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Electrowetting has recently been explored as a mechanism for moving small amounts
of fluids in confined spaces. We propose a diffuse-interface model for drop motion, due
to electrowetting, in a Hele-Shaw geometry. In the limit of small interface thickness,
asymptotic analysis shows that the model is equivalent to Hele-Shaw flow with a
voltage-modified Young–Laplace boundary condition on the free surface. We show
that details of the contact angle significantly affect the time scale of motion in the
model. We measure receding and advancing contact angles in the experiments and
derive their influence through a reduced-order model. These measurements suggest
a range of time scales in the Hele-Shaw model which include those observed in the
experiment. The shape dynamics and topology changes in the model agree well with
the experiment, down to the length scale of the diffuse-interface thickness.

1. Introduction
The dominance of capillarity as an actuation mechanism at the micro-scale has

received considerable attention. Darhuber & Troian (2005) recently reviewed various
microfluidic actuators by manipulation of surface tension. Because of the ease of
electronic control and low power consumption, electrowetting has become a popular
mechanism for microfluidic actuations. The theory of electrowetting and the different
applications are well-reviewed by Mugele & Baret (2005). Lippman (1875) first studied
electrocapillary in the context of a mercury-electrolyte interface. The electric double
layer is treated as a parallel plate capacitor,

γsl (V ) = γsl(0) − 1
2
cV 2, (1.1)

where γsl is the solid–liquid interfacial energy, c is the capacitance per area of the
electric double layer, and V is the voltage across the double layer. The potential
energy stored in the capacitor is expended in lowering the surface energy. A locally
applied voltage then creates the surface energy variation to induce drop motion. Kang
(2002) calculated the electro-hydrodynamic forces on a conducting liquid wedge on a
perfect dielectric, and recovered equation (1.1).

Dielectric breakdown across the electric double layer limits the applicable voltage.
Depositing a thin dielectric film (∼ 0.1 µm) using micro-fabrication techniques
common in micro electromechanical systems (MEMS) prevents such breakdown
without incurring significant voltage penalty (see Moon et al. 2002), making
electrowetting-on-dielectric a practical mechanism of micro-scale drop manipulation.
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Figure 1. (a) Cross-section of the electrowetting device. (b) Experimental setup for static
contact angle measurement.

For such a configuration, c in (1.1) represents the capacitance per area of the dielectric.
Lee & Kim (1998) demonstrated the first working micro-device driven by electrically
controlled surface tension with a mercury drop in water. Kim (2000) and Lee et al.
(2001, 2002b) subsequently reported handling of water in air. Cho et al. (2001), and
Pollack, Fair & Shenderov (2000) demonstrated cutting, merging, and transport of
drops by electrowetting in Hele-Shaw cell geometry. Hayes & Feenstra (2003) utilized
the same principle to produce a video speed display device.

The electrowetting device we consider is shown in figure 1. The fabrication and the
experimental details will be given in the following section. It consists of a fluid drop
constrained between two solid substrates separated by a distance, b. The aspect ratio
of the drop, α = b/R, can be controlled by drop volume and substrate separation.
Here we consider experiments where α � 0.1. For a constrained drop of radius R

much greater than the drop height b, the geometry approximates a Hele-Shaw cell
(see Hele-Shaw 1898), which enjoys a rich history in fluid mechanics (see Saffman
1986; Homsy 1987; Bensimon et al. 1986; Howison 1992; Tanveer 2000).

For partially wetting fluids inside a Hele-Shaw cell, surface effects at the contact
line can influence the interfacial boundary conditions. Paterson, Fermigier & Limat
(1995) and Paterson & Fermigier (1997) experimentally studied the influence of strong
surface defects on the interface of silicon oil and water displacing air in a Hele-Shaw
cell. Carrillo, Soriano & Ortin (1999, 2000) found that the fingering instability and
the displacement speed of an expanding fluid annulus in a rotating Hele-Shaw cell is
highly sensitive to the wetting condition of the outer interface. Weinstein, Dussan V. &
Ungar (1990) theoretically investigated the influence of dynamic contact angles on the
steady-state solutions of viscous fingering in a Hele-Shaw cell. The dynamic contact
angle is incorporated into the pressure boundary condition but has only geometric
dependence on the steady finger shape. The analysis is specific to a travelling wave
solution and does not directly carry over to the general flow problem in Hele-Shaw
cell.

Owing to the intense interest in the Hele-Shaw problems, the last ten years has
also seen the development of numerical methods for solving the Hele-Shaw problem.
The boundary integral method developed by Hou, Lowengrub & Shelley (1994) has
been quite successful in simulating the long time evolution of free-boundary fluid
problems in a Hele-Shaw cell. However, simulating drops that undergo topological
changes remains a complicated, if not ad hoc, process for methods based on sharp
interfaces. Diffuse interface models provide alternative descriptions by defining a
phase-field variable that assumes a distinct constant value in each bulk phase. The
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material interface is considered as a region of finite width in which the phase-field
variable varies rapidly but smoothly from one phase value to another. Such diffuse-
interface methods naturally handle topology changes. As we demonstrate in this paper,
an energy construction provides a convenient framework in which to incorporate a
spatially varying surface energy due to electrowetting. Matched asymptotic expansions
may be used to demonstrate the equivalence between the diffuse-interface dynamics
and the sharp-interface dynamics in the Hele-Shaw cell.

In this paper we develop a diffuse-interface framework for the study of Hele-
Shaw cell drops that undergo topological changes by electrowetting. Using level-set
methods, Walker & Shapiro (2006) considered the unsteady problem of a drop
deformed by a rapidly changing potential distribution. We consider a viscous flow
induced by a steady potential. The related work of Lee, Lowengrub & Goodman
(2002a) considered a diffuse interface in the absence of electrowetting in a Hele-Shaw
cell under the influence of gravity. They used a diffuse-interface model for the chemical
composition, coupled to a classical fluid dynamic equation. Our model describes both
the fluid dynamics and the interfacial dynamics through a nonlinear Cahn–Hilliard
equation of one phase-field variable. Our approach expands on the work done by
Glasner (2003) and is closely related to that of Kohn & Otto (1997) and Otto (1998).

