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   0. Introduction. 

   In this paper, we consider on a Riemannian manifold (M, g) a differential 
equation 

(0.1) -ga f Hess f - f Ric=O, 

where Hess f is the second covariant derivative of f, df =trace Hess f, and Ric 
denotes the Ricci curvature tensor. Since (0.1) is linear with respect to f, f =0 
is a solution to (0.1) for any (M, g). Conversely, from overdetermined character 
of the equation, f -0 is often the unique solution for generic (M, g) (see Lemma 
A below). We ask what the exceptional cases are. The purpose of this paper 
is to determine Riemannian manifolds (M, g) admitting a non-trivial solution to 

(0.1) when they are complete and conf ormally flat. 
   The equation (0.1) was originally derived from the linearization of the 
scalar curvature equation. Suppose for a while that M is compact. Let JW 

(resp.S) denote the space of Riemannian metrics (resp. functions) on M whose 
derivatives up to order s are L2-integrable and let J = f ,9W (resp. =n3) 
be the space of C°° Riemannian metrics (resp. C°° functions) on M. Then scalar 
curvature is considered as a non-linear mapping R of 9S to 2• It is known 

that the mapping R : 9W-$'2 is differentiable if s > n --+1, n =dim M, and that Z 

the derivative dRg at g E 9S is given by 

         dRg(h)= d R(g+th)=-4 tr h+div div h-h j Ric                     dt 
c=o 

         (hi; ;'phi;; in classical tensor notation). 

Using Stokes' theorem, the L2-adjoint operator dRg* of dRg with respect to the 
canonical L2-inner product defined by g is computed to be 

                  dRg*(f)=-g~ f Hess f -f Ric. 

Since dRg is not surjective when dRg* has a non-trivial kernel, it can be said
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that a Riemannian metric g such that (0.1) has a non-trivial solution f, which 

implies that dRg* has a non-trivial kernel, is a singular point of the mapping 

R : J-43. In their papers, Bourguignon [1] and Fischer-Marsden [3] proved 

the following. 
   LEMMA A. Let (M, g) be a complete Riemannian manifold admitting a non-

trivial solution f (i, e., f0) to (0.1). Then (M, g) has constant scalar curvature, 

which is necessarily non-negative if we assume further that M is compact. 

   Using this lemma, they showed that for a compact M and for n + 1 < s <_ oo, 2 

dRg is surjective and R : W-42 maps any neighborhood of g~ W onto a neigh-
borhood of R(g) ES-2 unless R(g) is a non-negative constant. On the other hand, 

this lemma says that the class of Riemannian manifolds admitting a non-trivial 

solution to (0.1) is, in a sense, very small. So they conjectured in [3] that 

(M, g) in the above lemma might be an Einstein space when it is compact. If so, 
by a theorem of Obata [5], such a space must be a standard sphere or a Ricci 

flat space. But it will be proved that the conjecture is not true. There are 

many counter examples even if we restrict our attention to conformally flat 

spaces. The simplest one is given by a Riemannian product S1(r/~/n-2) X Sn-1(r), 

n?3, where SN(p) denotes the Euclidean N -sphere in RN+1 with radius p. 

Namely it is compact conformally flat and Ricci parallel but not Einstein, and 
admits a non-trivial solution to (0.1). In the present paper, we shall determine 

the other compact conformally flat examples admitting a non-trivial solution to 

(0.1) and also give a refinement of the result of Fischer-Marsden [3] on local 
surjectivity of R:                       -~

. 

   1. Preliminaries. 

   It is easy to see that, if (0.1) holds, then so does 

(1.1) f Ric-Hess f=1n (f R-4 f )g , 

where R denotes the scalar curvature, i. e., R=trace Ric. In fact, (0.1) is 
equivalent to (1.1) with an additional condition 

(1.2) 4f R f .                              n-1 

The equation (1.1) is known as the static perfect fluid equation. In this respect 
the following is known. 
   LEMMA B ([4]). Let (M, g) be a complete conformally flat Riemannian 

n-manifold with n?3, f a solution to (1.1) and let Mo be a connected component 
of the open submanifold {df ~0}CM. Then,
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   ( i ) Mo is isometric to a warped product I X rN of (I, ds2) and (N, g), i. e., 
g M0=ds2+r(s)2g, where I is an open interval in R, r is a positive function on I, 
and (N, g) is an (n-1)-dimensional complete space of constant sectional curvature. 

   ( ii ) f I M0 can be regarded as a function on I, i, e., f depends only on the 
parameter s E I. 

