on objects.

It is conceivable to build a system that changes the representation of objects to

maximize the number of implicit constraints. This requires solving a combinatorial

optimization problem. Globally optimizing for the maximum number of constraints is

most likely difficult.4 Incremental methods might provide different results depending

on the order the controls are added, which may be a problem since the behavior of

implicit constraints and standard controls differ.

4I believe it to be NP-hard, although I do not have a proof.
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Another form of implicit constraint is merging, that is having multiple parameters

access the same variable, as seen in ThingLab [Bor81]. Merging is an implicit con-

straint for equating parameters. Because merged parameters share a single variable,

they have exactly the same value. A more general variant of merging views a variable

as an input. It can either be connected to a slot in the state vector, or connected to some

output. This effectively mixes local propagation into the numerical methods.

Implicit constraints are exact. If an object is frozen, it stays exactly fixed. Two

merged quantities are exactly equal. While this exact equality can be an asset, it can

also be a problem as it means the constraint behaves differently than its explicit coun-

terpart. This can be particularly troublesome in cases where the solver might break the

equality constraint slightly, for example to achieve a least squares solution to an over-

constrained problem. This distinction becomes significant when the system switches

between the two types of constraints.

4.5 Trading Accuracy for Performance

Trading accuracy for performance is an important method for improving the perfor-

mance of the differential approach.

Using simple ODE solvers with fixed step sizes is one way to trade accuracy for

performance. The simpler ODE solvers compute rough solutions quickly, and then

permit feedback terms to clean up the results in subsequent steps. This is useful because

it gives a rough answer quickly, but provides a more accurate answer over time. For

example, in dragging an object, the accuracy needed might be low. When the user

stops to examine a situation more closely, the solution has a moment to become more

accurate, and by the time the user has decided that a solution is acceptable enough to

print or render at high resolution, the constraints are fully converged.

Varying the step size of the ODE solver is another way to trade accuracy for per-

formance. Larger step sizes cause larger apparent velocities on the screen, assuming

that control velocities are constant. As discussed in Section 3.3, larger step sizes may

be less accurate.

The use of a Conjugate-Gradient linear system solver provides another way to trade

accuracy for performance. By using a larger tolerance for the stopping criterion, the

solver can accept an answer more quickly if it finds an approximate one.

Many aspects of the methods used to handle inequalities effectively trade accuracy

for performance as well. For example, the simple scheme for selecting active sets of

Section 6.4.4 trades accurate solutions for faster solving. Not backing up the ODE

solver when an inequality boundary is crossed, as will be discussed in Section 6.4.5,

may also be viewed as another method to achieve performance by giving up accuracy.



Chapter 5

Do not worry about your problems with mathematics. I

can assure you that mine are far greater.

— Albert Einstein

Snap-Together Mathematics

The mathematical techniques of the previous chapters permit controlling graphical ob-

jects by specifying the derivatives of functions of their parameters. In this chapter, we

consider techniques for defining and evaluating these functions. The challenge stems

from the dynamic nature of interactive systems: objects change in response to system

actions as the system runs. This means that the functions that define controls must

be created on the fly, in response to user actions. In order to effectively implement the

mathematical calculations, we must evaluate the functions and their derivatives rapidly.

This chapter presents Snap-Together Mathematics, a toolkit for dynamically defining

functions and rapidly evaluating them and their derivatives.

With the differential approach, objects provide their attributes as output connec-

tors for other objects to use, and as attachment points for controllers that will control

the objects. These connectors compute functions of the objects’ parameters and in-

put dependencies, and must support the operations of attaching other object inputs and

controllers. Snap-Together Mathematics provides a mechanism for realizing the con-

nectors.

“Wiring” connector outputs to inputs builds new, more complicated functions from

the elements being assembled. Building a new function may happen any time a new

object, constraint or control is defined. It would be unacceptable if building a function

required an extensive symbolic math computation or for the program to be recompiled

and re-linked. Snap-Together Mathematics explicitly represents the expression graph

of connected functional elements as C++ data structures. A connector is simply the

output of a node in the expression graph. We will call the nodes blocks. To wire an

input, it merely needs to be given a reference to some output. Snap-Together Mathe-

maticshas efficient mechanisms for evaluating the values and derivatives of nodes by

traversing the graphs.

For example, consider an expression graph that represents connecting the endpoints

of two line segments together with an attachment constraint, as shown in schematically

Figure 5.1. In this figure, the line segments have a state vector to store their parameters

(x; y; �; l), and provide the positions of their endpoints as connectors. The inputs to

the attachment constraint are plugged into these output connectors. The output of the

77
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Figure 5.1: An expression graph representing two line segments connected by an attachment

constraint. The outputs of the line segment objects, their attribute connector, serve as inputs to

the attachment constraints. Function composition is also used inside the objects to build up the

functions representing graphical object attributes.

constraint is a function of the variables of both line segments, built by composing the

two attribute outputs with its own function. Snap-Together Mathematics allows this

plugging to happen dynamically, for example if the user specified the constraint with a

mouse click.

Snap-Together Mathematics provides a common protocol for block outputs, per-

mitting any output to be wired to any input. This is important as it allows objects with

inputs and those with outputs to be designed independently and dynamically snapped

together at run time as needed.

Inside the graphical objects, blocks are wired together to compute the attribute func-

tions. While these object functions could have been explicitly programmed because

they would have been known ahead of time, constructing them by wiring together sim-

pler blocks can simplify programming as it allows the programmer to avoid writing the

code to evaluate the derivatives.

Several other systems, such as CONDOR [Kas92] and the SPAR Modeling Test-

bed [FW88], have explicitly represented expression graphs to the user. In contrast,
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Snap-Together Mathematics provides the graph data structures as a general purpose

tool for the programmer. The programmer could implement a graph viewer and permit

the user to have direct access to the data structures. However, such an interface has not

been implemented with Snap-Together Mathematics. The style of applications which it

has been used to support intend to hide the mathematics from the user. Snap-Together

Mathematics has been used for a number of purposes other than the differential ap-

proach including physical simulation and optimization-based motion planning.

The elements of Snap-Together Mathematics are not novel. Explicitly representing

data flow graphs has been around for decades, and the techniques of automatic differ-

entiation (AD), required to rapidly evaluate the derivatives, are becoming a common

practice in the numerical analysis community. Snap-Together Mathematics addresses

a very different need than previous AD systems have. Dynamic composition and eval-

uation of functions and their derivatives was introduced in a system by Witkin and

Kass [WK88]. Snap-Together Mathematics is refines these basic ideas in an a simple,

general purpose toolkit, allowing direct support for the abstractions of the differential

approach. Snap-Together Mathematics was originally developed to support work in in-

teractive physical simulation [WGW90], but has evolved into a more general purpose

tool for encapsulating numerical computations.

5.1 Evaluating Functions

Evaluation is the most basic computation to be performed on expression graphs. In the

interactive applications which we are considering, expression graphs will be evaluated

many times per second, so performance is critical. The most efficient way to repeatedly

evaluate an expression is to compile it into machine code. Unfortunately, compiling and

linking code for each dynamically created expression is prohibitively expensive in the

programming environments presently available.

Other approaches to evaluating the expression graph are interpretive: traverse the

graph for each evaluation. Each node of the graph computes its output value, given

the values of its inputs. A set of primitive function elements are predefined at compile

time to do this. Evaluation of a node involves asking its predecessors for their output

values then computing the “local” function of the node.

Performance can be enhanced using caching to exploit two types of redundancy:

within an evaluation, common subexpressions need be evaluated only once (these subex-

pressions may be shared within one expression or between different expressions); be-

tween evaluations, certain old values might still be correct if some of the inputs did not

change. Re-computation can be avoided by storing the results of a calculation and, for

a later request, deciding whether this stored value is still correct. There are many pos-

sible ways to implement this cache validation; elaborate schemes might avoid some

re-computation, but will require additional computation and storage to make the de-
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termination. The more expensive the evaluations become, the more effort should be

expended to avoid excess evaluations.

5.2 Evaluating Derivatives

We will need to evaluate the derivatives of expressions with respect to some subset

of their inputs. Although the techniques extend to higher derivatives, for this discus-

sion, we will consider computing first derivatives since this is what the differential

approach’s methods require. Derivatives are taken with respect to a set of variables

that we call the working set of variables. The working set is a subset of the state vector.

We denote the concatenation of this set of variables into a vector by w: For a vector

expression f; the Jacobian, or first derivative, J is the matrix @f=@w. In this matrix,

each row corresponds to an element of f; while each column corresponds to a variable

in w:

There are three basic approaches to computing derivatives: approximate them nu-

merically, derive a symbolic expression for the derivatives, or compose them using

a process called automatic differentiation. The latter approach has been shown to be

superior both in performance and precision of the results [Gri89].

To understand the process of automatic differentiation, consider how derivatives

are computed manually. The chain rule allows us to decompose complicated functions

into smaller pieces. For example, if our expression is f = f(a; b; : : :), then the chain

rule yields

@f

@w

=

@f

@a

@a

@w

+

@f

@b

@b

@w

+ � � � : (5:1)

Differentiation involves recursive applications of the chain rule. If we are able to

evaluate the derivative of each of the primitive functions with respect to their inputs

then we can apply Equation 5.1 recursively to build the compound expressions. The

recursion bottoms out at the constants, whose derivatives are 0, and at the variables,

whose derivatives are 1 with respect to themselves and 0 with respect to others.

Symbolic differentiation applies the chain rule to an expression graph to transform

it into a new expression graph that evaluates the derivative. The resulting expression

must then be simplified to take advantage of the sparsity of the derivatives. Even then,

the symbolic differentiation of a vector with respect to a vector yields a matrix of ex-

pressions which is unwieldy to manage.

Automatic differentiation also applies the chain rule to expressions; however, rather

than symbolically composing more complicated expressions, the intermediate results

are combined numerically. For any node in the graph, if the inputs to equation 5.1 are

concatenated into a vector, the equation multiplies two matrices: the “local” Jacobian

of the outputs with respect to the inputs, and the derivatives of the inputs with respect

to the working set.
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Figure 5.2: A simple example of derivative composition. Signals carry both values (s) and

their derivatives (@s=@w). The function block computes its internal Jacobian and composes

the global Jacobian by multiplying the matrices.

We implement automatic differentiation by augmenting the expression graph with

the ability to pass derivatives as well as values along edges. In addition to comput-

ing its output values, each node of the expression graph must also be able to compute

the value of its local derivative, also a function of its inputs. The composition process

builds the “global” Jacobian by multiplying this matrix with intermediate result matri-

ces. By passing the entire intermediate result matrices along the edges of the graph,

the derivative matrix can be built in one traversal of the expression graph. The same

mechanisms for sharing intermediate results by caching as discussed in the previous

section apply.

A recursive descent of the expression graph computes the derivative matrix. Each

node in the graph is able to respond to requests for the derivative of its output with

respect to the current working set. Constants and variables not in the working set return

zero in response to this query. A state variable in the current working set returns a

vector with one in the position corresponding to the variable, and zeros elsewhere.

After determining that its cached value is not valid, a non-terminal node recursively

asks its children for their derivatives, computes its local Jacobian, and multiplies these

together to produce its derivative with respect to the current working set. Figure 5.2

demonstrates a simple example. Edges of the expression graph pass not only values,

but also their derivatives.
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This method of automatic differentiation assembles the Jacobian bottom-up, and is

called the forward-mode. The alternative reverse-mode, or top-down, approach is pre-

sented by [Gri89] and implemented for an interactive system by [Sap93]. This algo-

rithm reverses the order of the matrix multiplies, building the Jacobian matrix from the

top down. It has the advantage that the intermediate result matrices are of small, fixed

size. In the bottom-up approach, the size of intermediate matrices depends on the num-

ber of variables which contribute to that derivative. Because the intermediate results

are fixed-sized, the top-down approach can achieve linear asymptotic complexity in

places where the bottom-up approach has O(n

2

) complexity. However, this increased

worst-case performance on dense problems comes at the expense of considerable book-

keeping, inability to fully exploit sparsity, inability to share intermediate results, much

higher time constants, and difficulty in changing working sets.

It is important to recognize the generality of either of these derivative composition

processes. Each node of the expression graph need only to be able to compute its

local Jacobian, the derivative of its outputs with respect to its inputs. This matrix is

a function only of the input values, not their derivatives. Given the local Jacobians,

the composition process merely multiplies the matrices together to build the global

derivatives.

5.3 Sparse Representations

The critical performance issue in building the Jacobian matrix, as well as most calcu-

lations that use this result, is exploiting sparsity. Bottom-up matrix passing schemes

exploit sparsity by using sparse representations for the intermediate matrices. There

are many possible ways to represent a sparse matrix, with many tradeoffs to consider

in selecting a representation [DER86]. This decision is central to the design of an im-

plementation. One particular representation with which we have had success is the

half sparse matrix: a full vector of sparse vectors, as depicted in Figure 5.3. We call a

system based on these data structures a sparse vector scheme.

In the sparse vector scheme we consider every output in the expression as an inde-

pendent scalar, even if higher levels will interpret them as pieces of larger structures. A

function block can have multiple scalar outputs. The gradient of each scalar is a sparse

vector (@x=@w).

Sparse vectors can be represented as a list of pairs (index; value), taking space

linear in the number of non-zero elements. If this list is sorted by index, we can perform

the essential vector operations in time linear in the number of non-zero elements. For

single vector operations, such as multiplying by a scalar or finding the magnitude, the

algorithms simply run through the list. For multi-vector operations, such as addition,

linear combination, or dot product, we exploit the sorted order of the lists and step

through both in parallel, advancing which ever has the least index. These algorithms



5.3. SPARSE REPRESENTATIONS 83

Figure 5.3: A half-sparse matrix representation store the matrix as a full vector of sparse

vectors. Each entry in an array points to a sparse vector, depicted here by a sparsity pattern.

maintain the representation invariant so re-sorting is not needed.

Each derivative in the expression graph is represented as a sparse vector, the deriva-

tive of a scalar with respect to a set of variables. For each graph, one set of variables is

denoted as the current working set: all derivatives are with respect to this set. For each

variable, we must know an index to the corresponding column of the Jacobian.

Sparse vectors are collected into matrices which are half-sparse. While this is a

non-standard representation, it does permit the operations required by the numerical

methods we employ. In particular, half-sparse matrices can be multiplied by a vector

or by its transpose rapidly. These methods are the essential computations in iterative

linear system solvers like conjugate gradient [PFTV86]. The multiplication routines

are among the most important in the entire implementation of the differential approach

as they form the inner loop ofO(n

2

) portion of the computation. However, the routines

are very simple and can be coded efficiently. The algorithms are:

v = Hx

multiply HalfSparseMatrix H, Vector x ) Vector v

v = 0

for i = 0 : : : H:rows

for j = 0 : : :H:row[i]:elements

v[i]+ = H:row[i]:value[j] � x[H:row(i):index[j]]
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v = HTx

multiplyTranspose HalfSparseMatrix H, Vector x ) Vector v

v = 0

for i = 0 : : :H:rows

for j = 0 : : :H:row[i]:elements

v[H:row[i]:index[j]]+ = x[i] � H:row[i]:value[j]

5.4 The Snap-Together Math Library

The machinery of the differential approach is encapsulated into a C++ toolkit called

Snap-Together Math. The library implements the function composition and evaluation

discussed in this chapter, as well as the differential solver.

5.4.1 The Protocol for Function Outputs

One of the essential elements to implement the differential approach is the standard

protocol for connectors, the outputs of objects. Connectors correspond directly to Snap-

Together Math block outputs. When a controller or object “plugs in” to a connector, it

merely stores a reference to a Snap-Together Math output.

In order to be a Snap-Together Mathematics output, and object merely must provide

two functions: one that computes its output value, and one that computes the derivatives

of its values with respect to the current working set. In my implementation, the class of

objects that have Snap-Together Mathematics outputs is the class Port. Each Port

may provide a number of scalar outputs. The two methods that all Port subclasses

must provide take an index that specifies which scalar value is being referred to, and

return either the real number value of the output, or a pointer to a sparse vector (class

SpVec) containing the derivative of the value with respect to the current working set.

The signature for the minimum set of methods is:

class Port f

public:

virtual Real o(const int);

virtual SpVec* grad(const int);

g

In order to be a mathematical output, an object is required to provide only these two

methods. The protocol supports many optional methods and fields such as the width
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(the number of scalar values the object provides), strings that provide names for the

signals, and nominal value ranges. To identify a particular scalar output, a pairing of a

Port and an integer index is required. This is referred to as a Signal. Signals are

constructed by pairing a pointer to a Port and an integer index.

Graphical objects could be subclasses of Port so that they could provide con-

nectors for their attributes. However, this gives little structure when there are many

outputs on a single objects. Instead, a graphical object will typically define other sur-

rogate Port objects which provide smaller numbers of scalar outputs. For example,

a polygon object might keep a list of vertices, each of which would be a Port object.

This is important because these surrogate objects can be standardized. For example,

all polygons could use the same vertex objects, so attaching to a vertex could be done

independently of the polygon type.

Standardizing Port types adds further modularity. Snap-Together Mathematics

permits connecting any scalar input and output. However, often such connections are

most useful when they are grouped together and typed. For example, A 2D distance

object has 4 scalar inputs, however these are most meaningful when they are thought

of as two 2D point inputs. Graphical objects would provide specialized Ports which

meet this standard.

Several standard types of Ports will be discussed in the following sections.

5.4.2 Functional Elements

The most basic element of Snap-Together Mathematics are objects which can be used

in function composition. As explained in Section 5.4.1, these objects are subclasses of

Port and must provide a few basic methods. Part of the beauty of the Snap-Together

Mathematics scheme is the Port class is minimal enough that its functionality can

be added to application classes. However, the Snap-Together Mathematics toolkit pro-

vides a variety of types of Ports for general mathematical elements that can be com-

bined to build more complex structures.

The most fundamental Port subclass is FBlock, the class of function blocks.

These objects compute mathematical functions of their inputs. The standard library

includes various primitive functions, including almost all of the functionality of a sci-

entific calculator. The class FBlock is implemented to have a fixed number of inputs

for each subclass. Other special subclasses of Port can do things such as sum a vari-

able number of inputs or take the magnitude of a vector of inputs. This permits creating

controls on aggregate collections of objects, as in Garnet [VZMGS94].

Wiring functions together simply requires inserting an output Signal into the

input field of a function block. The class FBlock stores its inputs as an array of

Signals. Connecting the output of one function block to the input of another looks

like

block1->ins[0] = Signal(block2,0);
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where block1 is a pointer to a function block (FBlock*), but block2 can be a

pointer to any subclass of Port. This code fragment connects the first output of the

object pointed to by block2 into the first input of the function block pointed to by

block1. Notice that this wire is not explicitly represented, nor does the output port

receive any indication that it is being attached to.

Defining a new function block requires specifying two methods. One that computes

the function, and another that computes its internal Jacobian. It is important to note that

this is really the only place where a programmer might have to take a derivative.

Writing the derivative routines is a simple matter of mechanically applying the rules

of freshman calculus. However, this can be tedious as the functions get complicated,

especially since we have a strong desire to have optimized code. Because the process

is mechanical, it can be automated.

The BlockMaker tool automatically generates code for new function block types

from mathematical expression. The tool, is written within the Mathematica symbolic

algebra system [Wol88]. The tool takes as input an expression that describes the func-

tion block to be created, and a small amount of auxiliary information such as the number

of inputs to the block and the name for the C++ class for the function block. The out-

put of the tool is a C++ program file that contains the code for the block’s methods, as

well as a C++ header file describing the new class. The generated code is optimized

using Mathematica’s simplification tools as well as a common subexpression remover

that I developed with Stephen Schwab. Because the tool runs within Mathematica, the

full power of the symbolic algebra system is available to define the expressions used

to create blocks.

New function block types are not often required. The Snap-Together Mathematics

library includes many basic functions, such as those found on a scientific calculator,

and more complicated functions can be created by composing these elements together.

The main reason to create new blocks is efficiency. Composing a function out of other

function blocks is more expensive than compiled code if the compiled code is optimized

to exploit internal sparsity within the block and to share common subexpressions. For

derivative evaluations, properly optimized code will perform the same evaluations as

done by automatic differentiation. However, because it is explicitly compiled, there

is less overhead. Automatic differentiation works better for more complex functions

whose symbolic derivatives would be difficult to optimize.

5.4.3 Representing State Variables

The leaves of the expression graphs are constants and variables. The two are distin-

guished from one another in that the derivatives for the variables are not zero when

taken with respect to itself, while the derivatives for the constants are always 0. Im-

plementing a class to represent constant values is, therefore, simple; its methods just

return constant values. The derivative of a variable must have a 1 in the column of the
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gradient that corresponds to that variable.

The simple protocol for Snap-Together Mathematics does not address the issue of

defining the working set of variables and the mapping of its members to columns of

the Jacobian. This is indicative of the larger issue of managing collections of variables.

On one hand, building systems in an object-oriented manner requires the state of the

system to be distributed into the objects themselves. But, mathematical algorithms typ-

ically require this state in the form of contiguous vectors, which are gathered, ordered

collections. This ordering also gives meaning to the columns of the Jacobian matrices.

There are many potential schemes for representing variables in a Snap-Together

Math implementation ranging from having objects allocate space in a global state vec-

tor to modifying our numerical algorithms so that they operate on distributed, non-

contiguous, vectors. Several of these were explored in earlier tools. The Snap-Together

Mathematics library uses a combination of centralized and distributed representation.

Objects each have their own state, however these variables are “gathered” into a cen-

tralized state vector for numerical computations. When an object’s variable has been

gathered, it knows where in the global vector to find it so it can still retrieve its value

as well as index it for creating derivatives. In the context of Snap-Together Mathemat-

ics, derivatives can be taken only when variables are gathered, as this is the only time

when variables correspond to matrix columns. When the numerical computations are

complete, the values are scattered back into the corresponding smaller vectors.

The ability to scatter and gather variables has an important advantage over always

keeping the variables centralized. It allows for the set of variables to be changed rapidly.

This not only simplifies adding and deleting objects from the working set, but also

makes it easy and efficient to operate on subsets of the variables. Techniques that make

use of this latter feature are discussed in Section 4.4.

The scatter/gather scheme uses two main data structures: one to represent the smaller

individual state vectors, and one to store the gathered global state vector. In Snap-

Together Mathematics these classes are called StObj and StVec respectively. Each

of these classes is a subclass of Port, although StVec objects rarely have connec-

tions made to them.

StObjs are objects that store a number of state variables. Each graphical object

would have one that stores its configuration. StObjs are also used to store constants

by marking their variables so that they are never gathered.

The gathering operation takes a list of StObjs and assigns designated variables

in them to elements in an StVec, as depicted in Figure 5.4. Variables store their

assigned location. If their value or derivative is requested when they are in an assigned

state, they forward the request on to the StVec. If they are not assigned, they return

the value stored internally and 0 for their derivative. A scatter operation returns each

variable in the StVec to its corresponding StObj, updating the StObj’s internal

value, and removing the assignment.

The StVec provides a contiguous vector for mathematical computations. Routines
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Figure 5.4: Selected variables from StObj objects are gathered into the StVec object.

Variables in the working set point to slots in the StVec object.

such as ODE solvers look at the data stored here. The indices of the StVec define the

columns of the Jacobian: requests for derivatives of the StVec return vectors with a 1

value in the corresponding column.

An important part of the scheme for storing state variables is the ability to gather1

selectively. This provides the ability to switch a variable off, or turn it into a constant.

Uses for disabling variables are described in Section 4.4.

During a gather operation, a function is provided that decides if a variable is to

be gathered or not. Typically, the default function is used. This function makes its

decisions based on a bit vector stored with each variable. The bit vector and function

provide the following mechanisms for selection:

� Each variable belongs to a caste that identifies its type. Whether or not a given

caste is to be gathered can be decided independently. This permits operations

like “gather only the variables that affect lighting.”

� Each variable has several type bits, which permit denoting the expected use of

the variable. For example, if a variable is denoted as a constant, it will not be

gathered.

� Each variable has a counter that freezes it whenever the count is non-zero. A

problem with using a single bit for this purpose is that it is impossible to deter-

mine how many constraints are freezing a variable. If two constraints freeze the

same variable, deleting one of the constraints would re-enable the variable. A

counter re-enables the variable only when all freezes have been removed.

Selective gathering also provides a mechanism for merges, or equating two vari-

ables. During a gather, two variables can be made to share one space in the StVec.

This will effectively merge them, constraining them to have the same value. A sim-

ilar technique can be use to constrain a variable to have the same value as any other

Signal. Such features are not used much in the Snap-Together Mathematics imple-

mentation, because they make the optimization of the next paragraph impossible.

1The corresponding scatter operations always scatter what was last gathered, so there is no selection

involved in them.
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An important special case of a function block is one that has each of its inputs

connected to the same StObj. This is a very common case, used often for graphical

objects where the function blocks each compute some attribute. Because all of the

inputs are connected to variables, the Jacobian of the inputs of the block is the identity

matrix, possibly with some columns missing. By exploiting this, the matrix multiply

to compute the block’s Jacobian can be considerably faster. This leads to substantial

speedups in many applications, as these direct-connected blocks are very common,

and very often constitute the majority of the “wide” input blocks, which are the most

expensive to compute.

Partitioning, as introduced in Section 4.3.3, reorders the elements of the StVec so

that variables in a common partition are next to one another, facilitating solving each

subset independently. Partitioning is done only when a gather operation is performed,

not each time the linear system is solved. This is done because re-ordering the state

vector would confuse the process of differential equation solving.

Because the partitioning algorithm does not actually look at the values of J , they

do not need to be computed when finding the initial matrix to partition. In fact, rather

than using the real values of the matrix, it can be better to use binary values which

represent that the matrix element might be non-zero, rather than that it is non-zero for

the current value of the state vector. This is easily achieved by having each Port

provide a method which works like the grad(int) method, but does a logical or

instead of a linear combination of its input vectors. For objects that do not provide this

optional method, the gradient may be used instead.

5.4.4 Caching in Snap-Together Math

As hinted at in Section 5.4.1, caching is an important tool for enhancing performance in

Snap-Together Mathematics evaluations. Whenever a value or derivative is computed

by a function block, or other Port type that implements caching, it is stored inside

the block in case the result is used again. Each time a value or derivative is requested,

the block first decides if its cached value is valid; if it is, it avoids re-computation and

simply returns the cached value.

The Snap-Together Mathematics toolkit employs a simple cache validation scheme.

A single global timestamp is used. Whenever any of the inputs (state variables) are

changed, this timestamp is incremented. A block must recompute if its internal times-

tamp is older than the global timestamp. This scheme is very simple but has the obvious

problem that it invalidates much more than needs to be. Changing a single value inval-

idates all caches in the entire system.

In the context of the differential approach, invalidating all the caches simultane-

ously is not as catastrophic as it might seem since the variables are all updated simul-

taneously with each ODE solver call for evaluation of the differential optimization.

Schemes that do substantially better require some combination of substantial amounts
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of graph traversal, explicitly representing links bidirectionally, doing numerical and

sparse data structure comparisons, or exploiting knowledge about the particular prob-

lem. For most applications, such complication is not warranted as, at best, it serves only

to reduce the constants on the linear complexity portions of the differential approach.

5.4.5 The Differential Solver

The Snap-Together Mathematics toolkit encapsulates the abstractions of the differential

approach in a set of classes that implement the techniques of the previous chapters. An

object is used to represent the differential optimization problem, storing information

about the controls and the variables they effect. This object is called a constraint engine

or ConstEngine.

The ConstEngine class has fields that contain an StVec and a list of StObj

that are to be gathered for computations. A ConstEngine object also stores infor-

mation to define the objective function for the differential optimization, such as a list

of Signals that make up g:

The controls for the differential optimization problem are stored in aConstEngine

by a list of Controller objects. Controllers are objects that specify desired

derivatives for connectors, as discussed in the next chapter. The Snap-Together Math-

ematics class for a controller specifies a Signal to control, a controller type, and

several parameters.

Solving the differential optimization problem, e.g. using the techniques of Chapter

3 and Chapter 4, is executed by a method of the ConstEngine class. This is the

only part of the system in which constraint solving needs to be done. This method

is implemented in a manner that interfaces with the ODE solver implementations of

the underlying mathematics toolkit. The ConstEngine class also interfaces with

non-linear iterative solvers.

Snap-Together Mathematics is built on top of an object-oriented mathematics toolkit

that I wrote. The toolkit includes an object-oriented framework for defining ODE prob-

lems and solvers. The class Integrand represents an ODE problem by defining a

single method that defines a function to compute _
q given q and t: An ODESolver

object stores an integrand and an initial condition and offers a method to step time

forward. The ConstEngine class is a subtype of Integrand.

When used as an Integrand to solve a differential optimization problem, a

ConstEngine must first load the q vector provided by the ODE solver into its

StVec. Loading the state allows the solver to try different values for the state in

the process of taking an ODE step. The ConstEngine keeps all of the intermediate

results of the solving process, such as the Lagrange multipliers, as internal fields.
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5.4.6 The Whisper/Snap-Together Math Interface

While Snap-Together Mathematics is a C++ toolkit, an interface is provided to it as

an extension to the Whisper interpreter described in Appendix A. The extension adds

several new data types to Whisper, as well as many new primitive functions. WhSTM

provides a convenient way to access to the functionality of the Snap-Together Mathe-

matics, and can be used on its own to develop simple applications completely in Whis-

per. The Whisper/Snap-Together Mathematics interface, called WhSTM, shows how

the functionality of Snap-Together Mathematicscan be provided in a more convenient

form, and will be used in later portions of the thesis.

WhSTM provides primitive Whisper data types for most the Snap-Together Mathe-

matics classes Port, FBlock, StObj, Signal, and Const. Other classes, gener-

ated by primitives written in C++ are generally treated by the more generic class that

is appropriate. For example, a summation block, which is not an FBlock because it

allows variable numbers of inputs, simply appears as a Port in Whisper. No facility

for defining new subtypes of Snap-Together Mathematics classes is provided in Whis-

per. WhSTM defines 88 primitives, including creation functions for 30 different types

of function blocks.

WhSTM supports automatic promotion of types as needed. Any function requiring

a Port can take anything that is a subtype, including FBlock and StObj types,

even though Whisper has no subtyping mechanism. Real numbers are also promoted

to Port where necessary; a constant valued port object is automatically created.

The constructor for Signal takes a Port and an index. It permits specifying the

index either as an integer or as a string name if the block being connected to supplied

the optional names for its outputs. If the index is omitted, it is assumed to be 0. This

allows a Port to be promoted to a Signal when needed.

Function block creation routines all optionally take initial values for the signal in-

put. The convenience of this, coupled with the automatic promotions, is demonstrated

in this simple example

(set b (plus-block (times-block (signal point-port 2) 5)

(signal point-port ’y)))

that computes the sum of 5 times the z value of a 3 output port representing a Cartesian

coordinate and its y value. The ease with which functions can be built in Whisper will

be used in the Bramble toolkit, described in Chapter 7. A more extensive example of

using WhSTM to build function graphs is described in Section A.2.

The Whisper interface does not provide constraint engines or ODE solvers as basic

types. However, WhSTM does have default instances of these objects, so that commands

like
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(add-const (controller sig ’= 2.0))

implies the use of the “built-in” constraint engine, and

(rk4-step .1)

uses the built-in 4th order Runge-Kutta solver instance to step the default constraint

engine forward a time step. Other packages further extending Whisper can alter the

defaults. This will be used extensively in Bramble.



Chapter 6

If you don’t know where you’re going, you will wind up

somewhere else.

— Yogi Berra

Controllers

The previous three chapters provided the machinery required to implement the dif-

ferential approach. This machinery permits specifying desired derivatives for func-

tion outputs. Appropriate changes to the state of the objects are computed from these

derivatives. In this chapter, we consider how to specify the derivatives in order to create

graphical interaction techniques.

With the differential approach, graphical objects are manipulated by specifying how

particular attributes of the objects should change. Graphical objects provide their at-

tributes as output connectors. A connector serves as a control when its behavior is

specified. The specification of the derivative of a connector is encapsulated into an

object called a controller. These objects are plugged into any connector output just as

dependency inputs are. A controller can look at the output it is connected to and the

external world (e.g. input devices) in order to produce a desired derivative value for the

connector.

The capabilities of a controller are limited: they can specify only a rate of change.

Objects move by having controllers attached to their connectors over a period of time,

continuously specifying derivative values which are converted by the differential opti-

mization to derivatives of the object parameters.

The basic building blocks of graphical interaction techniques are controllers and

connectors. For the purposes of interaction, the set of graphical objects appears as a

set of connectors, any of which can serve as controls by having a controller attached to

them. The chapter begins by showing how basic methods such as dragging are created

by attaching controllers to connectors for periods of time. Subsequent sections explain

how the continuous model of time is coupled with events and describes the details of

the controllers themselves. Some details of creating complex controllers that switch

controls on and off are discussed in the chapter’s final section.

93
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Figure 6.1: A schematic “wiring diagram” of two line segments with an attachment constraint

between their endpoints. For the purposes of defining manipulations, these objects appear as a

set of connectors awaiting controllers to be plugged into them.

6.1 Example Interactions

To show how the machinery of the differential approach applies to manipulating graph-

ical objects, we consider some concrete examples. For these examples, our model will

consist of 3 graphical objects: two line segments, and an attachment object that is con-

nected to one endpoint of each line segment. A schematic of the data structures is given

in Figure 6.1.

6.1.1 Specifying Values

A basic operation is to specify a value for a connector, for example to specify a position

for an endpoint of a line segment. This cannot be done directly with the differential

approach: only rates of change can be specified. In order to achieve a desired value,

we must specify the derivative over a period of time, and wait for the object to achieve

the desired value.

The GoTowards controller makes a connector’s value move towards a target. At

each instant, it computes a derivative that moves the value towards the desired goal,

as will be discussed in more detail in Section 6.3. A GoTowards controller does

not specify its attached connector’s value. However, by pushing its value in the right

direction, over time the connector will reach its target unless something impedes its

progress. In order to specify a target value, we place a GoTowards and wait for the
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value to reach its target.

If the GoTowards controller is left attached after the attached connector reaches

its target, the controller will continue to drive the value towards the target, holding it

in place. This is how constraints are created. Because the GoTowards continually

pushes toward the goal, the constraint will be restored if it drifts. The GoTowards

controller, therefore, include constraint stabilization like that proposed by Baumgarte

[Bau72].

To create a constraint, a controller must be applied to some connector. The at-

tachment object which simply provides the connector is not a geometric constraint by

itself. However, a geometric connection constraint object would be a version of the at-

tachment object that created GoTowards 0 controllers on its connectors when it was

placed, and removed these controllers when it was removed.