Section 2 describes the experimental setup of drop manipulation using
electrowetting-on-dielectric. Section 3 describes the sharp-interface fluidic model for
the electrowetting drop in Hele-Shaw cell. We also briefly discuss the role of the
contact line in the context of the sharp-interface model. In § 4, we describe the
diffuse-interface model of the problem. Equivalence with the sharp-interface model
will be accomplished in § 5 through matched asymptotic expansions. Comparisons
will be made in § 6 between the experimental data and the numerical results. To relate
the theoretical prediction to the experimental observation, we construct a reduced-
order model in § 7 with constant contact angles similar to the contact angle models
discussed in Saffman (1986), followed by conclusions.

2. Experimental setup
2.1. Procedure

The fabrication of electrowetting devices is well documented in Cho, Moon & Kim
(2003). Unlike the previous work, we enlarge the device geometry by a factor of 10
and use a more viscous fluid such as glycerine to maintain the same Reynolds number
as in the smaller devices. Such a modification allows us to more carefully maintain
the substrate separation and to directly measure the contact angles. The devices are
fabricated in the UCLA Nanoelectronics Research Facility. The bottom substrate is
patterned with square metal electrodes of size 1 cm. Two dielectric layers are placed
on top of the electrodes, one of Cytop R© fluoropolymer (Asahi Glass, Japan) on top of
a layer of silicon dioxide (SiO2). The top substrate is a cleaved glass with a conductive
coating of indium-tin oxide (ITO). A very thin layer of Cytop R© fluoropolymer then
covers the ITO to increase the surface energy. The thicknesses of the materials used in
the device are summarized in table 1. A drop of fluid with α ∼ 0.1 is dispensed on the
bottom substrate. Two solid spacers maintain the substrate separation at ∼ 530 µm
(see figure 1a).

If the top substrate is the same as the bottom substrate, the potential drop across
its dielectric layers will involve the electrical properties of the fluid. To simplify the
problem, we intentionally use only a thin Cytop R© film on the top substrate. It is
well-know that a thin fluoropolymer film is a poor insulator (see Seyrat & Hayes
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Material Thickness Dielectric constant

separation height 529 ± 2 µm n/a
dielectric (SiO2) 498.4 ± 15.5 nm 3.8
fluoropolymer(bottom) 245.8 ± 15.5 nm 2.0
fluoropolymer(top) 50 nm 2.0

Table 1. Material thicknesses and dielectric constants of an electrowetting device.

2001) so it only affects the charging time across the thick dielectric layers on the
bottom substrate. We conduct a set of static experiments using deionized water with
surface tension of 72 dyn cm−1 to confirm this. First, the capacitance per area of the
SiO2/Cytop layers on the bottom substrate is characterized by measuring the static
contact angle of a sessile drop of deionized water under the influence of a varying
voltage (see figure 1b). Then we cover the drop with the top substrate and repeat the
experiment to characterize the electrowetting effect across the thin Cytop film on the
top substrate.

The glycerine–water mixture with viscosity of 0.020 Pa s, density of 1.28 cm−3, and
surface tension of 67 dyn cm−1 is used for the dynamic experiments. The half-height of
the cell is an order of magnitude smaller than the capillary length,

√
γ /ρg ≈ 2600 µm,

preserving the dominance of surface tension over gravity. To move a drop, part of
the drop interface must extend over an adjacent electrode. The top substrate and the
electrode below the drop are grounded. Applying a potential on an adjacent electrode
moves the drop to that electrode. The voltage level is varied between 30 V DC and 80
V DC. At each voltage level, we move a drop back and forth between two electrodes
ten times by alternately applying the voltage and ground to each electrode. A drop
can be split by applying potentials on both sides of the drop. A camera is used to
record the motion, from above, at 30 frames per second. Side views of the menisci at
the nose and the tail of a translating drop are recorded at 512 × 256 resolution by
a high-speed camera (Vision Research Inc., Wayne, NJ) at 2100 frames per second.
The slope of the top substrate is known a priori by focusing on its cleaved edge. The
bottom substrate is assumed to have the same slope. Both surfaces create reflections
of the menisci allowing us to locate the contact lines. The images are processed by
Adobe Photoshop R© and MATLAB R© for edge detection. The capillary numbers
of the advancing and receding contact lines are obtained from the side view and the
top view of the drop. Time-indexed images of the translating and splitting drop are
compared to the simulation contours in § 6.

2.2. Statics

Using Young’s equation, we relate the change of contact angle to the electrowetting
voltage,

cos θV − cos θ0 =
cV 2

2γlv

, (2.1)

where θV is the static contact angle when we apply a potential, V , on the electrodes.
θ0 is the contact angle at zero potential, and γlv is the liquid–vapour surface tension.
Figure 2 shows that cos θV linearly increases as a function of V 2, below a critical
voltage. Above the critical voltage, the contact angle saturates and even decreases. This
behaviour is in agreement with previous studies (see Verheijen & Prins 1999; Peykov,
Quinn & Ralston 2000; Seyrat & Hayes 2001; Vallet, Vallade & Berge 1999; Shapiro
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Figure 2. cos θV − cos θ0 vs. V 2.
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Figure 3. Static contact angles (±2◦) of a deionized water drop in an electrowetting device
(a) before applying voltage, and (b) after application of 50.18 V.

et al. 2003). The model developed in this work will focus on the voltage level below
the saturation. The capacitance per area of the SiO2/Cytop layers c =3.6 × 10−5 F
is obtained by multiplying the slope of the linear region with 2γlv . Estimating this
quantity by considering the dielectric layers as two capacitors connected in series (see
Moon et al. 2002) gives a value close to that measured experimentally.

Figure 3 shows the static contact angles of a deionized water drop in an
electrowetting device with a top substrate both with and without an applied voltage.
The increase of the top contact angle is of the same order of magnitude as the
uncertainty in the measurement. Therefore, we ignore this small increase in our model
and instead focus on the dramatic decrease of the contact angle, by about 40◦, on the
bottom substrate.

