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Chapter 1 

INTRODUCTION 

Structure development, induced by phase separation, phase inversion, interfacial deforma
tions, coalescence or break-up, is frequently encountered in modern technology and indus
trial processing (Edwards et al. , 1991 ). Examples are provided by the following processes 
and technologies: food processing, hollow porous fibre spinning, oil recovery , ink-jet print
ing, paper making, coating processes, membrane technology and the production of paint and 
cosmetics. The quality of the industrial produels and technologies mentioned can be further 
improved if one knows how to control and manipulate structure development. One way to 
obtain a better understanding of structure development is through modelling. In this thesis we 
are mainly concerned with finding a suitable physical model and the appropriate numerical 
implementation to describe structure development. 

Basically, we can distinguish two ways to induce structure development: thermodynam
ically and mechanically. Firstly, a system which is not in thermodynamic equilibrium can 
separate into phases, which is obviously a form of structure development. Phase separation 
can be induced in several ways: for example by changing the temperature or by adding a 
foreign component. Secondly, an imposed flow or a pressure gradient can also affect the 
structure: it can result in coalescence or break-up of fluid domains or in mechanica! instahil
ities of interfaces. In most cases mechanically and thermodynamically induced structure 
development can not be decoupled. In systems with a spatial dimension larger than one they 
are obviously coupled through interfacial tension and curvature. Other couplings occur when 
properties such as density, viscosity or interfacial tension depend on the composition of the 
system. Therefore, to be able to model structure development one has to include both non
equilibrium thermodynamics and multicomponent hydrodynamics, in a coupled way. Fur
thermore, processes such as phase separation, coalescence and break-up involve topological 
changes: interfacescan (dis)appear or interseet An appropriate model also has to be able to 
describe these topological changes. 

In the classica! approach to multicomponent flow, an interface is assumed to besharp (see 
figure 1.1) and appropriate boundary conditions are applied to conneet the various compon
ents. Solving the equations of fluid dynamics therefore involves solving a moving boundary 
problem. The most ' natura!' numerical technique in this case is the tracking method (Hy
man, 1984; Unverdi and Tryggvason, 1992): the discretisation is such that grid points follow 
the interface. In case of topological changes, which are often encountered during structure 
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development, the tracking method is inconvenient, since complicated re-meshing is neces
sary. To overcome this problem, Brackbill et al. ( 1991) developed a continuurn surface force 
(CSF) method in which the sharp interface is replaced by an artificial, continuous 'colour' 
function. This colour function is used to determine the position and the geometry of the in
terface. Interfacial tension can now be included in the equation of motion as a body force. 
A direct application of boundary conditions is no Jonger required in this case and a fixed 
grid numerical melhod can be used, which is convenient in case of topological changes. The 
disadvantage of the CSF method is that the colour function is an arbitrary function without 
a physical meaning. lt can be shown that numerical results are sensitive to the choice of this 
colour function (Lowengrub and Truskinovsky, 1998). 

In diffuse-interface theories, which go back to the ideas of van der Waals ( 1979), the 
interface also has a non-zero thickness, but it is no Jonger arbitrary. It is determined by the 
molecular force balance at the interface and its value ~ (see figure 1.1) is closely related to the 

sharp interface diffuse interface 

Figure 1.1: Schematic picture of a classica! sharp interface and a diffuse interface. 

fini te range of molecular interactions (Rowlinson and Widom, 1989). Thermodynamically, 
the fini te interaction range is represented by a non-Jocal effect inthefree energy: the Jocal free 
energy density not only depends on lhe local composition, but also on the composition of the 
immediate environment (Davis and Scriven, 1982). Cahn and Hilliard (1958) used a Taylor 
expansion of the free energy density about the homogeneaus state. In this way, the non-Jocal 
effect is represented by a dependenee on local composition gradients rather than non-Jocal 
composition. Non-classica) expressions for the chemica] potential and the stress tensor can 
then be derived in differential form, which allows a direct coupling with the equations of ftuid 
dynamics. 

By using the diffuse-interface approach instead of the classica) approach we introduce a 
new length scale: the interfacial thickness ~. Typically, ~ is about 0 .1 nm for small-molecule 
systems and can go up to 1 nm for polymer systems. The domain size L is normally much 
larger than ~ and the structure size D can basically be anything between ~ and L. If D is 
also much larger than ~ it wiJl be very difficult to resolve the physicaJ value of~ numerically. 
For example, fora droplet with a diameter of I mm and an interfacial thickness of 0.1 nm 
the ratio of the structure size and the interfacial thickness Dj~ equals 107. If we use a 
homogeneously spaeed numerical grid, assuming we need at least 2 grid points to be able to 
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capture the interface, we will need a bout 4 · 10 14 grid points in two dimensions and 8 · 1 021 in 
three dimensions to capture the droplet with the interface. Calculations on these mesh sizes 
are either impossible or very cumhersome using currently available computer resources. Even 
when using more sophisticated numerical techniques such as adaptive re-meshing, still too 
many levels of refinement are needed to capture the interface. In this thesis we therefore focus 
on the question whether it is possible to use a numerically acceptable size for the interfacial 
thickness instead of the real value and still get sufficiently accurate and physically correct 
results. 

In chapter 2 the diffuse-interface metbod wiJl be presenled in detail and it will be shown 
how the coupling with the equations of fluid dynamics is made. In chapter 3 we show some 
basic results of the diffuse-interface approach , explaining the basic features of the method. 
We consider phase separation (nucleation and spinodal decomposition) in one- and two
dimensional systems and interfacial instahilities in a Hele-Shaw geometry. In the next two 
chapters we focus on the question whether we can use a computational interfacial thickness 
which is much larger than the real physical value and still get physically correct and accurate 
results. In chapter 4 we consider 1 flow and instahilities in a Hele-Shaw cell. The computa
tional diffuse-interface results are directly compared to analytical, sharp-interface results for 
therrno-capillary flow. We investigate how the results depend on the choice of the interfa
cial thickness . Chapter 5 deals with coalescence in hyperbalie flows. We again investigate 
the dependenee on the choice of the interfacial thickness. Finally, chapter 6 contains some 
conclusions and recommendations. 
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Chapter 2 

A DIFFUSE-INTERFACE THEORY FOR 

MULTICOMPONENT FLUID SYSTEMS 

2.1 Introduetion 

In this chapter we will describe the diffuse-interface theory in detail. The system which we 
wiJl consider in this chapter is a closed volume V with boundary S containing an inhomo
geneous mixture of N fluids. 

As mentioned in chapter 1, theessen ti al ingredient of diffuse-interface theories is the non
Jocal effect in the free energy of the system. In section 2.2 a lattice model is used to show 
how molecular interactions can give rise to non-Jocal energy effects in binary fluids . Next, 
the discrete lattice model is replaced by a more sophisticated continuous representation of 
the non-Jocal internal energy, in the spirit of van der Waals (1979). We show how a diffuse
interface theory can be constructed, using a Taylor expansion of the density. Section 2.3 is 
devoted to the Cahn-Hilliard theory (Cahn and Hilliard, 1958), which is based on a Taylor 
expansion of the Helmholtz free energy density about the homogeneous state. 

In sections 2.2 and 2.3 we only consider quiescent systems. However, to be able to 
model mechanically induced structure development we have to include convection. Sections 
2.4 to 2.6 are devoted to coupling the equations of hydrodynamics and the diffuse-interface 
approach. In section 2.4 we first write down the local balance equations for mass, mass 
fraction, momenturn and energy, by considering an arbitrary volume Q within V . The local 
balance equations do not form a complete set of equations: the diffusion, momenturn and 
energy flux appearing in the local balance equations need to be specified. In sections 2.5 
and 2.6, non-classica! expressions for the reversible and dissipative parts of the fluxes will 
be derived following the principles of classical irreversible thermodynamics (de Groot and 
Mazur, 1984). Finally, insection 2.7 we consider isotherm al systems, for which the individual 
components are incompressible and in sec ti on 2.8, we briefly discuss polymer systems. 

2.2 Background 

Consider an inhomogeneous, binary fluid within a closed volume V with boundary S, as 
depicted in figure 2.1. The fluids are labelled i, j = 1, 2. A small, plan ar piece of the 
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interface is represented by a lattice. Each site of the lattice, labelled A, B = I . .. N, is either 
occupied by fiuid I (black) or fiuid 2 (white). In general, a site i interacts withall other sites. 

n 

V 

a 

--r.~ -tHHI-{~1-{J-<r ~ ~ 

s 
· · ·K-l K K+l· · 

-n 

· · ·K-lKKH · · 

Figure 2.1 : lallice model of afiuid-jluid inleiface. 

The interaction energy of a site A can be written as 

(2.1) 

where ej8 is the interaction energy: for example, et.f is the interaction energy between 

site A occupied by fluid I and site B occupied by fluid 2. The site accupation variabie cf>~ 
equals I if site A is occupied by fluid I and zero otherwise. A common assumption in lattice 
rnadelling is that only neighbour interactions contribute to the total interaction energy (Doi, 
1996). In figure 2.1 the nearest neighbours are connected by lines: each site has four nearest 
neighbours. If only the nearest neighbour interactions are taken into account, the sum over 
the sites B in equation (2.1) can be replaced by the sum over nearest neighbours of site A 
and ej8 can be replaced by the nearest neighbour interaction energy e;1. Since the density 
varies only in the direction nonna) to the interface, we also assume that there is a uniform 
distri bution in each column K (see figure 2.1) and we replace the site accupation variabie of 
a site A in column K by its average value ;jJ. The interaction energy of a site A in column K 
can now be written as 

(2.2) 

where z is the number of nearest neighbours, z' is the number of nearest neighbours in the 
neighbouring column. Collecting the z'-terms in equation (2.2), we obtain 

(2.3) 

The first term on the right hand side represents the homogeneaus part of the interaction en
ergy. The second term has got a non-Jocal character. The term inside the brackets, ;jJJ + 1 

-
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2(i>f + 1 +if>f -I, can be identified as the discrete second order spatial derivative. That is, by re

placing fi>K by its continuous equivalent lj>(r), we can write the continuous three dimensional 
analogue of equation (2.3) as 

2 

U(r) =- L [ZEijl/>il/>J + z'e;1lf>;a
2

'ï1
2
4>J], 

i.j=l 

(2.4) 

where a is the distance between two neighbouring sites. Dividing by a3 we can define the 
energy density 

(2.5) 

where we used no = zja3 and z/z' = 6 (cubic lattice). lntegrating u(r) over the volume 
V yields the total internal energy. Assuming the EiJ 's are constant, we obtain after partial 
inlegration 

U[lj>, 'ïllj>] = no I [uo(l/>) + ~a 2 e('ïllj>) 2 ] d 3r, 

V 

(2.6) 

where 4> = l/>; = I- lf>J, E = E;; + EJJ- 2EiJ and uo(l/>) = ef/>(1- 4>)- E;;l/>- EJJO- lj>). 
We have also assumed that 'ïllj> vanishes at the boundary of V. By subtracting the entropy 
term we can write the Helmholtz free energy F as 

F[l/>, 'ïllj>] = U[lj>, 'ïllj>]- T S[l/>] = no I [fo(l/>) + ~a 2 e('ïllj>) 2 ] d 3r, 

V 

(2.7) 

where T is the temperature and S is the entropy. It is assumed that there are no non-local 
effects in the entropy. Forsmali-molecule systems this is a valid approximation. In polymer 
systems, however, the conformational entropy, which is associated with the various directions 
in which each bond can point, also has a non-local character, which can easily dominate the 
non-local effects in the internal energy (Helfand, 1982). We will discuss polymer systems in 
more detail in section 2.8. 

The lattice model is a very simple representation of the system. The continuous version of 
the Helmholtz free energy, equation (2.7), was derived using the assumption that only nearest 
neighbour interactions in the lattice contribute to the total interaction energy. However, in 
most systems the distri bution of the molecules is not according to the lattice: there is a density 
distri bution which is determined by the interaction energy. In this spirit, a more sophisticated 
representation of the discrete Helmholtz free energy, which is given by F = - T S +LA U A, 
can be written as a function of the density distri bution (Evans, 1979): 



8 chapter 2 

where n; is the number density of ftuid i and njJl is the pair distribution function, which is 
related to the individual density fieldsas 

(2) ' · ) ( ) ( ' ) (2) ' · ) n;1 (r , r , êiJ = n; r n J r giJ (r , r , êiJ , (2.9) 

with gJf) the pair correlation function . To evaluate this functional one needs to specify the 
pair correlation function . However, for inhomogeneous ftuids this function is not known. 
Very often it is set equal to unity, which is known as the random phase approximation Evans 
( 1979). We will return to this point in the next section. 

The chemica) potential f.J.,; of component i is defined as the change in :F upon addition of 
an amount of component i, keeping temperature, volume and other density distributions n;f.i 
fixed. In classica! (homogeneous) thermodynamics it is not important where the amount of 
component i is added. For inhomogeneous ftuids, on the other hand , the change in :F does 
depend on where the amount of component i is added. Mathematically, this is represented by 
functional differentiation of :F 

oF . :F[n; +on;, n jf.i] - :F[n I, n2] 
f.J.,;(r) =- = hm 3 on; 8V.8n;-+0 f.s v on; d · r 

(2.10) 

Even though the chemica) potential is a function of position in genera), it can be shown that, 
in equilibrium, the chemica] potential is constant everywhere in the ftuid (Davis and Scriven, 
1982). The equilibrium condition can be expressedas 

eq o:F I fJ., --
i - Onj 

11
cq . 

