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Abstract—The performance of traditional beamformers tends to
degrade due to inaccurate estimation of covariance matrix and
imprecise knowledge of array steering vector. The inaccurate
estimation of covariance matrix can be attributed to limited data
samples and the presence of desired signal in the training data. The
mismatch between the actual and presumed steering vectors can be
due to the error in the position (geometry) and/or in the look direction
estimate. In this paper, we propose a differential evolution (DE) based
robust adaptive beamforming that is able to achieve near optimal
performance even in the presence of geometry error. Initially, we
estimate an optimal steering vector by maximizing and minimizing
the signal power in and out of the desired signal’s angular range,
respectively. Then, we estimate the look direction and reconstruct the
covariance matrix. Based on the obtained steering vector, estimate
for look direction and reconstructed covariance matrix, near optimal
output SINR, can be obtained with the increase in the input SNR
without observing any saturation even in the presence of geometry
error. Numerical simulations are presented to demonstrate the efficacy
of the proposed algorithm.
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1. INTRODUCTION

Adaptive beamforming is a versatile approach to detect and enhance a
desired signal while suppressing noise and interferences at the output of
a sensor array. Adaptive beamforming has been widely used in mobile
satellite communications [1], microphone array speech processing,
radar [2], medical imaging [3], antenna arrays [4, 5], and cognitive
radio [6]. Traditional adaptive beamforming techniques assume that
the training data are free from the desired signal components [7].
Although the assumption of signal-free training snapshots may be
true in some areas (such as radar), there are numerous applications
(such as speech processing, medical imaging) where the observations
are always “contaminated” by the signal component. This leads to
the performance degradation in traditional adaptive beamformers.
Several approaches have been proposed to improve the robustness of
the adaptive beamformers. However, many of the proposed methods
are limited to certain types of mismatches. The mismatches can
be in the look-direction, gain-phase, array geometry [8–10], incorrect
assumption of the signal model, e.g., point-source or scattered-source
(either coherent or incoherent scattering) signal model. Besides these
mismatches, the performance of the beamformers is also known to
degrade when the number of snapshots taken to construct the sample
covariance matrix [11] is small, or there are any other effects introduced
by the propagation environment.

In [12], an approach based on loading of the diagonal of the
sample array covariance matrix is proposed to improve the robustness
against more general mismatches. While having the advantage of being
invariant to the type of mismatches, the choice of the optimal loading
factor is not obvious.

In capon beamforming [13], the uncertainty setting of the steering
vectors is delimited by upper bounding the norm of the difference
between the actual and presumed steering vectors, i.e., the norm of
the mismatch vector. The capon beamformers can provide robustness
against the uncertainty in the look direction. However, if any other
of the steering vector mismatches (such as geometry error) become
dominant, these methods cannot be expected to provide sufficient
robustness [14]. Genetic algorithms [15–18], differential evolution [19–
21] and swarm intelligence algorithms [22] have been used to solve
diverse problems in array signal processing, antenna design and
communications. Recently, beamforming algorithms using particle-
filter [23], neural networks [24], and global optimizations techniques
such as PSO [25] and differential evolution (DE) [29] have been
proposed. In [25], the authors assume that information regarding the
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array geometry, signal to noise ratio, directions of arrival of signal and
interferences can be obtained exactly by using the methods presented
in [26–28]. In [29], we proposed a DE based adaptive beamformer
which performed well for look direction as well as for a considerable
amount of geometry error. In [30], we proposed a novel algorithm to
estimate the look direction and to reconstruct the covariance matrix so
that near optimal performance without the effect of saturation can be
achieved as the input SNR increases. In [29, 30], the information about
the signal to noise ratio is not used as well as the directions of arrival
of the signal of interest, and the interferences are estimated instead of
assuming them to be precisely known.

In this paper, we improve the robustness of the algorithm
presented in [30] by correcting any error in the originally presumed
steering vector by maximizing and minimizing the signal power
respectively in and out of the desired signal’s angular range. Then
we use the approach proposed in [30] to obtain the optimal weight
vector.

The rest of this paper is organized as follows. In Section 2,
we describe the array signal model and the existing robust adaptive
beamformers as well as some background on DE algorithm. In
Section 3, we explain the proposed approach that includes the
optimization formulation of estimating the steering vector and its
implementation with the proposed DE algorithm. Section 4 presents
the simulation results that demonstrate the efficacy of the proposed
solution. Section 5 concludes the paper.