2.3. Dynamics

The average velocity of the glycerine–water drop is obtained by dividing the length
travelled by the time. Figure 4, inset (a) shows that the drop remains static until a
threshold voltage is reached. The threshold voltage to move a glycerine–water drop
is approximately 38 V DC. The interface motion remains smooth for voltages up
to 65 V DC as shown in figure 4, inset (b). The average velocity of the drop, ū,
increases linearly with the square of the applied voltage. The typical drop velocity
(ū ≈ 0.1–1 cm) indicates small scaled Reynolds number, Re∗ =α2 × ρūR/µ ∼ O(10−2).
At a higher voltage, we observed pinning on a section of the advancing contact line,
causing the drop to form asymmetric shapes such as the one shown in figure 4, inset
(c). When moving a drop back and forth between two electrodes using such a high
voltage, each drop movement becomes slower than the previous one. Eventually the
drop stops responding to the applied voltage, suggesting an accumulation of charges
trapped in the dielectric layers.
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Figure 4. Average velocity of the drop actuated by electrowetting. Insets show (a) the drop
remains motionless at low voltage level (30.2 V DC); (b) the drop advances smoothly at 50.4
V DC; (c) asymmetric shape develops due to the pinning of the advancing contact line at 80.0
V DC.

Time = 0 ms 1.90 ms 3.81 ms

Time = 7.62 ms 15.7 ms 32.4 ms

Figure 5. Side view of the advancing meniscus of a glycerine–water drop (dark area) at 50.28
V DC. The solid white lines depict the orientations of the top and bottom substrates. Above
and below the white lines are the reflections of the meniscus. The dashed line shows the initial
position of the meniscus.

To fully understand the problem we must also measure the effect of electrowetting
on the dynamic contact angles of the drop. A side view of the advancing meniscus is
shown in figure 5. The locations of the solid surfaces are depicted by two solid white
lines. A dashed line intersecting the substrates indicates the initial positions of the
contact lines. The onset of electrowetting induces a sudden decrease of the contact
angle on the bottom substrate from its static value ≈100◦, as shown in figure 6. The
capillary numbers of the contact lines, shown in figure 7, quickly settle down to the
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Figure 6. Evolution of the advancing and receding contact angles of the meniscus in figure 5.
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Figure 7. Capillary number of the advancing and receding meniscus.

range of Ca ∼ 10−3. The contact line on the top substrate remains static until an
angle of advance ≈ 110◦ is exceeded. The hysteretic effect causes the initially concave
meniscus to become convex. The contact angles converge toward steady-state values
after a short transient time. The steady behaviour of the contact angle is consistent
with the recent numerical finding of Yeo & Chang (2006) for electrowetting films.
The direct observation by the camera only reveals the contact angles at two points
of the curvilinear interface. Along the interface, the capillary number varies with
the normal velocity of the interface. Therefore, we expect the dynamic contact angle
to vary along the interface. More advanced experimental techniques are required to
characterize the evolution of the dynamic contact angle on the entire interface.

3. Sharp-interface description
Here we review the classical model of Hele-Shaw fluid dynamics and extend the

model to include electrowetting. For simplicity, we will first neglect the presence of the
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contact line. The insight into the fluid dynamics will allow us to construct a simple
leading-order contact line model in § 7.

Consider a viscous drop occupying a space [Ω × b], where b is the height of the
Hele-Shaw cell. The small value of aspect ratio allows us to employ the lubrication
theory to reduce the momentum equation to Darcy’s law coupled with a continuity
equation,

U = − b2

12µ
∇P, (3.1)

∇ · U = 0, (3.2)

where U is the depth-averaged velocity, P is the pressure in the drop or the bubble,
and µ is the viscosity. Equations (3.1) and (3.2) imply that the pressure is harmonic,
�P =0.

The interfacial velocity is the fluid velocity normal to the interface, i.e.
Un ∼ ∇P |∂Ω · n̂. The boundary condition for normal stress depends on the interactions
between the different dominant forces in the meniscus region. Assuming pressure in
the surrounding fluid is zero:

P |∂Ω = γlv (Aκ0 + Bκ1) ; (3.3)

κ0, defined as 1/r , is the local horizontal curvature and κ1 is defined as 2/b. Different
dynamics and wetting conditions at the meniscus determine the actual curvatures of
the drop through A and B . In their initial study, Saffman & Taylor (1959) made
the assumptions that A=1 and B = − cos θA where θA is the apparent contact angle
measured from inside the drop or bubble.

For the incomplete displacement of viscous fluid, Bretherton (1961) showed that
B = 1 +βCa2/3 where β is equal to 3.8 and −1.13 for advancing and receding
menisci respectively. Park & Homsy (1984) and Reinelt (1987) further showed that
A= π/4+O(Ca2/3). For the special case of a complete displacement by a steady-state
finger as considered by Weinstein et al. (1990), the boundary condition can also be
formulated in the form of equation (3.3). In this case, B = − cos(ΘR − σ cosΦ) where
ΘR is the angle of recede for the displaced fluid, σ = ∂Θ/∂U is a linear model for
the dynamic contact angle, and Φ is the angle between the outward normal of the
steady-state finger and the velocity U . For a partially wetting drop, we assume that
A= 1, which is supported a posteriori in Appendix B.

When a voltage is applied across an electrode, V (x) = V χ(x), where χ(x) is a
characteristic function of the electrode, Ωw , it locally decreases the solid–liquid surface
energy inside the region Ωw

⋂
Ω:

γw(V ) = γlv

(
− cos θ0 − cV 2

2γlv

)
, (3.4)

where γw(V ) is the difference between the liquid–solid and the solid–vapour surface
energy. In deriving (3.4), we assume that the electrowetting does not affect the solid–
vapour surface energy. From the experimental observations, only the dielectric layer
on the bottom substrate produces a significant electrowetting effect. Therefore, the
solid–liquid surface energy of a drop in the device is

γdev = γlv

(
−2 cos θ0 − cV 2

2γlv

)
. (3.5)
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Figure 8. Illustration of electrowetting acting on a drop and the details near the boundary
of the electrode. Dashed lines depict the pressure contours.

The dominance of surface tension allows us to assume a circular profile for the
liquid–vapour interface. Substituting (2.1) into (3.5) gives

γdev = γlv (− cos θ0 − cos θV ) = γlvbκw, (3.6)

where κw =(− cos θ0 − cos θV )/b is the curvature of the cross-substrate interface in the
presence of electrowetting. The constant cos θ0 does not affect the dynamics, so we
will consider it to be zero. Equating κw = Bκ1 shows B = −cV 2/4γlv .