6.1.2 Dragging

To drag an object, we can permit the user to specify where a particular point on it

should be positioned. When the mouse button is pressed to grab a point on an object, a

differential controller is attached to the output that computes the position of the point.

This controller guides the point to follow the mouse. When the button is released, the

controller is removed from the output connector of the dragged point. The addition of

an optimization objective term with the mouse position to provide manipulation of a

graphical object is first presented in [KWT88].

The Follow controller provides derivative values that cause its attached con-

troller to move towards tracking a moving target. It is similar to a GoTowards, with

the exception that rather than having a fixed target, it has a moving target. This be-

havior could be created with a GoTowards controller that periodically has its target

value updated. However, Follow controllers can sometimes provide better tracking

behavior by using information about the motion of its target. In the case of tracking

an input device, where derivative information is difficult to estimate for lack of a good

predictive model, a Follow controller is typically implemented as a GoTowards.

More details about the Follow controller are provided in Section 6.3.

For many reasons, it is unlikely that the point being dragged will track the cursor

exactly. When the cursor moves quickly, it might take the system a few steps for the

dragged object catch up, and even then, if the cursor moves far during the step, the two

will separate. Also, the rates at which graphical objects can move is sometimes limited

by how well the ODE solver can solve for the motion; if the object moves too quickly,

the ODE solver will be unable to accurately compute its motion. Faster steps and better

algorithms can reduce the separation, however the mouse might still separate from the

object being dragged if the motion is restricted by a constraint.

When the cursor and dragged point diverge, it is important to provide visual feed-

back to connect them. Typically, a line is drawn between the cursor and the point being
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Figure 6.2: A small line is used to connect the mouse pointer to the object being dragged.

This feedback is important because the cursor location will diverge from the location of the

object because of lag, integration error, or restrictions on the object’s motion.

dragged, as shown in Figure 6.2. Metaphorically the cursor is connected to the dragged

point with a rubber band. This metaphor is a pretty accurate one for the spring attraction

techniques introduced in Section 3.5.1.

The generality of the differential approach is apparent in the simple example of

dragging. Graphical objects provide point position aspects. The dragging behavior can

be plugged into any objects’ output. The differential solving process will compute how

to control the objects’ parameters in order to achieve the desired motion. If a different

pointing device, for example a 3D tracker, is available, it too could be plugged in to the

same places.

6.1.3 Constrained Dragging

The ability to mix constraints and controls is important to the effective use of con-

straints. The constraints permit the user to drag objects without violating any previ-

ously established relationships. User defined persistent constraints can provide many

services, including helping to avoid redundant work, helping to explore a constrained

space, or helping to construct compound objects.

Because constraints are easy to attach and detach, they can be used with drag-

ging controls to define interaction techniques. In addition to creating a Follow or

GoTowards controller to cause the mouse to be tracked, additional constraints are

simultaneously added. These constraints are removed when the dragging controller is

removed.

For an example, consider rotating a graphical object. To create a rotation, the object

could be dragged subject to a constraint that nails the position of its center in place.

Dragging points on the object will then cause the object to rotate, assuming the object

has that degree of freedom. Dragging might also cause the object to stretch, if the

dragging motion is not circular about the center of rotation. This can be combatted by

keeping the cursor on a circular track or by using another constraint to keep the size

constant. In the latter case, some mechanism that makes the dragging constraint break

rather than the others will be required. The dragging control must be subject to the

other constraints. Techniques for achieving this are discussed in Section 3.5.

The ability to combine constraints and controls allows a set of building blocks to be
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Mouse Down

Event

Mouse Up

Event

Follow Controllers

Created

Follow Controllers

Removed

Object Moves

Figure 6.3: A timeline of an interaction in the differential approach. The arrow symbolizes

the flow of time. At discrete instants, such as when the mouse events are received, the set

of differential controllers is altered. The effects of these over time causes changes in object

configurations.

provided for constructing interaction techniques. For example, it provides a constraint-

based strategy for developing 3D manipulation techniques, as discussed in Chapter

8. The basic idea is that enough constraints are provided so that the input device is

sufficient to fully determine the motion. This strategy is not unlike what we employ in

the real world where we use things such as jigs and braces to help us manipulate hard

to handle objects.

6.2 Continuous Time

As illustrated by the above examples, object configurations are altered by having con-

trollers specify their behaviors over a period of time. The state of objects cannot be

changed instantaneously. Instead, it changes over time, the way an object in the real

world does. This is quite different than traditional methods for constructing interac-

tive systems, where the state of objects is updated at discrete instants corresponding to

events or polling increments.

In concept, time in the differential approach continuously moves forward. While

time progresses, any active differential controllers are causing the objects they affect

to change. At discrete instants, such as a window system event, controllers may be

created, destroyed or altered, however, the state of objects is not changed. To change

the configuration of an object, a controller must be created and time must pass so that

the object can adjust itself accordingly. A time line of such a process is depicted in

Figure 6.3.

Since a controller can be plugged into any connector at any time, placing a controller

can be asynchronous with the placement of other controllers. This makes it easy to
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Mouse Down

Event

Mouse Up

Event

Follow Controllers

Created

Follow Controllers

Removed

Object Moves

Figure 6.4: A timeline of interaction in the differential approach, as actually implemented.

The arrow symbolizes the flow of time. Time is discretized into steps. A discrete event is

deferred until the end of the step it occurs in.

perform concurrent operations, such as allowing for asynchronous two-handed input.

In practice, we can only approximate the continuous flow of time discretely. As

discussed in Section 3.3, we must treat the ordinary differential equations describing

object trajectories as a sequence of steps in order to solve them. During each step, time

is advanced a small amount. By making these steps small enough, the user is given the

illusion of continuous motion.

As implemented in the differential approach, events are deferred until the end of the

step, as depicted in the timeline of Figure 6.4. If the duration of the steps is very small,

the delays will not have an effect. If avoiding this lag is crucial, the approach can be

modified slightly to trade total number of steps for reduced lag. For example, when

an event occurs, the current step could be aborted and later restarted after the event

is processed. Also, time may be stopped during periods when no objects are moving

and user events are expected. For example, in a standard direct manipulation system,

when the user is not dragging an object, nothing is moving so differential time may be

stopped and the system may spend its full effort responding to events. An event may

need to start time, for example if it initiates a dragging operation.

After each step, the system must redraw the displays. For the prototypes of this

thesis, screen update always redraws the entire display. Other systems might attempt

to speed redraw by selectively updating only objects that have changed. I have not

taken such an approach because:

1. Selective redisplay is more difficult with the differential approach since many ob-

jects may be moving at once. In fact, the system must be able to determine when

selective redraw is appropriate, and when it would simply be faster to redraw the

entire view.

2. Selective redraw is difficult to implement for 3D applications when using a Z-
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buffer hidden surface removal algorithm, because the state of the Z-buffer must

be restored when objects are removed from the display.

3. The differential approach has been based on the assumption that fast drawing

hardware is available.

6.2.1 Differential Time and Clock Time

The time in the differential approach is advanced at each ODE solver step. There is no

assurance that the “clock” in the differential approach, that is the time that passes from

solver steps, will correspond to wall-clock real time. In fact, making differential and

real time correspond would be difficult: a system would have to be able to accurately

predict how long (in real time) it will take to do the computations required for each step,

and make sure the proper amount of differential time advances on each step. This rules

out the possibility of the system adaptively controlling time steps when things grow

difficult, and would require complicated synchronization when the real world clock

and the differential time differ.

Rather than coupling differential time and real time, we instead let the clocks float.

The differential “clock” can be thought of as a dimensionless quantity: it’s mapping to

“wall clock” time is unknown, and unimportant. Whether the clock moves quickly and

velocities are low, or the clock moves slowly and velocities are high, the same effects

can be achieved. It becomes impossible to express controls in terms of real time, for

example to say that an object moves across the screen at 3 inches per second, or that

a point reaches its target in 250 milliseconds. However, other imprecisions also make

this impossible, both spatially (how far is 3 inches when the user can scale the window

or run on a different monitor) and temporally (how can we be sure that in that 250

milliseconds the system will not have to swap or process a higher priority job). While

multi-media systems researchers, such as [DNN+93], are beginning to study with such

real-time issues, the differential approach, like most interactive graphics systems, is not

concerned with real-time performance. Coupling with real time is left for future work

in Section 10.3, but a simple approach would take a step as fast as possible and then

wait for the real time clock to catch up.

6.2.2 Breakdown of Interactivity

The differential approach relies on being able to provide a large number of steps per

second. This is needed both to provide the illusion of continuous motion to the user, and

to insure events are processed without too much lag since they are deferred to the end of

a step. As the introduction to this thesis states, modern computers continue to provide

increasing amounts of graphical and numerical processing capabilities. However, even

though the capabilities of computers may continue to grow exponentially, the types of
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problems that users are interested in tackling may similarly grow without bound. As

the task grows, the amount of computation required to support differential interaction

also grows. At some point, processing each step requires too much time and the quality

of interaction suffers. This is called interactive breakdown.

It is difficult to determine precisely the rate at which interactive breakdown oc-

curs. Even when the motion appears jerky, it can sometimes be acceptable, depending

on the user and the problem. For some applications, high frame rate is crucial, for

example when the motion is needed to help the user comprehend the behavior of ob-

jects. Similarly, event delay lag is most bothersome when the user is generating many

events in rapid succession or that are time critical, such as selecting a moving object.

As described in Section 6.2, event processing lag can be reduced at the expense of

throughput.

As the complexity of the problem goes up, so does the time required to do each step.

The immense scale of the objects that people design – a modern jet airplane may have

millions of components[Hei93] – makes keeping interactive rates impractical for some

problems. However, the limitations of the human cognitive and perceptual abilities

make it unlikely that a user would want to operate a model of that scale interactively.

The prototype implementations show that models of reasonable complexity can be han-

dled on the current generation of computers. Performance of the prototypes is discussed

in Appendix B.

6.3 Basic Controllers

Controllers are objects which attach to connectors and specify values for their deriva-

tives. The examples of Section 6.1 briefly introduced some types of controllers. Here,

we examine these controllers in more detail, introduce a more complete set of con-

trollers, and discuss how they compute the derivative values.

Since a controller’s sole function is to provide a derivative value, deciding what

values to specify is the critical issue in designing a controller. This is complicated by

the fact that interface elements are traditionally not defined by derivatives, but rather by

positions. Another issue in picking velocities is that simulation time is not coupled to

real time in a meaningful way, as discussed in Section 6.2.1. This makes it impossible

to specify velocities in terms of apparent velocities, although this would be attractive

to insure that the user can follow the motion. However, the more relevant speed limit

is typically given by the ODE solver, as discussed in Section 3.3.

The simplest controller provides a constant derivative value. These Constant

controllers are rarely used because attributes typically do not move at fixed veloci-

ties regardless of other factors, and determining specific velocity constants is difficult

because time and space do not precisely correspond to real-world quantities. In the

cases where they are used, Constant controllers are typically given values which
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are found empirically to produce a desired rate in certain situations. The more com-

mon controllers do not inherently specify a time, but rather a target and provide the

controller with flexibility in choosing the velocity that achieves it.

More useful controllers examine the value of the connector they are attached to

in order to select a derivative value. The two basic varieties of such controllers are

GoTowards and Follow. Each of these picks derivative values to make its attached

connector achieve a target value. The difference is that a GoTowards has a fixed

target, while Follow has a moving target such as a motion path or an input device.

An important distinction is that a Follow may be able to use information about the

motion of its target in order to track better.

A GoTowards controller picks its control velocity to get its value to the desired

target. The value of the velocity must be related to the distance of the control from

the target. There are several ways to choose the value. One is to pick a velocity that

gets the control to its target in a set amount of time. The amount of time must be long

enough to encompass a sufficient number of solver steps, and not too fast such that

ODE solver inaccuracies cause the control to overshoot its target.

An alternate method of choosing the velocity for an GoTowards controller is to

make it a scaled factor of the displacement. This creates spring-like attraction. When

the control is far away it moves quickly, facilitating coarse positioning. As it gets close,

it moves more slowly for precise positioning. One drawback of this technique is that

it is hard to achieve target exactly: when the control is very close, its velocity is very

low. One solution used in the prototypes is to switch between spring attraction and

the constant rate scheme described above. When a control gets sufficiently close to its

target, its velocity is chosen so that it would achieve the goal exactly in a step. This

works well because for these small displacements, the approximations that the ODE

solver makes may be sufficiently accurate.

An important attribute of GoTowards controllers is that they implicitly incorpo-

rate feedback. That is, they are continually adjusting the velocities to correct for any

errors. If numerical drift or some other problem causes a control to make a turn for the

worse, the error will be corrected in subsequent steps. Because of this, constraints will

almost always use a GoTowards controller rather than a Constant controller with

constant derivative 0.

An approximation to a Follow controller can be created with a GoTowards

controller whose target is periodically updated. However, Follow controllers not

only build in this continual update, but provide an opportunity to incorporate knowledge

of the target’s trajectory to improve tracking. A Follow controller effectively drives

its value towards where its target will be, rather than where it is. In order to do this, the

time derivative information of the target must be known. In practice, we rarely have

good enough predictive models of input devices for this to work; however, it is useful

for tracking key-framed motion paths, as described by [WW90].
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6.4 Switching Controllers

The controllers we have discussed so far continuously perform the same simple task

while plugged in. In this section we consider some more complex controllers that

switch themselves on and off based on the values of the connector they are attached

to and some measures of how hard they are working. In effect, these complex con-

trollers simply plug and unplug more basic GoTowards controllers as needed. These

behaviors are encapsulated as new controller types because: they are widely useful, so

a simple encapsulation is handy; they can continuously watch the values, potentially

switching more often than just at step boundaries; and they will look at internal solver

quantities, the Lagrange multipliers, that we might prefer not to expose to system com-

ponents outside of the solver.

By being clever about when controls are switched on and off based on the value

of the connector they are attached to, a variety of interesting behaviors can be cre-

ated. One behavior that this allows creating is an inequality constraint or boundary on

a value. Switching of equality constraints is a standard technique for implementing

inequality constraints, and is referred to as the active set method by the numerical anal-

ysis literature as it keeps a subset of all the constraints active at any given time. For the

differential approach, we use similar techniques to create other behaviors as well. This

section begins by describing three different variations of active set techniques, and then

discuss some of the challenges in implementing them correctly.

6.4.1 Bounding

Placing boundaries or inequalities on aspect values is often useful, for example when a

range of values is illegal, or only an approximate range is known. A Bound controller

is created by enabling a GoTowards controller whenever the value has moved past

the boundary. The GoTowards controller is used to move the value back within the

boundary. When the output is within the legal region, the boundary constraint does

nothing. The other major complication is that the boundary constraint should never

pull the value further into the violated region, as depicted in Figure 6.5. That is, if

another controller is trying to pull the value out of the illegal region, the boundary

controller should not fight it. This case must be handled within the differential solver,

as discussed in Section 6.4.4.

Inequality constraints operate by first being violated and using a GoTowards to

fix themselves. If a value is moving towards a boundary, the GoTowards does not

enable until after it has violated the boundary. One solution to this problem is that if

such a violation is detected, back time up until the value is exactly at the boundary. This

procedure is often done for physical simulation of collisions, as discussed in [Bar92b].

Such backing up could be used with the differential approach, and is discussed more

fully in Section 6.4.5.
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Figure 6.5: The point is bound to remain inside the rectangle. Left: when the point is in

an illegal position a GoTowards controller pulls it back to the boundary of the legal region.

Right: if some other controller will pull the point back into the legal region, a GoTowards

controller that attempts to pull the point to the boundary of the legal region would pull against

the other controller, and is therefore disabled.

6.4.2 Snapping

One of the fundamental issues in direct manipulation is precision: how can exact val-

ues be specified when they are required. This problem arises in many situations, for

example when attempting to establish a precise geometric relationship in a drawing,

when picking a small object, or when attempting to hold an object steadily in place

with a noisy input device. One solution that has been employed to provide precision in

direct manipulation is known gravity fields or snapping.

Gravity fields were first introduced in Sketchpad[Sut63]. Interesting points have a

gravity field that draws the cursor in when it is close. The cursor follows the pointing

device, however, when it is close to an interesting location it “snaps” precisely there.

Many varieties of snapping have been used to help in direct manipulation. The most

common are grids, which snap the cursor to points on a grid. Another important variety

is object gravity, in which the cursor is drawn towards the graphical objects.

Just as we rely on tools such as straight-edges, rulers, and compasses to aid a pencil

in drawing a precise drawing, gravity or snapping serves as a tool for creating precise

graphical manipulations. Rather than having to manipulate objects to exact positions,

the user can simply get them close, and the gravity takes the job of precisely position-

ing the cursor. This allows drawings to be created with more precision than the input

device has, or to have precision even if the input device is noisy. Interface issues in

snapping, such as providing feedback so the user can be confident that the correct re-

lationship is being established and selecting among many close-together snap targets,

can be handled, as shown in the Briar drawing program of Section 9.1.

One obvious way to incorporate snapping with differential manipulation is to use

the snap target as the goal for dragging. This approach was used in the Briar drawing

program, described in Section 9.1. One complication is that since the dragged object
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does not follow the cursor exactly, the object may not establish the relationship that the

cursor does. This can be combatted with feedback to inform the user when the dragged

point establishes the relationship that the cursor has, and by making the snapping persist

long enough to allow the dragged point to catch up with the cursor.

It is also possible to use the differential approach to implement snapping. A con-

troller is connected to drive the output to a precise value when the output gets close. If

another controller attempts to pull the connected attribute from its target, the snapping

controller is disabled. An analogy for this is pushing a marble around on a grooved

table. When the marble is close to a groove it falls into the groove, and will roll around

inside of it until pushed hard enough that it escapes from the slot.

A Snap controller is implemented using a variant of the active set technique used

for Bound controllers. By default, the controller is inactive. If the value of its at-

tached connector gets within a specified distance of the snapping target, the controller

is activated and switches on a GoTowards controller to drive the connector to the

target value. If the magnitude of the Lagrange multiplier for the GoTowards ever

exceeds a limit value, the controller is pulling too hard against other controllers and

must be deactivated.

The key intuition behind Snap controllers is that the Lagrange multiplier is a mea-

sure of how hard a control is pulling. Since the “pull” of a controller is actually deter-

mined by the product of the Lagrange multiplier and the gradient of the control function,

the magnitude of this vector is actually used to determine the amount of effort the con-

troller is applying. One difficulty with Snap controllers is that the parameters that

determine their behavior, most specifically the limit magnitude, must be determined

empirically.

A Snap controller can be attached to any object output, not just positions. For

instance, a Snap controller on a line segment’s orientation could make a segment that

was easy to place into a precisely horizontal configuration. The differential implemen-

tation provides more flexibility than traditional methods for implementing snapping.

We therefore call the differential snapping generalized snapping. In Section 8.4.1 we

discuss some applications of generalized snapping.

6.4.3 Click Stops

Another way to combat the precision problem with direct manipulation is to require a

value to have one of a discrete set of values, for example to create a grid for dragging.

This is easy to do with the traditional implementations of direct manipulation, which

often use integer representations anyway. However, the differential approach operates

on continuous values. One way to implement an interaction that limits a value to a

discrete set is clicking.

Clicking is a variant of snapping that effectively constrains a connector output to

have a discrete value, either from a finite set, or to be an integer or multiple. Click
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Figure 6.6: Clicking forces a value to be in a discrete set. The value, in this case the horizontal

position of the circle, is constrained to have the value 1 or 2. Grey arrows represent the pull

of the mouse control, black arrows represent the pull of the Click controller. Initially (a) it

has value 1, so a GoTowards controller pulls to maintain this value as the mouse attempts

to drag it with a pull labeled �: At some point, the mouse pulls hard enough so that the pull

vector’s magnitude exceeds a limit value causing the controller to advance to the next click

stop (b), causing the point to attain the next value in the set (c).

controllers work by constraining the output to have a value in the set. If the constraint

is pulling too hard, the value is changed to another element in the set, as illustrated in

Figure 6.6.

6.4.4 Implementing Active Set Methods

The Bound, Snap, and Click controllers all operate by switching simpler

GoTowards controllers on and off. They are all variants of the active set methods

commonly used for realizing inequality constraints. Active set algorithms are detailed

in standard textbooks such as [GMW81] and [Fle87]. The difficult part of such algo-

rithms is determining which constraints to enable and disable, a combinatorial problem.

The simple method discussed here tries a few guesses at the correct set, and then gives

up, selecting a solution that fails to satisfy all the requirements. The solver will be likely

to provide an acceptable interactive behavior. We will, therefore, begin by examining

the active set problem in the context of the differential approach, and then described

a simple algorithm. While the simple technique does guarantee the correct answers to

the problems, it has the following advantages:

� The methods always fail in ways that can be corrected later.

� The methods are easy to implement as extensions to the existing differential op-

timization.

� The methods do not access any of the matrices, except by calling the differential

optimization. Therefore, as with the differential optimization techniques, we can

use any linear system solver.
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qa=0

Figure 6.7: An inequality constraint q
a

> 0 keeps the block above the floor. The inequality

is implemented by switching an equality constraint q
a

= 0 on and off. When the block is

above the floor (a), the equality constraint is inactive. If the block is on or under the floor (b),

the constraint pushes the block towards being on the floor, counteracting any controls that are

pulling the block downwards. However, if other controls attempts to pull the block above the

floor (c), the control used for the inequality would pull downward, causing sticking. Therefore,

it is deactivated.

Recently, an inequality solver specifically designed for interactive systems was de-

veloped by David Baraff [Bar94]. The algorithm was designed for implementing phys-

ical simulations of collisions, a problem very similar to implementing graphical manip-

ulation with the differential approach. Baraff’s algorithm could be used in computing

the differential optimization. Application of this algorithm to implementing the dif-

ferential approach is left as a topic for future study (Section 10.3). However, without

significant work, such algorithms do not have many of the advantages of the iterative

solvers discussed in Section 4.3.2, such as the ability to exploit sparsity.

Active Set Methods in the Differential Approach

To introduce the basic idea of an active set method, consider the simple example of

Figure 6.7. The example has a single state variable, q
a

that measures the block’s height

above the floor. An inequality constraint is used to keep the block above the floor,

q

a

> 0: An active set method implements this inequality by switching the equality

constraint q
a

= 0; or in differential terms q

a

GoTowards 0; on and off as needed.

If the block is above the floor, the inequality constraint does nothing. It is inactive.

The more interesting case is when the block either sits on the floor, or has fallen below

the floor. In this case, the GoTowards controller is activated to either push the block

towards sitting exactly on the floor, or to prevent the block from sinking underneath
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the floor. When the constraint works to keep the block above the floor, its Lagrange

multiplier will be positive, that is, the constraint is pushing upwards.

Consider a case where the block is sitting on the floor, with the constraint activated.

Suppose another control, such as connection to the mouse, attempts to pull the block off

the floor. The GoTowards controller will attempt to keep the block on the floor, with

a negative Lagrange multiplier pulling downwards. In essence, the inequality constraint

will be sticky. The solution to this is to disallow negative Lagrange multipliers. When

one is found, the constraint must be deactivated.

When there are multiple inequality constraints coupling objects, deciding which

Lagrange multipliers to deactivate becomes more complicated. Consider the example

of Figure 6.8. Two keep the two blocks stacked, one inequality constraint keeps block B

above the ground, while the other keeps block A above block B. The former constraint

is implemented by switching the equality q

b

= 0 on and off, the latter by switching

q

b

� q

a

= h: For each solution of the Lagrange multipliers, the solver must determine

which of the two constraints should be activated. If a control is used to pull block

A upwards and both constraints are active, the equality constraints would maintain

the stacked configuration, causing the blocks to stick in place by pulling downward

on them. Since the inqualities can only push upwards, we might deactivate the ones

pulling downwards (e.g. both of them). However, deactivating all of the constraints

pulling in illegal directions is unnecessary, and wrong. If there is a soft control pulling

B downwards, that constraint should stay active.

The process of determining the active set is iterative: the solver must determine

which ways the constraints are pulling, deactivate any constraints pulling in illegal

directions, reactivate any constraints that should not have been disabled, and repeat.

Determining the correct active set can be difficult, and might require many attempts.

If the correct active set is not found, there are two types of errors possible for any

particular constraint. Either a constraint that should be active is deactivated, or a con-

straint that should be inactive is activated. This latter case is extremely problematic.

Consider what would happen in the example of Figure 6.7: the user would not be able

to lift the block off the floor. If the algorithm made this error in one step, it would make

the same error in subsequent steps since the configuration does not change1.

Deactivating too many constraints is less of a concern. Consider the example of

Figure 6.8. If both constraints are deactivated, the lower block will not be prevented

from moving downward for the step. However, in the next step, the algorithm could

correct for this error. It is unlikely to make an error activating the constraint because

the block will be separated from the upper block, which is what caused the confusion.

If we resign ourselves to not always being able to find the correct active set, we

must at least make sure to always err on the side of deactivating too many constraints.

Such an algorithm is simple to devise. An example algorithm is presented in the next

1Assuming the algorithm is deterministic and it bases decisions solely on the configuration, which

the differential methods do.
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Figure 6.8: Multiple blocks are kept stacked on the floor by inequality constraints. (a) One

constraint keeps block B above the floor, the other keeps block A above block B. (b) If a

control pulls upwards on block A, the active constraints impose equalities that cause the blocks

to stick in place. (c) Removing all inequalities that are pulling downward in (b) would cause

the constraint on block B to be erroneously removed. If another control were pulling down on

it, no constraint would keep B above the table. (d) The correct solution reenables constraint B.

section.

It is important to notice that excess deactivations are only a problem when there

are many interacting inequality constraints. There are interesting applications, such

as collision simulation, where this occurs. In such applications, these errors might be

problematic. However, there are other potentially more significant sources of errors

in such applications, such as improperly handling the piecewise continuous nature of

the ODEs, as discussed later in this section. In Section 8.4.2, we will look at using the

differential approach for collisions, and consider the problems.

An Active Set Algorithm

The basic outline of a simple active set technique is as follows:

1. Select an initial active set by activated any inequality constraints that may be ac-

tive. Candidate constraints are those whose values either violate their boundaries

or are within a tolerance of the boundaries.

2. Select some deactivated constraints that are potentially active and reactivate them.

3. Solve for the Lagrange multipliers.



6.4. SWITCHING CONTROLLERS 109

4. Deactivate any constraints with negative Lagrange multipliers.

5. If the active set was changed, return to step 2.

The simplest method omits step 2. This leads to a method that meets the requirement

that it will always err on the side of having too few active constraints. It also is guar-

anteed to terminate because on each iteration the size of the active set must decrease,

since there is no step inside the iteration that adds constraints. It has the disadvantage

that it often removes too many constraints.

A constraint is a candidate for reactivation in step 2 if the derivative of the function

is negative. A constraint f
i

(q) > k is a candidate for reactivation if rf
i

�
_
q < 0:

Implementing reactivation can be complicated. The method must not to cycle, that

is to infinitely loop among several active sets. A method that I have used to prevent

looping is to permit a given constraint to be reactivated at most once. While this falls

far short of a reliable inequality solver, it gets correct solutions on many problems on

which the simpler method fails, for example the problem of Figure 6.8.

6.4.5 Piecewise Continuous ODE Solving

Solving the ODE is difficult because the derivatives are continually changing. In Sec-

tion 3.3, we were concerned about them changing due to the functions being non-linear.

However, the derivatives might also change discontinuously when the set of controls

change. Such ODEs are called piecewise continuous as they consist of continuous

pieces between breaks. Note that the discontinuities are in the derivatives, not in the

values. Methods for solving piecewise continuous ODEs are discussed in an appendix

of [Bar92c].

An ODE solving technique such as Runge-Kutta attempts to fit a continuous func-

tion (a polynomial) to the ODE over a step. If the ODE is discontinuous, this may be

problematic. Even if multiple smaller steps are taken to fit the function with piecewise

polynomial segments, methods that take fixed step sizes are not likely to have their

discontinuities match the discontinuities in the derivatives.

Many of the discontinuities are avoided in the differential approach, since events

that change the set of controls are deferred until the ends of steps. The ODEs are

therefore step-piecewise continuous, or continuous within the steps. This means that

techniques such as Runge-Kutta are acceptable, because they will not see the disconti-

nuities. Techniques that require continuity between steps, such as Predictor Corrector

methods, may have more problems.

Active set methods may change the set of controls during a step, causing a dis-

continuity in the derivatives. This is potentially problematic. However, the alternative

would involve finding the precise time that the controls switch and adapting the step

sizes so that the step boundaries occur exactly at this instant.
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The most severe symptom of not finding discontinuities is that the system can re-

spond to changes only after they happen. For example, an inequality constraint acti-

vates after it is violated. Therefore, there will be a brief instant when the constraint is

violated. Subsequent steps will move to a it valid state. The ill-effects of an ODE solver

misfitting a continuous polynomial will similarly be repaired by subsequent steps. If

such error is unacceptable, cleanup steps can be used.

Piecewise ODE solving by backing up can be used with the differential approach.

I have instead used the approach of letting later steps correct for any errors caused by

violations. There are many reasons to prefer such an approach:

� The general root finding problem of determining when to back up to is difficult.

� The ill-effects of adaptive step sizes, as described in Section 3.3.1 are applicable

- possibly even more so as adjusting the step size requires a potentially time

consuming root finding operation.

� When there are many changes close together in time, a backing-up system can

take only tiny steps between them. In a cleanup afterwards approach, many can

be cleaned up simultaneously.

� With the cleanup approach, objects not affected by the discontinuity continue to

move as they otherwise would. If the step size were adapted, all of the objects

would slow down whenever any discontinuities occurred.

For certain applications, such as collision simulation, having instants of violated in-

equalities will be unacceptable, and piecewise ODE methods will be required.
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But the ancient debate on emergence, whether indeed

wholes may have properties not intrinsic to the parts, is

besides the point. The fact is, that parts have properties

that are characteristic of them only as they are parts of

wholes; the properties come into existence in the interac-

tion that makes the whole.

— Richard Levins and Richard Lewontin

The Dialectical Biologist, p 273

A Graphics Toolkit

To this point, we have introduced the machinery of the differential approach, the meth-

ods for its realization, and the structure of a general purpose implementation. In this

chapter, we consider how the approach can be encapsulated to support the construction

of graphical editing applications. Graphical applications typically share a wide variety

of functionality, so their construction is often facilitated by the creation of toolkits that

encapsulate the common needs. This chapter discusses such a toolkit built on top of

the differential approach. Bramble is an object-oriented graphics toolkit, built on the

infrastructure of the previous chapters.

Bramble has much in common with other object-oriented graphics toolkits designed

to support direct manipulation graphical editors, such as Garnet [MGD+90], Inventor

[SC92], GROOP [KW93], and Alice [PT94]. Bramble’s primary distinction is that it

is designed on top of the differential approach. The major consequences of this are:

� The differential approach is used to create almost all graphical manipulations.

� Graphical objects have connectors that compute their various attributes, and often

provide these standardized connectors in lieu of specific interaction code.

� Snap-Together Mathematics is used to connect objects together and to connect

interactive controls to objects.

� Bramble provides support for application features such as geometric constraints

that are easy to create with the differential approach, but difficult to implement

in standard toolkits.

� Bramble’s control flow is dictated by the differential approach. The model of an

ODE solver with events interleaved between steps, as described in Section 6.2,

111
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provides a centralized main loop that calls application code when needed. The

differential approach allows continuous motion direct manipulation to fit nicely

into such a scheme. callback style architecture as mechanisms exist that permit

direct manipulation to fit in such a scheme.

Bramble not only shows how the machinery of the differential approach can be

applied to the construction of graphical applications, but also how the approach’s ma-

chinery can be encapsulated and hidden from the applications programmer. My goals

in constructing Bramble were:

� To make it possible to quickly prototype a number of applications to illustrate

and explore the differential approach. The emphasis is on speed of construction

and extensibility, rather than on industrial strength tools. Much of this goal was

pragmatic: I needed to construct enough examples to support the conjectures of

this thesis in a reasonable amount of time.

� To support a variety of applications. It was important that Bramble could sup-

port both 2D and 3D applications. While the focus is on graphical editors and

modelers, Bramble also supports other applications such as object viewers and

visualization tools.

� To support the basic services of graphical applications typically provided by

toolkits.

� To facilitate building applications that provide the features that the differential

approach supports, such as geometric constraints.

� To facilitate experimenting with interaction techniques and evaluating them in

context within applications.

� To show how the architectural features of the differential approach could impact

applications architecture. In particular, the approach can enable increased mod-

ularity, since Snap-Together Math provides a common connection mechanism

between parts, and separation of manipulation and representation aids encapsu-

lation.

� To show that the machinery of the approach can be sufficiently encapsulated. The

application programmer does not need to see the mathematics in order to make

use of the approach’s features. Bramble is designed to let developers program

with the familiar abstractions of graphical applications. They see the abstrac-

tions of the approach only when defining new interaction techniques. Bramble

programmers never need see the inner workings of the solver.
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7.1 The Bramble Application Model

The flow of control in Bramble is dictated by the differential approach, as described

in Section 6.2. Time flows forward as the ODE solver steps forward, continuously

evolving the state of the objects. By continuously viewing the world as it evolves, we

can see objects move according to their controls. At discrete instants, such as when an

event occurs, changes to the objects in the world can be made. However, such events

are instantaneous impulses: all changes to the configurations of objects must happen

via the passage of time by the ODE solver.

The differential approach’s model of time is significant in toolkit design for two

related reasons:

1. It provides a uniform “main loop” for all applications.

2. It provides a way to incorporate simultaneous, continuous actions such as drag-

ging into an event driven architecture. Events can asynchronously begin and

end continuous motion actions, concurrency is handled by the solver: there is no

need for multi-threading or other time sharing mechanisms to achieve concurrent,

asynchronous actions.

These two elements make it practical for Bramble to use event callbacks as its sole

application control mechanism. A Bramble application does not contain a “main” loop,

but rather, after the application concludes its initial setup, it simply call a function

defining a standard loop that runs the ODE solver, keeps the views of the world up

to date, and calls appropriate fragments of application code when needed. Code to be

called is specified in hooks, variables that can be bound to fragments of code that are

accessed at defined times. Hooks are discussed in more detail in Section 7.6.

The overall structure of Bramble is shown in the schematic of Figure 7.1. Bramble

is built on top of the Silicon Graphics GL graphics library [Sil91] and the Snap-Together

Math toolkit, discussed in Chapter 5. Bramble itself contains no solver code and does

not even provide access to the solver’s internal structures. Bramble also includes the

Whisper embedded interpreter, described in Appendix A. The symbiosis of Bramble

and Whisper will be discussed in Section 7.1.1.

A Bramble application consists of two parts:

� Code implementing any custom classes.