(2.11) 

This equation allows computation of equilibrium density profiles . The equations for the 
chemica! potential are integral equations. The mass flux of a component is related to the 
gradient of its chemica! potential. This means that the local mass balance equation for one 
of the components becomes an integro-differential equation, which is often difficult to deal 
with. Ending up with an inlegral form for the chemica] potential can be avoided using the 
gradient density approach. The densities n 1 (r') are replaced by their Taylor expansions a bout 
r 

nj(r1
) = nj(r) + Vnj(r)·(r- r 1

) + ~V'ïlnJ(r) : (r- r')(r- r ') + . ... 
2 

(2.12) 

The u se of this Tay lor expansion changes the mathematica! structure of the energy functional 
(2.8). The non-Jocal character is now represented by the local values of the density gradients 
rather than the non-local values of the density itself. The resulting equation can be written in 
the same mathematica! form as equation (2 .7) 

:F[nt,n2, Vnt, Vn2] = J f(nt,n2, Vnt, Vn2)d3r. (2.13) 

V 

The chemica! potential, defined by equation (2.1 0), can now be written as 

o:F af af 
f.J.,;(r) =-=--V·--, 

on; an; avn; 
(2.14) 
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which has the differential form desired. 
This relation for the chemica! potential still needs the pair correlation function for the 

inhomogeneous system as input. In the next section we will show how we can avoid this. 

2.3 Cahn-Hilliard theory 

Another way to approximate the free energy functional F, withoutending up with an integral 
expression for the chemica! poten ti al, is to use a Taylor expansion ofthe free energy density f 
about the homogeneous state. Th is approach was used by Cahn and Hilliard ( 1958) and is dif
ferent from the gradient density approach presenled in the previous section: the Cahn-Hilliard 
theory, also called gradient free energy theory, does not need the inhomogeneous correlation 
function as input. As we shall see, the input required for the Cahn-Hilliard approach con
sisis of the Helmholtz free energy density and the two-body direct correlation function of the 
homogeneous fiuid, which both are welt defined and experimentally accessible properties. 

For an N-component fiuid the Taylor expansion of the free energy density f about the 
homogeneous state Jo can be written as 

N 

f({ni}, {V'n;}, {V'V'n; }, ... ) = fo({n; }) + L À;· V'n; 
i=l 

.f.. (I) . .f., 1 (2) + L.....,K; . V'V'n; + L....., -KiJ :V'n;V'nj + ... , 
. I .. I 2 I= l.j= 

(2.15) 

where {n;} = {n 1, n2, ... , nN }. The coefficients À; are zero, because the free energy is 
invariant under refiection (r -+ -r ). Furthermore, isotropy of the homogeneous system 

demands isotropy of the coefficients K} 1) and K }p 

K(l) = K(l)l with (I) of I 
I I ' K; = 

av2n; 0 
(2.16) 

(2) (2) 
with 

(2) a2f I K .. = K .. I, K.. = lj Ij Ij oV'n;oV'nj 0 
(2.17) 

Consequently, we obtain 

.f.. (I) 2 .f.. 1 (2) 
f =Jo+ L.....,K; V' n; + L....., 2.KiJ V'n;·V'nj. 

i=l i.j=l 

(2.18) 

The totalfree energy F can now be written as 

f 3 f .f.. 1 3 f .f.. (J) 2 F = f d· r = <Jo+ .L 2.E;JV'n; ·Y'nJ) d r + L.....,K; V'n;·n d r, 
V V l,j=l S t=l 

(2.19) 
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where Eij = K;T - aK?) I an j. The second inlegral on the right hand si de is a boundary 
integral which equals zero for vanishing density gradients at the boundary. Using statist
ica] thermodynamics, it can be shown that the coefficients EiJ can be written as (Davis and 
Scriven, 1982) 

00 

knT J 2 (2) 
Eij = -

6
- r CO.ij(r; {n;))dr, (2.20) 

0 

where CÓ2
) is the two-body direct correlation function of the homogeneous system and r is 

an inlegration parameter. Hence, as mentioned above, the required input for the gradient free 
energy theory is the free energy density and the two-body direct correlation function of the 
homogeneous ftuid. 

The chemica! potential of component i is again defined by equation (2.14) 

(2.21) 

where we used the fact that the coefficients Eij may depend on the densities {n;). In non
equilibrium, a gradient in the chemica] potential will cause mass diffusion . Assuming that 
the diffusion flux is a Jinear combination of all chemica) potential gradients, we can write 
mass conservation for component i as 

an; N 
- = -'ïl·LL;k'ïlf1.k, 
ar k=I 

(2.22) 

where the L;k 's are the mobility parameters. This equation is known as the Cahn-Hilliard 
equation. Cahn (1964) has used this relation to model spinodal decomposition. Due to the 
truncation of the gradient expansion at the second order the Cahn-Hilliard theory was origin
ally thought to be only valid for the initia) stages of spinodal decomposition or for near-critical 
systems, where density gradients are smal I. However, equation (2.19) is generally assumed to 
be also valid when concentratien gradients are large (Kikuchi and Cahn, 1962; Elliot, 1989). 

Up till now we did not include velocity, which is obviously essential if we want to model 
processes such as coalescence and break-up. In the next section we wil), therefore, first 
write down the local balance equations for mass, momenturn and energy fora system with an 
arbitrary velocity field v. 

2.4 Local balance equations 

Con si der an arbitrary volume element Q within V, with boundary rand outer normal n. The 
total mass of component i within Q is 

(2.23) 
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For chemically inert mixtures M; can only change by a flux across the boundary r . Therefore 

dM; I ap; 3 I ., -- = - d r + p·v · ·n d-r = 0 
dt at ' ' • 

n r 

(2 .24) 

where v; is the velocity field of component i. Gauss' theorem can be used to transferm the 
boundary integral into a volume integral. The resulting volume integral holds for an arbitrary 
volume element, therefore 

ap; - + "ïl ·(p;v;) = 0 . 
at 

(2 .25) 

Conservation of total mass follows from summing equation (2.25) over all components. Th is 
yields 

ap 
- +V· (pv) = 0, 
at 

where p is the density of the mixture 

and v is the barycentric velocity 

N 

v = L:c;v;, with mass fraction c; =piJp . 
i=l 

We can alsodefine the veloeities w; relative to the barycentric velocity 

Wj =V;- V . 

These veloeities are called diffusion velocities. Combining (2.29) and (2 .25) yields 

ap· -' + "ïl·(p;v) = -V·(j;)' 
at 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

where j; = p; w; is the diffusion mass flow per unit area per unit time. Summing this equation 
over all components we should again obtain equation (2.26), therefore 

N 

LPiWi =0 . 
i=l 

(2.31) 

Th is shows that only N- 1 of the diffusion veloeities are independent. Insteadof using the N 
independent veloeities v; we can also use the barycentric velocity and the N - 1 independent 
diffusion veloeities as set of independent variables . 
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The momenturn P of a volume element can change due to contact and body forces. The 
equation of motion for Q reads 

dP =!!_Jpvd3r=fr ·nd2r+jpfexd3r, 
dt dt 

(2.32) 

n r n 

where r is the extra stress tensor and p /ex is the total external force density, defined by 

N 

pfex = LP;f/x. (2.33) 
i=l 

The sameargumentsas used for mass balance result in the following local momenturn balance 
equation 1 

apv - + Y' ·(pvv) = Y' ·T + pfex. 
at 

Using Iocal mass balance (2.26) this can be rewritten as 

dv 
p dt = \7. T + p rx ' 

wheredjdt = a;at + V·\7. 

(2.34) 

(2.35) 

In the absence of heat sourees the first Iaw of thermodynamics for an open system states 
that the change in the sum of kinetic and interna I energy (d[) equals the work done by contact 
and body forces (dW) plus the total energy flux (d Q). That is 

dE: dW dQ 
-=--+-, 
dt dt dt 

(2.36) 

where [, being the sum of the internal energy U and the kinetic energy K, can be written as 

(2.37) 

with u; the specific internal energy of component i and v; the velocity field of component i . 
Using equations (2.28) and (2.31 ), [ can be rewritten as 

where 

[ = J p(u + ~v·v) d 3r, 

n 

N I I N 
u= L(c;u; + -c;w;·w;) = ü +- L:c;w; ·w;. 

i= l 
2 2 

i=l 

(2.38) 

(2.39) 

1 We only consider momenturn conservat ion for the mixture here. 1t may be asked if the equations of motion eltist 
for each component. Bearman and Kirkwood ( 1958) have shown, using statistica! mechanics, that such equations do 
exist and that the sum of these equations can be wrinen in the fonn of equation (2.34). 
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The second term on the right hand side is the kinetic energy of diffusion and u is the 'true' 
internal energy, in the equilibrium sense. However, in most cases, the kinetic energy of 
diffusion can benegleeled (de Groot and Mazur, 1984). In the sequel we wil! use the approx
imation u = u. The performed work and the energy flux can be written as 

N 
dW J 2 ~~ ex 3 dt = T ·V· n d r + ~ PiJ; · V d r , 

r t=I n 

dQ =-f q·n d2r. 
dt 

r 

The resulting local energy balance equation is 

N 
dI ex ~ex 

p-(u +-V· V)= V'·(T·V)- V'·q + pf · V+~/; ·p;W;. 
dt 2 i=l 

(2.40) 

(2.41) 

(2.42) 

Mass and momenturn conservalion can be used to single out the kinetic contribution to equa
tion (2.42). This results in 

N 
du ~rex 

p- = r : Vv- Y'·q + ~ Ji ·p;w;. 
dt i=l 

(2.43) 

In this thesis we will only use gravity f
8 

as an external force, which is the same for each 
component. In this case the last term on the right hand side equals zero. 

In summary, the local balance equations for mass, momenturn and energy in a gravity 
field are 

dp 
dt = -pV'·v' 

de; . 
p- = -V'·Ji' 

dt 

dv 
p-=V'·r+p!g, 

dt 

du 
p- = r : Vv- V' ·q . 

dt 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

To complete this set of equations we need additional equations for the mass, momenturn and 
energy flux, j;. rand q respectively. To this end we follow the phenomenological approach 
of classica! irreversible thermodynamics (de Groot and Mazur, 1984), which stales that the 
ftuxes are linear functions of the thermodynamic forces appearing in the entropy production 
a. The entropy production appears in the loc al balance equation for the entropy s, which can 
be written as 

ds 
p-=-V'·j+a. dt s 

(2.48) 
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This equation stales that the entropy of a volume element can change because of entropy in
and outflow, represented by the entropy flux j 5 , and because of irreversible processes taking 
place within the element, represented by the entropy production a. According to the second 
law of thermodynamics a has to be non-negative 

a 2: 0. (2.49) 

For reversible transitions or systems in equilibrium a = 0 . To find a more explicit expression 
fora weneed to relale changes in the entropy to changes in the other properties appearing in 
the other local balance equations. This can be done by consictering the Gibbs relation. 

2.5 Gibbs relation 

From classica) thermodynamics it is known that, fora homogeneaus system in equilibrium, 
the intern al energy is a function of the entropy s and the densities Pi . Here we consicter 
inhomogeneous fluids . In the spirit of the equilibrium diffuse-interface theory, presenled in 
sections 2.2 and 2.3, the internal energy u is also a function of density gradients 

u= u(s, {Pil. (V pi}). (2.50) 

The total differential of this equation is 

ou N OU N OU 
du = - ds + L -dp; + L --·dV'pi , 

as i= I op; i = I iJ V Pi 
(2.51) 

where the partial differentiations are such that all other independent variables are kept con
stant. Using the thermadynamie relation oü/ as = T, equation (2.51) can be rewritten as a 
non-classical Gibbs relation 

N au N OU 
Tds = du- L - dpi- L -·dV'p;. 

i=l a pi i=J av Pi 
(2.52) 

To be able to couple the Gibbs relation to the local balance equations of the previous section 
we have to write it in a local forrn. To write it in a local form we now assume that, even 
though the total system is necessarily in equilibrium, the Gibbs relation remains valid for a 
volume element travelling with the barycentric velocity v. This approximation is also called 
the local equilibrium approximation (de Groot and Mazur, 1984). 

d N N 
T _!_ = du _ L ~ dp; _ L ~. dV Pi . 

dt dt i=l a pi dt i=J av Pi dt 
(2.53) 

Using the local mass balance equations (2.44) and (2.45) this equation can be rewritten as 

T ds = du _ Po dp _ t 1-L . de; _ t ~. dV Pi 
dt dt p2 dt i=l or dt i = t av Pi dt ' 

(2.54) 
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where the homogeneous part of the chemica) potent i al and the pressure are given by 

()pu 
f.Loi = - - T s and 

dPi 

N 

Po= LPif.Loi- pu + pTs, 
i=l 

respectively. Fora detailed derivation of equations (2.54) and (2.55) see appendix A. 
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(2.55) 

The gradient term in equation (2.54) still needs to be evaluated . An expression for 
d'V Pi jdt can be found by taking the gradient of the local mass balance equation for com
ponent i. After some manipulations we find 

d"ïl0 0 

----;Jt = -"ïlv·'VPi- 'V(pi"ïl·v)- "ïl"ïl·Ji. (2.56) 

We can now combine equations (2.54) and (2.47). Using local mass balance logether with 
the identities V · v = I : 'Vv and 

dU dU 
-- · 'Vv· V Pi= --V Pi: 'Vv av Pi av p; 

we obtain 

with 

N ()pu 
Tr =-pi-L --'\lp;, 

i=l ()'V p; 

N ()pu 
qr = L --p;"ïl·v' 

i=l ()'Vp; 

~ ()pu . 
qd =~--'V·];' 

i=l ()'V p; 

apu apu 
f.Li = - -V·-- - Ts , 

Bp; ()'V Pi 

N 

p = LPif.Li -pu +pTs. 
i=l 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

Note that f.Li has the same mathematica) form as the chemica) potential in sections 2.2 and 
2.3, which was obtained by variational differentiation of the free energy functional. 