   (iii) grad IM0 is a complete vector field on Mo. 
   REMARK. The above statement is slightly different from that in [4], but 
the proof in [4] is valid for the above situation. 
   By the lemma, the Riemannian structure of Mo and the solution f restricted 
to M4 can be described by some ordinary differential equations. The aim of 
this section is to give the ordinary differential equations. Before stating the 
result, we quote a lemma which was used to prove Lemma A. 
   LEMMA A' ([1], [3]). Under the same assumption as in Lemma A, {x M: 
f (x)*O} is a dense subset in M. 

   Keeping Lemmas A, A' and B in mind, we give the following. 
   LEMMA 1.1. Let (M0, g) be a warped product I X rN of an interval I and a 
complete (n-1)-space N, n?3, of constant sectional curvature k. Let f =f (s) be 
a smooth function on Mo depending only on the parameter s E I such that f0 
and { f ,~O} is dense in Ma. Assume (M0, g) has constant scalar curvature R. 
Then the metric g and the function f satisfy 

(1.3) -ga f +Hess f - f Ric=O, 

if and only if f and r satisfy the following: 

(1.4) r+ R r=ar1-n for some constant a;               n(n-1) 

          f+ R f=0, i f r is constant; (1
.5) n-1 

            f =cr for some non-zero constant c, i f r is not constant; 

where ' (resp. ") means d/ds (resp. d2/ds2). 
   Moreover, the sectional curvature k of N coincides with an integral constant 

of (1.4;), that is, 

(1.6) r2+ 2a r2~n+ R r2=k.                            n-2 n(n-1) 

   PROOF. Since Mo=I X rN and f = f (s), a direct calculation yields 

(1.7) Ric=- n r+ R )d52+( r+ R , 
                           r n-1 r n-1 g
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(1.8) R=-2(n-1) r -(n-1)(n-2) r 2+(n-1)(n-2) 2 , 
                          r r r 

                  Hess f =( f - f rr ds2+fr-g , 

                    ~f = f +(n-1) f Y . 

r Hence, we have 

      -gd f +Hess f -f Ric 

            Y Y R R        =(!-i -+nf--+ f ds2- f+(n-2)fY -+fY -+ f)g. 
                 r r n-1 r r n-1 

Therefore (1.3) holds if and only if 

                    rr R                  f -f r +nf r + 
n_1 f=0 

                          Y Y R                 f +( n-2) f r +f Y+ n-1 f=0. 
Namely, 

R                     f (n-1)Yr + n_1 f (1.9) 
                 Jt=fi. 

    If r=const., then we have the condition (1.5) immediately and (1.4) is trivially 
satisfied. So we assume i E 0. Then, from the assumption that { f ~ 0} is dense 
in M0, the latter part of (1.9) implies 

                        =cr or some non-zero constant c. (1.10) 

Thus (1.9) is equivalent to (1.10) together with 

                         rr R  (1
.11) r'-F (n--1) r + n-1 r=0 . 

    Since R=const., we have 

                rn-1r+ R rn '=rn-~ ~; +(n_ 1) rr + R r                     T n(n-1) r n-1 

 Therefore (1.11) implies 

 (1.12) rn"'r+ R rn=a=constant.                              n(n-1) 

 Hence, we obtain (1.4).
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   Using the equality 

            r2+ a r2-n+ -r2 =2r Y-ar1-n+ r),                n-2 n(n-1) n(n-1) 

we see r2+(2a/(n-2))r2-n+(R/n(n-1))r2 is an integral constant for (1.12). It 
is easy to see from (1.8) and (1.12) that the constant coincides with k. • 
   REMARK. Putting I=R and N=Sn-1(1), n>_3, in the above lemma, we can 
write the condition (1.5) as 

                    f +(n-2)r-2f =0, r=constant. 

Then f is a periodic function with a period 2rr/i2. Hence, we can construct 
a non-trivial solution to (1.3) on 

           R/(22rr/~/n-2)ZX rSn-1(1)=S1(r/4/n-2) x Sn-1(r), 

which is a usual Riemannian product because the warping function r is constant, 
and is evidently compact but not an Einstein space. This is the simplest 
counter example for the Fischer-Marsden conjecture. 
   REMARK. A geometric meaning of the constant a defined by (1.12) is as 
follows : By (1.7), the Ricci tensor has, at each point of M0, two eigenvalues p 
and v with multiplicities 1 and n-1 respectively. Then, from (1.7) and (1.12), 

(1.13) ,u-v=- n r R =-nr-na .                              r n-1 

Thus, a=0 implies g is an Einstein metric. 
   REMARK. If R-0 and n-3, the space Mo satisfying (1.5) is isometric to 
the spatial section of Schwarzshild solution in general relativity. Then the 
constant a is nothing but the total mass of the space-time. 
   REMARK. By considering (1.6) as something like Hamiltonian, we can see 
some resemblance between (1.6) and a Hamiltonian system of a mixture of 
harmonic oscillator and Kepler's problem. 