� A program that is run to execute the application. This program typically sets up

the application, doing tasks like opening windows, creating initial objects and

widgets, and defining hooks. After initialization, the program starts the differen-

tial process’ time flowing. Once time is started, application code is only executed

when a hook is called.
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Snap Together Math
(includes differential solver)

Whisper interpreter toolkit

Application Application Application Application Application

Bramble

Standard Objects Application Specific Objects

Object Management

Application 
Support
windows

widgets

standard interaction

    techniques

GL

Figure 7.1: The pieces of the Bramble toolkit. Bramble is built on top of Snap-Together

Math and the Whisper interpreter. It contains a variety of pre-defined object classes, support

for managing sets of graphical objects, and other miscellaneous pieces needed by graphical

applications. A Bramble application typically consists of a Whisper driver program and (op-

tionally) C++ definitions of new object types.

The major pieces of Bramble are akin to other similar toolkits. Each is affected by

the use of the differential approach:

Object Management – Bramble’s mechanisms for managing sets of objects, discussed

in Section 7.3, provide access to the features relevant to the differential approach,

such as keeping track of state variables and connectors. All objects, even win-

dows and widgets, can have state and connectors.

Standard Object Types – Bramble’s standard object types, discussed in Section 7.5

provide a wide range of connectors to support graphical manipulation.

Hooks – Bramble provides a set of hooks that aim to be sufficient to specify a range of

interaction techniques. These are chosen to provide a convenient set of opportu-

nities to alter the controllers and objects of the differential approach. Bramble’s

hooks are discussed in Section 7.6.

Windows and Widgets – Bramble’s windows can contain views of the world that are

automatically kept consistent, and many of the supported widgets, such as sliders,

are designed to manipulate their targets using the differential approach. These

features are described in Section 7.7.
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Standard Interaction Techniques – Bramble contains many basic graphical manip-

ulation techniques in its library, all of which are defined with the differential

approach. Picking and snapping services are tuned towards the selection of con-

nectors for manipulation.

This chapter will discuss these various pieces of Bramble, following a discussion of an

important part of Bramble’s structure, and a simple example of how Bramble is used.

7.1.1 Whisper and Bramble

The Whisper embedded interpreter, described in Appendix A, is an important part of

Bramble. An embedded interpreter is a useful feature for graphical applications as it

provides support for features such as saving and loading user data files and user exten-

sions. However, Whisper plays an even more significant role in Bramble. Internally,

the Whisper interpreter’s implementation is used by Bramble for support, and exter-

nally, much of the application programming in Bramble is done in Whisper.

As discussed in Section 2.3, using an embedded interpreter in a graphics toolkit is

a common technique. However, the differential approach removes some of the draw-

backs. The speed-critical computations occur as part of the mathematics; all standard

pieces can be written in the compiled host language. The centralized main loop pro-

vided by the ODE solver also interacts nicely with the embedded interpreter. Most

application behavior is defined by hooks. Bramble’s hook mechanism, discussed in

Section 7.6, permits pointers to C++ functions, text fragments of Whisper code, and

Whisper closures to be dynamically assigned.

Like other similar languages, Whisper has a runtime support system for memory

and object management. Bramble also uses these facilities for its needs. The advan-

tages are twofold: first, it provides Bramble with a dynamic, memory managed object

system; and second, it means that Bramble’s objects are easily accessible from the in-

terpreter.

The majority of Bramble application programming is done in Whisper. Bramble

is designed such that applications are constructed by extending the generic default ap-

plication. Constructing applications in the extension language is, therefore, sensible.

Application programming in Whisper has many advantages:

� The interpretive nature of Whisper leads to faster turnaround than the statically

compiled C++ environment. 1

� The interactive loop of the interpreter provides a useful debugging environment,

whereas the complexity of the entire C++ system makes using the standard C++

debuggers awkward.

1This is more a statement about the C++ programming environment at the present time than about

Bramble.
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� Whisper’s abstraction mechanisms, notably first-class functions and dynamic ob-

jects, are useful in the design of interactive systems.

� Many of the details of the system are hidden from a Whisper programmer. For

example, window management and refresh, and the solver internals are hidden.

In fact, there are no mechanisms provided in Whisper to access internal solver

data structures. The language does not even have vector or matrix constructs!

There is nothing that must be done in Whisper. However, almost all application pro-

gramming can be done in whisper.

Bramble is actually wired into the Whisper interpreter as an extension. The C++

“main” of a Bramble application is a Whisper read–eval–print loop, typically that can

select files to read from the command line. For my work, there is a single Whis-

per/Bramble executable and each application differs only by the Whisper program used

to run the application. For many applications, however, a different version of the inter-

preter, with custom sets of extensions wired in, would be more desirable.

The interpreter-based organization of Bramble emphasizes that it meets its goals of

insulating the application from the mathematics. The differential optimization is com-

pletely encapsulated inside the ConstEngine object as described in Section 5.4.5.

Nowhere in the Bramble toolkit source code or applications is there mention of the

internals of the solver process.

7.2 A Simple Example

In order to introduce the basic concepts of Bramble, a simple example will be presented.

This example is designed to be similar to that used to introduce the Inventor toolkit. In

the Inventor book [Wer94], a program called “hello cone” is given as a first introduction

to Inventor. Here is the same program, one that displays a cone in a window, written

with Bramble:

(1) (set my-view (make-view ”Hello Cone”))

(2) (set my-cam (make-la-camera))

(3) (view-cam my-view my-cam)

(4) (set c (make-cone))

(5) (c (set material shiny-red-material))

(6) (go)

This simple example brings out the basic notions of Bramble. A program places

graphical objects in the world, and does not worry about lower level details such as how

they are drawn or how the windows are managed. The first line creates a window that
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Figure 7.2: The simple “Hello Cone” program in Bramble.

views Bramble’s world. Line 2 creates a default “lookat” camera, and line 3 specifies

that the view created on line 1 should look at the world through the lens of this camera.

Lines 4 and 5 of the program create the cone object, and changes its color to red.

The color is changed by setting the property of the cone object that specifies the surface

properties to be a predefined material that is shiny red. This unusual syntax for access-

ing object fields is described in Appendix A. Notice that when the cone is created, it is

by default created in the world and is therefore visible to viewers of the world.

The “action” of the program takes place in the last line. The go routine begins

the interactive loop which is in the toolkit proper. In differential terms, time is started.

Steps are continually taken, and in between any events are handled. The interactive

loop runs continuously until either the program is killed, or a flag is set.

The simple 3D example receives a lot of a 3D interface from Bramble’s defaults, as

shown in Figure 7.2. By default, Bramble creates a number of interface elements such

as the ground plane, some lights, and the shadows dropped vertically onto the ground

as if the sun were at high noon. These defaults can easily be overridden. In a sense, the

Bramble program simply modifies the default application and runs it.

The most obvious difference between this program and the Inventor equivalent is

that it is written in Whisper, not C++. This difference can be emphasized by adding the

line

(add-key dev-esckey k-any k-down

(lambda (v) (set bramble-going nil)))

which attaches a procedure that sets a flag to the escape key. This flag signals the go

routine to stop the interactive loop and return. Since there is no code after the call

to go, Bramble will return to an interactive Whisper prompt. This allows a user to

interactively alter the program. The differential interactive loop can be restarted with

another call to the go routine.
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To get elements of a standard 3D interface, some standard key definitions can be

read by replacing lines 1 through 3 with

(read std-world.wh)

(set v (make-standard-view ”Hello Cone”))

at the top of the file. The Bramble standard 3D interface, described in Section 7.8

binds the mouse buttons to routines that permit objects to be grabbed and dragged and

the viewpoint to be controlled.

With the 3D interface, we would notice that when we grab the cone in the simple

program, it does not move. The primitive cone from the library is a rigid body that

has no degrees of freedom. To make it movable, we place the cone in a transformation

group with the lines

(set g (make-qs-group))

(add-to-group g c)

somewhere after the cone is created, but before go. The make-qs-group function

creates an empty group that can rotate and scale (qs stands for quaternion and scale).

We might want to have the cone begin pointing upwards. Since this will require a

non-differential change (i.e. we want it to instantaneously appear in the right orienta-

tion), we cannot use the differential machinery. This means we must actually directly

access and modify the state variable of the object. This is done by

(set-qvar (get-q g) ’sy -1)

that sets the sy (scale in y) variable of the group to -1. We might then want to prevent

the object from scaling as it is manipulated, which can be accomplished by

(freeze-scale g)

which is a special operation for groups.

The cone can now be grabbed and dragged using the standard Bramble mousepole

manipulation technique, as described in Section 7.8. We will now add some other

functionality that uses Bramble to operate the differential machinery. Suppose that we

want to have the top of the cone fly towards the left. This is accomplished by taking a

connector that computes the position of the top of the cone and attaching a controller

to it. Since the cone object has a predefined “top” connector, this operation is as easy

as

(controller (signal (c top) ’x) ’= 5)

that finds the x coordinate output of the top connector of the cone and creates a con-
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troller that drives it towards the value 5. We might want to instead bind this operation

to a key so it happens only when we’re ready

(add-key dev-gkey k-none k-down

(lambda (v) (controller (signal (c top) ’x) ’= 5))).

Notice how this example maps exactly to the abstractions of the differential approach.

We manipulate an object by attaching controllers to its connectors. The actual change

itself happens as time passes after the discrete instant when the controller is created.

The manipulation is done completely in terms of the connectors of the objects, without

regard for what parameters inside make them actually change.

Suppose we want to make a chain of cones. Here, we add a second cone and connect

it to the first.

(set c2 (make-cone))

(set g2 (make-q-group))

(add-to-group g2 c2)

(pt-eq (c bottom) (c2 top))

The important thing to notice from this example is that we were able to create the

connection by talking in terms of geometric or graphical objects, not mathematics. The

constraint is created to connect the bottom of one cone and the top of the other.

The lack of mathematics in the last example is a result of us being fortunate that the

cones had the connectors we desired. However, adding a new connector is easy enough.

Suppose we wanted to add a new “horizontal” connector to the cone that measured if

the cone was horizontal (i.e. that the y coordinate of its top and bottom are equal, as

Bramble’s coordinate systems defines the y axis to mean height). This can be done as

(c (bind horiz (minus-block (signal top ’y)

(signal bottom ’y))))

This code fragment uses the Whisper/Snap-Together Mathematics interface to create a

Snap-Together Mathematics output that computes a new attribute called horiz. The

attribute is computed by subtracting the height of the bottom of the cone from the top.

A function block is used to perform the subtraction. Whisper scoping rules cause the

code fragment that creates the block to be executed in the cone’s environment, so that

top and bottom refer to the cone. The code fragment stores stores the function block

as a field in the cone object’s environment permitting other objects to access it to use

it as a connector. This code fragment could be written as a procedure that could be

applied to other cones
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(define add-horiz (a-cone)

(a-cone (bind horiz (minus-block (signal top ’y)

(signal bottom ’y)))))

These connectors could be used just as any others, for example

(add-horiz c2)

(controller (c2 horiz) ’= 0)

7.3 Bramble’s World

The focus of Bramble is on building object-oriented graphical applications. One of

Bramble’s central roles is to help maintain the set of objects that are being presented

to the user. In Bramble, there is a single, implicit “world” in which all objects exist.

By default, when objects are created they are placed in the world. The concept of

the world is implicit in Bramble, unlike Inventor which requires explicit creation of

“scene graphs.” The advantage of this is simplicity, although the ability to have multiple

simultaneous worlds is sacrificed.

The world provides a uniform 3D coordinate system for all objects. The world is

always 3D, even for 2D applications. In such applications, objects ignore the third

dimension. This has a small cost, for example in doing transformations. The benefits

include avoiding redundant code and the ability to place 2D objects in 3D worlds. The

underlying GL graphics toolkit takes a similar approach.

In Bramble, the programming model is not of screens that are continuously redrawn.

Instead, the model is of a time continuous world into which objects are placed and

manipulated. Images on the screen provide views of this world.

7.3.1 The Bramble Object System

The mechanisms that support state variables, connectors, and other object management

are implemented at a general level. This permits all major object types in Bramble,

including windows and widgets, to support features that are usually associated with

graphical objects, such as having state and connectors.

All major types of objects in Bramble are subclasses of the type IDObj. Having a

common base allows common functionality to be shared among all types of objects. For

example, each object has the ability to be named, and is assigned a unique ID number

that serves as a soft pointer (hence the name IDObj). Each IDObj has a field that

allows its major subtype to be determined dynamically. An object manager keeps track

of all IDObjs created. The major subclasses of IDObj are:



7.3. BRAMBLE’S WORLD 121

Drawable – a graphical object in world space. This includes not only the user created

scene objects, but lights, cameras, hierarchy elements, and world space interface

elements such as 3D widgets.

IDrawable – a special object that exists in screen space, rather than in world space.

Effectively, these objects are attached to lenses of cameras.

View – an object representing a view of the world on the screen. It is basically a

pairing of a camera and a window, with added responsibilities for determining

drawing parameters.

DistinguishedPoint – an important type of connector that represents a specific

point on some object.

Imagepoint – a special type of connector that represents the position on the screen

of a point.

SubWin – a subwindow of a screen window. Subclasses include widgets like buttons

and sliders.

Frame – the “physical” GL window on the screen. May contain several SubWins,

one of which may be a View.

Material – a set of surface properties.

Demon – a special object that performs its hooks when triggering events occur.

One of the key ideas behind Bramble’s object management is that each IDObj con-

tains a Whisper environment. In Whisper, environments serve as a dynamic object

system (see Appendix A). Using Whisper environments as an object system for C++

has several advantages:

� It provides easy access to the object from Whisper.

� By defining methods as values in the Whisper object, they can be dynamically

altered.

� Fields and methods can be added and removed dynamically as needed.

� Objects can inquire about which fields and methods other objects contain.

� Whisper environments, to a certain extent, are automatically memory-managed.

The dynamic nature of objects is important: fields and methods may be added in re-

sponse to user actions. It also allows experimentation with application behavior: ob-

jects can be interactively modified while the application is running.
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Any IDObj can have state variables and connectors. The base class handles man-

agement of these differential features. It also permits objects to create differential con-

trollers or employ function blocks. These are automatically removed when the object

is deleted. Object deletion is also handled by the base class using lists of hooks. This

permits an object to define work that must be done when the object is removed. Dy-

namic definition of deleters, very much in contrast to the static C++ notion of a deleter

method, is a very useful feature.

Memory management can be a difficult task in an interactive system. Bramble

uses a variety of manual techniques to automatically manage memory without using

a garbage collector. Bramble contains mechanisms to deal with the inverse garbage

collection problem. An inverse garbage collector activates when an object must be

deleted, for example in response to a user command, and insures other objects that

refer to it are appropriately altered or deleted. A garbage collector does not provide this

behavior. In fact, in a system that was simply garbage collected, the object would not be

deleted until all references to it were removed. Interconnection of objects is pervasive

in and central to the differential approach, so handling inverse garbage collection is

important in Bramble. The mechanism used to handle this problem is to have each

object maintain lists of other objects that should be notified or deleted when the object

is deleted.

7.3.2 Graphical Objects

The graphical objects in Bramble’s world are derived from the class Drawable. This

class requires only a few methods. Subclasses of Drawable define a draw method

that needs only to operate in the object’s local coordinate frame. Objects may also pro-

vide other functionality. For example, most objects will define at least a few connectors

so they can be manipulated, and will allocate a state vector to store their configuration.

Other examples of optional Drawable functionality include ray intersection, bound-

ing box computation and generation of external representations. Almost all methods

apply in local coordinates. Hierarchy mechanisms perform required conversions auto-

matically.

Bramble keeps all of the instances of Drawable on a list. The list of “the stuff”

is Bramble’s notion of a scene. Only one list is kept by the program. Selective draw-

ing can effectively provide multiple scenes. Although the list is a flat representation,

hierarchies are supported by the grouping mechanism, described in Section 7.5.3.

The graphical objects are not unlike their counterparts in other object-oriented graph-

ics toolkits. One difference in Bramble is that each object class does not have to provide

methods for interaction. An object need only provide connectors that the more general

manipulation techniques can connect to. “Object-centric” styles of interaction are pos-

sible with Bramble. For example, an application can have each object define methods

which are called by a dispatcher that receives events. Intermediate styles, for example
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having an object use hooks to alter general manipulation techniques, are also possible.

Another distinction of Bramble’s graphical objects is that they must also manage

state and connectors in ways that permit the differential approach to manipulate the

object. Bramble’s object system provides a uniform place for objects to keep a state

vector. Once a graphical object registers that it has a state vector, Bramble automati-

cally insures that the variables are managed correctly.

Connectors are handled in a less uniform manner. In Bramble, a connector is simply

a Snap-Together Mathematics Port that an object stores in a way that other objects

can gain access to it. Standard mechanisms exist for certain important types of connec-

tors, as discussed in Section 7.4.

7.4 Connectors in Bramble

In Bramble, a connector is simply a Snap-Together Mathematics Port that an object

exposes in a way that other interested objects can gain access to it. The most common

way to do this is for the object to place the Port in a field of its kept environment.

Objects are free to create any types of connectors they want. Objects often provide

special purpose connectors tuned to compute their specific types of attributes. Many

specific examples are given in Section 8.1.

The most important type of connector in Bramble is the distinguished point. A

DistinguishedPoint represents a particular point on a graphical object. The

primary output of a DistinguishedPoint object is its position in space, but in-

stances usually provide other attributes, such as surface normals and tangents, when

they are known.

Distinguished points are first class Bramble objects unto themselves, that also hap-

pen to be Port objects as well. By being a real IDObj a distinguished point can:

� be accessed by standard object naming and reference techniques;

� store state, permitting the point to be moved around on the object;

� define hooks to specify its behavior;

� have other connectors associated with it, for example, to compute the position of

its shadow on the floor or wall.

To standardize access, each object keeps a list of its distinguished points. Similarly, a

global list of all distinguished points is kept to aid in such tasks as picking and snapping.

Registry in this global list is automatically handled by the DistinguishedPoint

creation process, and permits points to be found by name or by location.

The position and orientation of a distinguished point are not simply a function of

the graphical object the point is on, but also the transformations applied to the object.
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However, the hierarchy mechanisms automatically handle these transformations. A

point must provide only methods for computing its connectors in the object’s local

coordinate frame. Jacobians are also composed for points in hierarchies.

Standard subclasses of DistinguishedPoint include:

Fixed Points that are a fixed position in the object’s local coordinate system.

Point on Point that connect directly to a set of object variables that represent a posi-

tion.

Free Points that store their position in the object’s local coordinate space as their own

state vector. Constraints are often used to keep such points in the volume of or

on the surface of an object.

Different types of objects may also define special types of DistinguishedPoint.

For example, a parametric surface might define a type of point that stores its parameter

values as state. Such a point can slide along the surface, or the parameters can be frozen

to create a fixed point.

7.5 Graphical Objects

Bramble supports a wide range of graphical objects. Many standard subtypes of

Drawable are provided, and new application-specific types can be defined.

7.5.1 Standard Object Types

Bramble predefines a variety of basic object types, along with standard connectors with

which to manipulate them. For example, the 2D set includes lines, circles, rectangles,

ellipses, and polygons. A general parametric curve class allows the definition of new

object types by simply providing the parametric function. Connectors and a drawing

function are defined automatically from this as described in Section 8.1.1.

Most of the standard 3D objects are defined as rigid bodies that must be placed

inside of groups to be moved. Most standard shapes, such as cones, tori, cylinders, and

spheres are provided. Polyhedra can be defined in several ways, including readers for

several data file formats.

A planar mirror is provided as a 3D rigid object. In terms of its geometry, the mirror

is simply a rigid square. However, the mirror’s draw function calls other objects’ draw

function with a new transformation that draws the object on the mirror’s surface to

simulate reflection. Mirrors define special connectors that permit the reflections to be

directly manipulated.

Geometric constraints are represented by Drawable objects which create asso-

ciated controllers on some of their connectors. For example, a connection constraint
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would take two DistinguishedPoint position connectors, and compute the dif-

ference as a connector. When created, it would also create a GoTowards controller

on the distance connector to maintain the constraint. The objects that represent con-

straints may provide drawing methods that provide feedback to the user. Bramble in-

cludes many basic constraint objects in two and three dimensions, including point con-

nection, distance, collinearity, normal or tangent alignment, and parallel. Inequality

constraints in the basic set include constraints to keep points inside many of the basic

shapes. All of these constraints operate generically on object connectors so they can

be attached to many types of objects.

7.5.2 Defining New Object Types

Many applications will need special purpose object types not included in the standard

set. For example, the planar mechanisms simulator of Section 9.2 defines special ob-

jects for mechanical parts such as motors, linkage rods, and sliders. Often these objects

are simply slight variations on the standard toolkit objects. For example, a linkage rod

is simply a line segment that is drawn in a different way and has its length constrained

to be fixed at creation.

Most of the standard functionality of Drawable objects can be implemented in

Whisper, allowing new types of objects to be dynamically defined. For example, the

following code defines a new type of Drawable that is a simple 2D line segment.

(1)  (defun make-line (x1 y1 x2 y2)			

(2)    (let* ((obj (wh-drawable 'line))	

(3)  	        (q   (make-stobj 4)))

(4)     (set-qvar q 0 x1 y1 x2 y2) 

(5)     (caste-vars q vc-sceneobj)		

(6)     (brobj-add-vars obj q)   

; procedure to create a line 
; create an empty object

; make a 4 place state vector

; put initial values into state

; declare type of variables

; install variables in object

(16)   obj))

(12)    (bind-in (get-env obj) drawf				

(13) 	   (lambda (draw-flags)			

(14) 	     (prog (move (val q 0) (val q 1))    

(15) 		          (draw (val q 2) (val q 3))))) 

(9)     (bind-in (get-env obj) length			

(10)  	  (dist2d-block (signal q 0) (signal q 1)   

(11)  			              (signal q 2) (signal q 3))) 

(7)     (point-on-vars-2d obj 0 1)		

(8)     (point-on-vars-2d obj 2 3)		

; define draw method
; function of draw params

; use GL move/draw commands

; to draw line

; define a length connector
; compute with distance block

; return created object

; create point connectors
; one for each endpoint

This defines a procedure that creates an instance of the new type, given initial po-

sitions for its endpoints. It first creates an “empty” object (line 2) and a state vector
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(line 3) that contains space for 4 variables. The object represents the line by the po-

sitions of the endpoints, so the initial values can be placed directly into the variables

(line 4). Lines 5 and 6 declare the type of the variables and install them into the object.

Lines 7 and 8 create DistinguishedPoint connectors for the endpoints. These

connectors can obtain their values directly from variables in the state vector. Lines 9

through 11 create a length connector by computing the distance between the two end-

points. Lines 12 through 15 define a draw method for the line segment. The method

takes a single argument, the drawing mode, that it ignores since it uses the defaults.

To facilitate the creation of new 2D objects types, Bramble provides a special

define-shape function, detailed in Section A.2.1. It provides a concise syntax for

specifying how the shape is drawn and placing connectors on it. The syntax permits

intermediate variables to be specified for convenience and internal constraints on the

object to be defined.

7.5.3 Groups

Bramble supports object hierarchies with its Group class. A Group is a subclass

of Drawable which contains a list of other objects and a transformation to apply to

them. Like the hardware and graphics library it has been built on, Bramble presently

supports only linear transformations. Each Group has a connector that computes its

transformation matrix from its state variables. Different Group types define different

functions, for example to employ a quaternion or an Euler angle representations for

rotation.

The Group class automates the process of building graphical hierarchies. Group

objects manage the hierarchy for their member objects. For example, the members

need only draw in their local coordinates as the group ensures that the proper trans-

formations are applied before the object draws itself, permitting the graphics hard-

ware to handle the transformation hierarchy. Making sure that the correct results occur

when position or surface orientation connectors are computed is more complicated.

The DistinguishedPoint class handles this automatically.

Bramble’s grouping mechanisms make it simple to build hierarchies. Adding an

object to a group requires simply

(add-to-group group obj)

and everything is configured correctly. Similarly the ungrouping operation

(remove-from-group group obj)

does all of the required hierarchy management. One complication with ungrouping

is that when the transformation is removed, the child object might jump in space. To

prevent this, each object keeps a matrix that contains any previously applied transfor-



7.5. GRAPHICAL OBJECTS 127

mation. This matrix is called leftStuff since it represents what was to “the left” of

the object when it was drawn.2 When an object is removed from a group, the group’s

transformation is premultiplied into the object’s leftStuff matrix. This way the

object does not jump when ungrouped. The leftStuff matrix is inserted into the

matrix stack as each object is drawn.

Each different type of Group needs only to define its function that computes its

matrix from its state variables. Some auxiliary information, denoting which variables,

if any, correspond to rotation, translation, scaling, or center may also be provided.

Bramble’s standard set of Group types include rigid body transformations (translate

and rotate) with both quaternions and Euler angles, rotate/translate/scale transforma-

tions, and a slider transformation that restricts objects to translate along a vertical line

from the normal of a given point.

7.5.4 Cameras and Lights

A camera in Bramble is not just a 3D element. It is used for all transformations be-

tween the world coordinate system and screen coordinates. Like a Group, a Bramble

Camera’s primary distinction is a function that maps from its state variables to a

transformation matrix. In the case of a Camera, however, this transformation is from

world space to screen space. The inverse of this matrix is used to draw the camera, for

example when another camera is looking at it.

The computer graphics literature is filled with many camera models. However,

Bramble does not need to support a huge variety because the differential approach

makes them unnecessary. As best exemplified by Blinn’s work on spacecraft fly-bys

[Bli88b], alternate formulations of a camera model are used to provide parameters

which serve as convenient controls for the user. With the differential approach, a single

camera model can be used with a variety of interactive controls. By mixing and match-

ing controls, the user can specify camera positions as conveniently as with special pur-

pose formulations. The through-the-lens camera controls of Section 8.1.4 provide a

building block from which many camera manipulations can be created, including those

of Blinn’s paper as well as the more common LOOKFROM/LOOKAT model.

Bramble provides a small number of standard camera transforms. Orthographic

transformations are provided to produce 2D images, as well as front, top, or side views

of 3D scenes. The most common models in computer graphics define camera position

by a rotation about the eye point. Models differ in how they represent the rigid body

configuration of the camera. Bramble provides camera representations based on quater-

nions and Euler Angles. Usually, the quaternion representation is used because of its

attractive mathematical properties, but an Euler angle representation is also available,

mainly for expository purposes.

2I use the postmultiply or function application notation, where the point to be transformed is written

to the right of the list of matrices.
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A common representation of the orientation of a camera in computer graphics is to

store a “look at” point that is to appear in the center of the image. A camera parameter-

ized by LOOKFROM/LOOKAT is provided by Bramble. However, the functionality

is typically obtained by employing a Quaternion camera and a through-the-lens con-

trol, because the representation has better mathematical properties. The primary use

of the LookAtCam is when the configuration of the camera is going to be statically

configured in a program, rather than manipulated. In such a case, the programmer will

type the numbers that configure the camera, and therefore will require an easy to type

representation.

Like cameras, lights are represented by graphical objects within the scene. ALight

object is a special type of Drawable that has an extra method which initializes the

graphics hardware to use the light. Lights provide information for optional shadow

generation as a special connector which denotes the “bulb position” in homogeneous

coordinates to allow for distant light sources.

Bramble supports several types of light sources, corresponding with the capabilities

of the GL graphics library and some of the renderers used. The Bramble light classes

are: point lights, distant lights, directional spot lights, and ambient light. As graphical

objects in the scene, point and spot light sources can be manipulated and transformed

as other graphical objects. This allows placing lights in “fixtures,” like the Luxo lamp

of Section 1.1. Special connectors for manipulating lights will be described in Section

8.1.5.

7.6 Hooks

Bramble’s interaction model most closely resembles a dispatcher or notifier model

[FvDFH90] where an application registers callback procedures with a centralized dis-

patcher that calls the appropriate procedures at the appropriate times. Bramble uses this

model for most application behavior, permitting an application to specify functionality

and then delegate the flow of control to the main ODE solver loop.

The callback mechanism in Bramble is through Whisper hooks. Like their LISP

namesakes, Whisper hooks are variables that can be given procedural values that are

called at appropriate times. In Bramble, the hook mechanism allows either a pointer to

a C++ function or a whisper closure. Often a variable stores a list of hooks to be called,

rather than just a single hook.

By defining behavior with hooks, rather than hard-coded routines, the behavior of

an application can be dynamically altered. A goal in the design of Bramble was to

provide a sufficient set of hooks such that all post-setup application behavior can be

defined with hooks. This is more practical with the differential approach because time

continuous activities are taken care of by the passage of time, so manipulation actions

are discrete events that can be tied to hooks. Only in extremely rare cases do hook
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functions not act instantaneously. Because the main loop only cedes control for short

instants, processes such as screen update, window maintenance, and object animation

can be maintained.

Many of Bramble’s hooks are similar to those provided by systems not built with the

differential approach. Having the right set of hooks to attach and detach controllers at

the appropriate moments is essential to creating graphical manipulation. In this section,

we summarize the most important of Bramble’s hooks, and provide simple examples

of how they can be used with the differential approach. These mechanisms will be used

in Chapter 8 to define specific interaction techniques.

7.6.1 Events

An event in Bramble corresponds to a GL input device event, such as a key press or

mouse click. Separate events are generated for both button up and down, allowing each

to be handled differently. Bramble keeps a dispatch table that assigns a hook to each

event. The dispatcher permits defining modifier selectors, allowing different sets of

modifier keys to cause events to be interpreted differently. Event hooks are called with

the current view as an argument.

The following code implements a 2D dragging behavior. The code fragment at-

taches a hook that handles left mouse-button down events. The add-key function

takes an event name, a set of modifier keys, an event type, and a function to call when

this event occurs. When it gets the currently selected point from the snap server (Sec-

tion 7.7.3) and creates a constraint that equates this point with the position of the mouse,

which is provided by the view as a connector.

(1) (add-key k-leftmouse k-none k-down

(2)   (lambda (view)

(3)     (if (snapdp)

(4)       (let ((c (pt-eq-2d (snapdp) 

(5)                          (view mouse-port))))

(6)	        (add-key k-leftmouse k-any k-up

(7)		         (lambda (v) (delete c)))))))

; left-mouse down definition

; attach a procedure, called with view

; if there is a selected point

; create a constraint attaching

;   selected point to mouse

; redefine left-mouse button up

;   remove the attachment constraint

When the left mouse button is pressed, the procedure uses the snapdp function to get

the currently snapped-to point (line 3). If there is a selected point, a constraint is cre-

ated that attaches the point to the position of the mouse (line 4 and 5). The procedure

also redefines the button up event to delete the constraint (line 6 and 7). Notice how

the use of Whisper’s lexical scoping rules keeps the internal data of this operation, the

constraint, localized and how the code for the dragging action is only executed at the

beginning and end of the operation.

Bramble automatically handles GL window events, such as raises, focus changes,

and window removal.
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7.6.2 Object Hooks

Event hooks are defined on a per-application basis. By default, an event handler does

not provide different behavior based on the object being referenced. However, it is

often useful to provide behavior on a per-object basis. Some toolkits, such as Inventor

[SC92], dispatch events directly to objects to facilitate the diversity of object behavior.

To support diversity of object behavior, Bramble permits objects to specify hooks

that are called when certain operations are performed on them. Most of these, such as

the save hook, the draw hook, or the deleter hook are primarily useful for dynamically

creating a new class of graphical object, as shown in Section 7.5.2. Certain applications

permit objects to define specific event hooks and perform the dispatching themselves.

For example, the Showoff application, described in Section 9.7, permits each object

to define a method to be called when the right mouse button is clicked on it. The

application defines the right mouse event handler to determine which object should be

notified of the event, and to call the appropriate hook.

One set of standard event handling hooks that is particularly useful for defining

interactive behaviors with the differential approach is the grab/ungrab pair. Unlike the

example code of the previous section, the standard built-in drag handlers permit objects

and specific points to specify hooks that are called before a dragging operation is begun

and after it has ended. This is often used to apply constraints that should act during the

dragging. Some examples of how this is used are provided in Section 8.3.6.

Object hooks can be defined on a per instance basis, permitting individual instances

to each have their own behavior. Because hooks can be defined dynamically, the be-

havior of an object can be altered while the program runs.

7.6.3 Demons

A Demon is a special class of object that causes hooks to be called when certain condi-

tions occur. The common condition for a Demon is that a signal is within a threshold

of a desired value. Each Demon can define three main hooks:

do which is called when the condition the demon is looking for occurs. The demon

removes itself after calling this hook.

fails which is called if the demon is removed before its condition is satisfied.

done which is called when the demon is removed.

Demons have an optional timeout which causes them to be removed after a specified

number of steps, whether or not their conditions have been achieved.

Demons are useful for creating a variety of behaviors. One use of a Demon is

to create a non-persistent constraint by removing a GoTowards controller after it

achieves its goal. For example, to make example of Section 7.2 non-persistent so that
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the cone can be freely manipulated after its top reaches the left edge of the table, we

could

(set cl (controller (signal (c top) ’x) ’= 5))

((demon) (bind done (lambda (x) (delete cl)))

(bind tolerance .2)

(bind lifetime 50)

(bind possessed cl))

In this example, after creating the controller, a demon is created that “possesses” it.

When the controller gets within tolerance of its target, or when the demon’s specified

lifetime of 50 steps times out, the demon’s done hook is called, deleting the controller.

Demons are also often used to remove constraints that are unable to be satisfied, per-

mitting the application to give up.

7.6.4 Other Hooks

Much of the behavior of an application is defined by hooks. Most of these hooks are

used for tasks not particular to the differential approach. For example, each View

defines a hook that draws the background of the image when its screen is cleared. Any

of these hooks could contain code that alters the set of controllers. However, a small

set seems useful for defining interaction techniques. The set includes:

sub-step-hook is called before each call to the differential solver (e.g. each substep of

the ODE solver). This hook could be used to create active set methods, although

hooks do not have access to solver internals to access the Lagrange multipliers.

step-hook is called after each step. One common use of the step-hook is for peri-

odically altering a GoTowards controller to achieve the effect of a Follow

controller.

add-obj-hook is called each time a new graphical object is added to the system. This

can be used to permit automatic registering of new connectors.

redraw-hook is called each time a view is redrawn. This is called once per view per

step as all views are updated each step in Bramble. This is often used to provide

feedback to the user by drawing an overlay.

7.7 Other Application Components

Most of Bramble is concerned with providing support for the graphical objects which

the user will actually place into models. However, there are other supporting objects,

such as windows and buttons, which applications require and Bramble supports. Many
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other toolkits provide similar support for these things; relevant aspects of how they are

handled in Bramble will be mentioned briefly. The emphasis in the development of

these objects is in providing tools which will allow these parts of applications to be

built quickly, so that more effort can be concentrated on the development of graphical

manipulation techniques with the differential approach.