To find an expression for the entropy production CJ, equation (2.58) has to be rewritten 
in the form of equation (2.48). Dividing equation (2.58) by T and rearranging the terms we 
obtain 

ds . 
p-=-"ïl·Js+a, 

dt 
(2.64) 
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with 

1 N 

js = T(q- qr- qd- L f.Lijj)' 
i=! 

(2.65) 

I 1 N . f.Li 
a= T(T- Tr):\i'v + (q- qr- qd)·Y'T- LJi·Y'T · 

1=1 

(2.66) 

The entropy production has a simple structure: it is the sum of the produels of the thermo
dynamics fluxes and forces . In equilibrium both fluxes and forces vanish . The equilibrium 
relations are therefore given by 

ji = 0, T = Tr and q = qr . (2.67) 

Here we have identified Tr and qr as the reversible parts of the stress tensor and the energy 
flux, respectively. Besides the isotropie pressure contribution, there is also an anisotropic 
contribution to Tr, which depends on the density gradients. This means that, at an interface 
between two fluids, the tangential stress is not equal to the normal stress. We shall see later 
on that this difference is closely related to the interfacial tension. 

To find phenomenological relations for the thermodynamic fluxes we have to consider the 
dissipative part of the entropy production. 

2.6 Phenomenological equations 

In this section we will derive the phenomenological equations for the thermodynamic fluxes, 
using the principle of classica! irreversible thermodynamics (de Groot and Mazur, 1984): the 
fluxes are assumed to be linear functions of the independent forces appearing in the entropy 
production . To write the entropy production as a linear combination of independent fluxes 
and forces we have to split up the first term on the right hand side of equation (2.66) in a 
deviatoric and a diagonal part. 

(2.68) 

where Tv = T - Tr is the viscous stress tensor and q 17 = q - qr - qd is the heat flux, Tr 
is the trace operator and T~ and \i'dv are the deviatoric partsof Tv and \i'v, respectively. By 
splittingup the viscous term in a deviatoric and a diagonal part we separate the contribution 
of shear viscosity and bulk viscosity. 

We now assume that the flux es are linear functions of the independent forces appearing in 
(2.68). Keeping in mind that fluxes and forcesof different tensorial character can not couple, 
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we obtain the following phenomenological relations 

d As T 2 
T =-[Vv+Vv --V·vl] 

V 2T 3 ' (2.69) 

1 Ab 
- Tr(rv) = -V·v , 
3 T 

(2.70) 

1 N-1 ( ) Ji-k- Ji-N 
qh = AqqV- + L AqkV ' 

T k=l T 
(2.71) 

1 N-1 ( ) . Ji-k- Ji-N 
}; = A;q V T + L A;k V T . 

k=l 

(2.72) 

We have assumed that the viscous stress tensor is symmetrie and we used the fact that only 
N - 1 of the diffusion fluxes are independent. The total viscous stress tensor Tv = T~ + 
Tr(rv) I /3 is the extra stress tensor and the coefficients Asf(2T) and Ab/T can be identified 
as the shear and bulk viscosity, respectively. The relations for q h and i; include so-called 
cross effects: the diffusion flux depends not only on the chemica! potential gradients but 
also on the temperature gradient (thermo-diffusion or Soret effect) and the energy flux also 
depends on the chemica! potential gradients (diffusion-thermo or Dufour effect). 

The local balance equations: (2.44) to (2.47) and the phenomenological equations: (2.69) 
to (2.72), supplemented with the equations of state u = u({p;}, {V p;}, T) and p = p(p , T) 
now form a complete set of equations, which can be solved with the appropriate initia! and 
boundary conditions. 

2. 7 Quasi-incompressible systems 

So far we have considered non-isothermal , compressible systems. In this thesis, however, we 
are mainly concerned with incompressible, (nearly) isothermal systems. For an incompress
ible, isothermalfluid the density depends only on the mass fractions {c; }. lfthere is no volume 
change upon mixing, the reciprocal density is a linear function of the mass fractions (Joseph 
and Renardy, 1993) 

1 N-I c; 1 
-=I: +-, 
p i= I Q; - QN QN 

(2.73) 

where Q; is the density of component i as a pure substance (not to be confused with p; ). 
Mixtures which obey equation (2.73) are called simple mixtures. 

For incompressible systems, the internal energy is a function of {c;} rather than the dens
ities {p; }. That is 

u= u(s, {c;}, {Vc;}) i=I ... N-1. (2 .74) 

This has some important consequences. The first one is that the pressure can not be defined 
as in section 2.5. On the other hand, as pointed out by Joseph and Renardy (1993), fora 
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mixture of individually incompressible fluids with different densities the density changes if 
the composition changes. Therefore, we still have a pressure-like effect, which is called quasi
compressibility and which is represented by the fact that the velocity field is not divergence 
free for such systems. More specifically, combining the local mass balance equations (2.44) 
and (2.45) using the simple mixture relation (2.73) we obtain 

N-1 

V·v = L KiV·ji 
i=l 

I ap I I 
with Ki = -- = - - - . 

p2 aei QN Qi 
(2.75) 

A second important consequence of equation (2.74) is that the structure of the entropy 
production changes. Not only because the time derivatives of {ei} and {Vei} insteadof {pi} 
and {V Pi} appear in the Gibbs relation now, but also because the divergence of the velo
city field is no Jonger an independent thermadynamie force. This effect was also reported 
by Lowengrub and Truskinovsky (1998). The Gibbs relation fora quasi-incompressible sys
tem is (see appendix A) 

Tds = du _I: ~dei_ I: ~.dVe;, 
dt dt i=l aei dt i=l avei dt 

(2.76) 

where dei jdt is given by equation (2.45) and 

dVq I . 
-- = -Vv·Vei- V(-V·Ji). 

dt p 
(2.77) 

Combining the local energy balance equation (2.47) and the Gibbs relation (2.76) now yields 

with 

ds N-1 
pT- = (r- r,):Vv- V·(q- qd) + L(JLi- JLN)V·ji, 

dt i=l 

N-1 au 
Tr = -p L --Vei, 

i=l avei 

N-1 au 
qd =pI: --v.ji, 

i=l ave; 

au 1 au 
/Li- !LN =-- -V·(p--) · 

aei p avei 

(2.78) 

(2.79) 

(2.80) 

(2.8I) 

As stated above, to find a correct expression for the entropy production in terms of independ
ent forces and fluxes we have to include the fact that V·v and Vji are not independent. Using 
equation (2.75) and splittingup Vv into a deviatoric partand a diagonal part we obtain 

(2.82) 
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where 

• • I T f.l;- f.LN = f.li- f.LN- -K; r(T- Tr). 
3 

(2.83) 

The entropy production for an isothermal system is now given by 

I I N-1 

CJ = -(T- Tr):Vdv-- L j;-V(f.Lj- f.LN). 
T T i=l 

(2.84) 

The equilibrium relations are now 

j; = 0 and T - Tr = - p I , (2.85) 

with pis an arbitrary pressure field. The chemica! potential difference f.Lj- f.LN can a\so be 
written as 

(2.86) 

Using the same technique as in the previous section, neglecting bulk viscosity, we obtain the 
following phenomenological equations for the viscous stress tensor and the ditfusion flux 

2 
Tv=1J[Vv+VvT --V·vl], 

3 

l N-1 

j; =TL A;kV(f.Lk- f.LN)' 
k=l 

where 17 is the shear viscosity. 
The local momenturn balance equation (2.46) can now be written as 

dv N-I au 
p- = -Vp- v. L p--Vc;+ V·Tv + pf

8
. 

dt i=l ave; 

(2 .87) 

(2 .88) 

(2.89) 

We can make one further simplification concerning the gradient term in the momenturn equa
tion. The second term on the right hand side can be rewritten as (see appendix A) 

N-1 a N-1 

-V· L p-u-Vc; = -pV f + p L(f.L;- f.LN)Vc;, 
i=l ave; i=l 

(2.90) 

where f = u - T s is the specific Helmholtz free energy. Adding the pressure term and 
dividing by p we obtain 

(2.91) 
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Defining the specific Gibbs free energy as g = f + p j p, the momenturn equation can now 
be written as 

dv N-I 1 
- = - Vg + L(!-Lj- 1-LN)Vc; + - V·Tv + /g. 
dt i=l p 

(2.92) 

In summary : the local mass, mass fraction and momenturn balance equations for an in
homogeneous, quasi-incompressible, isothermal ftuid mixture are 

(2.93) 

• • af 1 af 
1-L;- 1-LN =-- -V·(p--) +K;p, 

ac; p ave; 
(2.94) 

dv ~ • • I T 2 I J. - =-Vg+ ~(/-L; - f.LN)Vc;+-V·1J[Vv + Vv --V·v )]+!i ' 
dt i=l p 3 

(2.95) 

where we have replaced aujac; and aujaVc; by aJ!ac; and af/aVe;, respectively. To 
complete this set of equations we need equation (2.73), an equation which specifies the 
viscosity as a function of the mass fractions 1J = 7J ({c;}) and an equation of state f = 
f (T, {c;}, {V c;} ). The Cahn-Hilliard free energy (2.19) can be used to specify the equation 
of state. 

2.8 Polymer systems 

In section 2.2 we already mentioned that polymer systems need some special attention. In 
polymer systems, conformational entropy, which is associated with the various directions in 
which each bond can point, also has a non-Jocal character. Helfand (1982) showed that the 
ratio of the non-Jocal interna1 energy and the non-local conformational entropy term can be 
estimated as xa 2 jb2 , where x = sj(knT) is a dimensionless measure of the interaction en
ergy, a is the monomer-monomer interaction lengthand b is the mean lengthof one segment 
in the polymer. This shows that for small values of x, which is common in polymer systems, 
the non-Jocal conformational entropy term dominates. The gradient density approach, presen
led in section 2.2, which only includes non-Jocal effects in the internal energy, is therefore 
not valid for polymer systems. 

In the Cahn-Hilliard approach, discussed in section 2.3, a Taylor expansion of the HeJm
holtz free energy density is used instead of a Taylor expansion of the density. The Helmholtz 
free energy also includes entropy. Therefore, one might expect that non-Jocal effects in the 
conformational entropy can be included using the Cahn-Hilliard approach. 

The first Cahn-Hilliard type model for polymer systems was proposed by Debye ( 1959). 
In this model the size of the polymer molecule, the radius of gyration, is used as the interac
tion length. However, Debye's model does not include non-Jocal effects in the conformational 
entropy, because the deformability of the polymer chains is neglected. Therefore, as pointed 
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out by Helfand (I 982), the Debye model can only be applied to dilute polymer solutions in 
which polymer deformability can be neglected , or to near-critical systems in which the cor
reiation length exceeds the gyration radius of the polymer. In spite of these shortcomings, 
Debye's model is still widely used and successfully applied (e.g. Barton et al. , 1998). 

A more sophisticated Cahn-Hilliard type model for polymer blends, which include non
Jocal entropy effects, was proposed by de Gennnes ( 1980). Fora binary, incompressible blend 
it can be written as 

(2 .96) 

where !FH is the (homogeneous) Flory-Huggins free energy density, <Pis the volume fraction 
of one of the components and bis the mean segment length. The second term in the integrand 
represent the non-Jocal effects in the conformational entropy (the non-Jocal intemal energy 
describing the monomer-monomer interactions are neglected). In the weak segregation limit 
(de Gennes, 1977) the parameter À equals 36. In the strong segregation limit the functional 
form for the prefactor of the gradient term is only correct in the long chain limit and À equals 
24 in this case (Lifschitz and Freed, I 993). 

The Cahn-Hilliard theory truncates the gradient expansion at the square gradient term . 
For the weak segregation limit this is a valid approximation . However, when the interfacial 
thickness becomes small compared to the radius of gyration, higher order terms should be in
cluded. Theories which include these higher order terms are for example the self-consistent 
field formalism studied by Helfand and Tagami (I 972) and Helfand and Sapse ( 1976) or the 
density functional approach (Evans, I 979; MeM uilen, I 99 I). Helfand and Tagami (1972) 
studied the conformational stalistics of a polymer chain in a chemica! potential field created 
by other molecules in the system. The conformational stalistics can bere presenled by a func
tion Q(r, r; ro), which is proportion alto the probability that a polymer chain of r segments 
has one end at ro and the other end at r . Fora polymer in a chemica! potential field J.L(r) 
created by other molecules Q satisfies a modified diffusion equation of the form 

a Q b2 2 J.L 
-=-V Q--Q, ar 6 kBT 

(2.97) 

where b is the mean length of a segment. The first term on the right hand has to be put in 
contrast with the non-Jocal energy term appearing in the chemica! potential. In the long chain 
limit the dependenee of Q no Jonger depends on r and an analytica) solution for the inter
face profile and interfacial thickness can be found, which match the Cahn-Hilliard results. 
MeMuilen (199 I) proposed a density functional theory for polymer-solvent systems. Using 
gradient expansions, he found the nonlinear gradientterm appearing in the Cahn-Hilliard-de
Gennes theory as a limiting case of his theory, obtaining both the weak (À = 36) and the 
strong segregation limit (À= 24). MeMuilen found that forinterfaces with a thickness large 
compared to the radius of gyration the Cahn-Hilliard-de-Gennes theory yields sufficiently 
accurate results for the interfacial thickness and tension. 



2.9 Summary 

In this chapter the diffuse-interface approach was discussed in detail. Theessen ti al ingredient 
of the diffuse-interface approach is the assumption that the specifk internal energy not only 
depends on the entropy and the density but also on density gradients, or concentration gradi
ents in case the ftuids are incompressible. The density or concentra ti on gradients are added as 
independent variables to the locally defined specific internat energy. Following the principles 
of irreversible thermodynamics non-classical expressions for the reversible and dissipative 
partsof the diffusion, momenturn and energy ft u x were obtained. 