For a drop of volume v placed inside a Hele-Shaw cell with plate spacing of b,
the radius is R = (v/πb)1/2. We non-dimensionalize the Hele-Shaw equations by the
following scales:

r ∼ Rr̃, t ∼ 12µR

γlvα2
t̃ , P ∼ γlv

R
P̃ , (x, y, z) ∼ (R, R, b). (3.7)

Removing the tilde gives the following equations in dimensionless variables:

�P = 0, (3.8)

U = −∇P, (3.9)

P |∂Ω = Aκ0 + Bκ1, (3.10)

Un = ∇P |∂Ω · n̂. (3.11)

Without the applied voltage, V = B =0, the drop relaxes by surface tension. The
constant A can then be incorporated into the relaxation time scale. Therefore, the
classical relaxation of Hele-Shaw droplets has no dimensionless parameters, meaning
that all drops starting from similar initial conditions can be collapsed to the same
problem in dimensionless form.

Electrowetting introduces a discontinuous change of the capillary pressure, (P2 −
P1) = −Bκ1, as shown in figure 8. Solving the Laplacian pressure and the associated
velocity near the discontinuity gives

P = −Bκ1

π
arctan

(y

x

)
+ P1, (3.12)

U = −∇P =
Bκ1

π

(−y î + x ĵ )
x2 + y2

. (3.13)

where î and ĵ are the unit axes of a locally orthogonally coordinate system. Near
∂Ωw , electrowetting pumps the fluid into the wetting region. Therefore Bκ1 dictates
the time scale of the motion. Away from ∂Ωw , where Bκ1 is relatively constant, the
drop relaxes to minimize the liquid–vapour interface and Aκ0 influences this relaxation
time scale. This interaction introduces one dimensionless parameter to the classical
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Hele-Shaw flow: we define the electrowetting number

ω = −Bκ1 =
cV 2

2αγlv

(3.14)

as the relative measure between the electrowetting potential and the total energy of
the liquid–vapour interface. This parameter affects both the time scale of motion and
the time scale associated with the drop morphology.

In applying the electrowetting model (3.14) for Bκ1, we assume the contact angles
are determined from a quasi-static balance between the surface energies and the
electrical potential. The presence of moving contact lines introduces deviations from
the equilibrium values and reduces capillary pressure, Bκ1. In § 7, we will introduce
the complication of contact line dynamics through the local dependence of A and B

on the contact angles.

4. Diffuse-interface model
Diffuse-interface (phase-field) models have the advantage of automatically

capturing topological changes such as drop splitting and merger. Here we extend
Glasner’s (2003) diffuse-interface model to include electrowetting. The model begins
with a description of the surface energies in terms of a ‘phase’ function ρ that
describes the depth average of fluid density in a cell. Therefore ρ =1 corresponds to
fluid and ρ = 0 to vapour. Across the material interface, ρ varies smoothly over a
length scale ε.

The total energy is given by the functional

E (ρ) =

∫
Ω

A

γ

(
ε

2
|∇ρ|2 +

g (ρ)

ε

)
− ρω dx. (4.1)

The first two terms of the energy functional approximate the total liquid–vapour
surface energy

∫
∂Ω

γdS where ∂Ω is the curve describing the limiting sharp interface.
An interface between liquid and vapour is established through a competition between
the interfacial energy associated with |∇ρ|2 and the bulk free energy g(ρ) that has
two equal minima at ρl and ρv . To avoid the degeneracy in the resulting dynamic
model (see equations (4.7)–(4.8) and to maintain consistency with the desired sharp-
interface limit, we choose ρl =1 and ρv = ε. The final term ρω accounts for the wall
energy (the difference between the solid–liquid and solid–vapour surface energies)
on the solid plates. The first two terms act as line energies around the boundary
of the drop while the third term contributes the area energy of the solid–liquid
interfaces.

In equation (4.1), γ is a normalization parameter which we discuss below. A
one-dimensional equilibrium density profile can be obtained by solving the Euler–
Lagrange equation of the leading-order energy functional in terms of a scaled spatial
coordinate, z = x/ε,

(ρ0)zz − g′(ρ0) = 0, (4.2)

which has some solution φ(z) independent of ε that approaches the two phases ρl, ρv

as z → ±∞. Integrating equation (4.2) once gives

ε

2
φ2

x =
g(φ)

ε
. (4.3)
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Equation (4.3) implies equality between the first and second terms of the energy
functional so the total liquid–vapour interfacial energy can be written as

γ =

∫ ∞

−∞
(φ)2zdz = 2

∫ ∞

−∞
g(φ)dz. (4.4)

Equation (4.4) indicates that the choice of g(φ) used to model the bulk free energy
influences the amount of interfacial energy in the model. Hence this constant appears
as a normalization parameter in the first two terms of the energy functional (4.1).

Since there is no inertia in the physical system, the dynamics take the form of a
generalized gradient flow of the total energy, which can be equivalently characterized
as a balance between energy dissipation and the rate of free energy change,

D ≈
∫

R2

ρ|U |2 dxdy. (4.5)

Since ρ is conserved, ρt = −∇ · (ρU). Using this fact and equating the rate of energy
dissipation to the rate of energy change gives∫

R2

ρ|U |2 dxdy = −
∫

R2

ρtδE dxdy = −
∫

R2

ρ∇(δE) · U dxdy. (4.6)

To make this true for an arbitrary velocity field U , it follows that U = − ∇(δE).
Substituting the velocity back into the continuity gives the evolution of the fluid
density,

ερt = ∇ · (ρ∇ (δE)) , (4.7)

δE =
A

γ
(−ε2�ρ + g′(ρ)) − εω, (4.8)

subject to boundary conditions that requires no surface energy and no flux at the
domain boundary,

∇ρ · n̂ = 0, (4.9)

ρ∇(δE) · n̂ = 0. (4.10)

Equations (4.7)–(4.8) with ω = 0 constitute a fourth-order Cahn–Hilliard equation
with a degenerate mobility term. By letting ω having spatial dependence, we introduce
electrowetting into the diffuse-interface model.

5. Asymptotic analysis
Matched asymptotic expansions show that the sharp-interface limit of the constant-

mobility Cahn–Hilliard equation approximates the two-side Mullins–Sekerka problem
(see Caginalp & Fife 1988; Pego 1989). The recent work of Glasner (2003) showed that
the degenerate Cahn–Hilliard equation approaches the one-sided Hele-Shaw problem
in the sharp-interface limit. Using a similar method, we show that the sharp-interface
limit of the modified Cahn–Hilliard equation (4.7)–(4.8) recovers the Hele-Shaw
problem with electrowetting (3.8)–(3.11). The diffuse-interface approximation allows
us to simulate topology changes without artificial surgery of the contour. This is
especially useful as electrowetting devices are designed for the purpose of splitting,
merging and mixing of drops.