7.7.1 Windows, Views, and Widgets

Bramble contains an object type called a Frame which represents a window system

window object. A frame can contain many subwindows. One of these subwindows

may be a View where Bramble draws a depiction of the current state of the graphical

objects. Each View has an associated camera and attributes which determine how

the image is rendered. There can be many views at once, but each must have its own

camera and frame.

Frames and Views are first class objects in Bramble. In fact, Views always have

connectors that provide the position of the mouse relative to the coordinate frame of

the window. This simplifies attaching other connectors to the mouse.

A Frame can contain other subwindows besides a View. These are used to pro-

vide buttons and other widgets around the edges of the View. All behavior of the

widgets is defined by hooks, including the widget’s appearance. These subwindow

hooks include methods for drawing, handling mouse clicks, and a “tick” function that

is called periodically. Like the graphical objects, the predefined subwindow widgets

are designed to automatically update themselves to maintain a consistent view of the

values that they access. The provided set includes:

Buttons that watch the value of a Whisper variable, and update automatically.

Radio Buttons that watch a variable and allow its value to be selected from a set.

Differential Sliders that can attach to connectors and create controllers in response to

mouse clicks. These sliders permit not only dragging a connector’s value, but

also nailing or bounding it, as discussed in Section 8.2.1.

Color Sliders that create a set of differential sliders for RGB values along with feed-

back for what the color is.

Text Elements that allow static display of information.

A special type of widget is provided to help watch the status of an object’s state

vector. The VarWatcher is a separate window that contains sliders for each variable

in a particular state vector. The special sliders depict the gather state of the variables

as well as permitting their values to be displayed and controlled. VarWarchers are

particularly useful for debugging. A programmer can monitor an object’s state with a

single function call.
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7.7.2 External Representations

Bramble provides rudimentary features for reading and writing representations of mod-

els outside of Bramble. For example, save and load is handled using Whisper, the saved

representations are Whisper programs that recreate the model. Applications augment

objects to write Whisper code to recreate themselves when reloaded. Objects have

hooks that are called during the save process, allowing applications to specify this be-

havior.

Other external file representations are handled by Bramble. Scene descriptions for

renderers, including Renderman [Ups89] and Rayshade [Kol91], can be generated, as

well as PostScript pictures. In each case, objects define a hook that is called whenever

the object needs to be written to a file. By defining this behavior as a hook, applications

can alter the way that objects are written on either a per class, or even a per instance

basis. Bramble also has support for writing bitmapped images of views to disk.

7.7.3 Picking and Snapping

Picking is a fundamental operation in any graphical editor. Bramble contains methods

for easily using the standard Iris GL pick by redraw mechanism. Picking by ray casting

is also supported for object classes that provide a ray intersection routine.

The most commonly used picking mechanism is cursor snapping. Cursor snapping

continuously locates the cursor near important points in the view. It is used to aid in

object selection and precision cursor positioning. Cursor snapping was first introduced

in Sketchpad [Sut63], and has since been further extended to better support precision

manipulation (as in Snap-Dragging [Bie89]), infer constraints (as in Briar [GW94]), or

provide feedback to the user as to the range of available options [Hud90].

In Bramble, cursor snapping is handled separately from the event process. The

model for cursor snapping is also continuous, but in practice it is updated only at the

end of each step. Event actions can inquire about the state of snapping at any time. A

single Whisper call returns the object currently snapped to. The snap server actually

keeps a list of targets that are near the mouse, to permit hysteresis and cycling between

objects that are close to one another. At present, the Bramble snap server snaps only to

existing DistinguishedPoint connectors. It has been designed to be extended

to support the range of snapping seen in Snap-Dragging [Bie90, BS86].

Facilities are provided to control the scope of snapping, permitting techniques such

as Semantic Snapping [Hud90]. By using either a hook or status bits in each potential

target, the snap server is able to cull objects based on criteria other than being close

to the mouse. One common use of this is to limit snap-targets to legal choices for the

current operation. Bramble automatically provides the user with feedback of the snap-

ping state. Applications can provide more than just the cursor feedback, for example

highlighting objects that are snapped to.
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Constraint inferencing from snapping is supported by Bramble. By using snap-

server accesses in object creation and manipulation event handler hooks, augmented

snapping [GW94] can be implemented easily. Augmented snapping, discussed in Sec-

tion 9.1, automatically generates constraints from snapping operations in order to make

the positioning operation of the snap persistent. For example, the dragging handler of

Section 7.6.1, might be extended to

(1) (add-key k-leftmouse k-none k-down

(2)   (lambda (view)

(3)     (if (snapdp)

(4)       (let* ((p (snapdp))

(5)              (c (pt-eq-2d p (view mouse-port))))

(6)	        (add-key k-leftmouse k-any k-up

(7)		         (lambda (v) 

(8)            (prog (delete c)

(9)                 (if (snapdp)

(10)                  (pt-eq-2d p (snapdp))))))))))

; left-mouse down definition

; attach a procedure, called with view

; if there is a selected point

; store selected point

    ; attach point to mouse

; redefine left-mouse button up

; now also infers constraint

;   remove the attachment constraint

;  if there's a point to connect to

          ; infer a constraint

The code has two differences from the earlier example. First, the point that is being

dragged is stored in line 4. Secondly, when the mouse button is released, line 9 checks

to see if the cursor is snapped to a point. If it is, a constraint is created in line 10 that

connects it to the point that was dragged. In Section A.2, a code fragment demonstrates

the addition of augmented snapping to the creation of a line segment by rubber banding.

7.8 The Bramble Standard 3D Interface

Bramble provides a standard set of objects and connectors to support basic 3D inter-

action. The goal is to provide a fast and easy interface for 3D experimentation. The

basic interface, shown in Figure 7.3, has a particular style derived from systems built

in the CMU Animation Lab over the past few years. Applications can use or ignore

these interface elements.

An important part of Bramble’s 3D interface is a floor called the groundplane and

an optional back wall. This reference object defines the coordinate system and gives the

user a reference frame called a stage[HZR+92]. To further aid the user’s perception of

3D objects, Bramble can draw shadows on these reference objects. These plane shad-

ows can be easily generated with the available hardware using techniques described

in [Bli88a]. Bramble’s shadows can either be simple drop shadows that are directly

below the objects as if the light was the sun at high noon, or shadows computed from

the positions of the light sources.

A Follow controller couples the motion of a connector to the motion of an input

device. Any connector which represents a position in 3–space could be connected to a

3D input device. Bramble’s standard 3D input device is a virtual device that uses the
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Figure 7.3: The Point Tinkertoys application demonstrates Bramble’s standard 3D interface.

The user manipulates the point objects using the mousepole. A groundplane and shadows are

provided to help depth perception. This application is discussed in Section 9.6.

mouse along with a special graphical object called the mousepole.3 The mousepole is

a vertical line which extends from the floor to the mouse position. The line is used to

provide feedback of the 3D cursor location. As the mouse is moved, the pole tracks it,

with the top point moving parallel to the groundplane. When a mouse button that has

been designated as the “elevator” button is held down, the pole top moves in a vertical

plane instead of a horizontal one. The tip of a mouse pole can be tracked by a controller.

A standard 3D interface package can be loaded from any Bramble application. It

provides a standard set of key bindings and object manipulation techniques includ-

ing mousepole manipulation of scene objects, virtual trackball-like manipulation of

the viewpoint by grabbing the corners of the groundplane, and viewpoint panning by

grabbing the center of the groundplane.

In addition to its standard 3D interface, Bramble provides support for developing

other types of 3D interactions. Objects provide a variety of connectors which serve as

building blocks for creating interaction techniques. Many of these will be described in

Chapter 8.

3Although the mousepole is unpublished to date, I credit it to Andy Witkin.
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Chapter 8

The material object of observation, the bicycle or the

rotisserie, can’t be right or wrong. Molecules are

molecules. They don’t have any ethical codes to follow

except those people give them. The test of the machine is

the satisfaction it gives you.

— Robert Pirsig

Zen and the Art of Motorcycle Maintenance, p 146

Interaction Techniques

The differential approach allows a range of interaction techniques to be created by

defining connectors which compute interesting attributes of objects, attaching con-

trollers to these connectors at the proper times to cause the object which they depend

on to move, and by using combinations of these controllers to create more complicated

behaviors. This chapter discusses these topics in that order.

Throughout this chapter, the differential approach will be applied to specific interac-

tion problems. In many cases, we will simply recreate previous interaction techniques

on top of the new abstractions, often in a way that allows them to be extended, general-

ized, or at least implemented with fewer of the typical hassles. Several of the interaction

techniques, however, would be difficult or impossible to create without the approach.

8.1 Attributes to Control

An important feature of the differential approach is the flexibility it provides in the types

of attributes that can be controlled. In this section, we provide examples of attributes

which potentially make interesting connectors to control. All of these examples are

available in Bramble’s standard library.

One consideration is that some attributes work better than others, either from a

mathematical or user interface perspective. While developing methods for determining

the effectiveness of an attribute as a control is left for future work in Section 10.3, here

are some intuitions developed from experience:

1. Simpler functions work better.

2. One constraint should remove one degree of freedom. It it much better to use

multiple equations than to combine multiple constraints into a single equation.

137
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For example, it is better to have x = 0 and y = 0 than x

2

+ y

2

= 0:

3. The derivatives should not vanish when the constraint is met. This often relates

to 2. In the example, the derivatives of x2

+ y

2 are 0 when x = 0 and y = 0:

4. Normalizations throw away information, and therefore should be avoided.

5. Controls with physical analogies are easier to explain to the user and to under-

stand the mathematical behavior.

6. Controls that are positional (e.g. compute a position in space) are easier to con-

nect to input devices and to understand.

Each of these issues will be discussed in the specific examples to which they apply.

8.1.1 2D Object Controls

The most basic attributes are the positions of points on 2D objects. These can be di-

rectly controlled by attaching their values to the mouse’s position. Since the system

must be able to compute points in order to draw the object, the functions required for

manipulation are known. Often, points are placed at interesting points such as the cen-

ter of an object, in addition to places distributed around the object.

The define-shape function in Bramble, detailed in Section A.2.1, provides a

mechanism for defining 2D objects. It demonstrates how the same information used to

draw an object is used to control it.

For parametric curves, the simplicity of the differential approach is especially ap-

parent. A parametric curve is defined by a function

fx; yg = f(u;q): (8:1)

This function computes the position of a point of the curve, given a value for the free

parameter and the parameters defining the configuration. The ability to compute this

function is necessary to draw the curve. Just as we draw the curve by specifying u val-

ues for specific points, we can create connectors to manipulate the curve by specifying

u values. Using the parametric function for a connector requires the derivatives of the

function that can be obtained easily and automatically. Even if the function is provided

only as a black box that can be evaluated, the derivatives can be estimated numerically

using finite differences.

The use of connectors from the parametric function provides an automatic and uni-

form methods for providing interfaces. All that is required to define an object type is the

parametric function. Connectors can be placed along the length of the object, permit-

ting the user to grab the object at various points. Each type of object is manipulated in

exactly the same way: the user can grab any point on it and pull it. All parameters of the
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Aritsotle Physics

Gravity = 0.0

Damping = 0.0
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L: Grab    M: Hook    R: Create

Figure 8.1: A simple curve editor showing a variety of parametric curve types. New types can

be defined simply by providing the parametric function used to draw the objects. All objects

are manipulated uniformly: pulling a point on the objects causes all of the object’s parameters

to be adjusted accordingly.

object are affected, not just their translations. The mass matrix metric of Section 3.4.1

provides a uniform metric for curves as well, as first demonstrated in the FF system by

Witkin [Wit89b]. A later implementation that I wrote is shown in Figure 8.1, and was

presented in [GW91a]. These systems both permitted the definition of new types of

objects at compile time by specifying a parametric function to a symbolic mathematics

package that automatically generated the code for the object. A later version, described

in Section 9.4, permits new functions to be defined dynamically.

For a specific object, the uniform interface may not be better than a hand-crafted

one. However, it may not always be practical or possible to devise good interfaces

for all object types. For a parametric curve in the differential approach, interfaces do

not need to be defined for each object type. Given the parametric function used to

draw the object, the code to compute the connectors can be automatically generated.

In fact, to add a new curve type to a drawing editor, all that needs to be provided by the

programmer is the parametric function and a little auxiliary information such as how

finely to sample the curve and initial values for the parameters. Everything else can be

generated automatically. A prototype system, described in Section 9.3, even adds an

icon creating instances of the object to the program’s interface.

A connector for a particular u value provides a point on the curve that can control
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Figure 8.2: A crowbar point is computed by an offset of the normal to a point on the curve.

The crowbar provides a handle to control the normal of the point that is positional, and therefore

can be directly coupled to the pointing device.

the parameters. If the connector stores u as a modifiable state variable, the point can

slide along the curve as well as to move the curve. We call such a point that can slide

around on its parent objects a bead.

Normals and tangents can also be computed for points on 2D curves. The functions

to compute them can be determined automatically from the parametric function used

to draw the curve by symbolic differentiation. One way to present the position of the

normal or tangent to the user is by showing a “crowbar” point that is a point offset from

an original point on the curve by the tangent or normal, as shown in Figure 8.2. This

attribute provides a connector that can be grabbed just as a point on the curve can. It is

computed by simply adding the tangent and position attributes together.

8.1.2 2D Geometric Relationships

A wide variety of attributes express geometric relationships among objects. Very often,

these relationships can be expressed as functions of a number of points, permitting

modularity: any point provided by any type of object can be plugged in. There is

no need for special types of controls for each object variety. Attributes that compute

geometric relationships are typically used as constraints with their values held constant,

rather than being directly controlled by the user.

The most basic 2D geometric relationship is attachment or coincidence of two

points. An attribute for attachment is computed by subtracting the positions of the

two points. The distance between two 2D points is also a useful attribute. However,

using a single distance constraint driven to a driven value does not function well as an

attachment constraint. This case violates two of the rules for attributes: it uses a sin-

gle constraint to remove two degrees of freedom; and the derivatives vanish when the

constraint is met. An attachment constraint that uses a subtraction for each coordinate

functions much better.

Collinearity of three points is a useful constraint. In 2D, it is straightforward to

create by computing an attribute that is the area (determinant) of the triangle formed
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by the points, or the distance of one point to the line formed by the other two. Driving

either of these two attributes to zero creates the collinearity.

The simplest implementation of a point-on-curve constraint uses an implicit for-

mula for the curve. While this works for a small class of objects such as circles, an

alternative approach can be used for the general case of parametric curves. A “bead”

point on the curve is created by creating a new point connector allowing its free param-

eter to be a variable. This bead is attached to the point that is to lie on the object. The

point is therefore attached to the object, but free to move along its length.

Relative orientations of objects can be controlled by attributes involving dot prod-

ucts. For example, driving the dot product of two vectors to zero makes them per-

pendicular. Such a control might also simply drive the length of one (or both) of the

vectors to 0, also achieving the desired dot product value. To avoid this, the vectors are

typically normalized before the dot product. Inverse trigonometric functions typically

have singularities in their derivatives making angle computations using them difficult

to use in defining connectors, so it is difficult to place constraints on absolute angles.

The constraint that two line segments, or four points, are parallel can be expressed

as the normal of one segment dotted with the other segment’s direction vector must be

zero.

An attribute that computes the depth of a point into a half-plane is computed by

taking the dot product of the normal to the half-plane with the difference vector of the

point and a point on the dividing line. This signed distance is useful for creating point

inside polygon constraints, which are easily created for convex polygons by a conjunc-

tion of point half-plane constraints, or to make point-outside-polygon constraints, as

will be described in Section 8.4.2.

8.1.3 3D Objects and Constraints

As in 2D, point positions are the main connectors for manipulating 3D objects. Points

in 3D can define not only their positions, but also their normals and two tangent vectors

to define a coordinate frame.

The position of a point is not only a function of the object it is part of, but also, the

transformation hierarchy “above” the object. Surface geometry must be similarly trans-

formed. The same transformation applied to points is applied to tangent vectors, and

the inverse transpose is applied to the normal vector. Rather than compute the deriva-

tives of the inverse transform, DistinguishedPoint connectors transform their

tangent vectors and then take the cross product. Types of DistinguishedPoint

do not compute normal vectors themselves.

The basic 2D constraints also transfer to 3D. Nailing a point, attaching points, and

controlling distances are equally simple. A collinearity constraint is more problematic.

The constraint removes two degrees of freedom. Point to line distance with driven to

a zero value has the same problems as a 2D distance constraint driven to zero. Point
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to line distance is a useful constraint for expressing that a point is on a cylinder with a

non-zero radius. A better way to constrain a given point to lie on a line is by creating

a connector with a free parameter inside it that specifies a position on the line, and

constraining this connector to be coincident with the given point. The “bead” connector

can be computed by up

1

+(1�u)p

2

: Such an approach uses two constraints to remove

the two degrees of freedom (actually, it uses three constraints, but adds an extra degree

of freedom sliding along the line, so the net result is two constraints).

Aligning two coordinate frames requires 6 constraints: 3 to co-locate the origins,

and 3 to equate the orientations. A related constraint aligns the positions and the normal

vectors of two coordinate frames. This uses five individual constraints: 3 for position,

and two that compute the dot product of the normal vector of one point with both tangent

vectors of the other. The constraints express a contact-like relationship that allows the

objects to slide along one another as if in contact. Such a constraint is best represented

by attributes that compute the dot products of one point’s normal vector with the other

point’s tangent vectors.

Expressing that the two planes are parallel, as in the last paragraph, can be done

in two ways: by maximizing the dot product of the normals, or by driving the dot

products of the normal of one point and the tangent vectors of the second to zero. The

former has the advantage that its sign can be used to insure that the normals face the

same direction. However, it is a single constraint that removes two degrees of freedom.

Therefore, it does not work well to maintain that the planes remain parallel. It can be

used to establish the correct relative orientations initially, and the other formulation can

be subsequently used when the planes are close to parallel. Several of the systems I have

constructed use this strategy: a demon (see Section 7.6.3) switches between a normal

dot product controller used to get the orientations close initially, and the normal/tangent

dot products used to maintain the relative orientations.

Various point-on-object constraints can be represented by using the implicit formu-

lation of the object. Constraining a point to lie on a plane, cone, cylinder or a sphere

can be easily achieved using an implicit representation. Surface beads permit point-

on-surface relations for parametric surfaces.

8.1.4 Camera Controls

The problem of specifying a viewing transformation or virtual camera configuration is

a central problem for 3D graphics. Previous work on the problem of camera control is

discussed in Section 2.4.2. My work on using the differential approach for the problem

of camera control was first presented in [GW92], and a video accompanying the paper

[Gle92b] demonstrates the interaction.

Computer graphics viewing models are defined by linear transformations in homo-

geneous coordinates. That is, a viewing transformation is defined by a 4 � 4 matrix,
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and the position that a point appears in the image is given by

p = h(Vx); (8:2)

where x is the world-space point that projects to p, V is a homogeneous matrix repre-

senting the combined projection and viewing transformations, and h is a function that

converts homogeneous coordinates into 2-D image coordinates, defined by

h(x) =

�

x

1

x

4

;

x

2

x

4

�

; (8:3)

where the x

i

’s are components of homogeneous point x. The matrixV is some function

of the camera model parameters.

A perspective camera transformation can be thought of as rigid body camera object

that exists in the same world space as the objects it views, just as a camera in the real

world. If there are other views in which the camera object is visible, the camera can

be manipulated as any other object in the scene. The transformation of the camera into

world space can be found by inverting the viewing transform without the perspective

projection. Because matrix inversion is difficult to differentiate, simply creating a con-

nector for the inverse transformation given the camera transformation is impractical.

However, the function for the inverse transformation can be provided easily for many

camera models. Rather than inverting the entire camera matrix that is the composition

of several simpler pieces, the pieces are inverted and composed to create the inverse

camera transform. Often the pieces are primitive transformations that are easy to in-

vert. Providing the inverse transform for cameras permits connectors on a camera for

attributes such as the tip of the lens or the top of the camera. Such points are not only

useful for dragging, but also for expressing constraints such as the camera is always

relatively right side up.

Rather than controlling a camera by its position in the world, it is often useful to

control it by manipulating what is seen in its image. We call such controls through-

the-lens controls. The most basic through-the-lens control is an attribute that computes

the position where a point in the world projects onto the film plane of the camera (the

image seen through the camera). Equation 8.2 is used to compute an attribute that

serves as the control. These controls are independent of the variety of camera model.

Any viewing transformation can be controlled, although Equation 8.2 may be replaced

by some other function if a non-standard camera model is used.

It is important to realize that the image position of a point depends on both the

camera and the point’s position in the world. A through-the-lens control can be used

to affect either, or both, depending on which object’s parameters are free to change.

Through-the-lens controls are a particularly important type of attribute because they

provide a way to couple the 3D world to the space of 2D input devices, permitting

manipulation of 3D objects and viewpoints by pointing to screen positions.
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A single through-the-lens control does not specify enough information to usefully

control a 3D object or camera transformation by itself. With the many degrees of free-

dom involved, the 2 controls of a through-the-lens point are underdetermined, and good

default behaviors are difficult to specify with the optimization objectives. Typically,

other constraints are used in coordination with through-the-lens controls to provide de-

sired behaviors. Many examples will be given in Section 8.2.

The same constraint relationships applied to points on 2D objects can also be ap-

plied to through-the-lens controls. For example, an attribute might measure the distance

between two image points. Placing constraints to keep through-the-lens point controls

within in a region, for example on the screen, is often useful.

Through-the-lens controls are the most basic element of appearance-based manip-

ulation. Such an approach permits the user to control a 3D world by specifying what

is seen in a picture of it. It is useful because images are 2D and therefore map nicely

to common input devices, and also because often an image is the goal of a graphical

application.

8.1.5 Manipulating Lights and Materials

The configuration of lighting and material properties can also be controlled by a va-

riety of attributes. Like cameras, lights are typically objects in the scene and can be

manipulated as such. This is especially useful for point and spot light sources. With

both types of lights, connectors for the position of the bulb is the most obvious control.

For spotlights, points on the aperture, both in the center and around the rim, are useful

not only for direct grabbing, but also for use in the shadow manipulation techniques of

the next section.

Light intensity and material surface properties are parameters that can be repre-

sented in the state vector. This permits their values to be constrained.

One appearance-based method for controlling lights and material properties is to

directly manipulate the color of points in the image, for example by attaching a point’s

color to a set of sliders. Techniques for manipulating point colors are presented for

changing material surface colors in [HH90] and for changing light colors in [SDS+93].

Using the differential approach to control point colors permits these techniques, but

also can be used to alter other parameters that affect apparent colors such as surface

orientations and light positions.

The equation that computes the color that a particular point appears must be known

to the system so it can draw it. A shading model computes the color from the surface

geometry, lighting, and surface properties. The color that a point appears is the result

of a physical process which has been modeled to varying degrees of accuracy [Hal89].

Modeling and rendering systems most often use simpler models. The parameters to

these models serve as the controls which are used to specify surface properties. There-

fore, a user interested in the colors in an image must understand this model, even though
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it is merely a historical artifact of computer graphics research.

The most commonly used shading model [FvDFH90, Sil91] divides lighting into

three components, diffuse, specular, and ambient parts. A surface is specified by three

colors which define how the surface reflects each of these components. The color of a

point is

c = c

a

� i

a

+ c

d

� i

d

+ c

s

� i

s

; (8:4)

where the asterisk denotes component-wise multiplication, c
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, c
d

; and c

s

are the surface

color properties, and i
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are the intensities of each type of light at the point.

Each is typically represented as a 3-vector containing RGB color values.

If we know how much light is available at a point (i
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), we can manipulate

the color of the point in order to control the surface properties, (c
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; c

d

; c

s

). This is

most interesting when we control the colors of multiple points which share the same

parameters. In the special case of fixed lighting and geometry, all of the apparent colors

are linear functions of the surface properties. This is exploited by the system described

in [SDS+93].

The amount of light which strikes a point can be computed by summing the contri-

butions of each light source. The amount of ambient light, i
a

; is merely a scene-wide

constant. For other varieties of light, the contribution of each light source is summed.

The amount of diffuse illumination given by
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and the specular illumination by

i

s

=

X

i2lights

i

i

(
^
n �

^

h)

shi
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where i

i

is the intensity of light source i, ^n is the point’s unit normal vector, ^l
i

is the

normalized vector from the point to the light, and where ^h is the normalized vector that

bisects the vectors from the point to the eye and light, and shi is a parameter which

controls the highlights size.

Controlling the colors of points is useful in controlling the lighting. Manipulating

the color of a point can alter the intensities of the lights that contribute. This provides

a way of achieving desired color effects when multiple colored lights are used, as in

stage lighting. Colors can even be used to control the geometry of lighting. Altering

the color can cause a face to turn to towards or away from a light, or cause a light to

move so it provides the proper amount of illumination.

Using the lighting equation as a control has a great deal of potential, but, it is prob-

lematic. Even simple lighting models are complicated expressions of many parameters.

More complicated lighting models may not even be expressible as closed form differ-

entiable expressions.
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Even in the simple shading model used by the Iris hardware and in Bramble, many

terms of the equation do not function well as controls. In particular, the specular com-

ponent of lighting is particularly problematic. The amount of specularity at a point is

given by Equation 8.6. Most obviously, it involves an exponentiation which gives it

very non-linear behavior with rapidly changing derivatives. Also, it involves normal-

izing a quantity twice in computing the normalized half angle vector. Although this

makes it difficult to use color control to position specular highlights, the techniques of

the next section can handle such tasks by treating specular highlights as the reflection

of the light source.

8.1.6 Shadows and Reflections

We treat reflections and shadows in a similar manner: we compute where the image

of a particular point appears on a particular surface. Shadows are the simpler case. A

point is the shadow of another if the two points and the light source are collinear. This

is typically implemented by creating a bead on the ray from the light source through the

shadowing point. The bead can either be attached to some point that is to be shadowed

or constrained to lie on the surface of the shadowed object. An additional constraint

could be added that insures that the occluding object is between the shadow and the

light source.

The explicit use of the ray between the light and the shadow also serves as a mecha-

nism to display the shadowing. With available graphics hardware, general inter-object

shadows cannot be drawn efficiently, so drawing the line serves as a feedback device,

as shown in Figure 8.3. Manipulating the shadows can control the position of the light,

the shadowing object, or both.

When the shadow is cast onto a planar surface, its position can be computed directly.

The general projection matrix can be used to compute where the shadow ray hits a plane.

This is a simple computation, given by

p = h(Sx); (8:7)

where h is given by Equation 8.3, the function which converts from homogeneous

coordinates, x is the position go the point to be projected, and S is the projection matrix.

In [Bli88a], the matrices are derived for projection from point and distant light sources

onto a ground plane. More generally, the matrix can be computed for a light source
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1Thanks to Pat Hanrahan for lending us this very useful matrix.
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Figure 8.3: Lights and objects are manipulated by controlling a shadow. Because inter-object

shadows cannot be drawn with the available graphics hardware, a line is used to connect the

light, the shadowing point, and its image.

The shadow matrix is useful for drawing shadows using the standard rendering

pipeline, as described by Blinn [Bli88a]. We merely concatenate the shadow matrix and

the viewing transform, and redraw the scene in a dimmed grey color. Simply drawing

a dark color on the ground plane fails when the shadows go off the rectangular stage

surface and seem to float in space. I have used two methods to give the illusion of

dimming. One is to draw the shadows using a dither pattern and the sky color, which

is chosen to be darker than the ground color. An alternate approach is to choose the

ground and sky colors such that turning a particular bit off in the ground color dims it,

but does not affect the sky color. Shadows are then drawn using a write mask so that

only this one bit is affected.

Positions of shadow beads can be computed using equation 8.7 and directly con-

strained and controlled. A system can permit the user to grab shadow points and to drag

them. This permits not only the interaction techniques of [HZR+92], but manipulation

of lights as well.

The spot caused by a spotlight onto the reference planes is also useful. Drawing this

spot in a bright color, using techniques like those used for shadows, gives an indication

of where the spotlight is aimed. This ring is an important part in some lighting effects.

A spotlight can be manipulated by controlling the projections of aperture points on the

ground. This is used in the Luxo lamp example of the introduction.

The same projection techniques apply to mirrors as well as to shadows. We use the

same matrix, except that we place the projection point at the virtual eyepoint rather at

the light source. The virtual eyepoint is the place where a viewer would have to stand

to see the reflected image through the surface if the surface were transparent [Ups89],as
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n̂e

ev

object

p

Figure 8.4: An observer with eye point e sees the reflection of an object at point p on a shiny

surface with unit normal vector ^n: The virtual eyepoint ev is where the eye would be located to

see the image of the object at p if the surface were transparent.

shown in Figure 8.4. The position of this point is computed by

e

v

= e+ 2((e� p) �
^
n)
^
n; (8:9)

Where e is the position of the eyepoint, p is the position of the surface point on the

mirror, and ^
n is the surface normal at the point. Although there is potentially a dif-

ferent virtual eyepoint for each surface point, all points on a planar surface share the

same virtual eyepoint. Explicitly computing e
v

is preferable to other reflection formu-

lations as it provides a geometric position as an intermediate result that can be examined

(guideline 6).

Computing the virtual eyepoint allows the projection matrix of Equation 8.8 to be

used to compute the transformations that place reflections on a planar mirror. This al-

lows reflections to be drawn using the rendering pipeline. To provide proper occlusions

in a z-buffer, we draw the objects slightly above the surface of the mirror, with a height

equal to the inverse of the distance from the mirror so that closer objects occlude ones

further from the mirror. Also, because all the objects in the reflections are flat, their

normals are invalid, so lighting calculations cannot be done. The positions of points in

planar mirrors can serve as controls to manipulate the mirror, the reflected point, and

even the camera.

The analogy of techniques for manipulating shadows and reflections extends to non-

planar surfaces as well. Although there is no way to efficiently draw these reflections

with available graphics hardware, a line connecting object, image, and virtual eyepoint

serves for feedback. Similarly, enforcing collinearity between these three points per-

mits using the manipulation of one to control the others. An example of this is shown

in Figure 8.5.

Reflection techniques can be used to position specular highlights on surfaces. The

light source is placed such that it is seen in the reflection on a surface point. By sliding

the point as a bead around on the surface, the highlight can be positioned. This can be

used to position the light source or to alter the surface geometry.
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virtual eyepoint

surface point

reflected point

Figure 8.5: The cube is controlled by manipulating the position of its reflection in the cylinder.

Since the reflection in the curved surface cannot be drawn, the line connecting the point of the

cube, its reflection, and the virtual eyepoint is drawn.
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8.1.7 Free Form Curves and Surfaces

Free-form curves and surfaces are traditionally a difficult problem for interface design.

Typical approaches to creating such objects require devising representations that are

sufficiently expressive, are convenient for the user to manipulate directly, and have

good mathematical properties. This typically leads to interfaces like the control points

of B-Splines, that sacrifice usability. Some of the difficulty stems from the fact that the

representations also serve as the parameterizations of the objects. Because of this, it

would seem that the differential approach would be a natural solution.

For many types of curve and surface representations, the differential approach can

be applied. For many types of parametric surfaces such as B-splines and NURBS,

the positions of points are simple functions of the parameters that can be computed as

connectors and manipulated differentially. Several of the approaches in the literature

are variants of this, using different schemes for computing parameters changes. For

example, Welch, Gleicher, and Witkin [WGW91], Welch and Witkin [WW92], Fowler

[Fow92], and Hsu et al.[HHK92] all use various constrained optimization techniques

to map manipulation of points on surfaces to the underlying parameters. This permits

the objects to be manipulated by controlling points on them, rather than control points.

In some cases, users may prefer to use control points to manipulate curves or surfaces.

Since the positions of the control points can be computed from the curve or surface,

control points can be provided even if another representation is used. This allows, for

example, to use Bezier control points to manipulate a B-Spline curve.

Unfortunately, the differential approach of this thesis is insufficient for adequately

addressing the issues in manipulating free form curves and surfaces for many reasons:

� free form objects have too many degrees of freedom;

� free form objects require global control for effective manipulation. Such control

can be provided only with attributes that compute properties of the entire surface,

or large regions of it;

� free form objects often need fine detail local control, requiring adaptive subdivi-

sion;

� many of the constraints that are used to sculpt free form objects’ are specialized

cases that can be handled more effectively for the large numbers of degrees of

freedom.

In short, the methods of this thesis do apply to the manipulation of curves and surfaces,

as we showed in [WGW91], but, by themselves, the methods do not address many of the

difficult issues and more specialized methods apply. Controlling free form curves and

surfaces is a very important problem, and is therefore well studied. Some interesting

optimization-based approaches are explored by Celniker and Gossard [CG91] and by

Welch and Witkin [WW92] and [WW94].
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8.2 Strategies for Interaction

The previous section described a large number of attributes that can be computed and

provided as connectors on objects. With the differential approach, we can control the

objects by attaching controllers to the connectors. In this section, we consider some

strategies for determining what controllers to attach to which connectors at what time.

8.2.1 Presenting the Abstractions to the User

The most obvious way to employ the differential approach is to provide the abstractions

to the user as directly as possible. At an extreme, the user could be presented with a

schematic representation, like the diagrams of Section 1.3.3. While this graph editing

approach has been attempted in systems such as the SPAR Modeling Testbed [FW88],

Condor [Kas92] and ThingLab [Bor86], I do not believe it is in the spirit of direct

manipulation, and prefer to hide such representations from the user.

The direct application of the differential approach gives the user a palette of con-

nectors to which controllers can be applied. Connectors that represent positions can

be controlled by attaching them to the mouse. Non-geometric values can be controlled

with sliders or similar widgets. To specify multiple controls, the user might either nail

connectors to their current values, or place goal points for connectors to seek.

Presenting the abstractions directly to the user has a number of benefits. It permits

the user to select controls that are applicable to their problem, and to mix and match

controls as needed. It maximizes flexibility over what the user can do. Such a direct

approach is a useful strategy for testing out new types of controls, as shown in the scene

composition program of Section 9.7. By utilizing efficient mechanisms for selection, a

large array of attribute types can be provided for control.

The advantages of this direct application are also its most serious problem. The

question of how to present the controls to the user can be difficult, especially as the

number of types that are available grows. The interface must help the user understand

the potential choices and to find the controls that are applicable to their task. While

the flexibility of a range of controls is useful, it also means that a user might need

to spend time deciding which control to use and how to employ it. A system must

show the user what is being controlled and explain the behavior of the objects. The

issues of scalability also arise as the user adds more controls, creating more complicated

behaviors and worse performance.

