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A DIFFERENTIALLY ALGEBRAIC REPLACEMENT

THEOREM, AND ANALOG COMPUTABILITY

LEONARD LIPSHITZ AND LEE A. RUBEL

Abstract. A theorem is proved that enables one to replace a C" solution of a

system of algebraic differential equations by analytic solutions nearby, such that

each satisfies its own algebraic differentia] equation. As an application, we emend a

proof of the Shannon-Pour-El thesis relating the outputs of analog computers to

solutions of algebraic differential equations.

We prove here a differentially algebraic replacement theorem (DART for short)

that says, roughly, that if a finite system 2 of algebraic differential equations

(ADE's for short) in the dependent variables ylt..., yn has a solution

y~i(x),..., y„(x) in a neighborhood of x = a, with the highest derivatives of the y

demanded by 2 being continuous, then 2 has a solution y^x),..., y„(x), where the

y, are actually convergent power series in a neighborhood of x = ä for suitable ä

arbitrarily close to a, and where the initial conditions on the y¡ at ä are exactly the

initial conditions on the y, at ä. Moreover, the y~j may all be chosen to be

differentially algebraic (DA for short), which means that each y, satisfies an ADE in

which only that y, (and no other y¡) occurs. The proof of DART is via elimination

theory.

As an application of DART, we give a proof of Theorem 2 of [POE]. The proof

offered in [POE] has some gaps in it, which we describe later in this paper before

giving our own proof. Because Theorems 2 and 4 of [POE] together establish a

fundamental connection between analog computers and algebraic differential equa-

tions, we consider providing a complete proof to be important. (See [SHA] for an

earlier, but incomplete, version of this connection.) Professor Pour-El has com-

municated to us that she has repairs for the proof in [POE].

Theorem 1 (DART). Let j>, e C', i = \,...,m, be functions on an interval

L çz R. Let I be the set of all differential polynomials f, with coefficients from R[x], in

the variables y¡ such that the order of f in y¡ is < n¡ for i = 1,..., m and such that

f(y) = 0 for all x e L where f(y) means

f(y(x))=f{x,yl(x),yi(x),...,y[^(x),...,ym(^),--^y^)^))-
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Let it be a finite set of differential polynomials of order < n¡ in y¡ for i = \,...,m

such that if f G <rr then f(y) does not vanish identically on any nontrivial subinterval of

L. Then there exists an a G L and differentially algebraic functions y¡, i = \,...,m,

analytic at x = a such that y}j)(a) = y¡j)(a) for i = 1,..., m and j = 0,..., n¡ and

such that f(y) = 0 for every f G / for all x near a and f(y)(a) # 0 for all f & it. In

fact, the set of such a's is dense in L.

Proof. Let the y}^ be indeterminates and consider the polynomial rings

R = R[x,{yV}: 1 < / « m,0 <y < «,}],

R' = R[x, [yfJ>: 1 < i ^ m,0 <y < «,}],

so that

/= {f^R:f(y) = 0onL}.

(When / £ R and y = (y^x),..., y~„(x)) are functions on L with y¡ g C"' for each

i, then by f(y) we mean the function on L obtained by substituting the y¡-J) for the

variables yj-J) in /.) We must produce anaei and y"i,...,ym such that

(0) each yi is analytic and differentially algebraic at a,

(1) y¡j)(a) = y¡-J)(a) for each 1 < i < m, 0 <y < n¡,

(2) (V/ G /) [/(y) - 0 for x near a], and

(3)(V/ew)[/(j;Xa)#0].
First of all, we claim that we may assume without loss of generality that / is a

prime ideal in R and that (V/é/) [f(y) does not vanish identically on any

nontrivial subinterval of L]. For suppose there exists fxe R\I such that fi(y)

vanishes identically on an open, nontrivial subinterval Lx of L. Let Ix be the ideal

{/eu: f(y) =0 on Lx). Then / c Ix c R. The first containment is proper

because fx g Lx and the second because 1 ë Iv Iterate this construction. Because R

is noetherian, the process stops after a finite number of steps; at Lk and Ik, say.

Thus (V/g R\Ik) [f(y) does not vanish identically on any nontrivial subinterval

of Lk]. We can also see that Ik is a prime ideal. For if fg g Ik but / G Ik, then /(y)

does not vanish on any nontrivial subinterval of Lk so by continuity g(y) must

vanish identically on Lk and g g Ik. This proves the claim.