The governing equations obtained for quasi-incompressible systems, equations (2.93), 
(2.94) and (2.95), will be used as a basis fortherest of this thesis. Exactly the same set of 
governing equations was derived by Lowengrub and Truskinovsky ( 1998) from a variational 
principle in which the Lagrangian takes the form 

12 

[,=I I p(~ivi 2 - f) d
3
rdt , (2.98) 

IJ Q 

with f = f(p, c, Vc). For compressible multi-component systems similar results were 
obtained by Blinowski (1975) using the same technique as used in this chapter. For density
matched ftuids the model is also known as model H in the literature on critical phenomena 
( Gunton et al., 1983; Hohenberg and Halperin, 1977). 

The rest of this thesis is devoted to the application of the diffuse-interface model. Special 
attention will be paid to the question whether the model can be applied to large-scale systems 
in which the physical value of the interfacial thickness can not be captured numerically. 



Chapter 3 

THERMODYNAMIC AND HYDRODYNAMIC 

INSTABILITIES 

3.1 Introduetion 

In this chapter we wil! show the basic features of the diffuse-interface model presented in 
chapter 2 by briefty discussing phase separation and interfacial instabilities. The systems 
considered in this chapter are simple systems, which allow us to study the basic features of 
diffuse-interface modeHing separately. We do not show detailed results or compare to other 
results, rather we will then refer to the literature. 

Section 3.2 is devoted to phase separation. First, we consider one-dimensional density
matched systems. In these systems, there are no effects of quasi-incompressibility or inter
facial tension, which allows us to study phase separation without hydrodynamic coupling. 
In systems with a spatial dimension exceeding one, there is hydrodynamic coupling through 
curvature and interfacial tension. We show the effect of hydrodynamic coupling on spinodal 
decomposition in a two-dimensional system. 

In section 3.3 we consider binary displacement ftows in a Hele-Shaw cell, which consists 
of two closely spaeed parallel plates. The systems considered are thermodynamically in 
equilibrium, but not in the mechanica] sense: the interface becomes unstable if a more dense 
ftuid is placed on top of a less dense one (Rayleigh-Taylor instability) or if a less viscous ftuid 
is displacing a more viscous one (viscous fingering) . A third kind of interfacial instability, 
caused by interfacial tension gradients (Marangoni instability) will be considered in the next 
chapter when we discuss thermo-capillary flow in more detail. 

3.2 Phase separation 

Consider an isothermal, density-matched, incompressible, binary ftuid . In this case mass 
conservalion (2 .93) reduces to V · v = 0 and the local balance equation (2.94) for the mass 
fraction e of component I can be rewritten as 

de A 2 - = -V f.L with 
dt pT 

af af 
f.L =--V·(-)' ae ave (3 .1) 
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where we used J1 = J1 1 - J12 and we have assumed that the Onsager coefficient A is constant. 
In the spirit of the Cahn-Hilliard theory, presenled in section 2.3, we assume that the specific 
Helmholtz free energy J can be written in the following form: 

I 
J(c, Y'c) = Jo(c) + 2EIV'cl2 , (3 .2) 

where the gradient energy parameterE = <'I 1 + <'22 - 2<'12 is assumed to be constant. To 
complete the set of equations we need an additional equation of state, which specifies the 
homogeneous specific Helmholtz free energy Jo as a function of c. A simple approximation 
forfo can be found by using a Taylor expansion of Jo about the critica! point c = Cc, which 
yields 

+: (-) 1(-) I -2 + 1 {J-4 
JO C = C - 20!C 4 C , (3.3) 

where c = c - Cc is the reduced mass fraction and l(c) is a linear function of c. This 
approximation for J is also called the Ginzburg-Landau approximation ( Gunton et al., 1983). 
For example, fora regular solution (Prigogine, 1961) the specific Helmho1tz free energy can 
be written as 

J0R
5 (c) = Jl?c + J1~(1 - c) + RT[c In c + (1 - c) ln(1 - c)] + xc(1 - c), (3.4) 

where Jl? is the chemica] potential of component i (i = 1, 2) as a pure substance, R is the 
specific gas constant and x is the interaction parameter. Ex panding equation (3.4) a bout 
its critica! point, (cc. T c )=(~. ~x/R) , we obtain: a= 4R(Tc - T), fJ = 16RTj3 and 

l(c) = lo + (Jl? - Jl~)è, where lo is a constant. This shows that, for isothermal systems, fJ 
is a positive constant and a is positive below the critica] point and negative for temperatures 
exceeding the critica! temperature Tc. Below the critical point, Jo has the shape of a double 
well potential, as schematically depicted in tigure 3.1. The chemica! potential, as defined in 

Jo c ....------------, 

- c sl----~ 

z 

Figure 3. 1: Schematic picture of the homogeneous specijic free energy Jo as a jtmction of c (lejt) and 
the equilibrium inteiface profile (right). 

(3.1 ), can now be written as 

J1 = JlO- O!C + {Jc3 - EV'2c , (3.5) 
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where JL 0 = JL~ - JL~. For ct > 0 two possible equilibrium solutions are c = ±es, with 
es = .jëilfj. These two solutions represent the equilibrium bulk solutions, which correspond 
to the common tangent solutions of Jo (Ie ft hand si de of tigure 3.1 ). However, there is a nother 
possible solution, which represents the interface profile. For a planar interface, located at 
z = 0 , with z the direction normal to the interface, this solution is given by 

c(z ) = estanh ~ ' with ~ = ~ ' 
v2~ V~ 

(3.6) 

where ~ is a measurefor the interfacial thickness (right hand side of tigure 3.1 ). 
The time evolution of a non-equilibrium system is determined by equation (3 .1 ). To write 

it in a non-dimensional form we u se the following dimensionless variables: c* = ê Ie B , 

JL* = JL~ 2 /(Ees ) , z* = z/~ and t* = tD/~ 2 , where D = AEj(pT~ 2 ). In dimensionless 
form, omitting the asterisk and the tilde notation, equation (3 .1) now reads 

ae 
at 

with (3.7) 

where we have assumed that there is no velocity, that is dcjdt = ac;at . The unstable 
region below the critica) point can be separated into two regions: the meta-stabie region 
(M) and unstable region (U). In the meta-stabie region the second order derivative of Jo 
with respect to c, which is proportion al to the diffusion coefficient, is positive, whereas it 
is negative in the unstable region . A system which is quenched into the unstable region 
is therefore unstable for every infinitesimal perturbation in the composition. This form of 
phase separation is also called spinodal decomposition. In the meta-stabie region only a 
finite perturbation which exceeds a certain critica) size (critica) nucleus) wiJl result in phase 
separation, also called nucleation. Perturbations smaller than the critica! size will decay. 
Figure 3.2 shows the solution 1 of equation (3.7) for an unstable (top) and a meta-stabie initia! 

1=0 I = 40 I= 50 I= 4000 

-] f-------------1 '-------..J ~ Mfill!lill 
' !: c:: .__ ·~JO ...J U[J[[J 

-50 - 50 
z 

Figure 3.2: Spinodal decomposition (top) and nucleation (bot/om) in a one-dimensional system. 

1 For time discretisation we use the Euler implicit method and for spatial discretisation we use a speetral element 
method based on Gauss-Lobatto quadrature . Details about the computational method used are given in the next 
chapter. 
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condition (bottom). The boundary condition dcjdz = 0 and d{Jjdz = 0 were used to 
ensure mass conservation. The top sequence shows spinodal decomposition of an initially 
unstable mixture (c = 0), where a very small random perturbation was used to initiate phase 
separation. The time sequence at the bottorn shows a meta-stabie initia! state (c = -0.7) with 
a supercritical and sub-critica! perturbation. The sub-critica! perturbation decays, whereas 
the supercritical grows. The equilibrium state is reached when the environment is completely 
depleted. In equilibrium the interface profile is again given by equation (3.6). The one
dimensional nucleation process was studied in detail by Bates and Fife (1993) and Dell'lsola 
et al. ( 1996). 

The assumption of a zero velocity field can not be justified when the den si ties of the fluids 
are not the same. The effect of quasi-incompressibility was investigated by Lowengrub and 
Truskinovsky (1998) by considering phase separation in an inviscid, quasi-incompressible, 
binary fluid. They found that compressibility has little effect on the interface structure for 
a spherically symmetrie nucleation process in the absence of velocity. In the dynamic case, 
considering spinodal decomposition in quasi-incompressible binary fluids, they found that 
diffusion driven flow can occur. 

In dimensions greater than one, the \oca\ balance equations for mass fraction and mo
mentum are obviously coupled through curvature and interfacial tension . Interfacial tension 
y can be defined as the excess tangential stress (Davis and Scriven, 1982). For a planar 
interface this reads 

00 

f A A A 

y = n·(-c,·n- "lr·t ) dz, (3.8) 

- oo 

where -c, is the reversible part of the stress tensor and n and i are the unit veetors normal 
and tangential to the interface, respectively. Using equation (2.79) with N = 2 for -c,, the 
interfacial tension can be written as 

(3.9) 

Using the equilibrium profile (3.6), we obtain 

2..Ji P€ 2 
Y =---es. 

3 ç (3 .1 0) 

Neglecting inertia, momenturn conservalion (2.95) fora density-matched, viscosity-matched 
binary fluid in the absence of an extemal force can be written as 

"ïlg=v"ïl2v+tJ"ïlc . (3.11) 

Using the dimensionless variables defined above and in addition v* = vÇ j D and g* = 
gÇ2 j(as), we obtain the following dimensionless momenturn equation 

"ïlg = Ca"ïl2v + tJ"ïlc . (3.12) 
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The capillary number Ca is defined by 

vD ZJ2ryD 
Ca=-=----

EC~ 3 y~ ' 
(3.13) 

where we used equation (3.1 0). 

50 
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x 

Figure 3.3: Time sequence (t = 0, 50, 150, 500, 1 000) of spinoclal decomposition in a two-dimensional 
binaryfiuidfor Ca= 103 (top) and Ca= 1 (bottom). 

Figure 3.3 shows the solution of equation (3.12) and the two-dimensional equivalent of 
equation (3.7) for an initially unstable solution using Ca= 103 (top) and Ca= I (bottom), 
which are typical values for the capillary number considering that D and ~ have the same 
order of magnitude. The results show a difference in the coarsening process: for Ca = 103 

the coarsening is slower. 
The effect of the viscosity induced coupling between diffusion and motion on the coarsen

ing process for off-critical quenches in binary, isothermal fluids was investigated in detail by 
Gurtin et al. ( 1996). They found that the hydrodynamic interactions in the system caused 
flow-induced coalescence of drop! ets, which results in an enhanced coarsening process. That 
is, the late-stage coarsening is faster than predicted by the classicai, diffusion controlled 
sealing laws. Jasnow and Vinals ( 1996) investigated the effect of a temperature gradient 
on spinodal decomposition in a binary fluid. They concluded that the inclusion of hydro
dynamic coupling washes out the directional coarsening, which arises in the case that the 
hydrodynamic coupling is not included. 

In this sectien we only considered small scale systems. We used the interfacialthickness, 
typically O.Inm, as a length scale and the diffusion time, typically 0.1 ns as a time scale. For 
these scales, the computational domain used in figure 3.3 corresponds to a domain which 
typically measures 1 02nm 2. If we want to extend to much larger systems, the real interfacial 
thickness can nol be captured numerically in genera!. This forces us to use a numerical 
interfacial thickness which is much larger than the real one. The sealing of such systems 
needs special attention: we have to make sure that, if we change the interfacial thickness, 
we are still descrihing the same system with the same interfacial lension and diffusion. This 
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issue is briefly discussed in the next section, where we investigate interfacial instabilities. A 
more detailed discussion of the sealing problem can be found in chapters 5 and 6. 

3.3 Interfacial instabilities 

Interfacial instahilities are a result of destabilising pressure gradients near a perturbed in
terface. If we can neglect inertia, the momenturn equation (2.95) provides three possible 
sourees forthese destabilising pressure gradients: density gradients in an ex tema! force field, 
viscosity gradients in a spatially varying velocity field and interfacial lension gradients. In 
the first case an interface can become unstable if a more dense fluid is placed on top of a 
less den se one (Rayleigh-Taylor instability). The second case can lead to instahilities if a less 
viscous fluid is displacing a more viscous one (viscous fingering). Thirdly, in some cases, 
local stretching and shrinking of interfaces due to interfacial lension gradients can lead to a 
destabilising conveetien (Marangoni instability) in the surrounding liquid. In the next chapter 
we consider Marangoni instahilities within the framewerk of thermo-capillary flow. 