One variety of direct application of the differential approach is the “live world.” A

live world is an environment where just about any point can be grabbed and manip-

ulated. In such an application, objects, shadows, reflections, lights, or just about any

other entity can be grabbed and dragged. This provides a uniform interface for a wide

variety of tasks. However, it still does not solve the problems. A user must be made

aware of what can be dragged and what cannot. Some mechanism for specifying what
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Figure 8.6: A differential slider. Left: feedback shows not only the value specified by speci-

fying dragging, but also the actual value of the attached connector. Middle: the GoTowards

controller used to drive the connector toward the specified value can be retained after dragging

is completed to nail the value in place. The persistent value is displayed by the diamond. Right:

users can place boundary constraints with the sliders. Upper and lower bounds are displayed

as greyed regions.

might change when a point is grabbed is important for controlling things like shadows,

where many things might be affected by a single control. Some mechanism for permit-

ting the user to specify the desired behavior in under-constrained cases, for example by

permitting grabbable points or objects to be nailed in place, needs to be provided.

Differential Sliders

To present controllers and connectors the user directly there needs to be a mechanism

for controlling any connector output, even ones whose output is simply a dimensionless

scalar value. The mechanism must permit the user to specify the various controller

types, and provide values for those types that require them. Bramble has a widget called

differential slider that is a variant of a standard slider designed to control a connector

with the differential approach. A basic differential slider is shown in Figure 8.6. Better

designs that are more self-revealing and easier to use are certainly possible.

A standard slider converts the position of the mouse into a value for its attached

parameter. For the differential approach, such a slider cannot be attached to a con-

nector since the value cannot be set directly. To create a basic differential slider, a

GoTowards controller is connected to drive the value towards what is specified by

the mouse, rather than directly specifying new values for its attached parameter when

dragged. Because the connector’s value may not perfectly track that of the mouse, both

values are displayed to the user.

The ability to nail a slider’s value in place is useful feature for a differential slider.
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Such a facility can be implemented by simply retaining the GoTowards controller

beyond the completion of the dragging operation. With the Bramble differential slider,

this is done by holding a modifier key as the dragging button is released. Key presses

can be used to create controllers that drive the slider to its minimum, maximum, or

middle value.

A differential slider can be used to apply other controllers as well. For example, the

Bramble slider can place boundaries on the value by pressing the third mouse button

either above or below the present value. The slider displays the current boundaries, as

shown in Figure 8.6. Snaps can also be placed on the slider’s value. The slider must

display where the snaps are and provide feedback for when the slider is snapped.

8.2.2 Drawing or Modelling with Constraints

Drawing or modelling with constraints can be seen as a variant of directly providing

the abstractions of the differential approach to the user. In such an approach, a user

declaratively specifies relationships among parts of the model. Differentially, this en-

tails creating GoTowards controllers for selected attributes that compute the rela-

tionships. Often, this is coupled with dragging: the user can drag pieces of the drawing

either by placing and dragging positional constraints, or dragging the model subject to

the constraints.

The idea of using constraints in interactive drawing and modeling dates back to

Sketchpad[Sut63], the earliest system. Since then, there has been considerable interest

in the approach of declaratively specifying parts of the drawing. Some of the advan-

tages of the constraint-based approach are:

� the user can specify what is most convenient, in any order;

� the constraints can give structure to the model, potentially embedding the seman-

tics of the thing being modelled;

� the constraints can be used to specify exact relationships in the model precisely;

� the constraints are persistent so they maintain previously established relation-

ships to avoid redundant work in reestablishing them after editing.

Many difficult issues have limited the success of constraint-based systems for draw-

ing. Not only must a system be able to solve constraint satisfaction problems, but it

must make it easy for users to specify, debug, and edit constrained models. Constraints

change the nature of interaction in a graphical application. Without them, actions only

affect the objects to which they refer. For example, dragging an object in a traditional

drawing program moves only the object. With constraints, this locality is lost: alter-

ing one object may cause other objects to be affected. This global nature of constraint

operations is at the core of many of the difficult issues in employing constraints.
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Without user specified constraints, graphical objects have fixed behaviors. For in-

stance, an ellipse in a drawing program behaves like an ellipse. The system designer

can design a good, usable behavior which the user can learn and apply to all ellipses.

When user specified constraints among objects are introduced, the situation changes.

To begin with, the behaviors can become more complicated because of interactions

among objects. Each combination of objects and constraints will have its own behav-

ior. These behaviors are specified by the user in terms of the constraints; the user is

effectively programming.

As in more traditional programming, complexity in the constrained behavior of a

graphical model becomes a problem when it has bugs, e.g. when the behavior is not

what is desired or expected. The most obvious form of bug is when the constraints

force the model into a configuration that is not what the user desires, or the constraints

prevent the user from achieving a desired configuration. Another class of constraint

bug stems from bad constraints where solutions cannot be found, either because of

conflicting specifications or solver failures.

Because constraint errors occur, interactive graphical applications which provide

constraints to users must deal gracefully with bad situations, such as conflicting or re-

dundant constraints. Underdetermined models must also be handled, as it is impractical

to expect the user to specify all possible degrees of freedom. Because of the potential

for errors, it is crucial to aid the user in understanding the complex behaviors of con-

strained models.

The differential approach helps with some of the issues in creating constraint-based

applications. Continuous motion facilitates understanding the behavior since users are

able to employ their perceptual skills to help understand change. The methods for

implementing the differential approach handle under and over determined cases. The

dynamic implementation of the differential approach can serve as a backbone to pro-

viding a constraint-based system where users can experiment with their models in order

to comprehend and debug them.

The Briar drawing program, described in Section 9.1, builds on the differential ap-

proach to provide a strategy that addresses other issues in constraint-based tools as

well. By using constraints only to maintain existing relationships during direct manip-

ulation, Briar is able to avoid problems with conflicting or unsolvable constraints and

unpredictable selection of constraint solutions. A key to making systems like Briar pos-

sible is the ability to enforce constraints during continuous-motion, direct-manipulation

dragging, as provided by the differential approach.

Although many modern constraint-based systems, such as Briar, show promise in

addressing the issues of the approach, it is not certain that the issues can be sufficiently

resolved to become the standard and dominant tools. In particular, issues of scalability

may be the ultimate Achilles heel for constraint-based drawing and modelling.
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8.2.3 Building Interaction Techniques

In the previous sections, we discussed how the abstractions of the differential approach

can be presented directly to the user. In this section, we consider leaving them in the

hands of the interaction technique designer. The idea is to use combinations of con-

trols in ways that define desirable behaviors for traditional direct manipulation style

interactions.

The typical way the differential approach is employed is to use a control to pro-

vide interactive dragging, but to define other constraints so the correct behavior oc-

curs. Rather than having the user define the constraints, the interface designer can

choose them. Objects or handles are predefined and can be given carefully designed

behaviors.

For the designer of direct interaction techniques, the differential approach provides

a new set of abstractions. The approach can lead to techniques that could not have been

implemented using traditional techniques. Other times, the abstractions are applied to

more conventional interactions. In fact, most of the examples given later are simply

recreations of existing interaction techniques. The approach may be most practical

for prototyping interaction techniques: the technique can be designed using the tools

of the differential approach, permitting it to be quickly defined and evaluated. Then

the mathematics can be re-derived to compile the interaction technique into a more

traditional implementation.

Because controls are used in predefined combinations, many of the most serious

drawbacks of the differential approach and constraint-based systems are avoided:

� the number of controls is a small constant that does not grow as the model be-

comes larger;

� the combination of controls can be checked to insure that they are well behaved

before being handed to users;

� the behavior of objects is explicitly designed, rather than just coming about as a

byproduct of placing constraints. This can leave the specification of interactive

behaviors in the hands of the “trained professionals.”

Many of the same arguments are given for the design of the Siri constraint-based pro-

gramming language [Hor93]. Siri uses constraint techniques within objects to help

define their behavior, but uses more conventional methods for inter-object communi-

cation.

There are two main ways that the differential approach is used for defining inter-

active behaviors. One is to define types of objects that behave as desired. The other is

to define handles that have particular functionality. This latter, more common category

typically involves creating a number of constraints in addition to the mouse attachment

during a dragging operation. Many examples are given later in this chapter.
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Figure 8.7: A 3D image overlaid on top of a corresponding real image. Our goal is to place

the virtual plant on the real table. In each image, there is a table (denoted by the white rectangle

for the graphics image). Initially, the images do not correspond because the virtual camera is

not in the same place as the camera used to create the real image.

To define the behavior of a object that will be manipulated using the traditional

direct manipulation interface of dragging the position of a single point at a time, the

differential approach offers advantages. First, constraints can be used internal to the

object to define relationships that must be maintained as the object is dragged. Sec-

ondly, by providing a way to implement the dragging, it spares the object designer the

effort of mapping from position values to parameter values. It also permits a uniform

mechanism to be used to drag all points on all objects.

8.2.4 A Concrete Example: Aligning a Camera to an Image

We now consider a very specific interaction technique as an example, and discuss how

it can fit in with the strategies of this section. The problem is to align a synthetic image

of a 3D scene with a real image by configuring the virtual camera creating the synthetic

image. We assume that both the real scene and the synthetic scene each have a table of

identical size in them. An example is shown in Figure 8.7.

With through-the-lens controls and the differential approach, the correspondence

problem can be solved easily. Through-the-lens controls are used to drag the corners

of the virtual table to their corresponding positions in the image, causing the camera to

be moved. Each control is locked as it is placed. Manipulating the positions of the four

corners of the table causes the virtual camera to be placed in a position where the two
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Figure 8.8: The synthetic and real images are registered by successively dragging the corners

of the table to their corresponding positions in the image.

images correspond. This process is shown in Figure 8.8.

The registration task is an excellent example of the benefits of the differential ap-

proach. It solves an important and useful task that would be extremely difficult with

traditional interaction techniques. In order to define the interaction technique without

the differential approach, the mathematics to determine the camera configuration from

the corners of the rectangle would have to be derived. While such a derivation is possi-

ble, it would be extremely difficult to do in a robust manner as it is an overdetermined

problem. With the differential approach, it is a straightforward combination of four 2D

point controls. The method over-determines the solution, specifying eight controls for

a camera which has only seven degrees of freedom. However, the methods of Chapter

3 can handle these over-determined cases.

The table registration required the use of four through-the-lens point controls. Those

controls could have been specified either by the user, or by an interaction technique

designer building a mechanism for the particular task of image registration. If the ab-

stractions of the differential approach were directly provided to the user, the registration

task would require the user to freeze the position of the table in the world, enable the

camera to be controlled, select through-the-lens position controls for each corner of the

table, and then drag these controls. In a more constraint-based interface style, there

might be a command for dragging points with through the lens controls, which the user

could successively apply to each corner of the table.

Because image registration is an important task, an interaction technique designer

might want design an interface for it. For example, the designer might create the virtual

table as a special object that when its corners are grabbed, the system knows to apply

a through-the-lens control on the point to manipulate the camera, and to leave these

controls locked in place even after they’ve been manipulated. The user would see a

command to create the alignment table, and would directly manipulate table corners,

but the abstractions of the differential approach would be hidden, serving simply as a

tool for the interaction technique designer.
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8.3 Sources of Constraints

The basic idea behind each of the strategies of the previous section is to provide con-

straints so that manipulation operations like dragging have the desired effects. The

major difference in the strategies is how these constraints were specified, whether they

were provided by the interaction technique designer or by the user. In this section, we

consider what constraints can be useful for manipulation, and how they are used in con-

junction with dragging to create interaction techniques. This section is organized by

“sources” of constraints, the kinds of things that specify constraints on manipulation.

The general problem in manipulation will be to handle the underdetermined nature

of dragging. Our input devices will undoubtedly specify far fewer degrees of freedom

than the model contains, or even than typical objects contain. For example we might

control an articulated figure with a 6 degree of freedom tracker or control a 3D position

with a mouse.

The large number of degrees of freedom problem is especially important in 3D

manipulation. Unlike in the real world, the objects we manipulate with a 3D user in-

terface can float freely in space, and therefore have extra degrees of freedom. The

problem of 3D manipulation is to somehow control these degrees of freedom with the

limited input devices we have. One approach to this problem is to develop better input

devices. For the work in this thesis, I have considered only the mouse. However, the

differential approach is input-device-independent, and even with better input devices,

the constraint-based approach applies – in the real world we still use constraints for

manipulation even with our dextrous hands.

When we encounter an object with many degrees of freedom in the real world we

employ a variety of tactics to manipulate it. We use manipulators in parallel, for ex-

ample by coordinating our hands or fingers, or we create constraints, either by using an

extra hand or finger or by using interactions between objects. For example, we might

turn 3D problems into a 2D one by placing the objects on a flat surface, or for more

complex manipulations we might build a jig to limit the objects’ behaviors to make it

easier to achieve the desired manipulations.

However, we normally design our objects so that they don’t have as many degrees

of freedom. The behaviors of most objects we manipulate are constrained by their

relationships with other objects or their structure constrains them to move only in the

correct fashion. For example, operating a door requires only one degree of freedom

(its hinge) or two (its knob and hinge) and car steering wheels and levers rotate only in

useful ways.

These real world tactics for manipulation all rely on constraints on object motion to

simplify the manipulation problem. The sources of these constraints vary: they come

from the mechanical structure of the object, interactions among objects, conventions

on the uses of objects, or from other hands or fingers. In this section, we will use the

same approach to address the problem of manipulation in interfaces. The general idea
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for creating an interaction technique will be to provide a sufficient set of constraints so

that control of a single point defines a desired behavior. For defining 3D interaction

techniques using the mouse, we will attempt to define a sufficient set of constraints so

that the two degrees of freedom specified by a through-the-lens control are sufficient

to control the 3D object.

8.3.1 Intrinsically Constrained Problems

For some manipulation tasks, the object being manipulated is intrinsically constrained

sufficiently. For example, even in a 3D world, dragging a point along a fixed plane,

such as the floor, is a 2D problem. So, if a point is by definition in a fixed plane, it is

sufficiently constrained so that a 2D input device can be used to control it. An example

of such a point would be shadows on the floor. This is part of the reason for the interest

in shadow manipulation.

8.3.2 Artificial Constraints

A common way to create interactions is to create synthetic constraints based on some

user command. For example, based on the state of a modifier key or a command mode,

the system might constrain object motions to rotate about a particular axis or translate

in a particular direction.

An example 3D interaction technique using artificial constraints is the mousepole,

introduced in Section 7.8. The mousepole allows the user to position a point in 3D

using the mouse by constraining the point to lie in the plane parallel to the ground. The

ray cast from the mouse position defines a unique point on this plane. Depressing a

button switches the mousepole to operate in a plane perpendicular to the ground. We

draw a vertical pole from the point to the ground in order to indicate height, hence the

name mousepole.

The advantages of these artificial constraints are that they can be applied to any

object and are easy to create. However, it is easy to make such interfaces complicated

by including large numbers of modes, modifier keys, and commands. It can be difficult

to make such interfaces self-revealing. Using a standard of artificial constraints on all

objects has the advantage of uniformity, but has the problem that it does not permit

objects to special behavior.

8.3.3 Object Semantic Constraints

The graphical objects that we manipulate often have structure or semantics that may

dictate how they should behave when manipulated. This behavior can often be ex-

pressed as constraints, sometimes corresponding to the mechanical structure of the ob-

ject, and sometimes to the intended purpose or conventions of use of the objects. For
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example, the Luxo lamp of the introduction has many pieces each with many degrees

of freedom. However, the mechanical structure of the lamp significantly reduces the

degrees of freedom in the lamp, making it much easier to control.

Many of the objects we must manipulate have only a few degrees of freedom: use-

less motions are constrained away. There are many example of objects whose behavior

is sufficiently constrained so that one or two controls are sufficient, for example, steer-

ing wheels, airplane yokes, doors, levers, or the handle of a slot machine. There are

some implied assumptions in these manipulations, for example when the handle of a

slot machine is grabbed, we assume that we are attempting to pull the lever, not move

the machine.

Sometimes, the constraints on objects stem not from the objects’ mechanical struc-

ture, but rather from conventions on how they are used. For example in moving a piece

of furniture, we are most typically interested in sliding it along the floor or turning it,

not necessarily lifting it or flipping it over. In such cases, it is conceivable to build

interfaces which imbue the objects with the constraints that cause the more common

behavior, and require some less direct method for other manipulations. In analogy to

the real world, I can push the furniture around on my floor, but to lift it or flip it, I need

to get some extra help. The desire to perform non-standard manipulations also exists

for mechanically constrained objects, for example, we might want to rip the head off

the Luxo lamp.

Often, the manipulation task provides sufficient information to adequately constrain

objects so that simple point manipulations suffice. For example, positioning a picture

on a wall or a lamp on a desk are both 2D problems. Pulling the arm of a slot ma-

chine is a one dimensional problem if the model behaves like a slot machine. I call

the strategy of attempting to use the natural constraints of the task to create interaction

techniques manipulation from structure. Such constraints are called “context specific

constraints” by [Hou92]. These constraints that arise from the structure of the model

are advantageous because they only restrict the user from performing operations which

are typically undesirable, they are often already inherent in the parameterization of the

model, and they are easily understood by the user.

There are many issues in employing manipulation from structure in realistic sys-

tems. For one, it requires that the system have some knowledge of what the objects

are, and how they should behave — a collection of polygons might look like a painting

which should remain hung on a wall to the user, but the system must not only know

how paintings are to behave, but also how to identify them. The structure of the model

must be created in a manner that has the proper semantics. When manipulating such

models, it can be difficult to know if the model is sufficiently constrained such that

2D manipulations will provide enough control. While the differential approach does

not directly address these problems, it does make it far easier to explore manipulation

from structure by providing a vocabulary with which the semantic constraints can be

expressed and by mapping controls to whatever parameters are used to represent the
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models.

8.3.4 Handles

Handles are particular points associated with objects that can be grabbed. Handles are

often given specific meanings as to the manipulation that they perform. For example,

in a typical Macintosh direct manipulation interface, a graphical object has particular

handles that cause it to be scaled.

Handle behavior can be defined by associating each handle with a set of constraints

that are applied to the object as the object is manipulated. For example, to create the

Macintosh-style scale handles, the position of the opposite corner of the object must

be pinned down while the handle is dragged. Bramble’s grab and ungrab hooks were

specifically designed to help define handle behaviors with constraints.

8.3.5 Widgets

Although building the constraints required for manipulation into each graphical ob-

ject has many attractions, it does have some serious drawbacks. Most obvious is that

behavior must be built into each object, and that each object must have sufficiently

well-designed behavior so that it is manipulable and that the constraints are apparent

to the user.

An alternative to giving every object a behavior is to define special objects which

have behaviors and to manipulate the other objects by attaching them to these widgets2.

These widget objects can be specially designed to have desirable and self-revealing

behaviors. A widget can be thought of as a tool for providing a specific type of ma-

nipulation. Widgets have become ubiquitous in graphical interfaces. Most graphical

user interfaces now have users specifying values with widgets such as sliders, dials,

and buttons.

With the differential approach, connections are bidirectional. If a widget displays a

value, it can also serve to control the value. The functions that map from the screen po-

sition of the input device to the values stored by the widget do not need to be provided,

only the forward direction functions required for drawing. This is exemplified in the

fuel gauge widget example shown in Figure 8.9. The complete code for this example

is presented in Section A.2.1, but a simplified version is defined using the Bramble

define-shape function:

2The definition of widget here is slightly different than that of [CSH+92]
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Figure 8.9: A fuel gauge, define with Bramble’s define-shape function.

(define-shape gas-gauge (val) (0) 

  ((t (+ .2 (* 2.7 val))) 

   (x (- 0 (* .3 (cos t)))) 

   (y (* .3 (sin t)))) 

  (drawf 

   (prog (color gl-black) (linewidth 3) 

	        (arc 0 0 .3 0 1800) 

	        (move -.3 0) (draw .3 0) 

	        (move 0 0) (draw x y) )) 

  (> val 0) 

  (< val 1) 

  (handle x y) ))

; object with 1 variable

; convert percentage to angle

; x position (left is 0)

; y position

; define draw method

; set color and line width

; draw the shape of the gauge

;   and the bottom

; draw the needle

; limit the needle to valid

;   range

; put  a handle on the needle

The values that are computed for the position of the handle tip, used for drawing, also

serve as a handle. No code for mapping from the mouse position to the angular value

was required.

Bramble provides a small set of widgets that can be used in windows outside of the

views. However, widgets are often created as graphical objects that exist in the world

with the user objects. Because Bramble’s world is 3D, the widgets actually exist in

3D space, even though they are usually flat onto the z = 0 plane. However, since the

widgets are 3D objects they can be transformed into other places. For example, we

might place gauges on a model of an instrument panel as shown in Figure 8.10.

The behavior of a widget can be defined using the same techniques as used for other

objects. For example, to create a gauge with a dial, the arrow could be constrained to

have its endpoint at the center of the dial, and its orientation equal to the value of the

widget.

An example of some experimental widgets in Bramble are the aircraft gauges. The

set of gauges include an altimeter, a heading indicator, and an artificial horizon, shown

in Figure 8.10. In each case, the gauges draw themselves based on the values of their

parameters, and provide DistinguishedPoint connectors on their moving parts.

For example, either hand of the altimeter or many points on the heading indicator’s

compass ring can be grabbed.

This set of airplane gauges is potentially interesting because it provides a 2D dis-

play, and therefore control, of the orientation of a 3D object. However, I have not found
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Figure 8.10: Gauges serve as both displays and controls of the plane’s configuration. Al-

though they are 2D objects, the gauges can be placed anywhere in the 3D scene.

the airplane gauges to be a useful interaction technique for controlling 3D objects.

8.3.6 3D Widgets

Traditional 2D widgets can be applied to 3D interfaces. To avoid the drawbacks of such

an approach, [CSH+92] introduces the notion of 3D widgets as tools in the object’s

space.

The differential approach offers a mechanism for defining the behavior of 3D wid-

gets, which is a central difficulty in their design[ZHR+93]. With our approach, we

define the behavior of a 3D widget with a set of constraints that sufficiently restrict its

behavior so that a through-the-lens control can be used. These constraints are applied

while the widget is operated.

Figure 8.11 shows some example 3D widgets modelled after the ones presented in

[CSH+92] and [SC92]. The “jack” widget on the left is used to translate an object along

an axis. Pulling a tip of the jack causes the widget and its attached object to move in

the direction shown by the arrow. When a handle is grabbed by pressing the mouse

button, the object is constrained so it can only translate along the axis, and a through-

the-lens control is applied to the handle. When the mouse is released, the constraints

are removed. Similar techniques are used to create widgets for rotation about a point

or axis, or to scale either uniformly or along an axis. Better graphic design can make

the widgets more self-revealing.

Widgets to control the viewpoint, such as a virtual sphere, can also be created with

the differential approach. The exact virtual sphere technique of [CMS88] is harder to

create using the building blocks provided because the sphere that the user grabs is in

screen space, rather than in object space. This has a number of disadvantages as it loses

the kinesthetic coupling between dragging and the visible behavior. The arcball method

of [Sho92] makes this problem worse by introducing a scaling factor to simplify the
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Figure 8.11: 3D Widgets for translating an object, rotating an object about a vertical axis,

and rotating about a horizontal axis. The object is made semi-transparent to avoid obscuring

the widget. Notice that since the widget is an actual scene object, it casts a shadow on the floor.

derivation of the mathematics.

A virtual sphere variant that we prefer is the virtual trackball. The virtual trackball

can be thought of as a glass sphere surrounding an object in the world. To rotate an

object, the sphere is grabbed with a through the lens control and is constrained so it can

rotate only around its center. To make the manipulation of the object more “direct,” the

sphere is often omitted. Points on the object are grabbed through the lens, the object’s

center of rotation is nailed in place, and the object is made rigid so it revolves around

the center. One addition to the virtual trackball is the addition of an elevator key that

freezes the rotation but frees the uniform scaling of the object. This causes the virtual

trackball to work like a spherical coordinate mousepole.

To use the virtual trackball to control the viewpoint, we consider the objects in the

world to be encased in the sphere that is dragged. In practice, when the through the

lens control is applied, the distance between the camera and the center of the world is

constrained, as is the apparent position of the center on the screen. This virtual trackball

behavior is part of the standard Bramble 3D interface of Section 7.8. Whenever a corner

of the groundplane is selected, the trackball behavior is used. A dollying (sometimes

incorrectly referred to as panning) behavior, created by allowing the camera to translate

but not rotate, occurs when the center of the groundplane is dragged.

There are several advantages to developing a 3D widget with the differential ap-

proach and through-the-lens controls. First, it permits defining the widget’s behavior

without deriving any of the mathematics for converting from the input device’s motion

to parameter changes. Secondly, it defines the widget in a manner that is independent

of the underlying representation of the object. Finally, the descriptions of the widget

in terms of constraints provides a concise, executable specification of the widget’s be-

havior.
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8.3.7 Discussion

The differential approach lets us define and implement a variety of strategies for ma-

nipulating objects. The strategies are not mutually exclusive, for example we might

attach a widget to a part of a constrained object (particularly if it is not sufficiently

constrained) or use modifier keys to alter the behavior of a widget. As we experiment

with different strategies, we find that they all have advantages and drawbacks. Here,

we discuss some considerations.

User provided vs. designer provided: Making the user responsible for providing

constraints may give the user more flexibility, but might also make them expend more

effort as they specify behavior in addition to geometry. It also exposes them to the range

of problems inherent in specifying behavior. Interface designers are (hopefully) better

at devising good interactive behaviors, but cannot tailor designs to specific operations.

If the objects to be manipulated will be used often, or replicated many times, it becomes

worthwhile to spend effort in building behavior into them. This might be done by the

user, the interface designer, or by someone else who is simply an object designer.

Smart objects vs. smart tools: Do we put lots of behavior into the objects, so that

they can be manipulated with simpler tools, or do we develop better tools so that our

objects need less behavior? An extreme case of the former would be an interface where

every object had sufficiently well defined behavior so that any point could simply be

grabbed with a though-the-lens control. An extreme case of the latter would be to

have uniformly simple objects, for example ones that are being subject to the standard

translate, rotate, scale transformations, and provide a set of widgets or commands which

operate on them.

Context-sensitive vs. context-free: Is object behavior uniform, or do different ob-

jects (or even parts of objects) behave differently? Tailoring behaviors to objects has

advantages, as discussed by [Hou92], but uniformity does too.

Bounded scope vs. unlimited connection: Permitting arbitrary relationships among

objects can simplify manipulation by restricting unwanted behaviors, but when many

objects interact, their coordinated behaviors become complicated as longer chains of

causality are possible. Strategies which manipulate single (or a small number of) ob-

jects, such as widgets, have the advantage of keeping their simple behavior as the en-

vironment scales, but may grow tedious to use as the user must consider an increasing

number of objects and interactions.
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8.4 Employing Switching

In Section 6.4, controllers that operated by switching simpler controllers on and off

were presented. In this section, we examine how these switching controller might be

used.

8.4.1 Generalized Snapping

In Section 6.4.2, a controller for snapping to values was developed to aid in providing

accurate direct manipulation. TheSnap controller causes a connector to be driven to a

particular value when it approaches that value. Because the controller can be attached

to any connector, it provides a general method of snapping and its use is, therefore,

referred to as generalized snapping.

Generalized snapping can be used to recreate the typical cursor snapping by repre-

senting the cursor as a differentially controlled object and creating Snap controllers

that drive it towards desired snap targets.

Other behaviors can be created by placing Snap controllers on connectors other

than those that are being directly manipulated. Because controller handling happens

asynchronously in parallel with manipulation, precise relationships can be established

away from where the cursor is. For example, if users often desire line segments to be

accurately vertical, that is when something appears vertical it should be vertical, Snap

controllers for the values �=4 and 3�=4 can be placed on the angle connectors of each

line segment. If a line segment is brought near being vertical as it is dragged, the con-

figuration of the line segment would “snap” to a configuration where it was vertical.

While this small jump may violate the continuous motion, it is usually small and pre-

dictable enough that it is permissible, especially when proper feedback is provided to

express what snapping operation has occurred.

With generalized snapping, the snapping can occur away from the dragging action.

For example, if the line segment of the preceding paragraph was attached to some link-

age mechanism, the user might be controlling the line segment by manipulating some

other part of the mechanism, as shown in Figure 8.12. This makes it even more crucial

to provide proper feedback to the user to denote when something is snapped. Because

the focus of attention is possibly away from the snap, for example at the dragging site,

auditory cues might be useful as well.

The generalized snapping technique has many drawbacks that need to be resolved.

First, it does not revert objects to their original configuration when unsnapped. Sec-

ondly, it needs to be connected to mechanisms that handle multiple snap targets. To do

this properly might require the ability to determine whether two constraints conflict.

Third, because the differential approach only drives connectors towards particular val-

ues, there is no guarantee that the snap controller accurately reaches its target. Finally,

the snap controller has a number of potentially sensitive parameters that must be fine-
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Figure 8.12: Generalized snapping can occur away from the dragging action. As the user

drags the linkage mechanism, the left line segment gets snapped to the vertical position. Be-

cause such snapping can take place away from the focus of attention, it is important to provide

proper feedback.

tuned to provide the correct “feel.”

8.4.2 Collisions

Non-interpenetration is a useful constraint on objects. Such a constraint causes objects

to collide and contact one another when they touch, rather than to simply pass through.

A collision is the initial impact between two objects, which may remain in contact with

one another afterwards.

With the differential approach, it is possible to create non-interpenetration con-

straints using inequalities. While the methods are not as sophisticated as the special

purpose collision simulation methods reviewed in Section 2.2.3, they are simple to

build with the abstractions of the differential approach, and are sufficiently effective to

be interesting.

A particularly simple case of collision avoidance is used in box-and-arrow diagram

creation, an application discussed in Section 9.3. The particular constraint we would

like to enforce is that two axis-aligned rectangles do not overlap. This can be expressed

as a disjunction: if at least one of the following inequalities hold, then the rectangles

do not overlap:
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;

where x and y are the coordinates of the center of each rectangle, and s is the size. Each

clause represents one of the possible ways for the rectangles to be separated, either 1 is

above 2, below 2, left of 2, or right of 2. Alternatively, the disjunction can be expressed

as a maximum operation of the four terms.

The differential approach permits conjunctions of constraints to be handled easily,

however disjunctions are more difficult. Enforcing the disjunction is not a problem

when it is true, as each term can be checked until one that is true is found. However,

when none of the expressions of the disjunction is true, a choice must be made. As with

inequalities, when the constraint is violated it will be activated in order to “pull” it back

to the admissible region. In the case of the disjunction, at least one of the expressions

must be chosen and used as a constraint. Even though all of the inequalities are violated,

all cannot be enabled because they would conflict.

The strategy for handling disjunctions of inequalities will be to select one of the

inequalities to enable when the disjunction is violated. Because we are not backing

up the instant where the disjunction began to fail (see Section 6.4.5), we must resort

to enabling a violated inequality and permitting it to pull the configuration back to a

legal configuration. The difficulty is selecting the inequality, which must be done by

a heuristic. Although we would like to pull things out the same way they went in, the

lack of history makes it impossible to do exactly.

A heuristic used for the simple rectangle overlap problem is to pick the inequality

that is least violated. This technique is used for object non-overlap in the box and

arrow diagram editor program of Section 9.3. The heuristic fails in two cases depicted

in Figure 8.13. First, if the overlap is near a corner, an object may be pushed out to

the side, rather than the way that it came in. Second, if the ODE solver step moves the

object too far through the second object, it might be closer for the object to push out

the opposite side that it came in from.

The basic rectangle non-overlap can be extended to the general case of rigid (e.g.

rotatable) convex polygons. The basic element of a non-overlap constraint for two such

objects is a point outside of polygon constraint. This is created by a disjunction, there

must be at least one edge of the polygon that the point’s distance inside the half-plane

defined by the edge is positive. A point outside polygon constraint can be created with

a similar heuristic as the rectangle non-overlap, with similar selection problems.

Two convex polygons do not overlap if and only if all the points on each are outside

of the other. This makes it easy to break the polygon collision problem into point out-

side of polygon problems. What a polygon collider must do is find points that are inside

the other polygon, called contact points, and enable constraints to push them outside.

It will always be sufficient to choose at most two contact points, as this will establish

a dividing edge between the polygons. After being selected, each of the contact points

chooses an edge to be pulled out through. The heuristic must make sure that the points

both exit through the same edge, even if they are on different objects.
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Figure 8.13: A disjunction of inequalities constrains two axis-aligned rectangles from over-

lapping. Because the selection of a direction to pull the block out is made without knowledge

of the direction it came in, two types of errors may be caused. If the overlap is in a corner, the

distance out the side may be less than the distance back out the top, as shown in the sequence

on the left. Also, if the object moves too quickly it may pass through the other object, as shown

in the sequence on the right.
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Figure 8.14: Mechanisms that can simulated using the simple collisions methods of the dif-

ferential approach. The left shows a set of sawtooth “gears” jammed with a square block, and

the right shows a block feeder.

While this simple method for collisions is not perfect, it is extremely simple to im-

plement, and achieves good enough performance to allow some interesting mechanisms

to be created with it. Two examples are shown in Figure 8.14. Since these methods

were developed, techniques to permit robust simulation of collisions interactively have

been developed by David Baraff [Bar94].



Chapter 9

The philosopher’s have, in many ways, tried to interpret

the World. The point, however, is to change it.

— Karl Marx

11th thesis on Feurbach

Example Applications

This chapter describes some sample applications built with the differential approach

and the tools developed in the previous chapters. The purpose of discussing these ap-

plications is threefold:

� to show how the interaction techniques developed with the differential approach

can be fit in the context of a realistic application.

� to show that the differential approach is viable.

� to show some of the range of the tools, particularly the Bramble toolkit, giving

evidence of how the differential approach can be used to make such tools more

general.

All of the example applications discussed, except for the Briar drawing program,

were constructed using the Bramble toolkit.

9.1 A Drawing Program

Although constraint-based techniques have been used since Sketchpad [Sut63], the ear-

liest drawing program, they have not been generally successful. Many difficult issues

have limited the success of constraint-based systems for drawing. Not only must a

system be able to solve constraint satisfaction problems, but it must make it easy for

users to specify, debug, and edit constrained models. The Briar1 drawing program at-

tempts to address all of these issues. The issues of constraint-based drawing that Briar

addresses apply more generally to interfaces built with the differential approach. Briar

is discussed in detail in [GW94] and [Gle92a], and illustrated in Figure 9.1.