   2. Analysis on (1.4). 

   In this section we study the solution to the ordinary differential equation 

(2.1)r+R r=ar1-n, n>2, r>0,                          n(n-1) 

with initial values r(0) > 0 and r(0), where a and R are constants and r is a 
positive function in one variable s. 

    As mentioned in Lemma 1.1,
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(2.2)

is a 

other

                     2a R 
                          n-2 n(n-1) 

constant determined by the initial values r(0) and r(0). We define some 
constants depending on a, R, r(0) and r(0) as follows :

po=~
n(n-1)

R

 a lln

p1=
(-

(

(n-2)k) 

  2n(n-1)a

a \1/(n_2)

  ((n -2)R 

n(n-1)k 112 
R

po

 l/n

when aR > 0 ;

when a>0, R<_0, k>0,

when a>0, R<0, k=0,

when a>_0, R<0, k <0,

when a<0, R<0;

                                                  21n                               n(n-1 a 
             o = - - - -- when aR >0.                  (n -1)(n--2) R 

   Next, we give conditions on a, R and initial values : 
 1.1. a>0, R>0, k K0. 
 2. a<0, R<0, k ,c0, r(s)=p0 for some s. 

  3. a=k=R=O. 
II. a=R=O, k~0. 

111.1. a<0, R>_0. 
  2. a<0, R<0, k<Ko, r(0)<p0. 
  3, a<0, R<0, k>io. 

IV.1. a>0, R<0. 
  2. a=0, R<0, k<0. 
  3. a<0, R<0, k<Ko, r(0)>p0. 
  4, a=0, R<0, k=0. 

V. a>0, R>0, k>0. 
VI.1. a=0, R>0. 

  2. a=0, R<0, k>0. 

   It should be remarked that these conditions exhaust all of cases. 
   The following lemma is easy to prove by using (2.2). 

   LEMMA 2.1. (i) The condition (III. 3) implies r2>_k-o>0. (ii) Each one of 
the condition (IV. 1)-s(IV. 3) implies r>_ p1>0. 
   PROPOSITION 2.2. Each one of the conditions (I. 1)'--'(I. 3) implies r- po. Con-

versely, if r=const., then one of the conditions (I) is satisfied. 
   PROOF. By (2.2), it is easy to see that k=~o and r-0 under the condition 

(I. 1) or (I. 3). So r=const.=po by (2.1).
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   Similarly, if (I. 2) holds, then k=io and r(s)=0 by (2.2). Hence, by the 
uniqueness of solution, we have r=po. 
   The latter part of the assertion is trivial. • 
   LEMMA 2.3. Each one of the conditions (III. 1), (III. 2) and (VI. 1) (rasp. (IV. 1) 
'-(IV. 4) and (VI. 2)) implies r<0 (resp. r>0). 
   PROOF. We consider only the cases (III. 2) and (IV. 3). The other cases are 

trivial. So, suppose (III. 2) or (IV. 3) holds. Then r never attains po because, if 

r(s)=p0 for some s, then k=Ko by (2.2), so r= p0 by Proposition 2.2, which is a 
contradiction. Hence, in the case (III. 2) (resp. (IV. 3)), we have r< po (resp. 
r > po). Thus, by (2.1), we have r < 0 (resp.r i>0). • 
   PROPOSITION 2.4. (i) I f (II) holds, then r0 and r=0. (ii) I f one o f the 
conditions (III. 1)N(III. 3) is satisfied, then lim(r(s))2=cc for some so. 

                                                                                  s-'so 

   PROOF. (i) : Trivial from (2.1) and (2.2). 

   (ii) : In the case of (III. 1) or (III. 2), we have r < 0 by Lemma 2.3. So there 
is an s., such that lim r(s)=O. Since a <O, we have, from (2.2), lim(r(s))2=oo. 

                                  s-~so 3-+S0 

   In the case of (III. 3), we have r>_ i/k -i > 0 or r<_ -1/k - o <O. Hence, 

lim r(s)=0 for some so, so lim(r(s))2=o0. • 
S-.SO 8-.'SO 

   PROPOSITION 2.5. If one of the conditions (IV. 1)'-'(IV. 4) is satisfied, there 
exists a positive solution r to (2.1) defined on R with r>0. 
   PROOF. In the case of (IV. 4), the solution to (2.1) can be given explicitly 

and we get the assertion. So we consider only the cases (IV. 1)ti(IV. 3). Then, 
for a, R satisfying one of (IV. 1)'-(IV. 3), we have, by an elementary calcula-
tion, a positive function h defined entirely on R such that h+(Rh/(n(n-1))) 
=apo-'8, h(0)=r(0), h(0)=r(0). Then, by Lemma 2.1 (ii), we have i -h<_0. 