In this section we briefly discuss Rayleigh-Taylor instahilities and viscous fingering in a 
Hele-Shaw cell, which consists of two closely spaeed parallel plates (Saffman and Taylor, 
1958). Consider two, isothermal, non-wetting fluids in a Hele-Shaw cel! as depicted in fig
ure 3.4. One fluid is displacing the other one with a velocity v J. The cell is tilted off a x is at 
an angle e (see tigure 3.4), such that the external force which acts onthefluid inside the cel! 
equals !g sine. The plates are assumed to be perfectly smooth such that the contact !i nes can 

Figure 3.4: Schematic picture of a displacement flow in a Hele-Shaw cel/. 

move freely. We assume that the plate spacing band the Reynolds number Re = Vbjv are 
smal!, such that inertial terms in the momenturn equation can be neglected and the bulk flow 
between the plates cao be assumed to be a Poiseuille flow. Formally, this approximation is not 
valid for the interface: the moving interface problem involves a complicated small-scale flow 
near the contact Jin es (Seppecher, 1996; Jacqmin, 1996)2. The assumption of a Poiseuille 
flow automatically implies that ap;az = 0. In addition, we assume that the mass fraction cis 
independent of z. Using these assumptions we can average the governing three dimensional 
equations, (2.93) to (2 .95), over the gap. This yields the following set of two-dimensional 

2 The diffuse-interface results of Jacqmin (1996) match the experimental results on rnaving contact lines of Dus
san V and Davis (1974 ). 
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equations 

dp 
dt = -pV·v' (3.14) 

de A 2 • . • at 1 at 
pdt = TV J.L wllh J.L =-- -V·(p-) + Kp, 

ae p ave 
(3.15) 

121] 2 
pVg = ryV2v- !;'lv- ?,IJV·vl + pJ.L•ve + pj

8 
sine, (3 .16) 

where v = (V x, Vy) is velocity averaged over the gap and the density p is given by the simple 
mixture relation: 21 p = (I - e)IQ2 + (1 + e)IQI. The second term on the right hand side 
of equation (3.16) is the Darcy term, which takes into account the friction force of the flow 
due to the plates. In most systems with a small plate spacing, the Stokes term (the first term 
on the right hand si de of equation (3.16)) can be neglected3. Th is set of equations can be 
further simplified using a Boussinesq approximation (Lowengrub et al., 1998): the density 
difference is small, such that it can be negleeled in all terms except the gravitational term. 
This way, we obtain 

V-v=O, (3.17) 

de A 2 3 2 
- =--V J.L with J.L ={Je - cxe- EV e, 
dt QIT 

(3.18) 

12ry p . 
V g = J.L V e - --2 v + - j

8 
sm 0 , 

Qlb Ql 
(3.19) 

where, as in section 3.2, we used the Ginzburg-Landau approximation for f . By using the 
Boussinesq approximation we avoid the effects of quasi-incompressibility. For this two
dimensional problem it is convenient to rewrite equation (3.19) in termsof the stream function 
1/J, which is defined by v = (alf! 1ay, -at 1ax ). The local balance equation for 1/t is obtained 
by taking the curl (Vx) ofthe momenturn equation. This yields 

(3.20) 

where we have approximated the density as pI Q 1 = 1 + ~ e with ~ = 1 (Q 1 - Q2) IQ I· 

To write the governing equations in a non-dimensional form we use the following dimen
sionless variables: e* = eles, J.L* = J.Lt; 21(Ees), V*= LV, v* = viV and t* = tVIL, 
where V is the characteristic velocity and L is the lateral si ze of the cell. Omitting the asterisk 
notation, the dimensionless equations now read 

de 1 2 3 2 2 
- = -V J.L with J.L = e - e- C V e, 
dt Pe 

(3.21) 

1 
-k2CaV·(ryV1fi) = CVxJ.LVe+BoVxe.{g, (3.22) 

3 In the next chapter, where we consider thermo-capillary flow, it can not always be neglected, because velocity 
gradients parallel to the plates can be large in that case. 
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where k2 = I2L 2 jb2 is the dimensionless permeability and the Peelet, Cahn, capillary and 
Bond number are given by 

LV ~ 2v'2171V 2v'2o1ÇI/~Isin1n 2 

Pe = -, C =- Ca=---- and Bo = -----"'--- --
D L' 3 y 3 y 

(3.23) 

respectively. 
First, we consider the Rayleigh-Taylor instability: the viscosity is assumed to be constant 

and the injection velocity v, equals zero. Figure 3.5 showshow interfacial lension affects 
the stability: in the picture on the left hand side interfacial lension is low compared to the 
gravitational force and on the right hand side it is high. More precise: on the left we used 

y 
-I 

-1.5 

1.5'----------' 

t = 0.8 
1=0.4 
t=O 

y 
-I 

-1.5 

t=O 

.k-t =20 -- . ~ 
t = 100 

1.5'----------' 

Figure 3.5: Time evolution of an unstably strati.fied binary fiuid, where the capillary force is smalt com

pared to gravitationalforce on the leftand large on the right. 

Bo = k 2 and on the right Bo = k-2 . Furthermore, we used Ca= I, Pe = 10\ k = IO..J12, 
C = 0.05 and domain si ze 2 x 3 in both cases. Starting with the same initia! perturbation at 
t = 0 the system with low interfacial tension becomes unstable, whereas it is stabie when the 
interfacial lension is high. 

As stated in the previous section, the choice for ~ in large scale systems is somewhat 
arbitrary, since it is no Jonger directly coupled to the real value of the interfacial thickness. 
We assume that the interfacial tension keeps its value if we change ~, that is the capillary 
number and the Bond number are independent of~. The Cahn number and the Peelet number, 
however, still depend on~ . In tigure 3.6 we consider the same situation as in the left hand side 
picture of tigure 3.5, but we vary the Cahn number (left) and the Peelet number (right) to see 
how this affects the results. On the left, the interface at t = 0.8 is shown for various values 
of the Cahn number and on the right, for various values of the Peelet number. The results 
show that increasing the Cahn number and decreasing the Peelet number has a stabilising 
effect. In both cases we tind convergence, which might indicate there is a sharp-interface 
limit. However, the sealing concerning the sharp-interface limit is more complicated than 
just taking C ~ 0 and P e ~ oo. Equation (3.1 0) shows that to obtain a tin i te value for y in 
the sharp-interface limit, EC~ has to be proportional to ~ . This will also affect the sealing for 
the Peelet number. A detailed discussion of this issue is postponed to chapter 5. 
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Figure 3.6: Interface profile for the unstable situation infigure 3.5 at/ = 0.8 for various values of the 
Cahn number C (left) and the Peelet number Pe ( right). 

Finally, we consider viscous fingering: one ofthe tluids is displacing the more viscous one 
with a velocity v J. The viscosity is chosen to be a linear function of c, such that the viscosity 
ratio of the two tluids equals I 0. Figure 3.7 shows the time development of an initially planar 
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Figure 3.7: Viscousfingeringfor Ca= 10 (top) arui Ca= 0.1 (bouom). 

interface with a small random perturbation, in a reference frame moving with the injection 
velocity VJ, for two values ofthe capillary number: Ca= 10 (top) and Ca= 0.1 (bottom). 
Moreover, we used C = 0.1, Bo = 0 and Pe = 500 in both cases. Again, the results show 
the stabilising effect of interfacial tension: for Ca = 0.1 the growth rate of the instability is 
smallerand a larger wavelength is picked up, which is in qualitative agreement with a linear 
stability analysis (Bensimon et al. , 1986). The dependenee of this system on the Peelet and 
the Cahn number is similar to the dependenee for the Rayleigh-Taylor instability: forsmaller 
Cahn numbers and for larger Peelet numbers a slightly larger growth rateis observed. 

In this section, we only considered viscous fingering and Rayleigh-Taylor instabilities 
separately. If both are included, there can be competing effects: for instanee when the less 
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viscous fluid has got a smaller density. In miscible systems, these competing effects were 
investigated by Maniekam and Homsy ( 1995). Furthermore, they also considered nonlinear 
viscosity profiles, which can lead to reverse fingering. Immiscible displacement flows were 
considered in detail by Bensirnon et al. (1986). In their review paper they also consider the 
zero surface tension limit, in which tip splitting can result in fractal interface structures. 

3.4 Conclusions 

In this chapter we investigated phase separation and interfacial instahilities in a Hele-Shaw 
cell. Phase separation was considered in smali-scale systems in which the physical value of 
the interfacial thickness can be captured numerically. Interfacial instabilities, discussed in 
section 3.3, normally have a length scale which is much larger than the physical value of the 
interfacial thickness . In this case, the interfacial thickness can not be captured numerically 
and has to be replaced by a numerically acceptable one. In this case, the sealing needs special 
attention. 

Convergence was observed for the Rayleigh-Taylor instability for C-+ 0 and Pe-+ oo. 
This might be a first indication that the diffuse-interface approach can also be used to model 
large-scale systems and that it might be possible to bridge the gap between sma\1-scale and 
large-scale systems in this way. 

However, in section 3.3 it was also argued that the sealing is more complicated than 
just taking C -+ 0 and Pe -+ oo. In the next two chapters, the sealing problem will be 
investigated in more detail. 



Chapter 4 

THERMO-CAPILLARY FLOW AND 

INSTABILITIES IN A HELE-SHAW CELL 

This chapter is partly after: 
'Diffuse-interface modelling of thermo-capillary instahilities in a Hele-Shaw cell'. 

M. Verschueren, F.N. van de Vosse and H.E.H Meijer. 

4.1 Introduetion 

J. Fluid Mech. 
(submitted) 

An imposed temperature gradient along an interface between immiscible fluids can induce a 
flow if the interfacial tension depends on temperature. This phenomenon is called thermo
capillary or Marangoni flow (Davis, 1987) and is often encountered in industrial processing 
(Edwards et al., 1991). In industrial processes thermo-capillary flow is often accompanied 
by other phenomena which involve topological changes in interfaces, such as coalescence, 
break-up and phase separation (Kuhlmann, 1999). In genera), interfacial tension depends not 
only on temperature. It can also depend strongly on the concentration of a foreign component 
at the interface. This situation can lead to spontaneous interfacial activity, called 'interfacial 
turbulence' by Sternling and Scriven ( 1959). In some cases the interfacial deformation is 
so strong that dropiets are pinching off (Sherwood and Wei, 1957). The goal of the present 
chapter is to find a physical model and an appropriate numerical implementation which can 
describe thermo-capillary flow allowing for topological changes. 

In the classica) approach to multi-component flow, an interface is assumed to be sharp 
and appropriate boundary conditions are applied to conneet the various components. Solving 
the equations of fluid dynamics therefore involves solving a moving boundary problem. The 
most 'natural' numerical technique in this case is the tracking method (Hyman, 1984; Unverdi 
and Tryggvason, 1992): the discretisation is such that grid points follow the interface. In case 
of topological changes the tracking method is inconvenient, si nee complicated re-meshing is 
necessary. To overcome this problem, Brackbill et al. (1991) developed a continuurn surface 
force (CSF) method in which the sharp interface is replaced by an artificial, continuous colour 
function. This colour function is used to delermine the position and the geometry of the 
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interface. Interfacial tension can now be included in the equation of motion as a body force. 
A direct application of boundary conditions is no Jonger required in this case and a fixed 
grid numerical methad can be used, which is convenient in case of topological changes. The 
disadvantage of the CSF methad is that the colour function is an arbitrary function without 
a physical meaning. It can be shown that numerical results are sensitive to the choice of this 
colour function (Lowengrub and Truskinovsky, 1998). 

In diffuse-interface theories, which go back to the ideas of van der Waals ( 1979), the 
interface also has a non-zero thickness, but it is no Jonger arbitrary. It is determined by the 
molecular force balance at the interface and its value is closely related to the finite range of 
molecular interactions (Rowlinson and Widom , 1989). Thermodynamically, the finite inter
action range is represented by a nonlocal effect inthefree energy : the Jocal free energy dens
ity not only depends on the local composition , but also on the composition of the immediate 
environment (Davis and Scriven, 1982). Cahn and HiJhard ( 1958) used a Taylor expansion of 
the free energy density about the homogeneaus system. In this way, the nonlocal effect is rep
resented by a dependenee on Jocal composition gradients rather than non-Jocal composition. 
Non-classica] expressions for the chemica! poten ti al and the stress tensor can then be derived 
in differential form, which allows a direct coupling with the equations of fluid dynamics. 

The diffuse-interface approach has been used to study a wide range phenomena such as 
nucleation, spinodal decomposition , capillary waves, instabilities, mixing and rnaving contact 
Iines. A review on recent developments in diffuse-interface rnadelling is given by Anderson 
et al. ( 1998). Antanovskii (1995) studied thermo-capillary flow in the one-dimensional case 
using the diffuse-interface approach and Jasnow and Vinals ( 1996) studied thermo-capillary 
motion of small droplets. Jasnow and Vinals also derived the sharp-interface expression for 
interfacial tension (gradients) from their diffuse-interface capillary term in the momenturn 
equation, but they only show results for very small droplets. In this chapter we focus on 
the question whether the diffuse-interface model can be applied todropJets with radii much 
larger than the physical interfacial thickness. 

We study thermo-capillary motion in a Hele-Shaw cell . The results for pinned planar and 
circular interfaces are directly compared to the analytica! results of Boos and Thess (1997). 
The dependenee on the interfacial thickness is investigated, considering the sharp interface 
limit. Finally, we study thermo-capillary instahilities caused by a temperature gradient per
pendicular to the interface. In section 2 wedefine the system to be investigated. In section 3 
the diffuse-interface theory is presented and non-classica! expressions for the diffusion flux 
and the reversible part of the stress tensor are derived, following the principles of classica) 
irreversible thermodynamics (de Groot and Mazur, 1984). Section 4 is devoted to the nu
merical implementation of the governing equations, focusing on the Gauss-Lobatto speetral 
element discretisation. Results are presented and discussed in sections 5 and 6. Finally, 
sec ti on 7 contains some conclusions. 