A major goal in the development of Briar was to build a system with constraints

that provided users with the fluent interface that they have come to expect from direct

1It is called Briar because, like the plant it is named for, things stick together inside of it.
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Figure 9.1: Briar editing a constrained drawing.
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manipulation drawing programs. The techniques in Briar aim to add at least some of the

advantages of constraints without detracting from what has made direct manipulation

drawing programs so successful. In short, they aim to make Briar a direct manipulation

drawing program augmented with constraints, not a drawing program with a primar-

ily constraint-based interface. The interface feels similar to other direct manipulation

drawing programs which provide snapping except that once snapped, things can stick

together.

The basic idea behind Briar is to enhance an existing, successful, direct-manipulation

drawing technique with constraints. Briar separates the task of initially establishing

relationships in drawings from that of maintaining them during subsequent editing.

It uses snap-dragging, a successful non-constraint-based technique introduced in Gar-

goyle [BS86], for initially establishing relationships in drawings. By augmenting snap-

dragging, Briar obtains the constraint specification with little or no additional effort

from the user. The methods of the differential approach allow the constrained draw-

ings to be be manipulated directly; as the user drags an object, constraint techniques

adjust other objects to maintain relationships.

Combining snap-dragging with constraint techniques significantly changes the na-

ture of the constraints. Unlike most previous constraint-based approaches that rely on

solving methods to initially satisfy the relationships, constraint methods in Briar are

used only to maintain relationships during dragging. This permits using the differ-

ential approach, as objects move only during continuous-motion dragging. The pri-

mary benefits of using constraints only to maintain constraints during dragging parallel

those that motivated the differential approach in Section 1.2: we can avoid solving

non-linear equations from arbitrary starting points; we need not select configurations

in under-constrained cases, and we can aid the user in the problem of understanding

state transitions by always providing continuous motion.

In Section 8.2.2 discusses many of the challenges in creating constraint-based draw-

ing editors. The differential approach addresses some of these. Briar includes tech-

niques designed to address many others including how to specify constraints, how to

edit them, and how to display them to the user. These issues arise in a wide range of

applications. This section describes Briar in detail to illustrate some possible solutions

to these problems.

9.1.1 Augmented Drawing Tools

Briar’s approach only uses constraint techniques after relationships are already estab-

lished. To establish the relationships initially, we use techniques such as grids, gravity,

and snap-dragging [BS86] that have been employed by non-constraint based drawing

programs. To avoid giving the user the extra work of specifying both the constraints

and an initial solution, Briar provides augmented snap-dragging. Augmented snap-

dragging is a variant of snap-dragging that has been extended to specify persistent con-
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straints as well as positions. The basic idea is that the cursor placement operations of

snap-dragging contain information about why an object was positioned where it was,

and therefore they can also provide a constraint specification in addition to positional

information. The technique can also aid traditional constraint-based drawing programs

which require good starting points to prevent long jumps that are hard for solvers to

make and users to understand.

Ours is not the first attempt to spare users from additional effort required to explic-

itly specify constraints. Previous systems have attempted to infer relationships after

drawing operations by looking at the resulting drawing, as in automatic beautification

[PW85], sequences of drawings, as in Chimera’s snapshot mechanism [KF93], or at a

trace of user actions, as in Metamouse [MKW89]. Because this information typically

does not specify the relationships unambiguously, these systems relied on heuristics

or asked the user to resolve the ambiguity, as in Peridot [MB86] and Druid [SKN90].

Our approach provides positioning methods which unambiguously specify constraints,

eliminating the need for inferences. We simply augment drawing tools to specify con-

straints as well.

In Briar, augmented snap-dragging is the only method for specifying constraints. It

provides a uniform method for creating a variety of constraints, such as controlling dis-

tances, positions and orientations. Other systems which infer constraints from snapping

either have a limited vocabulary of constraints, such as the Manhattan gridding rules

of the interface builder of [HY91], or use other methods to specify the complete set

of constraints, as in Intellidraw [Ald92] and DesignView [Com92]. Rockit [KLW92]

also infers gridding constraints from drawing actions, but does not avoid ambiguity, ac-

tually averaging multiple possibilities. Chimera [Kur93] has both snap-dragging and

constraints, but does not integrate the two.

Here is the basic idea behind snap-dragging. When drawing, it is difficult to posi-

tion a pencil precisely without using some form of aid. Similarly, it is difficult to draw

precisely with a mouse or other pointing device unaided. Computer software can pro-

vide tools for precise placement by drawing from a software-positioned cursor2 rather

than using the pointing device location. The software cursor’s location is influenced by

the position of the pointing device, but determined by a function which helps the user

position elements precisely.

The uniform grid is the most common function for mapping pointer location to cur-

sor position. It displaces the cursor to points on an equally spaced rectangular grid.

“Gravity” is another cursor positioning function. When the pointer is brought suffi-

ciently close to an interesting element in the scene, the cursor snaps to it. The idea of

gravity has existed for a long time, having been demonstrated as early as Sketchpad

[Sut63]. snap-dragging [Bie89, BS86] enhances the usefulness of gravity. The cursor

snaps not only to the edges of objects, but also to interesting points in the scene such

2This differs from the original snap-dragging terminology [Bie89] where the position of the hardware

pointing device is known as the cursor and the software cursor is known as the caret.
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as intersections and vertices of objects. The ability to snap to intersections enables the

use of traditional drafting compass-and-straight edge constructions.

Since cursor placement operations contain information about why an object was

positioned where it was, they can also provide a constraint specification. Suppose the

user, while dragging an object, moves the pointer near another object so that the cursor,

and the point being dragged, snap to the second object. This may have been an accident,

but the user might have been trying to achieve this relationship. We provide the user

with the option of making the relationship persistent, so if it was intentional it can be

preserved during subsequent editing. We call the extension of snapping to specify a

relationship in addition to a position augmented snapping.

When a new relationship is established by snapping, the system acknowledges it by

displaying a symbol indicating the constraints that the snapping operation implies. The

user can accept the new constraint, by pressing a key to make it persistent, or ignore

it. If this automatic constraint generation process works well, the user will want to

accept most constraints so the option of making this the default should be provided.3

In such a mode, it must be easy for the user to reject an action as an accident. In Briar,

a key is used to toggle new relationships between the accepted state, in which they are

made into persistent constraints, and the ignore state, in which the symbols are removed

before the next drawing operation begins.

Snap-Dragging provides two basic operations for positioning points in two dimen-

sions: snapping the cursor to a point, such as a vertex, and snapping the cursor to an

object’s edge or curve. These operations correspond directly to the constraints “points–

coincident” and “point–on–object” respectively. The two constraint types work with

each object type that Briar supports. The set of objects presently includes lines, circles,

ellipses, and rectangles.

Relations other than contact are created in snap-dragging through alignment ob-

jects: objects that are not part of the drawing per se, but exist only to be snapped to.

The original snap-dragging work includes several types of alignment objects, each cor-

responding to types of relationships which are useful in drawings. For example, the

distance from a point can be specified by placing an alignment circle around that point.

Other alignment objects include slope lines, angle lines, and distance lines. The use-

fulness of alignment objects is further enhanced by making them easy to place. In fact,

heuristics can often automatically place alignment objects where needed.

The two simple snapping operations combined with alignment objects allow a user

to establish a wide variety of relationships. The simple mapping from snaps to con-

straints extends to a variety of constraints. For instance, snapping to an intersection is

a conjunction of the simpler constraints. By using the simple constraints with alignment

objects, the relationships specified by snapping to these objects can be made persistent.

For example distance-from-point constraints are created by snapping to an alignment

circle. The Gargoyle editor [Bie89] shows how snap-dragging can be used to create

3In our experience, the automatic constraint generation is so good that we make it the default.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.2: Feedback mechanisms display exactly what is snapped to. The cursor changes

shape depending on whether it is snapped to a curve or edge (a,b), or a point such as an endpoint

or intersection (c,d). The object snapped to is brightly lit. If several objects are close together,

the one desired can be selected by cycling (e,f). Color is used for feedback when available.

most of the relationships which are needed in drawings. Augmented snap-dragging

extends this to inferring a similarly complete set of constraints.

Hidden state is a fundamental problem in the interface between man and machine;

therefore, feedback is an important aspect of any user interface [Nor90]. To make

augmented snap-dragging work, feedback is crucial. Our feedback mechanisms (Figure

9.2) ensure that the snapping state is not hidden from the user, by highlighting the object

snapped to and changing the cursor’s shape to show if it is snapped, and whether it is

snapped to a point or an edge. Good feedback makes snapping easier to use because

the user never needs to guess what relationships the system is establishing, or which

relationships can be made persistent when the snapping operation is complete. The

other benefits of snapping feedback [Hud90] also apply as snapping shows the user

what can be snapped to, not just what is snapped to.

There are many advantages to augmented snapping as a front-end to a constraint

system. Augmented snapping is opportunistic, creating constraints where it can. Con-

straints are specified with little additional user effort beyond what is required to ini-

tially establish them. The constraint creation process is quite transparent so it does not

interfere with the user’s drawing process. Since snap-dragging is used for all draw-

ing operations, including dragging and creating new objects, constraint creation is al-

ways available. Augmented snapping still provides the user with the snapping interface
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(a) (b) (c) (d)

Figure 9.3: Alignment circles help create an equilateral triangle. Briar places 3/4 inch align-

ment circles around points of interest. Snapping to the circle created with the initial mouse

point sets the length of the first line (A). Snapping to the intersection of the circles created

around the ends of the newly created line segment constrains the point to be 3/4 inches from

each endpoint (b). Snapping the final segment in place leaves three lines constrained to be

connected with their endpoints 3/4 inches apart (c). The system can maintain these constraints

as as the user drags pieces of the triangle (d).

which has proved successful in systems without constraints, so that constraints need not

be used if they are not convenient for a particular drawing operation. Briar augments

snap-dragging, which by itself is an extremely powerful drawing tool.

Removing Ambiguity

If multiple objects coincide when snapping, it might not be clear which object to snap

to. If we are only using snapping for positioning, the ambiguity is irrelevant: only the

target location is important. However, with persistent relations this distinction becomes

significant. If the two coincident points are later separated, the correct attachment re-

lationship must be maintained.

Feedback, along with snap-dragging’s cycling mechanism, solves the problem of

ambiguity. Feedback mechanisms clearly show the user which object is being snapped

to and what relationships are being established. If these are incorrect, the user can click

the cycle button and the system will snap to the next object within gravity range.

A related problem is that the user might construct a model in a manner which does

not convey the desired constraints. As an example, consider the equilateral triangle

construction (Figure 9.3) which is used to demonstrate snap-dragging [BS86]. In this

example, alignment circles of 3=4 inch are used to create an equilateral triangle. The

user has specified a triangle with all sides equal to 3=4 inch, not a triangle whose equal

sides can be scaled as well as rotated and translated. The program only knows what the

user has specified and, therefore, cannot guess another option.

Briar does not attempt to guess the user’s intent. Instead, it tries to keep the auto-

matic generation process predictable, to use feedback to remind the user exactly what

the system has been told, and to provide tools which convey the desired relations di-

rectly. Since our goal is to extract constraints without extra work, it is wrong to require

users to expend extra effort to use constructions which create the correct constraints.
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Therefore, we must make it as easy as possible for the user to convey what is really

intended.

The scalable equilateral triangle problem is solved using a mechanism from snap-

dragging. Rather than specifying that the alignment circles, and therefore the resulting

triangle, have size 3=4 inch, a length measurement tool is employed. The first line

segment is drawn and then measured. Circles are then created with radius equal to the

length of the line segment. In Briar, this construction requires only one more mouse

click than to construct the fixed sized triangle. Angle and slope measurement tools

could also be provided to express other relationships.

As we find relationships that are needed in drawings but are difficult to express di-

rectly with current tools, we can develop new tools to expand the set of relationships

that are easily specified. Expanding the vocabulary by adding a wider assortment of

tools only makes modeling easier to a point, after which the larger number of tools be-

comes unmanageable. User experience with Gargoyle [Bie89] shows that the standard

set of snap-dragging tools are sufficient to create a wide array of drawings.

Another complication in augmenting snap-dragging is that if the constraints already

imply that two objects are related, there is no reason to snap them together. Suppose the

user is dragging a point. Gravity snaps the cursor to nearby objects. If another object

is connected to the point, it will always be nearby and it might be snapped to. Since it

is already connected, this would create a redundant constraint, or require to the user to

cycle in order to snap to another object. Filtering the set of objects that can be snapped

to eliminates this nuisance.

However, recognizing that a relationship is implied by a set of geometric con-

straints can require difficult geometric proofs as some complicated mechanism might

imply additional relationships. From our experience, it appears that handling the sim-

ple cases—not snapping to the object being dragged, checking for existing connection

constraints, applying basic geometric identities, etc.—filters out the vast majority of

redundant snaps. Avoiding redundant snaps is an optimization; it is not critical to the

correct functioning of snapping. However, not filtering all redundant snaps means that

the solving techniques must be robust in handling redundant constraints.

9.1.2 Constrained Direct Manipulation

Briar uses augmented snap-dragging to initially establish constraints and then uses the

methods of the differential approach to maintain these constraints during subsequent

editing.

With constrained direct manipulation, objects are dragged as with standard direct

manipulation, except that relationships are maintained among them. In Briar, direct

manipulation does not break persistent constraints, that is, dragging is subject to the

constraints. This allows the drawing process to be incremental: each new relationship

added to a drawing does not disturb previously established ones. The existence of a
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direct manipulation facility means that all parts of the model do not need to be specified

by constraints. If it is difficult to devise a way to describe an aspect of a drawing with

constraints, direct manipulation can be used instead.

Dragging parts of drawings allows the user to experiment with the constrained

model. This interactive animation is a useful tool for understanding and debugging

constraints. It also opens up the possibility of dynamic drawings: models which are

created to be dragged and played with. Such drawings contain unconstrained degrees

of freedom, so they exhibit motion when their parts are dragged. The use of constraint-

based approaches to animate drawings dates back to Sketchpad [Sut63] and special pur-

pose techniques for interactively simulating mechanisms have been developed [Kra90,

RK77, End90]. Differential constraint systems are also well suited for such mechanical

simulation and animation tasks as well as interaction. Section 9.2 describes a special

purpose application for mechanism sketching.

The facility with which we handle constraints opens the possibility of using con-

straints to aid in manipulation. Most constraints are used to represent structure in the

drawing. However, temporary constraints that are easy to create and destroy are useful

for making drawings easier to control. We call such constraints, which are meant to be

short-lived, “lightweight” constraints.

Dragging is one example of a lightweight constraint. It is achieved by temporarily

constraining the point being dragged to follow the mouse. Another useful lightweight

constraint is the tack. A tack hold a particular point in place. It acts as an extra hand,

making it easy to stretch or rotate an object. Nailing a point at a particular point in

space is a common facility in constraint-based systems. Making it easy to place and

remove the nails easily enables new uses for them. For example, tacks can perform

the tasks that anchors do in traditional snap-dragging [Bie89], specifying the center of

rotation and scaling.

9.1.3 Displaying And Editing Constraints

A constrained drawing has more state that must be displayed to the user than a non-

constrained one does. A system must convey to the user not only the geometry of the

model, but also its constraints. The user must be able to edit this structural information

as well as the geometry. Previous constraint-based systems have used three types of

techniques for displaying constraints to users: textual languages, diagrammatic repre-

sentations, and graphical cues drawn directly on the model.

Textual languages for describing constraints, such as that employed in Juno [Nel85],

have the advantage that they are editable. Unfortunately, they are distinct from the

drawing and can be difficult to connect. Schematic representations of constraints, such

as that presented by Borning [Bor86], are similar in that the constraint display is sepa-

rate from the drawing.

Visual representations, such as in Converge [Sis91], CoDraw [Gro89], and Viking
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(a) (b) (c) (d)

Figure 9.4: Snap-Dragging provides a basis for visual representation of constraints. The two

basic constraints, point-on-object and point-to-point, are drawn as an empty square and a filled

diamond (a) respectively. Other constraints are represented using the basic ones and alignment

objects, for example, distance-between points (b), points-aligned (c), and orientation (d). Thin

wedges as seen in (b), emphasize distance constraints. Color is used for constraint display

when available.

[Pug92], superimpose constraints directly on the drawing. The connections between

the relationships that will be maintained and the objects they affect are shown to the

user. This is particularly dramatic when the model is moving subject to the constraints,

such as when it is being dragged.

Constraint representations that are superimposed on drawings do have drawbacks.

Each type of constraint must be displayable in a manner that makes clear both what

the constraint is and what it effects. This can be particularly difficult in systems with

a large palette of constraints. Visual representations can also be difficult to edit. The

tendency of constraints to cluster is one source of this difficulty.

A Visual Representation of Constraints

Augmented snap-dragging provides a graphical method for specifying constraints. One

of its features is that it provides a uniform method for describing a wide variety of rela-

tionships. It can also be used as a representation for displaying constraints, providing

an equally uniform visual language for displaying constraints that is the same as that

used to specify them.

Augmented snap-dragging specifies all relationships by one of two basic types of

snapping operations. The graphical depictions of these two types of snaps becomes

a way to depict the constraints the snaps create. Alignment objects are also part of

relationships and therefore they must also be made persistent, unlike traditional snap-

dragging. The snapping symbols and alignment objects provide a graphical represen-

tation for a wide variety of constraints. Some examples are shown in Figure 9.4.

One factor which complicates visual display and editing of constraints is the ten-

dency of constraints to cluster, often being in exactly the same place. The semantics

of constraints can be tuned lessen this problem. For example, rather than using binary

relations to connect points to each other, linked points are placed into an equivalence

class. If a set of points has been made equivalent, just the equivalence class needs to
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be shown, not the potentially large number of equality relationships all piled on top of

each other.

Editing Constraints

Ease of editing constraints is important; relations should be as easy to break as to make.

Users may change their minds as to what relationships should be in the model, or may

simply have made a mistake in specifying the constraints. Using a visual representation

alleviates only part of the difficulty in deleting constraints: before being able to point at

a constraint, the user must know which constraint or constraints to delete. To address

this, we allow users to remove constraints by referring to the desired effects, not to

the constraints themselves. In fact, Briar provides no mechanisms for users to point

directly to constraints.

A direct method of removing constraints by referring to the objects they influence

is to “rip” them. When an object is grabbed for dragging, holding down a modifier

key causes the grabbing operation to “grab hard,” removing any constraints on the

point grabbed. However, this method is often undesirable as it may remove too many

constraints.

Another technique for deleting constraints without pointing at them is to allow the

user to temporarily disable constraint maintenance. In this mode, the user can ma-

nipulate the objects as if they did not have any constraints on them. When constraint

enforcement is re-enabled, constraints which the user has broken are discarded. Feed-

back as to which constraints are broken and the ability to use snapping operations to

reassemble things help make this a useful technique for editing constraints. A similar

mechanism for destroying unwanted constraints is provided by Chimera [KF93], where

the user can create a new “snapshot” of the drawing which shows the constraint broken.

9.1.4 Lessons from Briar

Briar was constructed as a testbed for ideas and techniques for constraint-based draw-

ing. It was developed in the autumn and winter of 1990, before most of the work in this

thesis. Briar was built with a predecessor to Snap-Together Mathematics. It employed

a conjugate-gradient solver directly to handle under- and over-constrained cases, as de-

scribed in Section 3.6, and a “Briar-style” two pass solver for soft controls, as described

in Section 3.5.1.

Briar is an important demonstration of the differential approach because:

� it provides an example that shows the approach is viable;

� it shows that many of the difficult issues in using the approach can be addressed;

� the techniques that it introduced, such as augmented snapping, can be applied to

other applications;
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� it provided me with experience of what services constraint-based graphical edi-

tors required, which influenced the design of subsequent toolkits;

� it showed how Snap-Together Mathematics could be incorporated into an appli-

cation, which led to alterations in the design of Snap-Together Mathematics;

� it inspired the Bramble toolkit because building a graphical editor without sig-

nificant support to leverage off of was too much work;

� it emphasized many of the features required for the mathematical techniques,

such as continuous motion and redundancy handling;

� it provided an interface that permitted creating larger, constrained models that

taxed the performance of implementations, providing inspiration and test cases

for exploring performance enhancements.

9.2 A Planar Mechanisms Sketcher

Creating drawings of mechanisms is a common use of a constraint-based drawing pro-

gram. Not only do the constraints help accurately place objects to create the mech-

anism, but they also keep the mechanism together as it is manipulated. This permits

the user to play with the mechanism to experiment with its behavior. Because mech-

anism creation was such a popular use of Briar, the first Bramble application was a

special purpose drawing program designed especially for drawing and experimenting

with planar linkage mechanisms. The MechToy application is illustrated in Figure 9.5.

Mechtoy defines a number of special purpose graphical object types. Linkage rods

are line segments drawn to appear more like what is commonly used to draw mecha-

nisms. The length of the rods are constrained like the rigid elements that they model.

The point equality constraints used to connect pieces are drawn as hexagonal bolts to

look more like a mechanical object. The ground points that provide fixed locations for

pivot points are drawn using the standard symbol from mechanics texts.

Special adjuster objects permit altering the geometry of mechanisms. When an

adjuster is dropped onto a linkage rod, the length of the rod is unfrozen. Deleting the

adjuster re-freezes the rod’s length.

Several MechToy object types have points that are nailed in place except when

they are grabbed. For example, ground points are normally locked in place, permitting

attached objects to pivot around them. However, if the user grabs the ground point, it

is temporarily freed so it can be moved during dragging.

Special variants of objects permit creating a variety of mechanical contraptions.

Sliders are line segments that have their endpoints nailed in place, and a floating bead

that is limited to sliding along the line’s length. Motors are special variants of line
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Figure 9.5: The Mechtoy application is specifically designed for drawing and animating pla-

nar linkage mechanisms. This picture shows a mechanism being animated, with smoke trails

tracing the motion.
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segments that have one endpoint nailed in place. When a button is pressed, a soft

control is placed on the motor’s orientation that causes it to rotate. Motors permit

mechanisms to be animated.

Smoke trails are objects that can be drag-and-dropped on points in the mechanism.

They remember a history of the point’s position, and display it in a non-obtrusive fash-

ion as a decaying trail of dots, as seen in Figure 9.5.

Mechtoy uses augmented snapping to infer constraints on objects as they are cre-

ated. If an object is created in a position snapped to another, the two are bolted together.

This permits mechanisms to be sketched very rapidly. Mechanism can easily be disas-

sembled by deleting parts, such as the bolts between parts.

9.3 A Box-and-Arrow Diagram Editor

Another major use of a constraint-based drawing program is to create diagrams with

arrows connecting the pieces. Constraints are particularly useful in such an application

because they permit the structure of the drawing to be retained as the pieces are moved.

This can save a considerable amount of work of reestablishing connections after each

edit.

Diagrams are an important enough class of drawings that a market for specific tools

for creating diagrams exists. Such tools can maintain connections without a general

purpose solving mechanism because of the simplicity of the specific constraint problem.

Simple dependencies suffice for keeping boxes and arrows attached. One of the many

successful commercial examples is Visio[Sha93]. Visio is a particularly interesting

example because it permits users to define new types of objects and connections using

a spreadsheet interface.

A simple diagram editor called Boxer has been built with Bramble and is shown in

Figure 9.6. Boxer provides a few basic object types, each providing connectors at points

around their periphery. Boxer objects automatically display text inside themselves, al-

though text-editing is not supported4. The objects are constrained to be axis aligned.

They can be created and placed using a drag-and-drop interface from the palette pro-

vided at the top of the window. The drag-and-drop interface permits users to select

icons from the palette and drag them onto the drawing area. The technique, which is

also used in Visio, avoids separate modes for object creation.

Connecting lines are specified by providing two points on boxer objects. Arrows

can be placed at either end. The connecting lines and arrows look at the normals of

the points they are attached to in order to attach at a proper angle. The connecting

arrows are drawn as Bezier segments to have a smooth appearance yet approach their

destinations with the correct orientations.

4Text handling facilities are conspicuously absent from Bramble.
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Figure 9.6: The Boxer diagram editor is designed for creating box and arrow diagrams.

Boxer was the first Bramble application to employ non-interpenetration constraints,

as described in Section 8.4.2. Boxer objects are constrained not to overlap. As an object

is dragged, it pushes other objects out of the way, just as physical objects would. The

collision mechanism treats all boxer objects as rectangles. The simple collisions have

been useful for a variety of purposes, including moving stacks of objects and clearing

space around an object by pushing neighboring objects away.

Boxer is designed to be extended easily. It defines a Whisper function called

install-shape that installs a new shape in the interface, adding a drag-and-drop

icon to the top area of the screen. The install-shape function takes the output

provided by define-shape (Section A.2.1), or the functions to create instances and

draw icons can be created by hand.

9.4 A Curve Modeller

The NewFF program shown in Figure 9.7 is an application designed to permit exper-

imenting with 2D parametric curves and constraints. It is named after Andy Witkin’s

original parametric curve manipulation program [Wit89b]. Like Witkin’s original FF

system, and several generations of successors described in [WGW90], [GW91b], and

[GW91a], NewFF provides a variety of curve and constraint types, and offers easy

addition of new types.

As discussed in Section 8.1.1, all that is required to add a new type of parametric

curve is the parametric function used to draw the curve. NewFF is distinguished from
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Figure 9.7: The newFF curve modeller allows experimenting with a variety of types of para-

metric curves and constraints.

its ancestors by permitting new types to be defined dynamically while the application

is running. The parametric function is given as a Whisper expression, and a new curve

type is defined, including an icon for creating instances. A small amount of auxiliary

information is also required to specify the sampling of the curve, and initial values for

the parameters. Because the dynamic addition of curve types interprets the function

using Whisper, performance (especially for redraw) is poor. Therefore, new curve types

are best added at compile time. A Mathematica program automatically generates C++

code for new Bramble object types from parametric functions.

The standard creation mechanism in the curve modeller simply creates an instance

of the object with its default initial values for the parameters. The initial values can be

defined in terms of an initial point value. When NewFF creates an object instance, it

sets these parameters equal to the position of the mouse. Certain objects in NewFF have

more sophisticated creation mechanisms. For example, line segments and circles are

created with rubber banding and augmented snapping to infer connection constraints

on the object.

The curve modeler allows a variety of constraints to be placed on objects. All con-

straint types attach to points, and therefore can be connected to any object. Available

constraints include connection, distance, collinearity, and parallel-ness of four points.
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Figure 9.8: The Poly application for experimenting with planar collision simulation.

9.5 A Collision Simulator

A simple application to experiment with the planar convex polygon collision con-

straints of Section 8.4.2 has been built with Bramble and is shown in Figure 9.8. The

Poly application permits several types of polygonal objects, such as blocks and saw-

tooth gears, to be created with a drag and drop interface. All objects automatically are

constrained not to overlap other objects and to remain above the floor. Gravity, imple-

mented by a soft controlling pulling downwards, can optionally be placed on objects.

A major use of Poly is to create mechanisms, so some features to facilitate this are

provided. Using the drag and drop interface, the user can nail points in place, freeze

objects, or place a torque source at the center of the object (e.g. turn it into a motor).

All of the Bramble functionality, including the objects and constraints from MechToy,

can be used in creating Poly models.

9.6 3D Construction Toys

Simulating Tinkertoys5 was one of the original motivating applications for the creation

of the constraint technology that the differential approach is built on. The idea is to

create a graphical modeling environment where pieces can be connected together to

build more complicated objects that have interesting behaviors. Tinkertoys, with pieces

that can be plugged into one another to create mechanical connection, was an direct

5Tinkertoy is a registered trademark of PlaySchool, Inc.
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Figure 9.9: The Ptinker application permits the user to build simple models from point objects

and constraints.

metaphor for constraint-based modeling. The freedom and flexibility needed to play

with Tinkertoy models had served as a touchstone for evaluating 3D interfaces.

One of the earliest applications built with the original snap-together math imple-

mentation was a simple Tinkertoys like system which provided a simpler set of objects

that could be attached with point-to-point or distance constraints. Although this ap-

plication was called Tinkertoys at the time[WGW90], it models a simpler set of con-

structions. A version constructed with Bramble is shown in Figure 9.9. Tinker or Point

Tinkertoys recreates the functionality of the original, allowing a user to create simple

objects, connect them with distance constraints, and manipulate them with the mouse-

pole.

Point objects in PTinker are denoted by small tetrahedra. Points that have fixed

positions in space, called “Ethernails,”are denoted by cubes. Distance constraints are

shown as lines between point objects. The interface permits specifying distance con-

straints by selecting two points to connect. When connected, the distance can be con-

strained either to be a unit distance or to simply maintain the distance between the

points.

The Toys application, depicted in Figure 9.10, is a more ambitious simulation of tin-

kertoys. Toys includes pieces designed to mimic their counterparts in a real Tinkertoys

set. The sizes and colors of the objects are reproduced in the simulation. Connecting

pieces by plugging rods into holes on the yellow connector objects is modelled using
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Figure 9.10: The Tinkertoys simulation permits users to create objects out of pieces modelled

after the real tinkertoys.

constraints.

In order to test if the abstractions of Bramble were sufficient to create the range of

behavior desired in a complicated application, no new functionality in the toolkit was

added. Toys is written entirely in Whisper. The application provides a complete 3D sys-

tem, with a tuned interface. This was important to show that such an application could

be constructed with the tools, but also to provide a realistic testbed for interface ideas.

The interface for Tinkertoy simulation provides a variety of interface challenges. The

application must provide for the fluent manipulation of 3D objects, easy specification

of constraints, and quick control of the view. Because the application is designed to be

fun, it would be unacceptable if the interface was not fluent and expressive. Personally,

I think the Toys application is a success — I enjoy playing with it.

9.6.1 Tinkertoy Pieces

Toys models most of the objects in a Tinkertoy set. The dimensions and colors of

the real parts are reproduced. The rods and connector spools are made from standard

cylinder primitives. The dots for the holes on connector spools are created by using
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a Bramble function that marks a DistinguishedPoint with a circle in its tan-

gent plane. The connector spools use a DistinguishedPoint on their surface

for drawing, but each hole also has a corresponding point inside the cylinder that is

used for connection. This is required to model the fact that the rod pushes into the

hole.

Connections between pieces are specified by picking an end of a rod and a hole. The

pieces then “self-assemble” to establish the connection. The self-assembly is phased

into several stages. First, the pieces orient themselves, then they fly together, and fi-

nally, the piece pushes into the hole (rods actually do go inside the holes). The phasing

was created for purely aesthetic reasons, and is implemented by demons that wait until

one phase is complete before beginning the next. To make the connection operation

seem more natural, Toys attempts to move only one object in order to establish the

constraints. Heuristics are used to decide which object to move. The system prefers to

move pieces that have not been connected yet, and prefers to freeze connector spools

instead of rods. If both the rod and its target have other connections, neither is frozen.

The Tinkertoy interface permits objects to be grabbed and dragged using the mouse-

pole, and the view to be controlled using a virtual trackball by grabbing the ground-

plane. Rods are plugged into the holes on the connector pieces. Once connected, the

rod can rotate is the hole.

To aid in picking, Tinkertoys provides semantic snapping so that only valid objects

can be picked when various operations are to be performed. For example, when plug-

ging a rod into a hole, only unattached rod ends and empty holes are snapped to. For

unplugging, only rod ends that are plugged into holes are seen by the snap server.

9.6.2 Performance of Tinkertoys

Simulating Tinkertoys provides difficult performance goals. Because of the complex

behavior of the 3D models, rapid refresh rates are important. However, tinkertoy mod-

els have large numbers of constraints. Each rod into hole connection requires 5 con-

straints. The total number of constraints to simulate can grow large very quickly. For

the Toys application I set a specific performance goal: on the machine in our lab (an SGI

Indigo 2 Extreme), the program should achieve acceptable performance on objects that

were as complicated as those that could be built with the small set of real Tinkertoys.

The small jar of Tinkertoys contains roughly a dozen rods and a half-dozen connectors.

Meeting the performance goals for Toys pushed the limits of Bramble. The ob-

jects in Tinkertoys were all standard cylinders, quaternion transformations, and frame-

alignment constraints. Because these are often used objects, they were carefully opti-

mized. However, users of Toys quickly assembled models that were large enough that

that O(n

2

) linear system solving dominated the performance. Therefore, a number of

implicit constraint methods were created to enhance the performance of Toys. All of

the methods use only standard Bramble features.
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The implicit constraint methods in Toys exploit the fact that connected pieces form

rigid bodies. Technically, a rod that plugged into a connector’s hole has a degree of

freedom to rotate around its axis. However, since the rod is symmetric, this degree of

freedom is invisible to the user. Toys can, therefore, treat the two pieces as a single

rigid body. Rather than having two objects and 5 constraints, the system need only

simulate a single rigid object. If the other end of the rod is plugged into another con-

nector, the degree of freedom can be manipulated by the user. Therefore, Toys can use

implicit constraint techniques for at most one connection per rod. Another case where

the symmetry of a rod permits implicit constraints is when a rod is connected to the

ground. In such a case, the rod can be frozen.

When a connection between two parts is accomplished by an implicit constraint,

the connection must work the same way that it would if normal techniques were used.

All connections must appear the same to the user; they are specified and deleted in

the same ways. This creates several complications. For example, when a connection

is deleted, there are no constraints to delete if the constraints are implicit. Instead,

disconnection must ungroup the two objects. This is implemented by having phantom

connection objects that represent implicit constraints. The phantom objects specify a

deleter hook that performs the ungrouping. The phantom objects are also convenient

for implementing save and load.

Creating a connection with an implicit constraint also poses a challenge as the con-

straint must self-assemble first. This is accomplished by initially creating the connec-

tion with regular constraints. A demon waits for the connection to be made. When

the two pieces are connected, the demon converts the connection to use implicit con-

straints. If the demon fails by timing out, it does not convert the connection. In fact,

it takes a precaution against the constraint never being satisfied by adding additional

damping.

To demonstrate the benefits of the implicit constraint methods in Toys, we consider

building an example object. The merry-go-round object, shown in Figure 9.11, is a

model that is shown in the instructions to the real Tinkertoy set. It is made of four

small rods, four medium rods, a long rod, four connector spools, and a slider connector.

These pieces have a total of 93 variables. Toys running on an SGI Indigo 2 Extreme

takes approximately 50 milliseconds to redraw the display with these pieces, whether

they are attached or not.

Without the automatic implicit constraint techniques, the merry-go-round requires

85 constraints6. Dragging this merry-go-round with the mousepole takes approxi-

mately 320 milliseconds per 4th order Runge-Kutta step. This provides a frame rate of

little more than two frames per second. This performance is unacceptable. However,

using the implicit constraint methods, the merry-go-round only requires 40 constraints,

and has a much smaller number of variables. The frame rate for this model is over 6

frames per second, as each Runge-Kutta step requires only approximately 100 millisec-

6The slider is implicitly connected to the vertical pole.
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Figure 9.11: A Merry-Go-Round constructed in the toys application from 9 rods, 4 connector

spools, and a slider connector.

onds. While interaction is a little sluggish, it seems acceptable.