Since h(0)=r(0) and /(O)= r(0), we get r <_ h. On the other hand, again by 
Lemma 2.1 (ii), r>_ p1>0. Thus, the solution r is extendible on R. Moreover, 
by Lemma 2.3, we haves i>0. • 
   PROPOSITION 2.6. In the case of the condition (V), the solution r to (2.1) is 
a periodic function. 
   PROOF. We consider (2.1) as a problem on a vector field r(a/d r)+ 

(arl-n-Rr/(n(n-1)))(a/d1) on the half plane P= {(r, r)ER2: r>0}. Then the 
flow of the vector field is described by curves defined by (2.2). Under the 
assumption, it is easy to see that (2.2) defines a regular submanif old in P and 
that the submanifold is contained in a compact set in P. Hence, the curves 

defined by (2.2) are dill eomorphic to S1 and there is no fixed point of the flow 
on the curves because k >i. So the solution to (2.1) is a periodic function. • 
   PROPOSITION 2.7. In the case of (VI), the solution to (2.1) is given by
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            /n(n-l)k. s n R n(n-1) 
                   R n(n_1) (s-F-so), -so<s<~ R -so, 

     r(s)= in the case of (VI. 1); 

              - n(n-1)k sink -- R 
(1)(±s+so), +so<<>s>±oo,                    R nn-

                                       in the case of (VI. 2); 

where so is a constant. 

   PROOF. Elementary. e 

   3. Main results. 

   By using Lemma 1.1 and results in the previous section, we can construct 

various examples of complete conformally flat Riemannian manifold with a non-

trivial solution f to (0.1) : 

   EXAMPLE 1. Let N(k) be an (n-1)-dimensional connected complete space 

of constant sectional curvature k. A Riemannian product Rx N(k), k *0 is not 

an Einstein space, on which 

                  cl sin~/(n-2)k • s±c2 cos~/(n-2)k • s , if k >O, 
      f=f(s, x)= 

                  cl sinh (2-n)k • s+c2 coshv/(2-n)k • s , if k <O, 

is a solution to (0.1), where cl and c2 are constants. 

   EXAMPLE 2. For l E N and an isometry cp E Isom N(k), let f be a trans-
formation group of isometries of R x N(k), k >0, generated by D : R x N(k)-~ 

R>N(k); (s, x)H(s+2irl/ (n--2)k, cp(x)). Since f in Example 1 is a periodic 

function with period 2nl/ (n--2)k for k>0, f can be considered as a function 

on R x N(k)/[ ~, which is compact but not an Einstein space. In particular, 

R x N(k)/I'1, Id. has already been shown in Section 1. 
   EXAMPLE 3. A warped product R>< rN(1), where r is a periodic function 

as in Proposition 2.6, is also conformally flat but not Einstein, and admits a 

non-trivial f satisfying (0.1) : f (s, x)=c d r(s) for some constant c. 
                        ds 

   EXAMPLE 4. Since f and r in Example 3 have a common period, we obtain 

compact spaces with non-trivial solutions to (0.1) in a similar way as Example 

2. These spaces were first found by Ejiri [2] as counter examples to a con-

jecture of conformal transformations. 
   EXAMPLE 5. A warped product RxrN(k), where r and k are as in Propo-

sition 2.5, is also conformally flat, and admits a non-trivial solution to (0.1) : 

f (s, x)=c dsd r(s) for some constant c. In particular, when a >0, R=0 (for 

notations, see Lemma 1.1 and Section 2), the obtained space contains the space 

section of the well-known Schwarzshild space-time as an open submanifold.
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   Our theorem is stated as follows : 
   THEOREM 3.1. Let (M, g) be a connected complete conf ormally flat Riemannian 
manifold with n=dim M>_3. Then M admits a non-trivial solution f (i. C., f0) 
to 

(3.1) -ga f Hess f - f Ric=O, 

i f and only i f M is isometric to one of the following : 

   ( i ) Euclidean sphere Sn ; 
  (ii;) a fiat space; 

  (iii) Hyperbolic space Hn ; 
   (iv;) one of the spaces in Examples 1'--'5. 