2. BACKGROUND

2.1. Signal Model

Consider a narrowband beamforming model in which K narrowband
plane wave signals, modeled as statistically independent zero-mean
random sequence, impinge on an array of M sensors (K < M) from
directions θs and θi (i = 1, 2, . . . , K − 1). The received signal at the
array is given by

x(t) = a(θs)sd(t) +
K−1∑

i=1

a(θi)si(t) + n(t) (1)

where sd(t), si(t) and n(t) are the desired signal, i-th interference and
noise, respectively. a(θ) is the steering vector of the plane wave from
direction θ.

Conventional adaptive beamforming calculates an optimal weight
vector that minimizes the interference-plus-noise output power
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subjected to a unity response of the desired signal

min
w

wHRinw subject to wHa = 1 (2)

where w = [w1, . . . , wM ]T is the complex vector of beamformer
weights; M is the number of sensors; Rin is the interference-plus-
noise covariance matrix; a is the desired signal steering vector; (·)T

and (·)H denote the transpose and Hermitian transpose, respectively.
Solving (2), the optimal beamformer weight vector can be expressed
as

wmvdr = (aHR−1
in a)−1R−1

in a (3)

However, in practice, only the estimate (R̂) of the matrix Rin can
be obtained from the discrete-sampled array signal received

R̂ =
1
N

N∑

n=1

x(n)x(n)H (4)

where N is the number of snapshots. The presence of the desired signal
components a(θs)sd(t) in the array received signal in the computation
of R̂ will lead to a substantial performance degradation as measured
by the output signal-to-interference-and-noise ratio (SINR). That is,
the output SINR of the beamformer saturates as input signal-to-noise
ratio (SNR) increases. This problem is further complicated when there
is a mismatch between the actual and the presumed steering vectors
(denoted as ā).

2.2. Existing Robust Adaptive Beamformers

A simple-yet-effective approach for robust adaptive beamforming is
diagonal loading, which offers robustness by adding a positive value
to the diagonal terms of the sample covariance matrix. The weight
vector can be obtained using the loaded sample covariance matrix Rdl

according to
wlsmi = (āHR−1

dl ā)−1R−1
dl ā (5)

where ā denotes the presumed steering vector; Rdl , γI + R̂ is the
diagonally loaded sample covariance matrix; γ denotes the loading
factor; I is the identity matrix. Such an approach is termed as the
loaded sample matrix inverse (LSMI) beamformer. Although it has
been shown to improve the performance, it is not clear how much
loading factor or what is the suitable value for γ is required.

To explicitly relate the amount of loading factor to the
uncertainties in the desired signal steering vector, the authors
in [13] proposed a different optimization formulation for solving the
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beamformer’s weight. The formulation is based on a quadratic
optimization problem with a multi-dimensional spherical constraint
that models the uncertainty as the square-norm of the mismatch vector:

min
a

aHR̂
−1

a subject to ‖a− ā‖2 ≤ ε. (6)

where ε quantifies the level of the uncertainty between the nominal and
actual steering vector. By imposing a quadratic equality constraint
on (1) and using the Lagrange multiplier method, the estimated
steering vector is given by:

â = ā− (I + λR̂)−1ā (7)

and the Lagrange multiplier λ is obtained by solving the following
constraint equation:

g(λ) ,
∥∥∥(I + λR̂)−1ā

∥∥∥
2

= ε. (8)

The estimated steering vector is later used to formulate the weight
vector

wrcb = (âHR̂
−1

â)−1R̂
−1

â (9)

To avoid the need to know the loading factor, the authors in [31]
proposed a beamformer that can be formulated as a ridge regression
problem. As a result, the design of the weight vector does not
require any preset parameter even though the steering vector used
is inaccurate. At the end of the formulation, the authors in [31] also
show that this parameter-free robust beamformer is in fact a diagonal
loading approach with the loading parameter