The merry-go-round illustrates the limits of implicit constraint techniques as well.

The merry-go-round actually only has two degrees of freedom: it can slide up and

down the pole, or spin around the pole. All of the parts except for the pole form a

single rigid body. The merry-go-round could be simulated by grouping these pieces as

one unit, rather than using constraints. Identifying that more complex objects are rigid

is difficult, and is left for future work.

9.7 Scene Composition

A scene composition system permits a user to position objects in a 3D space, assign

properties to them, light them, position the camera, and send the model off to a renderer

to have an image created. Scene composition is a good testbed for 3D methods because

it requires controlling objects, lights, and cameras, and it avoids many of the issues of

how models are to be edited and represented.

The Bramble scene composition application is called Showoff. The name comes

from the fact that it was originally intended as a viewer for objects in a standard7 file

7I don’t know how much of a standard it is, but a large number of sample models in this format can

be found in public archives.
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format called OFF. Showoff is not an application in the traditional sense, but rather, it

is a framework for building demonstrations of interaction techniques for scene compo-

sition problems. Unlike other applications, Showoff does not create windows or fill the

scene with graphical objects. Instead, it defines Whisper functions that make it easy for

scripts to do these tasks. For instance, it defines a function that automatically creates

a framed view, complete with a standard camera and buttons along the side to set var-

ious viewing modes. Showoff creates commands for finding and manipulating object

aspects.

Showoff’s main role is for testing and demonstrating attributes and interaction tech-

niques for 3D applications. The typical showoff script creates some objects to provide

a sample scene, sets up some initial controls and constraints, and begins the interactive

loop. Showoff binds keys and menus to commands for many standard interaction tech-

niques. For example, mouse buttons can be used to grab a point with the mousepole or

through-the-lens with either soft or hard constraints.

Showoff has been the primary vehicle for experimentation with controls for posi-

tioning objects, lights and cameras. A wide variety of controls are provided for the

user, or the script, to mix and match. Figures 8.3, 8.5, 8.10, and 8.8 are all scenes from

Showoff demonstrations.

Showoff provides few features aside from those used to manipulate scene objects.

For example, the interface does not help the user create objects, they must be created by

writing Whisper code. However, Showoff does contain an extensive set of commands

that allow the differential approach to be applied to the problem of scene composition

directly. Showoff presents the user with a large range of controls, including most of

the attributes of Section 8.1, that can be applied as needed. Controls are combined by

locking: any control can have its value nailed in place. The idea is that the user will

employ a set of constraints and controls that conveniently described the image to be

created.

Showoff does not address the difficult problem of determining how to present a wide

range of controls to a user. A sufficient number of controls are available in Showoff

that accessing them is a problem. Showoff uses a haphazard combination of menus,

keys, and buttons to specify operations. The interface is “designed” to maximize the

number of controls made available to the user, even at the expense of usability.
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Chapter 10

There are two times in his life when a man should not

speculate: when he can afford to, and when he cannot.

— Mark Twain

Evaluation and Future Work

In this thesis, I have presented a differential approach to graphical interaction: a sys-

tematic approach to realizing graphical manipulation based on numerical constraint

techniques. In this concluding chapter, I will review the contributions of the thesis,

evaluate the work in light of the goals, and suggest some directions for future work.

10.1 Contributions

The central contribution of this thesis is to develop and demonstrate an approach for

realizing graphical manipulation based on numerical constraint techniques. The thesis

extends previous work in interactive physical simulation into a general approach for

graphical manipulation with contributions in the following general areas:

� abstractions for graphical interaction;

� numerical constraint techniques for graphical applications;

� implementation techniques for numerical computations;

� software architecture for graphical applications;

� interaction techniques;

� graphical applications.

This section reviews the specific contributions of the thesis.

I feel that the biggest contribution of the thesis is not any of the individual pieces, but

rather, how all the pieces can be fit together. To create the differential approach requires

a new set of abstractions that define graphical manipulation as constrained optimization,

mathematical methods to solve the constraint problems, implementation methods to

address the practical issues in employing mathematics in interactive systems, and a

software architecture to enable applying the approach and building applications. Only

with all of these pieces can novel interaction techniques and applications be created.

Here we discuss the specific contributions in more detail.

195
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10.1.1 New Abstractions for Graphical Manipulation

At the core of the differential approach is a view of graphical manipulation as a con-

straint solving problem. Interaction techniques are created from connectors, controllers,

and the passage of time.

� Equation solving as a general abstraction of graphical manipulation: the dif-

ferential approach treats graphical manipulation as an equation solving problem.

Previous work has used numerical equation solving and optimization for inter-

active control in specific cases and non-interactive control of geometric objects

with general constraints. However, no one has previously explored numerical

optimization methods as a general mechanism for implementing graphical ma-

nipulation.

� Connectors and controllers as basic abstractions for building graphical ma-

nipulation techniques: the concise set of abstractions provided by the differen-

tial approach are quite different than any previous ones. They can be combined

and composed. One key feature of the interactive controls in the differential ap-

proach is that they are combinable: if we can control A, and we can control B,

then we can control A and B simultaneously.

� Application of numerical constraint solving to interaction technique design:

interaction techniques are described by sets of controls and constraints that are

enabled and disabled at appropriate times. This leads to concise, directly ex-

ecutable descriptions of classes of interaction techniques that have been diffi-

cult to specify, such as 3D widgets. Freeman-Benson’s Kaleidoscope ’91 system

[FBB92] defined interaction techniques and widgets by dynamically switching

sets of constraints and previous work such as Olsen and Allan [OA90] and the

Garnet system [MGD+90] have used constraints to describe the behavior of 2D

widgets. However, by employing numerical techniques, the differential approach

permits a richer set of constraints including inequalities, to be used to specify

widgets in a way that automatically defines its inverse mapping from input to

variable.

� A method for describing interactions independent of the underlying repre-

sentations of the graphical objects: interaction techniques are defined in terms

of the objects’ attributes. The equation solving mechanisms map changes to the

underlying parameters.

10.1.2 Numerical constraint methods for graphical applications

The use of numerical constraint techniques for graphical applications began with the

relaxation techniques used in Sketchpad[Sut63]. More recently, there has been inter-

est in the related methods of non-linear constrained optimization, non-linear equation
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solving, and physical simulation. The problem solved by the differential optimiza-

tion is very similar to the problems solved at the core of these methods. The solution

techniques discussed in this thesis are variants of standard mathematical techniques for

solving relatively standard problems.

The methods used in the differential approach are the methods used for interactive

simulation. The techniques described in [WGW90] have been extended by applying

some standard mathematical techniques, such as damping (Section 3.2.1). This thesis

brings these methods to the domain of user interface design and construction. Previous

work attempting to apply numerical controls to the design of interactive systems has

been plagued by starting from inferior mathematical foundations.

� Demonstrations of the practicality and utility of the differential approach:

the running systems show that general controls for graphical manipulation can

be implemented, and perform acceptably on existing computers.

� Application of damping to constraints in interactive graphics: the differen-

tial approach uses damping methods (Section 3.2.1) to provide stability in ill-

conditioned cases, and to handle over-determined cases. These singular cases

have plagued many previous systems. Damping methods are well known in

the optimization community, and have been applied to similar domains, such

as animation and robotics. This thesis introduces the use of selective damping to

achieve constraint-hierarchies.

10.1.3 Implementation Techniques for Numerical Computations in

Interactive Systems

Another contribution of this thesis is the methodology for solving the numerical com-

putations required for constraint approaches in a manner that addresses the issues of

interactive systems. The work of this thesis refines the earlier work on interactive phys-

ical simulation.

� Snap-Together Mathematics: the work described in Chapter 5 is a descendant

of earlier tools for dynamic function composition and derivative evaluation. The

basic ideas behind Snap-Together Mathematics, such as explicit representation of

expression graphs, compile time definition of new function blocks using a sym-

bolic math system, and sparse-vector-passing, forward mode, automatic differ-

entiation remain from its earliest ancestor described in [WK88]. Several details,

such as how variables are handled, have been refined with evolution. The current

implementation is the first to be incorporated into a higher level toolkit, and the

first to exploit the generality in a range of applications. Snap-Together Mathe-

matics and its ancestors are very different from most other automatic differen-

tiation tools which focus on large, dense problems statically defined at compile

time[BGK93].
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� An encapsulation of numerical constraints: Snap-Together Math’s simple pro-

tocol for connector outputs, combined with its objects for constraints and con-

straint engines, provide facilities for defining (and solving) constraints on equa-

tions without seeing the underlying mathematics. The ConstEngine class has

been used with other solvers, such as Newton-Raphson.

� Generalization of performance methods for numerical constraints in inter-

active systems: the performance methods of Chapter 4 have they been used in

previous systems. However, the work of this thesis shows how all can be inte-

grated in a general fashion. In particular, the scatter–gather mechanism of Snap-

Together Mathematics, coupled with variable selection mechanisms and variable

merging mechanisms provides a generalized substrate for speeding numerical

computations through switching between explicit and implicit constraints and

partitioning.

10.1.4 Software Architecture for Graphical Applications

This thesis described Bramble, an object-oriented toolkit based on the differential ap-

proach. The main contributions of Bramble are:

� A graphics toolkit encapsulating numerical constraint methods: Bramble

encapsulates the differential approach in a manner that provides services inside

the abstractions of an object-oriented graphics toolkit. In fact, Bramble per-

mits building graphical applications with constraints without referring to any-

thing other than the typical abstractions of an object-oriented graphics toolkit.

This is important because designers of interactive systems seem to be resistant

to learning about mathematical techniques.

� Demonstrations of the impact of the differential approach on application ar-

chitecture: by providing generalized methods for mapping between controls and

parameters and by permitting connectors to be attached without knowing what

is behind the connector, the differential approach fosters modularity, parameter

independence and common code. This is seen in Bramble since objects, con-

straints, and interaction techniques can all be created independently and hooked

together as needed.

� A graphics toolkit that facilitates providing general constraints and controls

to users: Bramble aids applications in providing constraints and multiple con-

trols to the user. Previous toolkits have used constraints as an internal abstraction

to aid the programmer, but Bramble’s focus is providing them as a user level ser-

vice.
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� Use of a time continuous input model in a graphics toolkit: the differential

approach provides a continuous model of time, with events integrated as instan-

taneous impulses. For a graphics toolkit, the model allows simultaneous asyn-

chronous actions to be handled without explicitly programming them into each

event handler or providing for multi-threaded flow of control. A fundamental dif-

ference between this strategy and standard approaches is that handlers for con-

tinuous actions such as dragging are instantaneous event handlers, they do not

remain active over the duration of the operation, for example from mouse down

to mouse up.

� An object oriented graphics toolkit specifically designed for prototyping of

2D and 3D applications and techniques. Much of the rationale for Bramble is

based on the intention of its use for prototyping a variety of interactive graph-

ical applications. This led to exploring a different point in the design space of

interface toolkits. Because the art of toolkit design, especially for 3D, is still

evolving, explorations of new points in the design space are still useful. Inter-

estingly, other 3D-only graphics toolkits with emphasis on rapid prototyping,

including UGA [CSH+92], MR [SLGS92], Alice [PT94], and VB2 [GBT93],

have independently made some similar choices.

10.1.5 New Interaction Techniques

In order to demonstrate the differential approach, this thesis presents a variety of in-

teraction techniques, many of which are novel enough to be considered contributions.

Without user testing, it is in many cases difficult to claim that these are clear improve-

ments over previous methods. In fact, some of the new techniques may be unusable

in practice. However, I think that a few are interesting. Also, I think the differential

approach will lead to many new good interaction techniques because it permits provid-

ing the advantages of direct manipulation, such as continuous feedback and kinesthetic

coupling, to a broader class of interactions and objects.

� Through-the-lens camera controls: these techniques permit manipulating vir-

tual cameras and graphical objects by controlling and constraining points in the

image seen through the cameras lens. The methods can be used to address im-

portant problems in computer graphics, such as the image registration problem

of Section 8.2.4.

� Generalized snapping: (Section 8.4.1) the snapping controller permits any at-

tribute of a graphical object to be snapped to precise values, even if they are away

from the cursor.

� Interactive manipulation of color to control object and light geometry: the

use of the lighting model equation as a control permits manipulating light color,
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light position, surface colors, and surface geometry. Previous systems contain

special case code for such techniques for controlling light colors and surface

properties.

� Generalization of interactive control of reflections: the methods of Section

8.1.6 permit constraining and directly controlling the positions of reflections on

planar and curved mirrors. The only previous technique was restricted to manip-

ulating object translations by dragging reflections in planar surface[HZR+92].

The reflection controls also provide a generalization of the specular highlight

positioning methods of Poulin and Fournier[PF92], permitting the positions of

specular highlights to be constraints, and to control the geometry of the objects

in addition to that of the light source.

� Generalization of the use of shadows as controls: Section 8.1.6 introduced

techniques to constrain and control object geometry and light positions by con-

trols placed on shadows on both plane surfaces and other objects. This permits

a generalization of the Brown interactive shadow widgets[HZR+92] and Poulin

and Fournier’s positioning of lights by moving shadows[PF92].

� Scene composition by mixing and matching controls: (Section 9.7) while

some of the scene composition controls have appeared as special purpose hard-

coded controls, no previous system has allowed interactively specifying and com-

bining constraints and controls for camera positioning, lighting specification, and

object manipulation.

� Augmented snap-dragging: Briar (Section 9.1) introduces an extension of pre-

vious constraint inferencing techniques that permits automatic generation of a

variety of geometric constraints from drawing operations. Conversely, the draw-

ing methods of snap-dragging [BS86, Bie89], are augmented to also specify con-

straints.

� Techniques for displaying and editing constraints in a constraint-based draw-

ing program: Briar (Section 9.1) introduces a number of novel methods for

displaying and editing constraints in a drawing program. It introduces a visual

syntax for displaying constraints “in-place” in a manner that parallels their defi-

nitions, and two methods for deleting constraints.

10.1.6 Graphical Applications

The primary contribution of the applications described in this thesis is to demonstrate

the viability of the differential approach, and the flexibility of the implementation. Al-

most all of the applications are re-implementations of other applications using the tech-

niques of the differential approach.
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� An interactive Tinkertoys application: the Tinkertoys application permits in-

teractive assembly and experimentation with 3D objects mimicking the real toys,

including their kinematic behavior. Previous systems, such as those by Surles

[Sur92c] and Schroeder [SZ90], either do not provide for interactive editing of

the objects or they do not permit the simulation of the kinematic behavior.

� User defined shapes with constrained behaviors: the define-shape facil-

ity in Bramble permits end users to dynamically define new types of shapes in a

2D drawing program, and have these objects be manipulated without specifying

the inverse transformations. Some systems, like the commercial drawing pack-

age Visio [Sha93], permit users to define shapes with equations, but do not allow

these shapes to be manipulated except by directly controlling the parameters, and

do not allow the use of constraints in defining shapes.

10.2 Evaluation

This thesis takes a step towards the goal of improving the quality and range of inter-

active graphical applications, by providing a substrate on which interaction techniques

and applications can be built.

10.2.1 Basic Questions

The central premise of this thesis is that the differential approach can provide an im-

plementation of direct manipulation that uses numerical constraint methods to map

controls to object parameters in a systematic fashion, and that several issues in direct

manipulation interfaces can be addressed by such an approach.

The differential approach does provide a way to implement direct manipulation,

as shown by the recreations of other direct manipulation interfaces using the approach.

The approach uses a single numerical solver to map a wide variety of controls to a wide

variety of objects. This thesis presents a sufficient set of mathematical and implemen-

tation techniques to realize the approach, as illustrated by the prototype implementa-

tions. These prototypes show that the methods have acceptable performance on current

computers. Traditional direct manipulation operations take only a few milliseconds of

computation per frame, and reasonable sized constraint problems can be handled at

interactive rates (performance of the prototypes is discussed in Appendix B).

The examples show that the differential approach is interesting. The approach can

create desired interfaces, often in ways that are more flexible and general than tradi-

tional implementations. The approach also permits the creation of new interfaces that

would be difficult or impossible to create with conventional means. For example, de-

spite the utility of methods like the image alignment technique of Section 8.2.4, users

are typically provided with controls less suited for the task because of the difficulty
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in deriving the mapping from the controls to the underlying parameters. While the

special-case example of the table controls for image alignment might have been derived

by hand, the more general approach of mixing and matching though-the-lens controls

could not have been. In fact, without the view that anything that can be computed can

be a control provided by the differential approach, techniques like through-the-lens

camera control might never have been dreamed of.

10.2.2 Evaluating Abstractions

The abstractions for creating interfaces provided by the differential approach have

many desirable properties:

� the set of abstractions is small;

� they provide concise definitions for many interaction techniques;

� they describe manipulation without reference to the underlying parameterization;

� they can be combined and composed;

� they allow modularity by permitting objects, constraints, and controls to be de-

fined independently and hooked together as needed;

� they map directly to the data structures in the implementation;

� they foster a view of manipulation that helps lead to novel interaction techniques.

The abstractions have their problems and limitations, which will be surveyed in Section

10.2.7.

10.2.3 Evaluating Differential Techniques

Mathematical and numerical methods are crucial to the differential approach. Without

methods that solve the constrained optimization problems in a manner that meets the

demands of interaction, an approach to graphical manipulation based on constrained

optimization is impossible. The prototypes show that methods exist that permit the

differential approach to be realized. Section 1.1.4 introduced a number of goals for the

methods. Here, we review them:

1. Flexibility in the types of controls: the methods permit the use of arbitrary

differentiable functions over continuous valued variables as controls. The range

of controls discussed in Section 8.1 illustrates this flexibility. In practice, the

range of controls is limited by numerical considerations.
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2. Freedom to combine controls arbitrarily and dynamically: the solver handles

arbitrary numbers of simultaneous controls, without concern for what they are.

This allows controls to be combined arbitrarily. In contrast to many other meth-

ods, there are no restrictions on acyclic dependencies or existence of a procedural

solving plan. Adding a new control requires only passing more equations to the

solver. The flexibility in combining controls is an essential part of the approach.

3. Keep the good properties of direct manipulation: the differential approach

allows the creation of interfaces with the good features of direct manipulation

such as rapid feedback, continuous motion, and kinesthetic correspondence.

4. Choose the “best” solution in under-determined cases, and find a “reason-

able” answer if there is no exact solution: in underdetermined cases, the opti-

mization objective defines the “best” solution. The damping methods of Section

3.2.1 handle overdetermined situations, providing robustness in ill-conditioned

cases, allowing for redundant controls, and blending conflicting controls.

5. Provide freedom in picking representations independent from user concerns:

because controls are defined in terms of object attributes, rather than their inter-

nal parameters, programmers have the freedom to select representations based

on other concerns.

6. Allow a standard procedure for defining new controls that minimizes the

amount of difficult mathematical work in defining a new type of control:

to serve as a control, a function must compute its value and the derivatives of

its value with respect to its variables. The derivatives can be computed using

automatic methods given the attribute’s function, which must be known anyway.

7. Allow a solving mechanism that is general purpose and encapsulatable: the

solving mechanism for the differential approach works on a set of functions, vari-

ables, and controllers that specify desired derivative values. Therefore it applies

to problems of controlling differentiable functions of continuous variables. Snap-

Together Mathematics encapsulates the solving mechanism, providing the solver

as a black box object whose details are hidden from the programmer using the

toolkit. Bramble demonstrates this: it does not even provide the application pro-

grammer with the ability to look at solver internal data structures.

8. Work in a variety of domains: the approach is not specific to any particular

domain. A wide range of graphical applications can make use of it.

9. Be fast and scale well: as detailed in Appendix B, the prototype implementa-

tions show that the methods can provide sufficient performance on the present

generation of computers. The O(n

2

) computational complexity is a potential
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problem. At the present time, models with 50-100 simultaneous constraints can

be handled.

10. Not require sophisticated numerical techniques: the methods only require nu-

merical algorithms to solve easy forms of standard numerical problems. Stan-

dard algorithms from textbooks were sufficient for the prototype implementa-

tions. Fancier numerical algorithms, such as an efficient sparse singular-value

decomposition solver or a better ODE solver, may improve performance.

10.2.4 Evaluating the Interaction Techniques

This thesis provides tools for creating graphical interaction techniques. The tools do

not necessarily lead to better interfaces, in fact, the tools give interface designers new

ways to create bad interfaces, for example by applying controls “behind the users back.”

However, the differential approach would not be interesting if it only permits the cre-

ation of bad interfaces.

The differential approach can be used to create good interaction techniques. Al-

though no formal evaluations were done, the techniques demonstrated with the ap-

proach include several time-tested standard interfaces, as well as some interfaces that

apply direct manipulation to problems that it previously could not be applied to.

Using the differential approach to recreate existing interaction techniques is not

necessarily overkill: the methods provide a new way to define these techniques in a

representation-independent fashion and permit the techniques to be coupled with other

constraints. The approach can also make implementation easier as it does not require

the programmer to derive the mappings from controls to parameters.

A more exciting use of the differential approach than recreating existing interfaces

is creating of new interaction techniques and constraint-based interfaces. I believe that

the differential approach can often lead to interesting new techniques for graphical

manipulation tasks. The approach has the benefits that:

1. it preserves the continuous motion animation and rapid feedback properties gen-

erally desired in graphical interfaces;

2. it permits the creation of controls directly relevant to the users task;

3. it speeds experimentation with new control types as the mathematics does not

need to be derived for each new one;

4. it speeds experimentation by allowing controls to be combined.

The image registration interface of Section 8.2.4 exemplifies all these points. It pro-

vides an interface to an important problem, for which conventional interactive controls

are not convenient. The through-the-lens controls are directly relevant to the task, as
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they permit directly specifying where in the image a point in the 3D scene should ap-

pear. The creation of the through-the-lens control required knowing only functions

that were needed for drawing1. Initial experimentation with the alignment technique

merely required applying 4 through-the-lens controls. Since through-the-lens controls

were already available in the toolkit, the only new code required to create the interaction

technique was code to place the video image as the screen background.

The image alignment technique would have been very difficult to create with tra-

ditional approaches for implementing direct manipulation. Deriving the mapping from

controls to camera parameters is extremely difficult, as can be seen in the photogram-

metry literature mentioned in Section 2.4.2. The more general approach of mixing and

matching controls, used in Showoff (Section 9.7), would be impossible because such

derivations must be done for every new combination of controls.

Unfortunately, the range of interaction techniques that I have developed with the

tools of this thesis is not as extensive as I had hoped. Much more of the effort of the

thesis research went into tool building. Through-the-lens controls were the biggest

success. Most other techniques, such as generalized snapping, the scene composition

controls such as shadows and reflections, and 3D widgets were not explored sufficiently

well to make persuasive evaluations of. The success of color controls, something I had

high hopes for initially, was thwarted by technical problems. Numerical issues cause

the lighting equations not to serve well as controls. Further exploration of these controls

may find solutions to these difficulties, especially now that the solver has damping

correctly implemented.

Generalized snapping, described in Section 8.4.1, is another interaction techniques

that I was unable to explore sufficiently. Some issues are described in Section 10.3.

10.2.5 Evaluating the Architecture and the Prototypes

The prototype implementations described in this thesis consist of a few major parts.

Code sizes listed are for C++ source files, with comments, not counting headers.

� Math and Data Structures Library — (5K lines of C++ in 22 files) My C++

math and data structures library includes various basic mathematical elements

such as matrices, vectors, and ODE solvers as well as more general data structures

such as lists, queues, and hash tables.

The math library has been used extensively over the past 5 years in a variety of

applications. Particularly good design features were the object-oriented encap-

sulation of sparse matrices and ODE solvers. The code is very portable, and runs

on a range of machines from notebook PCs to high performance workstations.

1Arguably, the viewing transformations are in the graphics toolkit, and therefore not known to the ap-

plications programmer. However, under this argument, through-the-lens controls are also in the toolkit,

so their functions are not known to the programmer.
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It is significant to note that despite the more than 50,000 lines of C++ code in the

complete system, for reasonable sized problems, the majority of time is spent in

a few inner loops of the routines in the library. A fast and robust implementation

of basic mathematical data types such as vectors and matrices is crucial to the

differential approach. Fortunately, such routines are not hard to create and can

be nicely encapsulated in a manner that allows reuse.

� Snap-Together Math Library — (3K lines of C++ in 16 files, several hundred

automatically generated by BlockMaker, 300 lines of Mathematica to implement

BlockMaker) The Snap-Together Mathematics library is discussed in Chapter 5.

It supports function composition and evaluation, the differential solver, and a

number of predefined function blocks.

Snap-Together Mathematics has proven to work really well. The tool has evolved

since the earliest versions, but the basic design is the same. Sparse sparse vector

passing, global time-stamps, and the minimal protocol have all remained. The

library has been used for a number of applications besides Bramble, including

Spacetime motion control, physical simulation, and statistical data fitting.

The biggest successes of Snap-Together Mathematics are the places where it is

the simplest, such as the minimal protocol and the global time-stamp cache val-

idation. Better support for features like partitioning and representation switch-

ing should be easy to add. One design flaw is that Snap-Together Mathematics

objects, in particular function blocks, are a bit “heavy.” That is, they can be

expensive to create and destroy.

� Whisper Interpreter — (9K lines of C++ in 18 files, 3K of which were gener-

ated semi-automatically by EMACS macros to implement primitives for Snap-

Together Mathematics and GL, 800 lines for an interface to an image processing

library) The Whisper interpreter is a C++ library for embedding in interactive

applications. The library contains interfaces for Snap-Together Mathematics,

the GL graphics library, and a small image processing library. There are ap-

proximately 400 built-in primitives and 20 predefined types, not including what

Bramble adds.

Whisper has been a very useful tool for the research described in this thesis. It

has been particularly pleasant to program in and to use as a basis for Bramble.

Because it was designed for embedding, it provided the right set of functional-

ity to the systems it was put into. It is extremely easy to extend. The simple

dynamic object systems is particularly well suited for the kinds of exploratory

programming done in an experimental toolkit like Bramble.

� Bramble — (40K lines of C++: including 15K lines of C++ for basic parts in-

cluding some automatically generated code, 5K lines C++ for the 2D library in-

cluding automatically generated code for a variety of objects, 7K lines C++ for
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the 3D library, 7K lines of automatically generated function blocks, 700 lines of

Whisper library code) Bramble is the C++ interactive graphics toolkit described

in Chapter 7.

Bramble has been an interesting testbed for the development of the differential

approach. It has facilitated experimentation with the variety of interaction tech-

niques and applications discussed in the thesis. I think the design of Bramble

is quite solid. However, the implementation itself was hastily put together, and

shows signs of its unusual evolution, for example before Whisper, other mecha-

nisms for many of the object services had to be provided and remnants of these

still haunt Bramble.

The abstractions of Bramble were sufficient to create a variety of applications

without bypassing the approach. This is best illustrated by Toys which contains

many features, but is written entirely in Whisper. Bramble is missing many of the

features of standard toolkits, such as text handling. This makes it hard to build

complete applications.

� Applications — (230 lines of Whisper for Boxer, 800 lines of Whisper for

Mechtoy, 500 lines of Whisper for Poly, 500 lines of Whisper for ShowOff,

several hundred lines Whisper for Showoff demos, 900 lines of Whisper for

Tinkertoys) The complaint with the applications is that there are too few,

that they are too small, and not “complete” enough. They do demonstrate the

differential approach. However, there is much more to a graphical application

than manipulating graphical objects. I have been disappointed by my inability to

find a “killer” 3D application.

I believe that the architectural organization of the system works out very well. Snap-

Together Mathematics provides a good degree of separation between the solver and the

client application. It also allows objects to be defined independently, yet still connected

together, by providing a common protocol.

Besides Snap-Together Mathematics, the most significant architectural decision in

Bramble was the use of Whisper. I believe that this is a good strategy. The dynamic

object system is extremely useful in a graphics toolkit. The facility for rapid prototyp-

ing is extremely useful in an experimental system. The embedded interpreter approach

also facilitated additions to the toolkit: each new feature or object type did not require

extensive installation into all of the applications. Instead, each new feature simply de-

fined new primitive function calls that could be called as needed from applications, or

even interactively from the interpreter prompt. The same functionality might have been

attainable if a development environment such as LISP or Scheme were used, however,

such environments did not offer the floating point performance of C++, the ease of

transporting executables, the availability of graphics and numerics packages, nor were

good compilers available at the time that the project was begun.
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As in the process of constructing any system of this size, a lot of design decisions

were made along the way. Some of the best design decisions that I made were (in no

particular order):

� the simple protocol for Snap-Together Mathematics;

� using an embedded interpreter in the toolkit;

� using the Whisper object system for graphical objects;

� half sparse matrices;

� using a conjugate-gradient solver;

� the scatter gather handling of state variables.

Some of the worst design decisions I made were:

� using the simple GL event model of handling events globally, rather than han-

dling events on a per-window or per-object basis. Also, GL does not time-stamp

events, nor record the mouse state when an event occurs. This causes problems

when event handling is delayed as the mouse may move between when the event

happens and when the event is processed;

� having a single world, rather than explicit scene graphs like Inventor [SC92].

This makes it impossible to edit multiple documents, and difficult to show dif-

ferent data in different views.

� creating my own widget library. Many toolkits containing basic widgets such

as buttons and sliders are available. Using these would have given more attrac-

tive looking widgets, and probably some richer functionality such as file-selector

dialogs.

10.2.6 Experience with the Implementations

Because of the large overhead of making tools available to others, an explicit decision

was made in the research plan for this thesis not to make the tools available to others.

After many requests, I have made the Snap-Together Mathematics library publicly

available by anonymous FTP access. Because I did not offer support or documentation,

I suspect that few people have made extensive use of it. A small number have reported

successful experiments built with Snap-Together Mathematics. One CMU undergrad-

uate student was able to build a portable 2D version of Point Tinkertoys that ran under

the X window system, without learning anything about the constraint mathematics. I
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also know of at least three re-implementations of Snap-Together Mathematics by re-

searchers who had access only to the papers. These researchers were able to build 3D

constraint demonstrations.

Bramble was not offered to others because of the amount of support it would require.

Because of this, I cannot make any claims about how “usable” Bramble is. Personally,

I find Bramble a joy to use. Part of this may be attributable to the fact that I designed

Bramble based on my personal tastes and program development style. The interpre-

tive environment and high level language of Whisper extremely appealing compared

to C++. However, I believe that a good part of Bramble’s attraction is how well the

abstractions fit the needs of graphical application development.

Other than myself, the main users of the applications in Chapter 9 have been peo-

ple who have “taken over the drivers seat” during demos. This has allowed informal

assessments of how users react to interaction techniques created with the differential

approach. Such users are atypical: since they are only playing with the applications for

a few minutes, their usage patterns are different than those of users’ attempting to solve

real problems. For example, many people permitted to use the systems immediately to

try to torture the solver by making impossible connections to see what happens.

Response to the applications has been very positive. Few complain about the lag

between the pointer and the object being dragged. In fact, many comment on how they

like the feel of it. Some things, such as dragging the spiral of Section 8.1.1 generally

require a little practice before people can achieve the effects that they intend. However,

almost everybody has been able to figure it out without instruction. There is little else

to compare these systems to in terms of usage.

I am consistently impressed by how quickly people learn to use the mousepole after

getting past the initial issue of using multiple buttons on the mouse simultaneously. In

general, people seem to like the Bramble standard 3D interface. Part of this may be

attributed to relative novelty of interactive 3D graphics, and to the attention to aesthetic

details such as the use of shadows and the selection of colors.

10.2.7 Limits and Drawbacks

The drawbacks of the differential approach, as seen in this thesis, fall into three cate-

gories:

1. fundamental limitations or drawbacks of the approach;

2. limitations and drawbacks of the techniques that should be resolved by future

work;

3. artifacts of the prototype implementations.

The fundamental limitations of the approach are:



210 CHAPTER 10. EVALUATION AND FUTURE WORK

� The differential approach is time continuous. Things do not happen instanta-

neously. While this is generally a feature, some times we want objects to jump

to their destinations, for example, when a new object is created.

� The differential approach only is applicable to continuously valued parame-

ters and attributes. The numerical methods do not apply to discrete data. Some

alternate mechanisms, such as propagation constraints, must be used.

� The methods do not scale as well as those for other approaches. Without re-

stricting the problems, the complexity bound of O(n

2

) seems to be unavoidable.

Some major limitations that I think can be addressed in future work are:

� scalability: While O(n

2

) is the limiting factor, methods to reduce n and the

constants can allow solving larger problems. Implicit constraint methods can

potentially enhance scalability considerably, as demonstrated in the Tinkertoys

application. Also, it is unclear how large the number of controls a system must

handle. For predefined objects and interaction techniques, the number of controls

will be a (usually small) fixed number (e.g. it will not grow with problem size).

However, with a constraint-based interface, a user may create arbitrary numbers

of controls. But, this number may not be unbounded as eventually, the limits of

how much simultaneous behavior a user can comprehend may be reached.

� precision: Methods for more precisely achieving the user’s goals will facilitate

many applications. Generalized snapping is a first attempt.

� generality: As described in Section 8.1, mathematical considerations cause some

functions to work better as controls than others. Some formal characterization

for which controls which and what do not would further simplify the construction

of interfaces.

� real-time: Adding a coupling to real (e.g. wall-clock) time would increase the

expressibility of the abstractions. Interface designers would gain control over the

time constants involved in the approach.

� integration: The differential approach applies only to the continuous motion

dragging parts of applications. Therefore, integration with other techniques, such

as propagation constraints, to handle other parts of applications is essential.

� hierarchy: The methods for differential constraints provide only two levels of

constraint hierarchy. The work of Borning et al.[BFBW92] shows the usefulness

of more levels.

Many of the problems in the prototypes are artifacts of the implementations, rather

than problems with the approach. They fall into three general categories:
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� Bad design decisions: Several bad design decisions were listed in Section 10.2.5.

� Artifacts of evolution: The prototypes evolved from earlier versions, so in many

places there are leftovers from early versions. Bramble’s property sheets and

Snap-Together Mathematics’s confusing mechanisms for soft controls and gen-

eralized snapping are two examples.

� Incompleteness: The prototypes were built in time to finish a thesis, so many

features that are not essential to the points of the thesis have been omitted, such

as text-handling in Bramble.

10.3 Directions for Future Work

This section discusses some topics to extend the differential approach, make effective

use of it, or repair its deficiencies.

For this thesis, a number of prototype implementations were constructed. An en-

tire class of future work involves the creation of more “industrial strength” tools and

applications that can be widely distributed. For Snap-Together Mathematics, this may

mainly involve completion of some partially implemented features, documentation and

support. However, for Bramble, it is probably not worthwhile to go through the effort

of making a distributable tool since too many design decisions were made with a “get

it done for the thesis” attitude. This section focusses on future work on the differential

approach more generally, rather than on the specific artifacts of the toolkit.