Using a local orthogonal coordinate system (z, s), where s denotes the distance
along ∂Ω and z denotes signed distance to ∂Ω , r , scaled by 1/ε. The dynamic
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equation expressed in the new coordinates is

ε2ρ̄zrt + ε3(ρ̄sst + ρ̄t ) = (ρ̄( ¯δE)z)z + ερ̄( ¯δE)z�r

+ ε2[ρ̄( ¯δE)s�s + (ρ̄( ¯δE)s)s |∇s|2],
¯δE =

A

γ
(−ρ̄zz − ερ̄z�r − ε2(ρ̄ss |∇s|2 + ρ̄s�s) + g′(ρ̄)) − εω

where the denotes the variables in the inner region. The matching conditions are

ρ̄(0)(z) ∼ ρ(0)(±0), z → ±∞, εz → ±0, (5.1)

ρ̄(1)(z) ∼ ρ(1)(±0) + ρ(0)
r (±0)z, z → ±∞, εz → ±0, (5.2)

ρ̄(2)(z) ∼ ρ(2)(±0) + ρ(1)
r (±0)z + ρ(0)

rr (±0)z2, z → ±∞, εz → ±0. (5.3)

Similar conditions can be derived for ¯δE and δE.
The O(1) inner expansion gives(

ρ̄(0)
(

¯δE
(0))

z

)
z
= 0, (5.4)

A

γ

(
g′(ρ̄(0)

)
− ρ̄(0)

zz

)
= ¯δE

(0)
. (5.5)

Equation (5.4) implies (δE)(0) = C(s, t). Equation (5.5) is the equation for the one-
dimensional steady state. The common tangent construction implies

¯δE
(0)

=
γ (g(ρl) − g(ρv))

A(ρl − ρv)
. (5.6)

The double-well structure of g(ρ̄) implies ( ¯δE)(0) = 0. At the leading order, the
competition between interfacial energy and the bulk free energy establishes a stable
diffuse interface.

The O(1) outer expansion of (4.7), (4.8) gives

∇ ·
(
ρ(0)∇g′(ρ(0)

))
= 0. (5.7)

The unique solution in the dense phase that satisfies no-flux and matching conditions
is constant, ρ(0) = ρl . Thus on an O(1) scale no motion occurs.

The O(ε) inner expansion results in(
ρ̄(0)

(
¯δE

(1))
z

)
z
= 0, (5.8)

A

γ

(
g′′ (ρ̄(0)

)
− ∂2

∂z2

)
ρ̄(1) = ¯δE

(1) − A

γ
κ (0)ρ̄(0)

z + ω, (5.9)

where the leading-order curvature in the horizontal plane, κ (0), is identified with −�r .

Applying matching boundary condition for ¯δE
(1)

to equation (5.8) shows that ¯δE
(1)

is independent of z; ρ̄(1) = ρ̄(0)
z is the homogenous solution of (5.9). In the region of

constant ω, the solvability condition gives

ρl

(
¯δE

(1))
=

Aκ (0)

γ

∫ ∞

−∞

(
ρ̄(0)

z

)2
dz − ωρl. (5.10)

The integral is equal to γ , using (4.4). Assuming ρl = 1 and using (3.14) gives

¯δE
(1)

=
(
Aκ (0) + Bκ1

)
. (5.11)

The surface energy term includes both curvatures of the interface. This is analogous
to the Laplace–Young condition of a liquid–vapour interface.
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In regions where sharp variation of ω intersects the diffuse interface, the solvability
condition becomes

ρl

(
¯δE

(1))
= Aκ (0) −

∫ ∞

−∞
ωρ̄(0)

z dz. (5.12)

The sharp surface energy variation is smoothly weighted by ρ̄(0)
z , which is O(1) for a

phase function ρ̄ that varies smoothly between 0 and 1 in the scaled coordinate.
To order ε, the outer equation in the dense phase must solve

�
(
δE(1)

)
= 0, (5.13)

with a no-flux boundary condition in the far field, and a matching condition at the
interface described by (5.2).

The O(ε2) inner expansion reveals the front movement

U (0)
n ρ̄(0)

z =
(
ρ̄(0)

(
¯δE

(2))
z

)
z
, (5.14)

where rt is identified as the leading-order normal velocity of the interface U (0)
n . The

matching condition for ¯δE
(2)

gives us the relation for the normal interface velocity of
drops in a Hele-Shaw cell,

U (0)|n = −
(
δE(1)

)
r
. (5.15)

Defining p̃ = δE(1), equations (5.11) (5.13) and (5.15) constitute the sharp-interface
Hele-Shaw flow with electrowetting,

�p̃ =0,

p̃|∂Ω =Aκ (0) + Bκ1,

U (0)
n = −(p̃)r .

⎫⎬
⎭ (5.16)

6. Numerical simulations and discussion
Numerical methods for solving the nonlinear Cahn–Hilliard equation are an active

area of research. Barrett, Blowey & Garcke (1999) proposed a finite element scheme to
solve the fourth-order equation with degenerate mobility. In addition, the development
of numerical methods for solving thin-film equations (see Zhornitskaya & Bertozzi
2000; Grun & Rumpf 2000; Witelski & Bowen 2003) are also applicable to (4.7)–(4.8).
We discretize the equations by finite difference in space with a semi-implicit time step,

ε
ρn+1 − ρn

�t
+

Aε2M

γ
�2ρn+1 =

A

γ
[ε2∇ · ((M − ρn)∇�ρn) + ∇ · (ρn∇g′(ρn))]

− ∇ · (ρnεω). (6.1)

We use a simple polynomial g(ρ) = (ρ − ρv)
2(ρ − ρl)

2. The choice of g(ρ) imposes
an artificial value of the liquid–vapour surface energy, γ . Integrating (4.4) gives
the normalizing parameter, γ = 0.2322, for the terms associated with the liquid–
vapour interface. All numerical results here are computed on a 256 by 128 mesh
with �x =1/30. The origin is located at the midpoint of the electrode edge that
intersects the drop interface as shown in figure 9. The parameter ε = 0.0427 controls
the diffuse-interface thickness, which is ∼ 7�x for all the results presented here.