ρ = (M − 1)σ̂2
LS/‖ηLS‖2

σ̂2
LS =

∥∥∥R̂1/2
BηLS − R̂

1/2
ā/M

∥∥∥
2

ηLS = (BHB̂B)−1BHR̂ā/M

(10)

where B is an M × (M − 1) semi-unitary matrix orthogonal to the
nominal steering vector ā. The beamformer weight is the same as
that in LSMI beamformer with the diagonally-loaded covariance matrix
Rrr , ρI + R̂:

wrr = (āHR−1
rr ā)−1R−1

rr ā (11)

2.3. Differential Evolution

Evolutionary algorithms (EAs) are population-based stochastic
algorithms that can effectively handle real-world optimization
problems which are non-continuous and/or non-differentiable and
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characterized by chaotic disturbances, randomness and complex non-
linear dynamics. Differential evolution (DE) [32], a simple and
powerful global optimization algorithm, has attracted much attention
due to its simplicity and less number of parameters to tune.

The effectiveness of conventional DE in solving a numerical
optimization problem depends on the selected mutation and crossover
strategies and their associated parameter values [33–35]. Motivated
by the observation that each optimization is unique and to solve a
specific problem, different mutation strategies with different parameter
settings may be better during different stages of the evolution than
a single mutation strategy with unique parameter settings as in the
conventional DE, an ensemble of mutation and crossover strategies
and parameter values for DE (EPSDE) [36] was proposed.

EPSDE consists of a pool of mutation and crossover strategies
along with a pool of values for each of the associated control
parameters. Each member in the initial population is randomly
assigned with a mutation strategy and associated parameter values
taken from the respective pools. The population members (target
vectors) produce offspring (trial vectors) using the assigned mutation
strategy and parameter values. If the generated trial vector is better
than the target vector, the mutation strategy and parameter values are
retained with trial vector which becomes the parent (target vector)
in the next generation. The combination of the mutation strategy
and the parameter values that produced a better offspring than the
parent are stored. If the target vector is better than the trial
vector, then the target vector is assigned with a re-initialized mutation
strategy and associated parameter values from the respective pools or
from the successful combinations stored with equal probability. This
leads to an increased probability of production of offspring by the
better combination of mutation strategy and the associated control
parameters in the future generations.

The implementation of the EPSDE algorithm is presented in [36].
The outline of the algorithm is presented in Section 3.

3. PROPOSED APPROACH

In adaptive beamforming, the steering vector (a(θs)) depends on the
position of the sensors and the DOA of the desired signal and can be
expressed as:

a(θs) = exp(jπP sin(θs)) (12)

where P = [p1, p2, . . . , pM ] is the position vector. To estimate the
steering vector, we try to obtain a vector x = [P, θs] to maximize and
minimize the signal power in and out of the desired signal’s angular
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range (θL < θs < θU , where θL and θU are the lower and upper bounds
respectively) by using the following expression

f(x) =
ā(θs)HR̂

−1
ā(θs)

ā(θin,q)HR̂
−1

ā(θin,q)
(13)

where θs is the possible look-direction from the desired signal’s angular
range. Likewise, {θin,q}Lin

q=1 are derived from the interference-plus-noise
angular range. Lin is the number of interferences. Note that the
directions defined in θin,q do not overlap with those in [θL, θU ].

After obtaining a proper estimate for the steering vector, we
use the approach proposed in [30] to solve for the robust adaptive
beamforming problem.

STEP 1: Set the generation count G = 0, and randomly initialize
a population of Np individuals PG = {x1,G, . . . ,xNp,G} with
xi,G = {x1

i,G, . . . ,xD
i,G}, i = 1, . . . , Np uniformly distributed in

the range [xmin,xmax]. Here D = M + 1.
STEP 2: Select a pool of mutation strategies and a pool of values

for each associated parameters corresponding to each mutation
strategy.

STEP 3: Each population member is randomly assigned with one of
the mutation strategy from the pool and the associated parameter
values are chosen randomly from the corresponding pool of values.

STEP 4: WHILE stopping criterion is not satisfied, DO
FOR i = 1 to Np
Mutation Step
Generate a mutated vector vi,G = {v1

i,G, . . . , vD
i,G}, i = 1, . . . , Np

corresponding to the target vector xi,G

vi,G = xri
1,G + F (xri

2,G − xri
3,G)

The indices r1, r2, r3 are mutually exclusive integers randomly
generated anew for each mutant vector within the range [1, Np],
which are also different from the index i.
Crossover Step
Generate a trial vector ui,G = {u1

i,G, . . . , uD
i,G}, i = 1, . . . , Np for

each target vector xi,G

uj
i,G =

{
vj
i,G, randj(0, 1) ≤ CR or j = jrand

xj
i,G, otherwise

where j = 1, . . . , D
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Selection Step
Evaluate the trial vector ui,G

xi,G+1 =
{

ui,G, f(ui,G) < f(xi,G)
xi,G, otherwise

Increment the generation count G = G + 1.