4.2 System definition 

We consider two immiscible, incompressible, non-wetting fluids in a Hele-Shaw cell, which 
consistsof two, closely spaeed parallel plates (see figure 4.1 ). We assume that the two fluids 
have equal density pand dynamic viscosity T) . Along both plates, which are assumed to have 
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Figure 4. I: Schematic picture of a Hele-Shaw geometry, where b is the disrance between the plat es and 

L is the structure size of the interface. 

a large therm al conductivity, a temperature gradient of the following form is imposed 

T = ~~ + Aêr ·r, (4.1) 

where A is a constant, êr is the unit vector in the direction of the temperature gradient and 
r = (x, y) is the spa ti al coordinate parallel to the plates. Interfacial tension y is assumed to be 
a function ofthe temperature. For most fluids interfacial tension decreases with an increasing 
temperature. We assume that the thennal Peelet number is small, that is PeT = Vbj).. « 1, 
where V is the thenno-capillary velocity scale and À is the heat diffusivity of the fluid. In this 
case the effect of fluid motion on the temperature field can be neglected 1, which means that 
the temperature of the fluid between the plates is also given by equation (4 .1 ). 

For small Reynolds numbers Re= Vbjv, with v = 7J/P is the kinematic viscosity, fluid 
flow is governed by the Stokes equations, which read in dimensionless form 

v<3l. v<3l = 0 , 

\7(3) · T(3) = 0, 

(4.2) 

(4.3) 

where \7(3) =('à fox, a;ay, 'à/'àz), v<3l is the threedimensional velocity and T<3l = - p<3l I+ 
vnlv + v(3lv T is the stress tensor, with p(3) the pressure I the unit dyad. The kinematic and 
the stress boundary condition are 

[v<3lD = 0, (4.4) 

[T<3l ·nD = -
1
-(ynvpl ·n- ~< 3 ly), 

Ca · 
(4.5) 

respectively, where Ca = vV jy0 is the capillary number, IÎ is the unit vector normalto the 

interface and v}3l = (I -IÎIÎ). \7(3) denotes the interface gradient. 
For non-wetting fluids in a Hele-Shaw geometry with small plate spacing b the bulk flow 

is a Poiseuille flow. In this case the three-dimensional governing equations can be averaged 
over the gap. Th is yields the following set of two-dimensional governing equations 

'V·v=O, 

'Vp = 'V2 v- k2 v, 

(4.6) 

(4 .7) 

1 It can be shown that, even if the heat diffusivity of the !luid is zero, the deviation from the plate temperature T 

is still smal! as long as the temperature gradient A and the plate spacing b are small (Boos and Thess, 1997). 
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where V = (B/Bx, a;ay), v = (vx, vv) is the velocity averagedover the gap and k = 
l2L 21 b2 is the dimensionless permeability of the cell. Equation ( 4.7) is the two-dimensional 
Stokes equation with an additional Darcy term, which takes into account the friction force of 
the flow due to the plates. The Darcy term is normally assumed to be much larger than the 
Stokes term. However, this approximation is only valid if the structure size L is much larger 
than the plate spacing and if the velocity gradients parallel to the plates are small compared 
to velocity gradients perpendicular to the plates. In case of thermo-capillary flow, velocity 
gradients parallel to the plates can be large in a smal! region near the interface. 

We assume that Stokes-Darcy equation (4.7) also applies to the interface and we will not 
consider any smali-scale flow phenomena in the vicinity of the contact lines2 . The contact 
I i nes are assumed to be either pinned or freely movable. In case of pinned contact I i nes the 
normal component ofthe kinematic boundary condition is v·Îl = 0. 

The necessity to apply boundary conditions (4.4) and (4.5) is very inconvenient in case of 
large interfacial deformations or topological changes in the interface. Furthermore, the phys
ical mechanism controlling topological changes is missing. In the next section we present the 
diffuse-interface theory, which includes the physical mechanism by considering non-Jocal ef
fects in the free energy of the system. All properties vary continuously across the interface, 
which allows us to include interfacial tension as a locally acting body force. 

4.3 Diffuse-interface theory 

Diffuse-interface theories are based on non-Jocal effects in the free energy of the system. 
As stated in the first section, these non-Jocal effectscan be represented by a dependenee on 
local composition gradients. Therefore we start with the assumption that the specific internal 
energy u depends not only on the entropy s and the mass fraction of one of the components 
c, but also on the gradient of c. That is u = u(s, c, Vc). Besides the continuity equation and 
the Stokes equation, we now also need the local balance equations3 for c, u and s 

de 
p dt = -V·j, (4.8) 

du 
P - = -r·Vv- V·q dt . , 

ds 
P- = -V. js + (J , 

dt 

(4.9) 

(4.10) 

where j is the diffusion flux, q is the energy flux, js is the entropy flux and CJ is the entropy 
production. The second law of thermodynamics states that we must have CJ ::: 0, where the 
equal sign applies for systems in equilibrium or reversible changes. In the diffuse-interface 
approach the stress tensor -r also includes interfacial tension and is, therefore, no Jonger 
defined by the classica! relation given in the section 2. One expects an additional reversible 
part, depending on V c, which includes interfacial ten si on as a body force. In a sim i lar way, 
the diffusion flux j and the energy flux q also depend on V c. 

To find relations for j, T and q, we follow the principles of classica] irreversible thermo
dynamics (de Groot and Mazur, 1984): the fluxes are assumed to be linear functions of the 

2 Jacqmin (1996) studied tluid motion near a moving contact Jine, using the diffuse-interface approach. 
3 In this section we will omit the superscript <3) for three dimensional systems 
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thermadynamie forces appearing in the entropy production a . A more explicit expression for 
a can be found by considering the Gibbs relation, which is given by the total differential of 
u. Assuming local equilibrium for a volume element moving with the flow (de Groot and 
Mazur, 1984), the Gibbs relation reads 

du au I ds au I de au I dVe 
dt = as c.Vc dt + ae s.Vc dt +aVe s.c·----;}f. 

(4.11) 

In the sequel we omit the subscripts denoting the variables which are kept constant. The local 
balance equation for Vc can be found by considering the gradient of equation (4.8). After 
some manipulations we find 

dVc I 
- = -Vv·Vc- V(-V ·j) . 
dt p 

(4 .12) 

Combining equations (4 .8) to (4 .12) we obtain the following relation for the entropy produc
tion4 

where Vd vis the deviatoric part of Vv and 

- au 
T =-p--Vc 

ave ' 

- au 
q = p-V·j and 

ave 

au au 
JL=--V·-

ac ave 

(4.13) 

(4.14) 

(4 .15) 

(4.16) 

are the reversible part of the stress tensor, the energy flux due to mass diffusion and the 
generalised chemica! potential, respectively. The entropy production has a simple structure: it 
is the sum of the productsof the thermadynamie flux es and forces. In equilibrium both flux es 
and forces vanish. Consequently, the equilibrium part of the diffusion and the energy flux are 
equal to zero and the reversible part of the stress tensor can be written as T, = -pI + i, 
where pis an arbitrary pressure field . 

The dissipative partsof flux es, the viscous stress tensor Tv = T-T,, the energy flux q and 
the diffusion flux j, are assumed to be linear functions of the thermadynamie forces . Keeping 
in mind that fluxes and forcesof different tensorial character do not couple, we obtain 

Av T 
Tv = 

2
T (Vv + Vv ) , (4.17) 

q=-A V_!_-A ·VI!_ qq T qJ T ' (4.18) 

. 1 JL 
J = -AjqVT- AjjVT' (4.19) 

4 For more details see chapter 2. 
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where we have assumed that the viscous stress tensor is symmetrie. The A's are the phe
nomenological coefficients. The coefficient Av/2T can be identified as the shear stress 1], 

Aqq I T 2 is the heat conductivity and A JJ is the mobility parameter. Equations ( 4.18) and 
( 4.19) also include the cross-effects, the Soret and the Dufour effect (Bird et al., 1960), which 
will be negleeled in the sequel. 

In this chapter we are only concemed with small linear temperature gradients which do 
notchange in time. In this case the governing equations are given by 

Y'·v=O, (4.20) 

de AJJ 2 
p- =-V fL' 

dt T0 

(4.21) 

Y'·(Tr +Tv)= 0, (4.22) 

where we have assumed that A JJ is constant. To complete this set of equations we need 
an equation of state for the inhomogeneous system. Using a Taylor expansion about the 
homogeneaus system, Cahn and Hilliard (1958) derived the following form for the specific 
Helmholtz free energy 

I 2 
j(T, c, V'c) = fh(T, c) + 2EIV'cl , (4.23) 

where E is the gradient energy parameter, which is assumed to be constant. Using an addi
tional Taylor expansion of fh about the critica\ temperature Tc and the critica] composition 
Cc yields the Ginzburg-Landau form (Gunton et al., 1983) 

j(T, è, V'è) = ~,Bè 4 - ~a(Tc- T)è2 + ~EIV'èl 2 , (4.24) 

where è = c - Cc. The parameters a and .B are both positive constants. Using the therma
dynamie re\ations aujacls.Vc = af/aciT.Vc and auja\i'cls.c af/a\i'ciT.c the chemica\ 
potential ( 4.16) can be written as 

fL = ,Bc3
- a(Tc- T)c- EV'2c, (4.25) 

where we have omitted the tilde notation. In equilibrium fL equals zero. Besides the spatially 
uniform (bulk) solutions c = ±es, withes = .ja(Tc- T)j,B, there is another possible 
solution, which represents the interface profile. For a planar interface, with z the direction 
normal to the interface, this salution is given by 

z 
c =es tanh h~ with ~ = J E , 

a(Tc- T) 
(4.26) 

where ~ is the interfacial thickness. 
Interfacial lension y is determined by the choice of the equation of state. It can be defined 

as the excess tangential stress: 

00 00 

Y = I n · (r, .;, - Tr ·t)dz = pE I (de /dz)
2
dz . (4.27) 

-00 -oo 
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Using equation (4.26) we obtain 

2,Ji p,fi 3 
y = ---[a(Tc- T)p. 

3 fJ 
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(4.28) 

In the momenturn equation interfacial tension is included in V· T,.. For small temperature 
gradients V·Tr can be rewritten as V·T,. =-V pg +pJ-tVc, whereg = f + p/p is the specific 
Gibbs free energy. The momenturn equation can then be written as5 

(4.29) 

where we used the Stokes-Darcy approximation for the viscous part. Computationally, it is 
convenient to rewrite the momenturn equation in terms of the stream function 1jt, which is 
defined by v = (aljtjay, -aljt;ax). This way mass conservalion is automatically satisfied. 
The equation for 1jt is found by taking the curl of equation (4.29). This yields 

(4.30) 

where V x denotes the curl. 
To scale the governing equations we use the following dimensionless variables: c* = 

c/cn0 , r* = r/L, v* = vjV, J-t* = J-t~]/(ECn 0 ), t* = tVjL, T* = T/Tu and 1/t* = 
1/t/(LV), where ~ 0 = ~(T 0 ) and CBo = cn(T0 ). Omitting the asterisk notation we obtain the 
following dimensionless governing equations 

de= -
1
-V2J-t with J-t = c3 - (1- {êr·r)c- C2V2c, 

dt Pe 

V2(V21jt- k21jt) = _1 _ _!__V XJJ,VC' 
CaC 

( 4.31) 

(4.32) 

where the Peelet number Pe, the temperature parameter {, the Capillary number Ca and the 
Cahn number C are given by 

pT0 {/;LV AL 
Pe = { = ---

AjjE Tc- To 

respectively. 

~ovV ~u 
Ca = - 2- and C = -

L' ECBo 

(4.33) 

Analytica! solutions can only be obtained in some special cases. In general a numerical 
implementation is needed. 

4.4 Computational methods 

To discretise the governing equations we use a speetral element method (Timmermans et al., 
1994 ). The computational domain Q is divided into Net non-overlapping sub-dornains ste 
and a speetral approximation is applied on each element. The basis functions cp, which are 
used for the spatial discretisation, are high-order Lagrange interpolation polynomials through 
the Gauss-Lobatto inlegration points defined per element. 

5 from now the equations are two dimensional 
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The momenturn equation ( 4.29) is a fourth order differential equation in lf!. Si nee the 
basis functions <P are elements of H 1, that is H 1 (Q) = {</J I <P E L 2 (0.), 'V</J E L 2 (0.) x 
L 2 (0.)). we split up the momenturn equation into two second order differential equations 

V 2 Q = h, 

\121/1 - k21/l = Q ' 

(4 .34) 

(4.35) 

where h = ca- 1 c- 1 V x J.L 'Vc . The boundary conditions for Q and 1/1 are either homogen
eous Neumann or Dirichlet. The Galerkin weighted residual representation of the differential 
equations is 

(V2 Q, w)n = (h , w)n, 

(\121/1, w)n- k2(1/l, w)n = (Q, w)n, 

(4 .36) 

(4 .37) 

where the inner product (a, w)n = fn awd2r and wis the standard Galerkin test function. 
Part ia! integration of the integrals on the Ie ft hand side yields weak or variational form 

- (VQ, Vw)Q = (h, w)n, 

- ('Vlf! , Vw)n- k2 (lf!, w)n = (Q, w)n, 

(4.38) 

(4.39) 

where the boundary integrals vanished because of the homogeneous boundary conditions. 
The next step is to decompose the total domain Q in Nel non-overlapping sub-dornains rle 

and apply the speetral discretisation on each element. 

N 

Qe = L Q'fm~f,n • (4.40) 
l.m=1 

where ~lm is the two-dimensional Lagrange interpolation function through the Legendre
Gauss-Lobalto inlegration points (l, m = 1 ... N), which is the tensor product of the one
dimensional interpolation functions : ~lm = <P1<Pm. Using similar discretisations for 1/1, w 
and f and assembling the elements we obtain the following discrete set of equations 

SQ = Mh, 

Slfr- k2Ml/r = MQ, 

( 4.41) 

(4.42) 

where Sis the diffusion matrix, Mis the mass matrix and Q, hand lfr are the discrete vector 
representations of Q, hand lf!, respectively. 