A convexity splitting scheme is used where the scalar M is chosen large enough
to improve the numerical stability. We found M = max(ρ) serves this purpose.
The equation can be solved efficiently through fast Fourier transform methods.
Similar ideas were also used to simulate coarsening in the Cahn–Hilliard equation
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Figure 9. Coordinates of the numerical simulation.
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Figure 10. Aspect ratio of the relaxing elliptic drop calculated by the diffuse-interface model
(
) with ε =0.0427 and boundary integral method (�).

(Vollmayr-Lee & Rutenberg 2003) and surface diffusion (Smereka 2003). The diffuse-
interface model imposes a constraint on the spatial resolution in order to resolve the
transition layer, �x � Cε. Preconditioning techniques maybe implemented to relax
this constraint (see Glasner 2001). We did not employ preconditioning in this
study. To ensure the diffuse-interface thickness of the simulation is in the range
required by the asymptotic analysis, we performed simulations with smaller values
of ε on refined meshes and verified that the time scale of motion is independent of
ε � 0.0427.

We compare the diffuse-interface scheme to the boundary integral method by
simulating the relaxation of an elliptical drop in a Hele-Shaw cell without electro-
wetting. Figure 10 shows a close agreement between the aspect ratios of the relaxing
elliptic drops calculated by both methods.

To investigate the dynamics of an electrowetting drop without contact line
dissipation, we directly compare the diffuse-interface model with A= 1 to the
electrowetting experiments using a glycerine–water drop. The experimental time and
dimensions are scaled according to equation (3.7). The dimension of the square
electrode is 10 cm. The radii of the drops in figures 13 and 14 are approximately
0.55 mm and 0.6 mm respectively. Using the capacitance per area, and the surface
tension of the drop reported in § 2, the experimental electrowetting numbers of
ωE =7.3 and 8.0 are derived for the drops under 50.4 V DC voltage.
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Figure 11. Positions of the centre of mass of a moving drop in experiments and in
simulations at various electrowetting numbers.

0 0.1 0.2 0.3 0.4 0.5
–3

–2

–1

0

1

2

3

Arclength/drop circumference

κ0
ω = 7.3
ω = 2.7
ω = 1.8

Nose Tail

Figure 12. Curvature along the drop contours with ycm = −0.36 from nose to tail.

Figure 11 compares the positions of an experimental drop’s centre of mass, ycm(t),
to the simulation results at various ω. Figure 13 below compares the corresponding
drop contours. During the motion, electrowetting creates a necking region of negative
curvature as shown in figure 12. As ω decreases, the variation of the curvature along
the drop contour decreases due to the increasing influence of the surface tension.
When ω = ωE , the motion of the diffuse-interface drop is faster than the experiment
by a factor of 2. Scaling the electrowetting number to ω = 3

8
ωE matches the simulation

with the experimental motion and produces drop contours that qualitatively agree
with the experiment as shown in figure 13(c).

Figure 14(a) shows the splitting of a drop. The asymmetry of the initial drop
placement yields a difference in size of the daughter drops. Figure 14(b–d) illustrates
the capability of the method to naturally simulate the macroscopic dynamics of drop
splitting. The resolution of the model is limited by the diffuse-interface thickness.
Therefore we do not expect the simulation to reproduce the pinch-off of the neck
and the formation of satellite drops, as seen in the last few frames of figure 14(a).
Electrowetting initially stretches the drop, increasing the capillary pressure in the two
ends and decreasing the pressure in the neck. For small ω, the electrowetting cannot
overcome the surface tension, which ultimately pumps the entire drop toward the end



426 H.-W. Lu, K. Glasner, A. L. Bertozzi and C.-J. Kim
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ycm = 0.94 –0.70 –0.36 0.05 0.46 0.73 0.84
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Figure 13. Drop movement by electrowetting: (a) experimental images of the drop under
50.4 V of potential, (b) diffuse-interface model with ω = 7.3, (c) ω = 2.7, and (d) ω = 1.8. Each
column shows the drop contours with the same centre of mass position.

with smaller curvature as shown in figure 14(d). When ω = ωE , the time scale of drop
splitting is faster in the simulation than in the experiment, by a factor of 8. In the
next section, we show that the contact line dynamics has a significant influence on the
electrowetting number that is more than adequate to account for this discrepancy.

7. Contact line effect
The previous sections investigate the drop dynamics in the absence of additional

contact line effects due to the microscopic physics of the surface (see de Gennes
1985). The dynamics near the contact line results in a stress singularity at the contact
line (see Huh & Scriven 1971; Dussan V. 1979). Many have studied the contact line
dynamics through various mechanisms to regularize the continuum mechanics (see
Berg 1993). Inclusion of van der Waal potential in the diffuse-interface model has
been proposed as a regularization of a slowly moving contact line of a partially
wetting fluid (see Pomeau 2002; Pismen & Pomeau 2004).

Implementing a full contact line model for the Hele-Shaw drop requires knowledge
of several microscopic parameters. For viscous fingering in a Hele-Shaw cell, Weinstein
et al. (1990) incorporated a dynamic contact angle model into the capillary pressure.
However, their asymptotic analysis relies on a steady-state assumption to avoid
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t = 0 0.31 0.64 0.95 1.26 1.58 1.90(a)

t = 0 0.04 0.08 0.12 0.17 0.21 0.25(b) 

t = 0 0.3 0.6 0.9 1.2 1.3 1.6(c) 

t = 0 0.3 0.6 0.9 1.2 1.5 1.8(d ) 

Figure 14. Drop splitting by electrowetting: (a) images of a drop pulled apart by two
electrodes under 50.4 V of potential, (b) diffuse-interface model with ω = 8.0, (c) ω = 3.0,
and (d) ω = 2.0.

solving the leading-order velocity in the inner region so the dynamic contact angle
model only has geometric dependence on the finger shape. Thus their model is not
directly applicable to our problem in which the interface dynamically changes in time.
Therefore, how to consistently incorporate the dynamic contact angle into a general
Hele-Shaw flow problem is still an interesting and open problem. Instead we estimate
the influence of the contact line by a reduced-order model with fixed contact angles.
Similar contact line models have been used by Ford & Nadim (1994) and Chen et al.
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Figure 15. The centres of mass of the reduced-order model and the diffuse-interface model.
ε = 0.0427, ω = 5.0.

(2005) in the context of thermally driven drops. Incorporating a fixed contact angle
into the Hele-Shaw model requires a simple extension of the incomplete displacement
problem and was first discussed by Saffman (1986). In Appendix B, we carry out
the necessary asymptotic expansion in the limit of small aspect ratio and extend the
formulation to an asymmetric electrowetting meniscus.