For w-tuples n = (nx,..., nm) let |n| = nY + ■ ■ ■ +nm. We shall prove the theo-

rem by induction on |«|.

Case A: / n R' = (0). (We remark as an aside that this is the case for the

beginning of the induction n = (0,..., 0), and that this part of the proof does not

use the induction hypothesis.) In this case, we think of R' as a subring of R/I.

Reorder the indices / so that, in R/I, {y^ni)}i<i<r are algebraically independent

over R' and each j>/Bf) with ; > r is algebraic over R'\{y\n,): 1 < i < r}] in R/I,

using y}j) to also denote the image of y^j) in R/I. Let Pk be a polynomial of

minimal degree such that yk"k) satisfies Pk(y) = 0 in R/I and such that the

coefficients of Pk are in R'[{yj"'): I ^j < k}].

Let S* = 3Pfc/8^|"*' (the "séparant" of Pk), let dk = degree of PÄ in yl"<-\ and

let Q be the leading coefficient of Pk. From the definition of Pk we see that Sk& I

and Ck Í /. Let G = n™=r+1Q5^. Then G £ I since / is prime.
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(#)

We claim that for any y = (yx,..., ym) with the y¡ G C', and any interval X

if Pr+i(y)(x) = • • • = Pm(y)(x) = 0 and G(y)(x) ^OVxel,

then/(j>)(x) = OV/G/andV;cG X.

To prove this, let / g / and note that by the Euclidean algorithm, there is an

H g R which is a product of C,'s and S/s such that

(*) Hf=hr+lPr+1+ ••• +hmPm + Q,

where the degree of yl"k) in Q is less than dk for each k with r < k < m. Consider

k = m. The left-hand side of (*) vanishes in R/I and the right-hand side is a

polynomial in yjfm\ Therefore by definition of Pm, the degree of y^m) in Q must

be zero. Repeating this argument m times shows that Q = 0. This proves the above

claim.

By the choice of it and our first claim we see that for all / G m' = tt U {G} we

have that f(x, y(x)) vanishes identically on no nontrivial subinterval of L. Let

y= (a g L: f(x, y(x))(a) * 0 for all / g 77'}. Then <f is dense in L. Let a G y,

and let

Ä

/   »,

E #'■>(«)

v,0)(a)

(jc - a)J

(x - a)J +  £ fliy(jc

y>«,

for 1 < í < r,

a )J     for /• < / < m,

where the a¡,'s are determined by the following triangular system of m - r differen-

tial equations in the unknowns yr+l,..., ym:

'Pr+1(yi,...,yr,yr+l) = 0,

l^m(jil--.'Jr'>'r+l5---.>'m) = 0,

together with the initial condition yj   (a) = yj '(a) for j' = r + 1,..., m;  k

0,..., » -. (This system has the Jacobian séparant

9P,

mr+j

(a)

sr+i(y)(a)

sjy)(a)

S(y(a))*0,

where hk = y^"^. Hence, by the Fundamental Existence Theorem, this system plus

initial conditions has a unique, analytic, solution y near a.)

We claim that these j,'s have the required properties.

(0) yv...,yr are polynomials, so they certainly satisfy (0). The others satisfy a

system of ADE's, with séparant Jacobian # 0, so by [RUB], they are each differen-

tially algebraic. (One can also see this by noting that the transcendence degree of

R(x, yr, y'r,..., ym, y'm • ■ •) over R(x) is finite and hence all the y¡ are differentially

algebraic over R(x).)

(1) holds by construction,

(2) follows from (#),

(3) holds since f(y)(a) = f(y(a))*0 for all / g tt.
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This completes Case A.

Case B: / O R' # (0). Let ñ" = («",..., n'^) be an integer vector with 0 < n" <

«, for i = 1,..., m, such that Rw. C\ I # (0), where

Rn„ = R[x, {ylJ): 1"< i « m,0 «y < «;'}].

Take 0 =£ / g 7 n /?-., of lowest total degree. Then / is irreducible since / is prime,

and / G R'. Let

_ I order of / in yf,    if ^ appears in /,

I -1 otherwise.