The composition equation and the equation for the chemica! potential is also a set of two 
second order differential equations, which we will solve in a coupled way. Besides spatial 
discretisation we now also need temporal discretisation. Using the Euler implicit method 
for time discretisation and the same spatial discretisation as for the momenturn equation we 
obtain 

(4.43) 
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where Mis the mass matrix, Nis the conveelion matrix with v = (o1jljoy, -o1jljox) and 
S is the diffusion matrix. Superscript n denotes time t and n + 1 denotes t + tlt. A Picard 
iteration is used to deal with the nonlinear term (subscript i = I ... I): the iteration starts 
using c7+' = cö and as a stopping criterion we use max lc~t/ - c~+'l < 10-4 . After 

convergence, p.r:i and c~:i are used to compute a new h and we can move to the next time 
step. 

4.5 Classica} vs. diffuse-interface results 

In this section we compare our computational, diffuse-interface results for thermo-capillary 
flow with classica!, analytica I results of Boos and Thess ( 1997) for pinned planar and circular 
interfaces. We investigate how the results depend on the Cahn number C. 

To be able to make a direct comparison with the classica! results we have to makesure that 
we use the same assumptions and the same sealing. In their paper Boos and Thess assumed 
that y is a linear function of temperature. That is 

y = Yo - B(T - Tv) , (4.44) 

where B is a positive constant. In our case, interfacial lension is given by equation (4.28), 
which is nonlinear inT. However, for small values of l;, defined in (4.33), we can approxim
ate y as 

2..Ji PE 2 3 A * 
y = -

3
-"fo"c80 (1 - Ï.l;eT ·r ) . (4.45) 

This way we find 

B = dy = _I_ -.!!..I._ = .Ji PE c1 I 
dT AL dêr ·r* ~v v Tc - T,, 

(4.46) 

Boos and Thess used V = ~AB L!TJ as the velocity scale. In our case this yields 

Ca= ~hl; . (4.47) 

For small temperature gradients we can also approximate the composition profile c by the 
equilibrium profile at T = T0 , that is c = C0 = c(T0 ). With these approximations the mo
mentum equation reads 

V 2(V21jl -k21jl) = ..jï'VXfJ-'VCo, 
l;C 

with 11- given by equation (4.31). 

(4.48) 

First we will consider a planar interface with a temperature gradient parallel to it, as 
schematically depicted in tigure 4.2 on the left hand side. The direction of the temperature 
gradient is indicated by the arrow. The temperature gradient induces an interfacial lension 
gradient in the opposite direction, which causes stretching of the interface at higher temper
atures and shrinkage a lower temperature. This process also induces a velocity in the sur
rounding fluid. The right hand side of tigure 4 .2 shows the classica! and the diffuse-interface 
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Figure 4.2: Planar interface, located at y = -I, with a temperafure gradient parallel to it (left) 

and the resulting thermo-capillary flow (right): classica[ and diffuse-interface for C = 
0.1' 0.05, 0.01' 0.005. 

results for this thermo-capillary flow. The classica) result is V x (y) = - exp( -v'l2y)/ m. 
The diffuse-interface result for C = 0.1, 0.05, 0.01, 0 .005 are shown. The diffuse-interface 
results were obtained by solving equation (4.48) with c11 = tanh((y + 1)/(.J2C)). In the ab
sence of a laterallength scale we have chosen L = b . The inset picture in figure 4.2 shows the 
flow near the interface in more detail. The results show a clear convergence to the classica] 
salution for C ~ 0. 

The second case we consider is thermo-capillary flow in and outside a circular drop let, as 
depicted in figure 4.3. The radius of the droplet is used as the length scale. The temperature 
gradient again causes stretching at x = 1 and shrinkage at x = -1 . This will induce a flow 
in and outside the droplet with a streamline pattem as shown in figure 4.4. The classica! 
(top row) and the diffuse-interface results (bottom row) for the streamline pattem are shown 
for k = 2v'12 and k = 20v'l2, where we used C = 0.01 . The pattem inside the droplet 
matches the classica) result. The pattem outside the droplet differs from the classica! result, 
because the classica) results were obtained on an infinite domain whereas we used a finite 
domain for the diffuse-interface calculations. Therefore, the flow field far away from the 
droplet is different, but the flow field in the vicinity of the droplet matches the classica) 
result. The top right picture in figure 4.3 shows 1ft inside the droplet for x = 0, 0 :::: y :::: 1, 
where we used k = 10v'12. The classica] result and the diffuse-interface results for C = 
0.1, 0.05, 0.01, 0.005, 0.001 are shown. Again, we find a clear convergence to the classica! 
sol u ti on for C ~ 0. There is a good match if C is smaller than the thermo-capillary boundary 
layer 8 ~ k- 1• 

In this section we have only considered pinned interfaces. If the contact lines of the 
droplet were freely movable the droplet would migrate towards higher temperatures. This 
process was investigated by Jasnow and Vinals (1996). In the next section we will consider 
a freely movable interface with a temperature gradient perpendicular to it and we investigate 
how this affects the stability of the interface. 
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Figure 4.3: Circular droplet with a temperafure gradie111 in the x direction (lejt) and the res

ults jor the thermo-capillary flow (right): classica[ and diffuse-inierface jor C = 
0.1, 0.05. 0.01, 0.005, 0.001. 

k = 2.Ji2 k = 20.JT2 

Figure 4.4: Classica[ results (top) and diffuse-interface results (bottom)jor theftow field in and outside 

the dropletfor k = 2.JT2 and k = 20.JT2. In both cases C = 0.01 was used. 

4.6 Thermo-capillary instabilities 

Consider an interface with a temperature gradient perpendicular to it as depicted in tigure 
4.5. A small perturbation in the interface towards the high temperature side now leads to 
local stretching of the interface. We shall see that this can lead toa destabilising Marangoni 
convection. 

In the diffuse-interface approach interfacial lension is fixed by the choice of the equation 
of state. Therefore, we can only vary the interfacial tension by varying temperature. However, 
the dependenee of interfacial lension on temperature can be different for another choice of 
fluids. We now assume that the momenturn equation for other systems can still be written in 
the form of equation ( 4.48), but we replace ç by an independent parameter~. This way we 
can choose the ratio of the interfacial tension gradients and interfacial ten si on independent of 
the temperature gradient. Again assuming that Ç is small, we can now write the governing 
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Figure 4.5: A perturbed interface with a rempera/ure gradienr perpendicular to it. 

equations as 

(4.49) 

(4.50) 

One the advantages of this choice of the governing equations is that we can u se simple ho
mogeneous Neumann boundary conditions, that is ac;an = 0, to ensure mass conservation. 

Figure 4.6 shows the time development of an interface with an initia! perturbation as 
depicted in figure 4.5 for two values of f. For f = 0.1 the interfacial tension gradients are 

Figure 4.6: Time development (t = 0, 150, 250, 400, 500) of a perturbed interface with a tempera/ure 

gradient perpendicular to il for Ç = 0.1 (top) and for Ç = 10 (bottom). We used k = 
10.Jï2, Pe = 104 and C = 0.01. The streamlines arealso shown: for the solid lines the 
motion is clockwise andfor rhe dashed lines counrerclockwise. 

too weak compared to interfacial tension itself and a stabilising motion sets in . For f = 10 
the interfacial tension gradients dominate and the perturbation grows. For larger values of k 
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the system would be unstable forsmaller values of~, but the thermo-capillary boundary layer 
is more difficult to capture for large values of k since we have to use C < k- 1 to obtain the 
correct results. 

The observed instability is different from Rayleigh-Bénard instahilities (Davis, 1987), 
since we did not include heat conveelion due to fluid motion. Heat conveelion would have a 
stabilising effect on the instability shown in figure 4.6: the conveelion cells would transport 
low temperature to regions of low ten si on and high temperature to regions of high ten si on. 

As stated above, the choice of a small value for k has forced us to use a large value 
of ~ to get the system unstable. For most binary fluid systems interfacial tension depends 
only weakly on temperature, as predieled by equation (4.28). However, for near-critical sys
tems interfacial tension itself drops to zero. Using equation (4.28) we find y- 1dyjdT"' 
(Tc- T)- 1• This shows that, for T --+ Tc, the interfacial tension gradients can easily dom
inate. 

Finally, we show the time development of a planar interface with small random perturb
ation (see figure 4.7). The resulting instability is similar to the one observed in figure 4.6. 

t=O t = 740 t = 800 t = 830 t = 850 

Figure 4. 7: Time sequence of a randomly perturbed interface with a tempera/ure gradient perpendicular 

to itfor ( = 20, k = 10-Jïl, Pe = 104 and C = 0.01. 

The interfacial deformation is so strong that a droplet pinches off. Strong interfacial de
formations as in figure 4.6 were also observed in other systems with low interfacial tension 
and high interfacial tension gradients. For example, adding a small amount of solvent to 
the binary system can induce large interfacial lension gradients if the interfacial tension de
pends strongly on the solvent concentration. This situation can lead to what Sternling and 
Scriven have called 'interfacial turbulence' (Sherwood and Wei, 1957; Sternling and Scriven, 
1959). Also some polymer-solvent-nonsolvent systems, in which interfacial ten si on depends 
strongly on the solvent concentration, show this kind of interfacial deformation, often referred 
to as macrovoid formation (Berghmans, 1995). 

Figure 4.6 also shows that we can also handle topological changes in the interface. How
ever, the pinch-off also introduces another length scale, which is related to the thickness of 
the drainage layer befare pinch-off. Th is length scale is often smaller than the si ze of thermo
capillary boundary layer. To get correct results for the pinch-offwe have to choose C smaller 
than this length scale. For too large values of C the pinch-off time will be underestimated 
(Lowengrub and Truskinovsky, 1998 ). 

4. 7 Conclusions 

In this chapter we have presenled the diffuse-interface approach to thermo-capillary flow. A 
Galerkin type speetral element discretisation, based on Gauss-Lobatto quadrature, was used 
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for numerical implementation of the governing equations. The high-order speetral interpot
ation is very suitable for an accurate capturing of small interfacial thicknesses (Verschueren 
et al., 1998). 

The computational results were compared directly to analytica! classica! results. The 
diffuse-interface result converges to the classica! results for C ---+ 0. The results shows that, 
to obtain a sufficiently accurate match with the sharp-interface result, we do nothave to use 
the physical value for the interfacial thickness. Sufficiently accurate results were obtained 
when Cis smaller than the thenno-capillary boundary layer 8 ~ k- 1• 

Finally, the effect of a temperature gradient perpendicular to an interface on the stability 
of the interface was investigated. The interface is unstable for systems in which interfacial 
lension gradients dominate interfacial tension . The results are in qualitative agreement with 
the linear stability analysis presenled by Boos and Thess ( 1997). The results also show that 
diffuse-interface model is very suitable for modelling instahilities causing large interfacial 
deformations and even topological changes. However, to obtain correct results in case of 
droplet pinch-off C has to be sufficiently smaller that the layer thickness just before pinch
off. This length scale is often much smaller than the size of the thermo-capillary boundary 
layer. 



Chapter 5 

COALESCENCE IN HYPERBOLIC FLOWS 

This chapter is partly after: 
'A diffuse-interface approach to coa/escence in hyperbol ie flows '. 

5.1 Introduetion 

M. Verschueren, FN. van de Vosse and H.E.H Meijer. 
Proc. Roy. Soc. London Ser. A. 

(submitted) 

Coalescence of fluid domains is a frequently encountered phenomenon in industrial pro
cessing and modern technologies (e.g. Edwards et al., 1991 ). Consequently, it is a much 
studied subject in literature nowadays (e.g. Chesters, 1991). In the classical approach the 
interface between the fluids is represented by a discontinuity in the concentration and ap
propriate boundary conditions are applied to conneet the bulk phases (Landau and Lifshitz, 
1959). This approach makes it very difficult, both physically and numerically, to handle the 
topological transitions which occurs during coalescence. Classical studies, therefore, mainly 
focus on the drainage of the film in between the fluid domains and it is assumed that coates
cenee takes place when the film reaches a certain critica! size for which the intermolecular 
forces become important (e.g. Bazhlekov et al., 1999). 

The most 'natural' numerical technique for the classical, sharp-interface approach, is the 
front tracking method (Hyman, 1984; Unverdi and Tryggvason, 1992): the discretisation is 
such that the grid points follow the interface. In case the topology of the interface changes, 
complicated re-meshing (interface 'surgery') is necessary. In an attempt to overcome this 
problem Brackbill et al. (1991) proposed a continuurn surface force method, in which the 
sharp-interface is replaced by a continuous 'co tour' function. Th is approach generally allows 
to pass the topological transition. However, the 'colour' function is an arbitrary function 
without a clear physical meaning, which makes it difficult to physically justify the computed 
topological change. 

In the diffuse-interface approach, which goesback to the ideas of Van der Waals (van der 
Waals, 1979), the interface also has a finite thickness, but it is no Jonger arbitrary: it is de
tennined by the molecular force balance at the interface and its value is closely related to 
the finite range of molecular interactions (Rowlinson and Widom, 1989). Thennodynamic-
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ally, the finite interaction range is represented by a non-local effect in the free energy of the 
system: the local free energy not only depends on the local concentration, but also on the 
concentration of the immediate environment (Davis and Scriven, 1982). By using a Taylor 
expansion of the free energy about the homogeneaus state, the non-local effect can be rep
resenled by a dependenee on local composition gradients instead of non-local composition 
(Cahn and Hilliard, 1958). Non-classical expressions for the chemica! potential and the stress 
tensorcanthen be derived in differential form (Dav is and Scriven, 1982), which makes it easy 
to coupIethem with the equations of fluid dynamics. 