The reduced-order approximation considers a drop, in the sharp-interface limit,
travelling as a solid circle. This allows us to isolate the time scale of the motion from
the time scale associated with the shape morphology. In Appendix A, we derive the
motion of the circle’s centre of mass, ycm(t), by considering the rate of free energy
decrease,

ycm(t) = sin

(
−2ω

π
t + C

)
, C = arcsin

ycm(0)

R
. (7.1)

Figure 15 compares the centre of mass of the reduced-order model to that of diffuse-
interface model. The ability of the diffuse-interface drop to freely deform allows it to
translate slightly faster into the electrowetting region. Once the entire drop mass has
moved into the wetting region, a slow relaxation toward a circular shape takes place.
The close agreement in the translation period shows that the diffuse-interface model
does accurately simulate the gradient flow of the energy functional. The discrepancies
of time scale shown in figures 13 and 14 must be attributed to additional effects in
the physical problem.

The deviation of contact angles from their equilibrium values changes the capillary
pressure at the interface. The contact angles increase along the advancing contact lines
and decrease along the receding contact lines. The capillary pressure difference across
the electrowetting and the non-electrowetting regions at the leading order becomes

Bκ1 =
(cos θr − cos θt + cos θr − cos θb)

α
, (7.2)

where θr is the receding contact angle on the receding contact lines. θt and θb are the
advancing contact angles on the top and the bottom substrates.

In the absence of such deviations, the contact angles assume their equilibrium
values, and the difference of capillary pressure is represented by the electrowetting
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number. Using (3.14) and (2.1) gives

ω = − cV 2

2αγlv

=
1

α
(cos θ0 − cos θV ). (7.3)

Comparing equations (7.2) and (7.3) gives a scaling factor

ξ =
Bκ1

ω
=

(cos θs − cos θt ) + (cos θs − cos θb)

cos θ0 − cos θV

, (7.4)

where cos θb < cos θV , cos θt < cos θ0, and cos θr > cos θ0. It can be shown that the
scalar ξ is less than 1. The change of the capillary pressure may be incorporated into
the reduced-order model by scaling the electrowetting number accordingly,

ycm(t) = sin

(
−2ξω

π
t + C

)
. (7.5)

Substituting the measured values of contact angles from figure 6 gives an estimate of
ξ = 0.23. This indicates that the deviation of contact angle may reduce up to 3/4 of
the capillary pressure difference and account for a four fold increase in the dynamic
time scale.

The analysis in § 3 shows that the velocity of the electrowetting drop is proportional
to the difference of Bκ1 across the boundary of the electrowetting region. However,
our estimate by the reduced-order model imposes the measured contact angles at
the nose and the tail over the entire electrowetting and non-electrowetting interfaces.
Therefore we expect the reduction to 1/4 of the experimental electrowetting number
to yield an upper bound of the time scale increase due to the contact line effect.
Figure 13(c, d) shows that reducing ω accordingly in a simulation indeed gives a
range of time scale that includes the experimental time scale. The fitting factor for ω

to match the simulated motion with the experiment is ξ =3/8, well within the bound
of our estimate. The failure to split the drop as shown in figure 14(d) further confirms
that the reduction overestimates the contact line effect. The simulation results in
figures 13(c) and 14(c) indicate that further refinements with a dynamic contact angle
model may substantially improve the agreement with the experiment.

8. Conclusions
We present a diffuse-interface description of the drops in a Hele-Shaw cell in the

form of a degenerate Cahn–Hilliard equation with a spatially varying surface energy.
Through matching asymptotic expansions, we show that the phase-field approach
approximates the sharp-interface Hele-Shaw flow in the limit of small diffuse-interface
thickness. The dynamics in the sharp-interface limit is validated numerically by a direct
comparison to the boundary integral methods. This approach enables us to naturally
simulate the macroscopic dynamics of drop splitting, merging, and translation under
the influence of local electrowetting.

As illustrated by the reduced-order model, the contact line dynamics significantly
affects the problem by modifying the cross-substrate of the interface. Based on the
measured advancing and receding contact angles, we showed that the strong influence
of contact line dynamics accounts for up to a four fold increase in the dynamic
time scale of the Hele-Shaw approximation. This points out that using the Lippman
equation under the assumption of quasi-steady interfacial motion is not adequate
to capture the physics at the interface of the electrowetting drop. Knowledge of the
interface geometries near the electrowetting boundary may improve our estimate.
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Numerical simulations of drop motions showed a range of dynamic time scale that is
consistent with the experimentally measured time scale.

The assumption of constant advancing and receding contact angles in the reduced-
order model is obviously a crude approximation. Improvements to this approximation
need to account for the dynamically varying contact angle since the normal velocity
of the entire drop interface varies. Careful characterizations of the electrowetting
contact line dynamics and asymptotic matching to the bulk Hele-Shaw flow must be
considered to determine an appropriate pressure boundary condition. In short, this will
introduce velocity dependence in the formulation of B(ω, Ca|∂Ω ) in equation (3.10),
where Ca|∂Ω is the local capillary number of the interface. To formulate B(ω, Ca|∂Ω ),
the asymptotic analysis of Weinstein et al. (1990) must be extended from the special
case of a travelling wave solution to the general motion of a Hele-Shaw drop. Doing
so presents an interesting problem for future research.

The coupling between pressure boundary condition and the local contact line
velocity can be accomplished by modifying (4.7)–(4.8) to a viscous degenerate Cahn–
Hilliard equation (see Seppecher 1996) of the form

ερt + ε2∇ · (ρ∇ f (ρt )) = ∇ · (ρ∇(δE)), (8.1)

δE =
A

γ
(−ε2�ρ + g′(ρ)) − εω, (8.2)

where f (ρt ) is the diffused-interface analogue of the sharp-interface dynamic contact
angle model, B(ω, Ca|∂Ω ). The additional nonlinearity in equation (8.1) changes the
properties of the numerical approximation dramatically and warrants new numerical
research efforts to efficiently solve it. A matched asymptotic expansion similar to
the one in § 5 shows that the addition of f (ρt ) introduces a contact line velocity
dependence into the pressure boundary condition.