   PROOF. As was mentioned, there are non-trivial solutions to (3.1) if M is 
one of the spaces in Examples 1N5 (remark that Hn is a special case in Ex-
ample 5: put N(k)=Hn-1 and consider the condition (IV. 2)). The first eigen-
functions for the Laplace-Beltrami operator a on Sn satisfy (3.1). Any non-zero 
constant satisfies (3.1) if M is flat. Thus "if part" of the statement is proved. 

   Now, suppose f is a non-trivial solution to (3.1) on M. If f =const.*0, then 
by (3.1) M is Ricci flat, hence it is flat because M is assumed to be conformally 
flat. 

   So, in the following, we assume that {df ~O} CM is not empty, and denote 
by Mo a connected component of {df * 0}. Then, by Lemma B, Ma is isometric 
to a warped product I X rN(k). Hence, at each point of M, the Ricci tensor has 
eigenvalues p and v with multiplicities 1 and n-1, respectively. Then, by 

Lemma 1.1, a :=-1 rn(p-v)=rn-1r+Rrn/n(n-1) is constant on Mo (see also 

n (1.13)), where R is the scalar curvature of M, which is constant by Lemma A. 
   LEMMA 3.2. a, k, r and R does not satisfy conditions (II) and (III). 
   PROOF. Suppose a, k, r and R satisfy (II). Then r0, hence by Lemma 
1.1 f =cr. But by Proposition 2.4 (i ), /=ciO, which contradicts that J~0 on 
Mo. 

   In the case of (III), by Proposition 2.4 (ii), f =cr diverges at a point of 
finite distance from an arbitrarily fixed point of Mo. Hence the conditions in 
(III) cannot be satisfied. • 
   LEMMA 3.3. Suppose r is not constant on Mo. If R<O or a<_O, then Mo=M 
and M is isometric to either Sn or Hn or a space in Example 5. 
   PROOF. By Proposition 2.2 and Lemma 3.2, we have only to consider the 
conditions (IV) and (VI). 

   (IV): By Proposition 2.5,r= 1fj>O on RXrN(k) where r and k are as in 

c Proposition 2.5. Hence by Lemma B (iii), RX rN(k)CM0. On the other hand, 

RxrN(k) itself is a complete space, hence RXrN(k)=MO=M.
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   (VI. 1) : By Proposition 2.7 and Lemma B (iii), Mo=I X rN(k), where 
l=(-s0, it Vn(n-1)/R--so), r and k are as in Proposition 2.7. Since r(s)-~O as 

s---so or irs/n(n-1)/R-so, the closure Ma in M is (I X rN(k))U {p} U {q}, where 

p and q are points in M. By considering the exponential mapping at p or q, 
we see that N(k) is an (n-1)-sphere. Hence, again by Proposition 2.5, Mo is 
isometric to a standard n-sphere. 

   (VI. 2) : By a similar argument, we see Mo=M=Hn. • 
   LEMMA 3.4. If (I. 3) is satisfied on Mo, then M is flat. 
   PROOF. It is easy to see that Mo is Ricci flat, hence it is flat. Let Ml be 
another component of {d f ~ O} . Then, by Lemma 3.2 and Lemma 3.3, Ml cannot 
satisfy the conditions (II), (III), (IV) and (VI). Since R=O, Ml must satisfy the 
condition (I. 3). Hence, Mi also is flat. Namely, {df *0} is a flat space. On 
the other hand, the interior Int {df =0} C M is a flat space. Hence, M= 

{j0} UInt{df =0} is flat. • 
   The remaining cases are (I. 1), (I. 2) and (V). By the above argument, if 
Mo satisfies one of (I. 1), (I. 2) and (V), the other components of {d f ~ 0} must 

have the same property, and {dJ0} =M. Then it is easy to see that each 

possible combination of these components forms one of the spaces in Examples 
14. . • 
   Finally, we pick up compact spaces in Theorem 3.1, 

   THEOREM 3.5. Let (M, g) be a compact connected conf ormally flat Riemannian 
manifold with n=dim M>_3. Then, 

   (i) admits non-zero constant as a solution to (3.1) i f and only i f M is 
flat. 

   (ii) M admits a non-constant solution to (3.1) i f and only i f M is isometric 
to either Sn or one of the spaces in Examples 2 and 4. 

   Thus, by the argument in [3], we have 
   THEOREM 3.6. Let M be a closed C°° manifold with n=dim M>_3, and gE 3W 

(for the notation, see Introduction). Suppose that 
   (i) g is conf ormally flat but not flat, and 
   (ii) (M, g) is neither Sn nor any one of the spaces in Examples 2 and 

4. Then dRg is surjective and R: iJ2s~1s-2 is locally surjective at g for 

n 2 +1<s<oo, 
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