Let

8 = min{«; - &,: k¡ + -1, 1 < i < m},

which is achieved at i0, say. Then 5 > 1. Let 5 = df/dy^k'o). Then S G 7 (by the

definition of /). From our very first claim, S(y) does not vanish identically on any

non trivial subinterval of L. Differentiating the equation "/ = 0" 8 times with

respect to x gives

(t) Sy£>o> +T=0,

where T g i?s, and n' = (nx,..., «,- - 1,..., nm). (Notice that df/dx = df/dx +

T.(df/dy¡-j))y(j+l).) The idea now is to formally substitute j/%> = -T/S in our

ADE's and multiply by suitable powers of S to clear the denominators. More

precisely, let A = [h G Rw\ h is obtained from Sag, where a > 0 and g g I\Rrí,,

by using (f) to get rid of the j>/"'<P terms}. Construct 7r' from 7r U {5} in a similar

way, and let /' be the ideal in R-, generated by A U (R-. n /). Note that /g /'.

Now apply the induction hypothesis to I' and it' in RA. to get a g L, yx,...,ym

satisfying (0)-(3) above for /', ir'. We claim that a and these y¡ also satisfy (0)-(3)

for / and jr.

(0) is automatic.

For (1), we need only prove the case i = i0 and j = n¡, the others being

automatic. Now S(y)yf",o) + T(y) = 0 near a and S(a, y(a)) + 0. Thus

y\y(a) = (-T/S)(y(a)) = (-T/S)(y(a)) = y^(a).

(The second equation follows from (1).) (2) and (3) are proved similarly. Replacing

L by arbitrary subintervals of L we see that the set of a 's with the required property

is dense in L and the proof of DART is complete.

We now discuss Theorem 2 of [POE].

Theorem 2 (Pour-El). If y is generable on an interval I by an analog computer,

then there is an interval I' Q I such that on I', y satisfies an algebraic differential

equation.
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Pour-El proceeds as follows (we quote, in part). There are functions y2,...,yn

which satisfy a set of equations of the form

(E) A(x,y)^ = B(x,y),

where y = y2, y is the column vector with components y2,..., yn; A is an (n — I) X

(n — 1) matrix whose components are linear in 1, x, y2,...,y„, and B is an

(n — l)-dimensional vector whose components are linear in 1, x, y2,..., yn. Further,

the system (E) is supposed to be provided with initial conditions y2(a) =

y2*,..., y„(a) = y* so that (E) has a unique solution locally, even when a and

y2*,..., y* are slightly perturbed.

In the language of analog computers, the system (E) specifies the outputs of all the

integrators, and the further assumptions about the initial conditions (called "domain

of generation" in [POE]) say that the computer is deterministic even if the operator

makes small errors in the initial settings of the integrators. This illuminating

condition of Pour-El's seems to be central to the connection between analog

computers and algebraic differential equations.

The error seems to be made in Case 1 in the proof of Theorem 2 in [POE] in

considering A as an abstract matrix and not, as it must be, constrained to follow

along the given solution y(x). Later, in Case 2, the domain-of-generation hypothesis

about the original system is apparently incorrectly applied to an altered system. In

view of this, it seems desirable to provide our alternative proof by way of DART.

Proof of Theorem 2 of [POE]. We can actually get by with a weaker hypothesis

than the full domain-of-generation assumption, namely that there exist an open

interval N around x = a such that for all aeJV, the equations (E) with the initial

conditions

y2(ä)=y2(ä),...,y^(ä)=y^(ä),

ym(d)=ym(â),...,y^(â)=y^(â),

(where y is the solution for the initial conditions at ¿z) have a locally unique

solution, i.e., a solution in all small intervals around ä. In other words, we need

allow small errors in the time setting only, and not in the setting of the integrators

also. Now apply DART to the solution y to get a differentially algebraic analytic

solution y in a neighborhood of a nearby point ä on R, with y having the same

initial conditions at ä as y. Notice that the y¡ satisfy the C"J hypothesis of DART

(here nj = 1 for all j) because, throughout [POE], only C1 solutions of the system

(E) are considered. By the above uniqueness assumptions, we must have y = y

throughout a small neighborhood of ä. It follows that y2 is differentially algebraic in

that neighborhood, and the theorem is proved.

We have been unable to determine whether the still weaker uniqueness hypothesis

will suffice, that just for the initial conditions y2(a) = y2*,..., ym(a) = y*, the

system (E) has a (locally) unique solution. It is surely not correct that such a

hypothesis implies domain of generation for just any system of ADE's, but it could

conceivably be true for systems of the special form (E).
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Finally, we raise the question whether there is an algorithm for determining

whether a given system (E), with given initial conditions, has a domain of genera-

tion. This is essentially equivalent to the question of finding a procedure for

deciding, for a given analog computer, whether it will run for a positive length of

time.
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