The threshold voltage for moving a drop shown in figure 4 indicates hysteresis may
also be a significant source of dissipation. The MEMS fabrication process for the
electrowetting devices produces variations of the surface energy that must be overcome
by the moving contact line. The dissipation becomes more significant as the drop
radius decreases, such as in microfluidic applications. Even with the length scale of
our experiment (∼1 cm), the surface effect may become important for specific motions
such as the splitting of a partially wetting drop. A preliminary study shows the neck
width at pinch-off is much smaller than the separation height, b. This behaviour is
different from experiments mentioned in Constantin et al. (1993), suggesting that the
surface effect may delay the capillary pinch-off by preventing the fluid neck from
separating off the substrates. For a drop in motion, the linear relationship of the
drop velocity in figure 4 suggests that the dissipation by the contact angle hysteresis
can be accounted for by an offset of the square of the voltage. However, the range
of linear behaviour is not sufficient to validate this hypothesis. To further study the
effect of hysteresis on the time scale of motion, additional microscopic experiments
are needed to characterize the strength and the uniformity of the defects on the
substrates. This information will allow us to introduce a macroscopic model of the
microscopic physics, such as the work of Joanny & Robbins (1990), into the study of
electrowetting drops.

Another interesting problem is that of a viscous drop of larger aspect ratio. The
velocity component normal to the substrates becomes significant. In this case, the
two-dimensional Hele-Shaw model can no longer provide an adequate approximation.
On the other hand, a fully three-dimensional simulation of such a drop is an extremely
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complicated task. It would be desirable to develop a reduced-dimension model that is
computationally tractable while preserving the essential information about the velocity
component normal to the substrates. Galerkin methods from numerical analysis may
provide an interesting direction to accomplish this.
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Cell Mimetic for Space Exploration (CMISE).

Appendix A. Reduced-order model
Consider a semi-infinite electrowetting region; we approximate the drop motion as

a moving solid circle. Using the lubrication approximation, we balance the rate of
viscous dissipation with the rate of free energy decrease,

D ≈ − b3

12µ

∫
R2

ρ|∇p|2 dxdy = −12µ

b

∫
R2

ρ|U |2 dxdy =
dE

dt
. (A 1)

The centre of the circle travels along the axis as shown in figure 9. The distance
between the boundary of the electrowetting region and the origin is d . The position
of the centre is y0(t) where y0(0) = 0. The drop moves as a solid circle so the integral
reduces to

−12µ|ẏcm|2πR2

b
=

dE

d t
, (A 2)

where ẏcm denotes the velocity of the centre of the circle. The free energy is composed
of the surface energy of the dielectric surface with no voltage applied γ1, the surface
energy of the electrowetting region γ2, and the liquid-vapor surface energy. Since the
liquid-vapor interface area remains constant, the rate of change in free energy is

dE

d t
= �γ Ṡ2, (A 3)

where �γ = γ2 − γ1 and Ṡ2 is the derivative of the drop area inside the electrified
region with respect to time

Ṡ2 = −2R2
√

1 − y2
cmẏcm. (A 4)

Equations (A 2), (A 3), and (A 4)give the following ODE:

ẏcm =
b�γ

6µπR2

√
1 − y2

cm. (A 5)

Integrating this ODE we obtain

ycm(t) = sin

(
b�γ

6µπR2
t + C

)
, C = arcsin

ycm(0)

R
, (A 6)

If we neglect the surface effects, the energy difference between the two regions
is well-described by (1.1), �γ = −cV 2/2. After changing time to a dimensionless
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Figure 16. Coordinates and geometry of (a) a symmetric interface and (b) an asymmetric
interface due to electrowetting.
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Figure 17. Horizontal curvature A for (a) electrowetting and (b) non-electrowetting menisci.

variable, we obtain

ycm(t) = sin

(
−2ω

π
t + C

)
. (A 7)

Appendix B. Interfacial condition
Here we relate the pressure boundary condition (3.3) to the local contact angle

by perturbation expansions of the governing equations with respect to the aspect
ratio by considering a radially expanding partially wetting fluid (see Saffman 1986).
We calculate the conditions for both the symmetric interfaces and the asymmetric
interfaces. The leading-order expansion then relates the cross-substrate curvature,
Bκ1, to the local contact angle, and the next-order expansion corresponds to the
contribution from the horizontal curvature, Aκ0.

Outside the electrowetting region, the interface is symmetric as shown in
figure 16(a); z =h(r) gives the shape of the interface. The pressure boundary
conditions are the only relevant equations to solve up to O(α). The equation at
the leading order is integrated twice with boundary conditions h0

r (R) = −∞ and
h0(R) = 0 to obtain h0(r) Then apply the boundary conditions that h0(r ′) = 1, where
r ′ =(1 − sin θs)/ cos θs + R to obtain the leading-order pressure. The next order is
solved by a similar procedure with the boundary conditions h1

r (R) = 0, h1(R) = 0 and
h1(r ′) = 0:

P |∂Ω =
−2 cos θs

α
− 1 + sin θs

cos θs

(
θs

2
− π

4

)
+ O(α). (B 1)

Inspection of the O(α) term, plotted in figure 17(b), shows that A varies between a
maximum of 1 when θs = π/2 and a minimum of π/4 when θs = 0 and π.
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If the interface inside the electrowetting region satisfies the requirements that
θt � π/2 and θb � π/2 as shown in figure 16(b), we can perform similar expansions for
an interface inside the electrowetting region with a shifted coordinate. At the leading
order, we apply the boundary conditions h0

r (R) = − tan θb, h0(R) = 0 and h0(r ′) = 1,
where r ′ = −(sin θt − sin θs)/(cos θt + cos θb) + R. The next order is solved with the
boundary conditions h1

r (R) = 0, h1(R) = 0 and h1(r ′) = 0:

P |∂Ω =
−(cos θb + cos θt )

α
− cos θt

2(1 − cos(θb − θt ))

(
cos θb

cos θt

sin(θb − θt ) + θt − θb

)
+O(α).

(B 2)

Taking the leading-order difference between the two interfaces gives the same formula
as equation (7.2). For the interface inside the electrowetting region, figure 17(a) shows
A varying between a maximum value of 1.0 when θb = θt = π/2 and a minimum of
0.5 at θb =0 and θt = π/2. Since relaxation dominates away from the boundary of the
electrowetting region, we can obtain good estimate of A by substituting the data in
figure 6. The computed values of A are 0.9994 and 0.9831 for the interfaces outside
and inside the electrowetting region respectively. This supports the use of A= 1.
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