10.3.1 General Issues

The differential approach’s model of time does not correspond with real time. This

limits what can be expressed with the approach. For example, it makes it impossible to

specify desired rates in a meaningful way. Some mechanism for correlating simulation

time and real time would be a useful addition to the approach. However, it would re-

quire tackling a number of difficult technical issues in synchronization, especially with

the variability of the solving methods. This issue will also be increasingly important

in future multi-media applications. Faster processors might help with synchronization

issues since programs will have the possibility of finishing their work quickly and then

waiting for synchronization. However, such “busy waiting,” is not the most effective

use of processor cycles, and fails to handle cases where the fast processor’s performance

is needed to handle larger problems.

Future high-performance computers will make the lack of real-time coupling diffi-

cult because things may happen too fast. It will be important to provide the interface

designer with some control over the time constants of the interactions.
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The approach lacks a good characterization for what makes a function work well

as a control. The rules of thumb from Section 8.1 need to be formalized. If the char-

acterization could be sufficiently codified it would allow an even more automated tool

for creating new controls to be created.

Precision in manipulation is another issue for the differential approach. Even for

Snap and Click controllers (Section 6.4), the exactness of solving is limited be-

cause controllers only get to specify velocities at sampled increments. For greater pre-

cision, controllers might need to be given some information about step size. This is

also important for better tracking of input devices as it would permit better prediction.

Enhancing mouse tracking, for example by predictive filtering, is another area for study.

The lag between pointing device and dragged object needs to be better understood.

In applications where the lag is detrimental, it might be reduced by techniques such

as predictive tracking. Developing predictive tracking strategies for input devices will

be generally useful, not only for the differential approach, but also for things such as

remote collaboration.

10.3.2 Mathematical Techniques

The weakest link in the mathematical techniques is the way that over-constrained sys-

tems are handled. Many of the deficiencies of the damping techniques are listed in Sec-

tion 3.2.1. An alternate method of dealing with the ill-conditioned or singular matrices

might be found. To date, I have not found any that retain the performance characteris-

tics of the methods discussed in this thesis on well-conditioned problems.

A primary drawback of the damping methods as described in this thesis is that they

also affect constraints that are not ill-conditioned. This drawback can be avoided by

using methods, such as the one presented by Nakamura[Nak91], that adaptively set the

amount of damping. These methods are expensive, as they effectively must solve the

system to determine its condition. Another strategy would perform some potentially

expensive computation to determine if there are bad constraints, and applying the damp-

ing methods only in these cases. The hope would be that the expensive computations

would not be needed often or could be computed incrementally.

Alternate methods for handling over-constrained matrices, such as singular value

decomposition, have better numerical properties than damping, but would require work

to make them as efficient. Similarly, more reliable methods for handling inequalities,

such as those of Baraff [Bar94], could be applied if efficiency concerns were addressed.

Another deficiency of the methods presented in Chapter 3 is that they offer few

opportunities for levels of importance of controls (hierarchies in the terminology of

Borning et al[BFBW92]). Soft controls provide two levels of constraints, but require

better methods to give them the degree of control of hard controls. Extending differen-

tial techniques to support more levels of hierarchy would be useful.

The methods of the differential approach are designed to work with the lowest com-
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mon denominator of general functions, avoiding special cases and anything beyond the

minimal information about the functions. Each of these restrictions could be relaxed

to create methods that better handled important special cases. For example, special

methods for articulated figures exist. Also, more information about functions, such as

higher derivatives and intervals, could also be used.

The techniques provided for handling inequality constraints are really a hack, and

would be improved by using numerical methods better suited for this task. Finding

methods with suitable performance characteristics could be challenging.

10.3.3 Numerical Techniques

As computers become faster, the size of the problems that can be handled at interactive

rates will increase. This means even more of the computation time will be spent in

the complexity limiting step of solving the linear systems. Selecting appropriate algo-

rithms will be increasingly important. Other conjugate-gradient solvers, such as those

from [PS82] might apply. In particular, some of these methods may better handle ill-

conditioned or singular matrices, allowing less use of damping techniques. Dynamic

selection among multiple solvers, as done in Converge[Sis90], may also provide better

performance, particularly when the problem can be partitioned.

The best weapon against the computational complexity of solving the linear systems

will be to reduce their size while giving the user the illusion that the entire problem is

being solved. There are many possibilities for new implicit constraint mechanisms.

For example, representations of objects could be dynamically switched to maximize

the number of constraints that are represented cheaply. Algorithms similar to multiple-

output multi-way local propagation solvers, like [San94], could implicitly solve as

many constraints as possible. Techniques that divide the problem based on numeri-

cal results are possible. For example, Sistare[Sis90] partitions constraints empirically.

The solver attempts to solve the constraints on a small subset of the objects. If these

objects do not have sufficient degrees of freedom, more objects are added to the subset.

Better methods for solving the ODEs would enhance the stability of the constraints

and permit a wider class of controls. Making use of knowledge about the expected

behavior of the objects should provide information that can be used to adapt the step

size of the solver. Finding ways of making adaptive step sizes unobtrusive to the user

might be required to make them acceptable.

The simple caching mechanisms of Snap-Together Mathematics are reasonable for

the experiments conducted so far with the differential approach. Cache analysis shows

varying performance of the global cache validation scheme. A better caching scheme,

perhaps based on incremental attribute evaluation[Hud91], might be more efficient.

However, as problem sizes grow, the cost of the Snap-Together Mathematics compu-

tations will become smaller relative to that of solving the linear system. Therefore,

extensive optimizations are unwarranted. Better support for switching representations
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would be another improvement in the Snap-Together Mathematics implementation.

10.3.4 Interface Toolkits

The differential approach addresses only a part of the problem addressed by modern

interface toolkits. If the differential approach is to be used in a complete toolkit, it must

be made to integrate cleanly with existing approaches. Employing propagation solvers

for discrete data inside the differential approach seems to primarily be an engineering

problem. However, incorporating the differential approach, with its different model of

time, into a conventional event-driven toolkit poses difficult questions such as how to

integrate discrete state changes into the continuous flow of time.

The ways that the Whisper interpreter supports Bramble bring interesting questions

as to the architecture of graphics toolkits. Fast turnaround is only one of the reasons

for the widespread acceptance embedded interpreters in graphics toolkits. However,

much of the utility of the Whisper/Bramble connection is that many of the services that

Bramble must provide, such as object management and on-the-fly definition of behav-

iors are similar to those provided by the run-time support for a modern programming

language. An interesting strategy might be to design run-time support specifically for

interactive graphical applications.

10.3.5 Interaction Techniques and Applications

While the differential approach has many flaws that may be addressed with future re-

search, the techniques and tools are evolved enough that they can be used to create

novel interaction techniques and applications. The invention of new graphical tech-

niques will be the real payoff of the approach. Developing new interaction techniques

may require finding new attributes of objects to constrain and control, new combina-

tions of these controls, and new ways to present the controls and constraints to users.

Generalized snapping is a feature of the differential approach that has not been

sufficiently explored. There are many issues in making it into a successful interaction

technique, such as how to provide adequate feedback to the user and how to determine

the many parameters. However, I think it is still a promising technique.

The availability of a variety of controls and the ability to combine these controls as

constraints opens up a new domain of questions about how to select, specify, display,

and edit the controls and constraints. Some tasks, like scene composition, seem particu-

larly appropriate for interfaces that give palettes of controls to users. I think the strategy

of manipulation from structure is a promising way to help make these tasks easier by

building more constraints into the system before the user has to specify anything.

Good controls might also serve to facilitate manipulation when the “user” is some

computational mechanism automatically controlling the graphical objects. For exam-

ple, an automatic picture composition system like those described by Feiner[Fei93]
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might be easier to develop in terms of controls like “point the light at this object” rather

than directly altering the underlying parameters of the objects.

The ability to handle controls asynchronously may help explore multi-input device

interaction techniques. In general, the approach may serve to help incorporate new

input mechanisms as it decouples the input device from the objects being controlled.

There are many questions which must be addressed before constraint-based inter-

faces for drawing and modelling can be successful. Constraints must be made easy

to display, debug, understand, and edit. While restricted problems, such as permitting

users to define the behaviors of individual objects, simplify these issues, they do not

remove them.

The techniques for specifying, displaying, and editing constraints introduced in

Briar also deserve to be examined in more detail. Future work must address issues in

extending the techniques to larger classes of constraints, scaling them to larger models,

and applying them in 3D.

10.3.6 Usability Evaluation

This thesis provides little in the way of formal evaluation of the differential approach.

Because the new interaction techniques were meant only as examples of the differential

approach, not as wide-ranging solutions to interface problems, it was not appropriate

to study the usability of these techniques. However, because some show promise as

interaction techniques, more formal evaluation may be useful.

Much of the lag between pointing device and target object in the differential ap-

proach can be reduced with better tracking. However, many users report enjoying this

“spring” behavior. A study to evaluate the usability of the spring dragging might be in-

teresting. Similarly, the usability of constraint-based graphics has never been formally

studied. Such a study might determine people’s abilities to use multiple simultaneous

controls, or help understand how complicated a constrained model might be created by

a user before comprehensibility is sacrificed.

10.4 Final Remarks

This thesis has provided an approach to implementing direct graphical manipulation

that uses the numerical and graphical performance of modern processors. The approach

views manipulation as an equation solving or constrained optimization problem, allow-

ing interactions to be defined in terms of objects’ attributes, rather than their represen-

tations. To implement the approach, mathematical techniques for solving the optimiza-

tion problems had to be selected and implemented in a way that addresses the issues of

interactive systems. This implementation permitted encapsulating the mathematics in

a manner that allowed the construction of a graphics toolkit that hid the mathematics of
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the approach from the applications programmer. With the approach and the prototype

implementations, a number of interaction techniques and applications were created.

Direct graphical manipulation has been widely successful, and future systems of-

fer new possibilities and issues for these interfaces. As decreasing cost makes high

performance computers more widely available, graphics tools will have a wider poten-

tial audience. Many of these users will require more fluent and transparent interfaces

for types of tools now only used by experts. New classes of applications, such as vir-

tual reality, offer whole new classes of issues. New users and new applications will

challenge interface designers. The ad-hoc methods traditionally used to devise manip-

ulation techniques will hinder the development of new interfaces. This thesis has offers

an alternative that can provide a substrate for future direct manipulation interfaces.
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The world is your exercise book, the pages on which you

do your sums. It is not reality, although you can express

reality there if you wish.

You are also free to write nonsense, or lies, or to tear the

pages.

— Richard Bach

Illusions, p. 127

The Whisper Programming Language

An important tool in the development of the differential approach has been a simple

interpreter for a language called Whisper. Whisper serves four main purposes in this

work:

1. An embedded interpreter is important for interactive systems to realize features

such as saving and loading of models and configuration files.

2. The language runtime provides useful tools for system construction, such as a

dynamic object system and dynamic function definition.

3. The language provides a convenient notation for describing interaction tech-

niques in this thesis.

4. The interpreter permitted avoiding many of the problems with the programming

environment available to develop this work, such as slow turnaround and bad

debuggers.

Whisper is not directly connected to the differential approach. However, it is dis-

cussed here for several reasons. Foremost, the language is discussed enough so that a

reader can understand the examples written in Whisper in various sections of the thesis.

The Whisper interpreter is specifically designed for being embedded into applica-

tions. The primary design goal were simplicity and extensibility, even at the expense of

performance. Although performance of the interpreter is poor, the ease of extensibility

allows adding speed critical code as new primitives written in the host language, C++.

New data types can also be added easily to the interpreter. Once the core interpretive

language was built, extensions were created to provide access to the Iris GL graphics

library, Snap-Together Mathematics, an image processing library (that is not used in

this thesis), and Bramble.

217
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A.1 Whisper Basics

Whisper is a lexically scoped variant of LISP, like scheme. Whisper is very similar to

other languages in this family. A basic introduction to programming in such a language

is provided by Friedman and Felleisen [FF87]. Rather than providing yet another tuto-

rial for such languages, we instead look at the differences between Whisper and more

common dialects that are relevant to the code examples in the thesis.

Like other LISP dialects, Whisper has dynamic types. All data are tagged with their

type, and the types can be determined for any object. Whisper’s type system is extensi-

ble at compile time only. The basic set of types provided by Whisper includes integers,

floating point numbers, strings, pairs, points (3 floating point numbers), closures, built-

in primitive functions, clocks (special objects for timing) and environments. Types for

basic Snap-Together Mathematics classes are provided, as well as for Bramble objects.

Almost all Bramble objects have the Whisper type IDObj, but the subtypes can easily

be determined.

Whisper’s special forms for setting variable values are different from most LISP

dialects. Whisper provides a set function that sets the value of a variable. If the

variable is defined in the current scope, it is simply rebound to the new value. If the

variable is not defined, it is created as a global variable. The defun function used to

define a function is simply shorthand for set.The bind function acts like set, but it

always sets a variable in the most local scope.

Whisper is lexically scoped. Variable bindings are determined by the code that

surrounds them in the program text. For example,

(let ((a 5))

(defun f (x) (+ x a)))

defines a function that adds 5 to its argument. An environment is the object that em-

bodies a scope, that is, it is a pairing of variable names and values. Environments are

hierarchical, that is, each environment refers to the environment it was defined in. Un-

bound references are deferred up the chain of environments until the global scope is

reached.

One important feature of Whisper is that it permits treating environments as first

class objects. Many dialects of Scheme, such as MIT Scheme [HtM93], do this as well,

and the introductory programming text by Abelson and Sussman [AS85] provides an

introduction to the use of first-class environments. Whisper’s syntax and operations for

first-class environments is different from Scheme’s.

Theenvironment special function returns a reference to the current environment

that can be passed around as any other data element. For example,
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(set e (let ((a 5)

(b 6))

(environment)))

sets the variable e to an environment that binds a and b. Various operations can be

performed on environments, including adding additional bindings, inquiring as to their

contents, combining two environments, and printing the contents of an environment.

The two most important operations that can be performed are to evaluate an expres-

sion within an environment, and to bind a value in an environment. To add a binding

to an environment, a special version of the bind primitive function is used that takes

an extra argument for environment, for example,

(bind-in e c 10)

which would add the binding c = 10 to the environment defined in the previous exam-

ple. A similar version of eval is provided,

(eval-in e (+ a b))

which for the example would return 11. Whisper provides the syntax

(env expr

1

expr

2

: : : expr

n

)

to evaluate expressions expr

1

through expr

n

in succession inside of the scope of en-

vironment env: The value of the evaluation of the last expression is returned. This

construction violates lexical scoping, for example,

(let ((a 1)

(b 2))

(e (+ a b)))

with e defined as in the above example evaluates to 11, not 3. This can cause an im-

portant distinction between the use of bind and bind-in . For example,

(let ((a 10))

(bind-in e f a)

(e (bind g a))

creates bindings for f and g inside of e, however, f will be bound to 10, while g will

be bound to 5, because its binding statement was evaluated inside of e.

First class environments function as Whisper’s object system. Fields and methods

are stored as bindings in the environment. The object creator makes an environment

and binds variables to their initial configurations. While there is no explicit mechanism
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to provide inheritance or delegation, such functionality can be provided in the creator

functions.

A Bramble IDObj is not an environment, however each object carries an environ-

ment around. The get-env function returns the environment carried by an IDObj.

Whisper syntax permits using the evaluation notation for Bramble objects as environ-

ments, so

(IDObj expr)

is a shorthand notation for

((get-env IDObj) expr).

A.2 Some Examples

In this section, we take a few examples of code fragments from Whisper programs to

explain various features of the language, and how they are used with Snap-Together

Mathematics and Bramble.

This first example defines a function that builds the function block graph for the

line segments shown in Figure 5.1. The line segment is returned as a Whisper object,

that is, as an environment. Notice that an environment is made first and then the in-

termediate values are defined in a different environment. This way the environment

that will represent the line segment does not contain the intermediate values, only the

connectors.

(defun make-line ()

  (let* ((q (make-stobj 3))

	        (e (environment)))

    (let* ((c  (cos-block (signal q 2)))

	          (s  (sin-block (signal q 2)))

	          (lc (times-block c (signal q 3)))

	          (ls (times-block s (signal q 3))))

      (bind-in e left-x  (plus-block lc (signal q 0)))

      (bind-in e left-y  (plus-block ls (signal q 1)))

      (bind-in e right-x (plus-block lc (signal q 0)))

      (bind-in e right-y (plus-block ls (signal q 1))))

    e))

;

;state vector w/3 spaces

;empty "object" to put things in

;make blocks to compute 

;  intermediate results

;make connectors

;  put the blocks directly into

;  the object

Calling this procedure returns an environment that contains 6 bindings: 4 for the

connectors, 1 for the state vector and an extra binding that is a reference to itself. To

use these objects to create the wiring of Figure 5.1, given a function to perform the
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attach operation which would take 4 connectors as inputs and create the function block

tree:

(set rod1 (make-line))

(set rod2 (make-line))

(set nail (attach (rod1 left-x) (rod1 left-y)

(rod1 right-x) (rod1 right-y)))

Attach would return an object (a Whisper Environment) that contained two connectors.

It might be defined as follows:

(defun attach (x1 y1 x2 y2)

(let ((c1 (minus-block x1 x2))

(c2 (minus-block y2 y2)))

(environment)))

The following code fragment is a more expanded example of constraint inferencing

using Bramble’s snapping than the one given in Section 7.7.3. It is a Bramble event

handler that is used to draw lines with rubber banding and automatic inference of con-

straints.
(1) (add-key dev-rightmouse k-none k-down

(2)   (lambda (v)

(3)     (let* ((s (snapdp))

(4)            (p (if s (where s) (cursor-mapw view)))

(5)            (l (make-2d-line (p-x p) (p-y p)

(6)                             (p-x p) (p-y p)))

(7)            (d (pt-eq-2d (l end1) (v mouse-port))))

(8)       (if s (pt-eq-2d (l end2) s))

(9)       (add-key dev-rightmouse k-any k-up

(10)        (lambda (v)

(11)          (let ((s (snapdp)))

(12)             (delete d)

(13)             (if s (pt-eq-2d (l end1) s))))))))



; define button down handler
;

; get snap point

; start drag at snap or mouse

; create object at start

;

; connect one end to mouse

; if snap, infer constraint

; define button up handler

;

; get snapped point

; delete drag constraint

; if snap, infer constraint

This fragment is a call to add-key , the Bramble primitive for defining key han-

dling events. The first three arguments specify that this call is to define the right mouse

button press (down) event with no modifier keys. The last argument to the call is a

closure that is to be called with one argument when the event occurs. The argument

specifies the view that the event occurs in.

Lines 2-12 define the procedure that is called when the right mouse button is pressed.

First, a number of local variables are bound to various quantities useful in the operation:

s is bound to the current state of the snap-server; p is bound to either the position of

s, if there is a point snapped to, or to the position of the cursor; l is bound to a newly
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created line segment, created with both endpoints at p; and a constraint is created con-

necting one endpoint of p to the position of the mouse in the current view and stored

in d.

Line 7 performs a constraint inference. If the cursor is snapped to a point when

the line is created, the end of the line is connected to that point with a point equality

constraint.

Lines 8-12 redefine the event handler that is called when the right mouse button is

released. Because of Whisper’s lexical scoping, this code is executed in the environ-

ment created by the key down handler and has access to those local variables. It first

deletes the constraint that was connecting the line segment to the cursor. If the cursor

was snapped to a point when the button release occurs, the line segment is attached to

this point in line 12.

A.2.1 The Define-Shape Syntax

A special facility is provided in Bramble to facilitate the creation of 2D shapes. The

process is inspired by the shape spreadsheets in the Visio drawing program [Sha93],

but has greater utility because it permits placing constraints inside objects and using

any point as a handle. The define-shape special function takes a description of

a shape and automatically generates two functions: one that creates instances of the

object, and another that draws a prototype version of the shape suitable for displaying

in an icon. The define-shape primitive is special because it does not evaluate its

arguments in the standard way.

The syntax of define-shape are as follows:

(define-shape name variables defaults lets command

1

command

2

: : :)

where:

name is a string that names the type;

variables is a list of state variable names;

defaults is a list of initial values for each variable;

let is a list of let pairs to define internal variables;

command is a pairing of commands and data.

For example, a simple rectangle can be defined by:
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(define-shape rectangle (w h) (.5 .25)

((w2 (/ w 2))

(h2 (/ h 2))

(mw (- 0 w2))

(mh (- 0 h2)))

(spath ( (w2 h2) (mw h2) (mw mh) (w2 mh) )))

All shapes are defined in their local coordinates, so the rectangle only has 2 state vari-

ables, width and height. Default values for these are provided. The let list defines 4

local variables. The spath command defines a list of vertices that are connected to

draw a polygon, with handle points placed at each vertex. The command is equivalent

to separate commands to define a drawing function and handle points. Literally, the

definition used for drawing is also used for manipulation.

The define-shape mechanism makes extensive use of Whisper first-class en-

vironments to make the concise specification possible. Each variable declaration and

let list clause defines a new symbol in the objects local environment. Each of these is

bound to a signal: when the define-shape is executed, it is run in a special envi-

ronment that shadows all of the basic arithmetic operations with their Snap-Together

Mathematics block generating counterparts. Because the drawing routines do not exe-

cute during the define-shape , they can do normal arithmetic.

Other commands permit more general drawing commands, explicit specification of

handle points, and generation of constraints on the object. The fuel-gauge widget of

page 162 demonstrates many of the features of define-shape . Here we present a

more complete version:
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(1) (define-shape gas-gauge (sz theta) (.35 0)

 

(2)   ((l (* (one-way sz) .9)) 

(3)    (t (+ .2 (* 2.7 theta))) 

(4)    (x (- 0 (* l (cos t)))) 

(5)    (y (* l (sin t)))) 

(6)   (drawf (prog (color gl-white) (arcf 0 0 sz 0 1800) 

(7)                (color gl-black) (linewidth 3) 

(8)                (arc 0 0 sz 0 1800) 

(9)                (move (- 0 sz) 0) (draw sz 0) 

(10)               (icon-font)  

(11)               (cmov (* l -.9) (* l .2)) (fmprstr 'E) 

(12)               (cmov (* l .8) (* l .2)) (fmprstr 'F) 

(13)               (move 0 0) (draw x y) )) 

(14)  (> theta 0) 

(15)  (< theta 1) 

(16)  (handle x y))

; draw function
; white arc for back

; black border

; arc border

; bottom border

; set text font

; place labels

;   for E and F

; draw needle

;

; limit to legal values

; 

; create handle on needle 

; 2 params

; local variables
; size

; angle (in radians)

; positon of needle

The gas gauge has 2 parameters, one for the size of the gauge, and one for its current

value. The let clause of the define-shape defines a number of intermediate vari-

ables using arithmetic operations. One special operation is one-way that defines that

controls on its output should not effect its input. The one-way function block returns

the value of its input, but always returns a zero derivative. For the gas gauge, the one-

way is used so that dragging the needle of the gas gauge does not change the size of the

gauge. The drawf command defines a code fragment that is used to draw the gauge.

The list of statements are calls to the GL graphics library. The > and < commands

define constraints, and the handle command creates a DistinguishedPoint

connector at the specified position on the object, which in the example is the tip of the

gauge’s needle.

The install-shape function is defined by certain applications to automatically

install an icon for creating shapes defined with define-shape . It simplifies using

define-shape in an application. The install-shape function takes the values

returned by define-shape and creates an icon and the proper handlers for creating

new instances of the shape.
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The real purpose of scientific method is to make sure Na-

ture hasn’t misled you into thinking you know something

you don’t actually know.

If you get careless or go romanticizing scientific informa-

tion, Nature will soon make a complete fool out of you.

It does it often enough anyway when you don’t give it op-

portunities.

— Robert Pirsig

Zen and the Art of Motorcycle Maintenance, p. 94

Performance of the Implementations

This appendix provides some empirical tests measuring the performance of the proto-

type implementation. The absolute performance numbers are, in a sense, not important

as the hardware and the implementation are continually changing. These benchmarks

are provided to:

� Provide empirical evidence of the scaling properties of the techniques, as ana-

lyzed in Section 4.2.

� Give some idea of the scale of problems solvable with currently (circa 1993)

available hardware.

� Provide some intuition for where the performance bottlenecks are.

Understanding the performance of a program running on a modern, high-performance

workstation is a difficult task. Complicated factors such as memory hierarchy orga-

nization interact in complex ways. For example, different problems may distribute

themselves differently along the lines of the data cache. Although we have attempted

to design benchmarks that reduce these types of effects, any numbers must be viewed

with some caution.

The benchmarks were run on a Silicon Graphics Indigo 2 workstation, except where

noted. The machine had a 150MHz R4400 processor and 32 megabytes of main mem-

ory. All of the problems fit into main memory on the machine, so no paging occurred.

The clock accuracy on the workstation is 10 milliseconds. Where greater precision is

reported, it was found by averaging over enough trials that the extra digit remains stable

as more trials are run. Some of the simpler benchmarks were run on a Silicon Graphics

Personal Iris 4D/25, with a 20MHz R3000 processor, 16 megabytes of main memory,
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Figure B.1: A sample run of the synthetic benchmark with m = 50 and n = 25: Lines are

used to denote pairs of points with a control placed between them. Each step, the controls push

the points closer to one another.

and small instruction and data caches. Current generation personal computers provide

significantly better performance than this older machine. Where figures are provided

for this machine, they will be explicitly noted.

B.1 A Synthetic Benchmark

In order to evaluate the performance and scalability of the solver, a contrived problem

was developed that can be arbitrarily scaled. The problem is designed to mimic real-

istic problems in which the constraints may have random structure. An instance of the

problem can be defined for any number of variables m and constraints n: The problem

places m=2 points on the plane and places n controls, each connecting 2 points. A

control computes the distance between the points and has a GoTowards controller

placed on it.

A synthetic workload generator creates instances of the problem. It randomly dis-

tributes the points in a 10x10 square. Pairs of points are selected to have the distance

controls placed on them. The workload generator insures that there are no duplicate

controls, but makes no other checks on the distribution of the constraints. An example

run is shown in Figure B.1.

Generating arbitrarily sized synthetic workloads for the solver that are reliable mea-

sures of performance is difficult. The speed of the solver depends almost as much on the

structure of the constraint problem as it does on its size. This can create a bias based

on the density of constraints in variables. For example, consider an example with 2

constraints. If there are only 3 variables, no matter how the 2 constraints are placed,

the constraints will be in a single partition. However, if there are 4 variables, the con-

straints might not access any common variables, so the solver will partition the matrix.

As the number of variables goes up, the probability of this goes up as well. This can

lead to the counterintuitive result that for a fixed number of constraints, larger numbers

of variables might actually be faster to solve. For randomly generated problems of the

same size, there can be substantial differences in solving time based on how “hard” the

system is to solve: if one set of constraints is more tightly connected than another.
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Figure B.2: Results of the synthetic benchmark. The ordinate enumerates the number of

controls, the abscissa is the time required to run 5 4th order Runge-Kutta steps. Error bars

represent the range of time for each value. The central ticks mark the mean values for the

trials. m = 400 variables were used in all trials.

To run the trials, 5 constraint configurations and 5 initial positions were generated

for each problem size. This leads to 25 different trials per problem size. Each trial

was run for 5 Runge-Kutta 4 steps (that is, the differential optimization was solved 20

times). Each trial was duplicated a small number of times.

Graphing the results of running the trials for a fixed number of variables and varying

number of constraints yields an expected result, as shown in Figure B.2. The error bars

represent the range of time for each problem, while the ticks and line graph show the

mean value. The graph shows the expected quadratic performance, but also shows a

wide variance of times for a given problem size. Some of this variance can be attributed

to how different randomly generated constraint sets can be partitioned.

A similar experiment fixed the number of constraints, but varied the number of

variables. The results shown in Figure B.3 are inconclusive: the effects of problem

“hardness” are more significant than the number of variables. This is sensible because

there are very few parts of the algorithm that areO(m); and all of these have very small

constants. While the O(n

2

) is able to dominate the problem hardness, the O(m) terms

are not.
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Figure B.3: Results of the synthetic benchmark for 150 constraints and a varying number of

variables.

In absolute terms, if we require 5 Runge-Kutta steps per second, an Indigo 2 can

handle approximately 200 point distance constraints on 400 variables. This, of course,

leaves no time for redraw. More realistically, if we wanted to leave half of the time for

drawing and other system functions, the benchmarks could handle approximately 150

constraints. The absolute performance numbers are not really what is important here

as they depend heavily on the implementation, the machine, and the problem.

To understand the performance of the benchmarks, a number of trials were run with

a version of the benchmark driver compiled with the pixie profiling tool available on

the Iris. Pixie provides detailed information about where a program spends it time by

instrumenting the code. Pixie’s output is not hierarchical, so only low level procedures

can be accurately monitored.

Table B.1 shows the results of running a number of trials through pixie. The table

displays the time in percent that the program spent in the most used basic blocks. The

top two lines of the table are important: a very large part of the program’s running

time is spent in two lines of code. These two lines of code are the half-sparse matrix

times vector and half-sparse matrix transpose time vector inner loops. This is not sur-

prising because these form the inner loops of the O(n

2

) part of the algorithm, so as

the number of constraints grow, the percentage of time in these loops also grows. The

linComb function computes the linear combination of vectors, and is used to com-

pute the gradients of function blocks. The cgradI procedure actually executes the

conjugate-gradient solver, but its time does not include time spent in the procedures

it calls, including the matrix vector multiply functions, and dot, a function that com-

putes the dot product of two vectors. All calls to dot in this program occur inside of
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procedure % time, n = 150 % time, n = 200 % time n = 250

HSpMat::multT 27.01 28.66 29.96

HSpMat::mult 18.62 21.21 23.04

linComb 8.39 6.49 4.84

cgradI 5.08 6.49 6.58

dot 4.16 4.76 5.22

Table B.1: Profiling results for the synthetic constraint benchmark. Numbers represent the

percent of total running time spent in the basic procedure blocks. A few of the most time

consuming parts of the program are shown.

the conjugate-gradient solver.

B.2 Application Benchmarks

To provide a more realistic evaluation of the absolute performance of the prototypes

running on the Iris, the performance of various Bramble applications was measured

on a number of examples. In each case, the example object was created beforehand.

The timings are measured only while the solver is running with all of the controls, for

example during dragging or while a mechanism is being driven by motors.

B.2.1 Direct Manipulation Interaction Techniques

Traditional direct manipulation interaction techniques involve a small number of con-

trols, usually the same number as the degrees of freedom of the input device. When

implemented in the differential approach, these direct manipulation techniques usually

require some slightly larger number of controls, but still a small constant.

Table B.2 describes the performance of Bramble while executing some of the direct

manipulation methods discussed this thesis. All of the techniques require short enough

periods of time such that solving will not be the bottleneck in interactive performance.

Redraw, which must be done in a conventional direct manipulation implementation as

well, is more likely to limit the frame rate. Statistics are also provided for the Personal

Iris.

B.2.2 Constrained Models

One use of the differential approach is to permit the user to specify an arbitrary num-

ber of controls, in order to provide a constraint-based interface. Here we discuss the

performance for constraint benchmarks using Bramble applications with constraint-

based interfaces. The important concern here is how large a model can the user create
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Indigo 2 times per Personal Iris times per

controls RK4 step redraw RK4 step redraw

dragging a spiral Section 8.1.1 2 .001 .01 .01 .05

3D Jack Widget Section 8.3.6 2 .003 .02 .03 .11

Image Alignment Section 8.2.4 8 .009 .02 .06 .07

Table B.2: Performance of various direct manipulation techniques on two different comput-

ers. Time is in seconds per 4th order Runge-Kutta step, and for complete redraw of the view

window.

before performance becomes unacceptable. The frame rate at which direct manipula-

tion becomes unacceptable seems to vary by application, task, and user. However, the

experiments here show that the prototype implementations can permit the direct ma-

nipulation of models with dozens of interactive controls, and this number can be raised

substantially using the methods of Section 4.4.

A set of benchmarks was run with the MechToy application. For the first set of

tests, a number of 5 bar linkages were animated by enabling their motors. An example

is shown in Figure B.4. Because the mechanisms are all independent, we would expect

that the performance would be linear. Even though the MechToy program does not

use partitioning, the conjugate-gradient solver does partitioning automatically for this

problem. The expected linear behavior is evidenced in the performance of the system,

plotted in Figure B.5. For the case of 9 mechanisms (the most that fit easily on the

screen), the Runge-Kutta 4 steps averaged 56 milliseconds, each call to the conjugate-

gradient solver averaged 8 milliseconds, and each Jacobian construction averaged 3

milliseconds. Redrawing averaged 46 milliseconds.

The next mechanism example is more tightly coupled: all the pieces are intercon-

nected to form a single 4 bar linkage. As the motor rotates, each “truss” rocks back

and forth. No matter how big the mechanism, it only has a single degree of freedom.

As more parallel trusses are added, the number of variables and constraints grow. A

picture of the mechanism with 5 trusses is shown in Figure B.6. Performance figures

are given in Table B.3, and graphed in Figure B.7 This example shows that even with

completely connected constraints, models with around 100 constraints are practical on

a machine such as the Indigo 2.
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Figure B.4: MechToy animating 9 5-bar linkage mechanisms. Each mechanism is indepen-

dent of the others, although mechtoy simulates them simultaneously.

.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 3 5 7 9 11 13 15

Number of Linkages (1/8 # constraints)

S
e

c
o

n
d

s
 p

e
r 

4
th

 O
rd

e
r 

S
o

lv
e

r 
S

te
p

Figure B.5: Performance of MechToy simulating a number of 5 bar linkages simultaneously.

The number of constraints is 8 times the number of linkages.
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Figure B.6: A 4-bar linkage with 5 parallel trusses.

number of seconds per frames/sec

trusses vars consts step cgrad jac draw 1 step 2 steps

1 19 18 .013 .002 .001 .015 35.4 25.1

2 37 36 .029 .005 .002 .022 19.8 12.9

3 55 54 .048 .008 .002 .029 12.9 8

4 73 72 .068 .012 .003 .038 9.6 5.8

5 91 90 .093 .017 .004 .044 7.3 4.3

6 109 108 .121 .023 .005 .051 5.5 3.4

7 127 126 .159 .031 .005 .062 4.7 2.6

Table B.3: Performance figures for MechToy simulating a mechanism with varying numbers

of parallel trusses. Columns denote the time for an average 4th order Runge-Kutta step, solving

the linear system with conjugate-gradient, forming the Jacobian, and redrawing the entire view.

4 calls to cgrad and Jacobian formation are required for each step. The rightmost columns

show the frame rates using 1 and 2 solver steps per redraw.
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