STEP 5: END WHILE.

4. SIMULATION RESULTS

In our simulations, we consider a 10-element ULA with half-wavelength
spacing receiving nine Gaussian signals: the SOI from θs = 4◦ and eight
interferences from θi = {−70◦,−50◦,−30◦, 20◦, 30◦, 50◦, 60◦, 70◦}. The
eight interferences are of equal power (20 dB). A white Gaussian
distributed random variable (0 dB) is considered as the additive noise.
Also, R̂ calculated from 100 snapshots is used to implement all the
beamformers discussed here. The array geometry error is modeled as
a uniform random variable according to U(−cλ, cλ), where λ and c
are the signal wavelength and percentage errors. All the simulations
include a look direction error of 4◦.

In EPSDE algorithm the only parameter that has to be tuned is
the population size (Np). In our experimentation we tried different
values for Np (for example 10, 20, 30, 40 and 50). The population
size Np = 20 gives the best values for maximum function evaluations
of 50000 and maximum generations of 2500. The performance of the
proposed algorithm is compared with algorithms in the literature such
as RR [31], SQP [38, 39], RCB [13] and IRCB [37].
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Figure 1. Beampattern of the best results 50% Geometry Error at
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The proposed algorithm is evaluated with no error in geometry and
50% uniform error in the geometry and compared with RR, SQP, RCB
and IRCB algorithms. 50% uniform error in geometry implies that
the position of a particular sensor element can be located within 50%
of the distance between two sensor elements. From the beampattern
presented in Figures 1 and 2, it can be observed that the proposed
approach is able to estimate most of the interference directions and
achieves deeper nulls in the direction of interferences in addition to the
lower side lobe levels. Figures 3 and 4 present the performance of the
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Figure 2. Beampattern of the best results 50% Geometry Error at
30 dB input SNR.
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Figure 3. Median output SINR versus SNR for 0% geometry error.
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algorithms with increasing SNR values for different levels of geometry
error. From the graphs, it can be observed that the performance of the
proposed algorithm is consistent and is able to achieve near optimal
mean performance over the entire range of the input SNR values. It can
also be observed that even though the error in the geometry increases
the output SINR remains closer to the optimal values indicating the
robustness of the proposed algorithm to the errors in the geometry.

In the proposed algorithm, we try to obtain optimal geometry
positions by using DE algorithm. In Figure 5, we present the average
mean square error values over the 100 realizations for different input
SNR values, to show how well the proposed algorithm is able to recover
the optimal geometry positions.

-20 -10 0 10 20 30 40 50 60
-30

-20

-10

0

10

20

30

40

50

60

70

Input SNR [dB]

O
u
tp

u
t 
S

IN
R

 [
d
B

]

RR

SQP

RCB

IRCB

Optimal

proposed

Figure 4. Median output SINR versus SNR for 50% geometry error.
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The time taken per one realization by each of the algorithms,
RR, SQP, RCB, IRCB and proposed, is 5.60 ∗ 10−2, 7.12 ∗ 10−1,
2.16 ∗ 10−2, 3.02 ∗ 10−2 and 1.08 ∗ 102 seconds respectively. The
computational complexity of the proposed algorithm is due to the
estimation of the optimal steering vector, which takes a cpu time of
1.00 ∗ 102 seconds. However, in real-world applications, the estimation
of optimal steering vector (geometry) is done only once. Once the
optimal steering vector is obtained, the beamforming operation takes
8 ∗ 10−2 seconds.

5. CONCLUSION

This paper proposes a DE based adaptive beamforming algorithm
addressing the issues such as inaccurate estimation of the covariance
matrix and mismatch between the actual and presumed steering
vectors, which degrade the performance of traditional beamforming
approaches. From the simulation results it can be observed that the
proposed algorithm is robust to the inaccurate estimation of covariance
matrix as well as the geometry errors.
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