The molecular force balance at the interface also controls the topological transition. 
Therefore, the diffuse-interface methods allow to pass the topological transition in a phys
ically justified way. The diffuse-interface approach has been used to study a wide range on 
phenomena invalving topological changes: e.g. nucleation (Bates and Fife, 1993; Deii'Isola 
et al., 1996), spinodal decomposition (Gurtin et al., 1996), droplet breakup (Jacqmin, 1996). 
For a review on the subject see Anderson et al. ( 1998). Most of the papers on topological 
changes focus on smali-scale systems, in which it is assumed that the numerical interfacial 
thickness is very close to the real interfacial thickness or little attention is being paid to the 
dependenee on the choice of the interfacial thickness. For large scale systems, for which 
the droplet size is much larger than the physical value of the interfacial thickness, the real 
interfacial thickness can not be captured numerically, in general. The sealing in such sys
tems needs special attention, because if the real interfacial thickness is to be replaced by 
a numerically acceptable thickness, we have to make sure that we are still describing the 
same system with the same interfacial lension and diffusion. In their paper on coalescence 
in thin, unstably stratified fluid layers in a Hele-Shaw cell, Lowengrub et al. (1998) investig
ated the dependenee on the value of the interfacial thickness. They used a sealing for which 
the diffuse-interface equations reduce to the classica) sharp-interface model in the limit of 
zero interfacial thickness (Lowengrub and Truskinovsky, 1998). For small values of the di
mensionless interfacial thickness, they found that the drainage layer breaks up into droplets. 
They also found a good agreement with classica! results. Here, we propose an alternative 
sealing which is not based on obtaining the classica! equations in the sharp-interface limit: 
it is assumed that the diffuse-interface equations yield the correct results when the real in
terfacial thickness is used. The real interfacial thickness is then replaced by a numerically 
larger one, where the sealing is such that interfacial lension is kept constant. Lowengrub and 
Truskinovsky (1998) used a similar argument to scale their capillary terms. For the Peelet 
number they used a sealing which allowedthem to obtain the classica!, sharp-interface model 
in the limit of zero interfacial tension. We use the same arguments, which are used to scale 
the capillary term, to scale the diffusion term. This yields a different sealing for the Peelet 
number. 

We study coalescence in hyperbalie flows, fordropiets in a Hele-Shaw cell and for cy lin
dersin two-dimensional flows. Insection 5.2 wedefine the system to be investigated. Section 
5.3 is devoted to the diffuse-interface theory and the sealing. Insection 5.4 we briefly discuss 
the computational methods. In section 5.5 the results are presented. First, we discuss co
alescence in a Hele-Shaw geometry for density- and viscosity-matched fluids using the same 
sealing as used by Lowengrub and Truskinovsky ( 1998). Next, we investigate the effect of 
the alternative sealing for the Peelet number mentioned above. After that, we briefly discuss 
systems for which the droplet viscosity differs from the viscosity of the surrounding liquid. 
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To conclude, we consider coalescing cylinders. Finally, section 5.6 contains some discussion 
and concluding remarks. 

5.2 System definition 

Consider the coalescence of two fluid domains in a hyperbalie flow as schematically depicted 
in tigure 5.1. We will consider two cases: coalescing dropiets in a Hele-Shaw geometry and 

x 

Figure 5.1: Schematic picture of two drop/ets ( cylinders) in a hyperbolic flow. 

coalescing cylinders. The density of the dropJets (cylinders) and the surrounding liquid is the 
same. The viscosity of the dropJets (cyJinders) is 1Jd and the viscosity of the surrounding li
quid is 1Jc· The dropJets (cyJinders) are subjecttoa hyperbol ie flow ofthe form v = A( -x, y), 
where A is a constant. Assuming the flow is symmetric 1, we only use the top-Jeft part of the 
domain (see figure 5.1) for the computations. 

Neglecting inertia, the equations governing the coaJescence of two density-matched cyl
inders are given by the two-dimensional Stokes equations, which read 

V·v = 0, 

V·r=O, 

(5.J) 

(5.2) 

where V= (ojox, ojoy), V is the velocity and 7: =-pi+ 1](Vv + vvT) is the Cauchy 
stress tensor with pressure pand shear viscosity IJ . In the classica) approach, the appropriate 
boundary conditions are appJied at the interface between the two fluids to conneet the bulk 
phases. The kinematic and the stress boundary condition are (Landau and Lifshitz, 1959) 

[vD = 0, 

[r ·IÎD = yiÎVs·IÎ, 

(5.3) 

(5.4) 

where IÎ is the unit vector normal to the interface, Vs = (I - IÎIÎ) ·V denotes the interface 
gradient and y is the interfacial tension, which is assumed to be constant. The kinematic 
boundary condition ensures that the velocity is continuousacross the interface and the stress 
boundary condition relates interfacial lension to a jump in the normal stress. However, as 

1 In reality the head-on collision of dropJets is not stable, rumbling can occur. 
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staled in the previous section, the necessity to apply these boundary conditions is very in
convenient in case of topological changes. In the diffuse-interface approach, which will be 
presenled in the next section, interfacial ten si on is included as a body force in the momenturn 
equation. Consequently, a direct application of boundary conditions is no Jonger required. 

A Hele-Shaw geometry consist of two, closely spaeed parallel plates. We assume that 
the contact lines of the interface between the fluids, which touch both plates, can move 
freely. Neglecting the smali-scale flow near moving contact lines (Dussan V and Davis, 
1974; Jacqmin, 1996; Seppecher, 1996), the flow in between the plates can be assumed to 
be a Poisseuille flow. Using the parabolic Poisseuille velocity profile, the three-dimensional 
momenturn equation can be averaged over the gap between the plates. This yields the Darcy 
equation (Saffman and Taylor, 1958): 

121') 
V p = - b2 V' (5.5) 

where b is the plate spacing and v is now the velocity averaged over the gap. The term on 
the right hand side takes into account the friction force of the flow due to the presence of the 
plates. 

5.3 Diffuse-interface theory 

The goveming equations can be derived from a variational principle in which the Lagrangian 
takes the following form (Lowengrub and Truskinovsky, 1998) 

12 

L = J J p(~lvi 2 - f) i 3
rdt, (5.6) 

IJ Q 

where f is the specific Helmholtz free energy. As mentioned in the first section, the essential 
ingredient of diffuse-interface modeHing is the non-Jocal effect in the free energy, which can 
be represented by a dependenee on local concentration gradients. Using f = j(p, e, Ve), 
where e is the mass fraction of one of the components, Lowengrub and Truskinovsky ( 1998) 
obtained generalised relations for the chemica! poten ti al and the reversible part of the stress 
tensor for quasi-incompressible systems. For density-matched fluids their results read 2 

af af 
f..L=--V·-ae ave ' (5.7) 

af 
T =-pi- p-Ve 

r ave ' (5.8) 

where f..L is the generalised chemica! potential and -r, is the reversible part of the stress tensor. 
Cahn and Hilliard ( 1958) derived the following forrn for the specific Helmholtz free energy 

f(e, Ve) = fo(e) + iE IV d , (5.9) 

2 Note that exactly the sarne results were obtained insection 2.7 of this thesis. 
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where c is the mass fraction of one of the components, Jo is the homogeneous part of the 
specific Helmholtz free energy and E is the gradient energy parameter, which is assumed to 
be constant. The homogeneous part Jo can be specified by using a Taylor expansion about 
the critica! point c = Cc. Th is way we obtain the so-ca lied 'c4 ' approximation ( Gunton et al., 

1983): Jo(c) = ! t3c4 
- 1ac2, where c = c- Cc. For isothermal systems below the critica! 

temperature, the parameters a and t3 are both positive constants. In this case, Jo has the shape 
of a double well potential. Omitting the tilde notation, J can now be written as3 

Consequently, the chemica! potential reads 

JJ- = -ac + t3c3 - EV2c. 

(5.10) 

(5.11) 

This generalised chemica! potential allows us to describe the interface between the two fluids 
by a continuously varying concentration profile. For example, fora planar interface, with x 
the direction normalto the interface, an analytica) equilibrium solution (JJ- = 0) can be found, 
which reads 

~ x . {E 
c(x) =V ptanh v'2ç wJth ~ =V; , (5.12) 

where ±-Jëi[p are the equilibrium bulk solutions and ~ is a measure for the interfacial thick
ness. 

Assuming that the diffusion flux is proportional to the gradient of the generalised chem
ica! potential the local balance equation for the mass fraction c can be written as 

de 2 p- = M'ïl fJ-, 
dt 

(5 .13) 

where M is the mobility coefficient, which is assumed to be constant. This relation is known 
as the Cahn-Hilliard equation (Cahn and Hilliard, 1959) and was originally used to describe 
the initia! stages of spinodal decomposition (Cahn, 1964). In our case, it allows us totransport 
the continuous interface profiles between the two fluids in a velocity field. 

Adding the viscous stress tensor to the reversible part of the stress tensor (5.8) we obtain 
the non-classica) extra stress tensor. The non-classica! Stokes equations can then be written 
as 

'ïl·V =0, 

'ïlp = -pE'ïl·('ïlc'ïlc) + 'ïl · [ry('ïlv + VvT)]. 

(5.14) 

(5.15) 

The first term on the right hand side of equation (5 .15) can be rewritten as pEV · (VcVc) = 
p'ïl J- PJJ- 'ïlc (Lowengrub and Truskinovsky, 1998). Consequently, we obtain 

(5.16) 

3 The 'é' approximation is discussed in more de!ail in chapter 3, section 3.2. 
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where g = f + p 1 p is the specific Gibbs free energy. 
For viscosity-matched ftuids it is convenient to rewrite the Stokes equations in termsof the 

stream function 1/J, which is defined by v = (ol/I joy, -ol/I fax) . This way mass conservation 
is automatically satisfied and the local balance equation for 1/J is obtained by taking the curl 
of equation (5.16) . This yields 

(5 .17) 

where Vx denotes the curl. For a Hele-Shaw geometry the viscous term is replaced by the 
Darcy term, as in equation (5 .5). In this case, we can also use the stream function formulation 
in case the viscosities are not equal. We obtain the following generalised Darcy equation 

(5.18) 

where k 2 = 12jb2 is the permeability of the cel I. 
To write the governing equations in a non-dimensional form we use the following di

mensionless variables: c* = cfca, r* = r/L, v* = vjV, p.* = p./; 2/(aa), t* = tVjL , 
TJ* = TJ/TJd and 1/J* = 1/J /(LV), where ca = .JëiTfJ is the equilibrium bulk concentration, L 
is the radius of the droplet (cylinder) and we choose V = lOAL . Omitting the asterisk nota
tion we obtain the following dimensionless governing equations for the coalescing cylinders, 
which have the same viscosity as the surrounding liquid 

de 1 2 3 2 2 - = -V p. with p. = c - c - C V c , 
dt Pe 

4 1 1 
V 1/J = --Vxp.Vc. 

CaC 

(5.19) 

(5.20) 

FordropJets in a Hele-Shaw geometry, the non-dimensional generalised Darcy equation reads 

(5.21) 

where k2 = 12L2 jb 2 is now the dimensionless permeability. The dimensionless groups 
appearing in the governing equations: the Peelet number Pe , the capillary number Ca and 
the Cahn number C are defined by 

Pe=l;
2
LV Ca=/;TJdV and C=i_ 

ME pa~ L' 
(5.22) 

respectively. 
The capillary number can be related to the classica] definition, Cac1 = TJd V jy, by con

sidering the interfacial Lension y fora planar interface. Interfacial lension can bedefinedas 
the excess tangential stress (Davis and Scriven, 1982): 

00 00 

Y = f n·("Cr ·n- "Cr·Î)dx = pE f (dcjdx) 2dx, (5.23) 

-oo -oo 
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where ii and Î are the unit veetors normal and tangentialto the interface, respectively. Using 
the equilibrium profile (5 .12) we obtain 

2../2 pEc1 
y = --- . (5.24) 

3 ~ 

Consequently, the capillary number can be rewriuen as 

2../2 17d V 
Ca=----

3 y ' 

which shows that CaiCac1 = 2../213. 

(5.25) 

Considering the sharp-interface limit, Lowengrub and Truskinovsky ( 1998) argued that 
the sealing should be such that a finite value for the interfacial Lension is obtained when 
taking C -+ 0. Equation (5.24) shows that this is the case if we keep Ec~l~ constant. In 
their paper Lowengrub and Truskinovsky ( 1998) used c B = I and their sealing is, therefore, 
equivalent to keeping El~ constant. For the Peelet number they used Pe = liC. Using 
matched asymptotics, they showed that the diffuse-interface equations reduce to the classica] 
sharp-interface. However, keeping EI~ constant in the Peelet number defined in (5 .22), yields 
a Peelet number which is proportion alto C rather than 1 IC, if the other parameters are kept 
constant. We will investigate the difference between these scalings for the Peelet number. 

In summary : the governing equations for the coalescing cylinders are given by equations 
(5.19) and (5 .20). For the Hele-Shaw system, equation (5 .20) is replaced by the generalised 
Darcy equation (5.21 ), which has to be supplemented with an equation which specifies 17 as 
a function of c, in case the ftuids are not viscosity-matched. 

Analytica! solutions, for these sets of equations, can only be obtained in some special 
cases. In genera!, a numerical implementation is needed. This is the subject of the next 
sec ti on. 

5.4 Computational methods 

To discretise the governing equations we use a speetral element method (Patera, 1984; Tim
mermans et al., 1994 ). Due to the high order of approximation, this method is expected to 
be especially suitable for capturing interfaces with a small interfacialthickness (Verschueren 
et al., 1998). The computational domain Q is divided into Net non-overlapping sub-dornains 
Qe and a speetral approximation is applied on each element. Figure 5.2 shows the compu
tational domain with a typical element distribution. The basis functions </J, which are used 
for the spatial discretisation, are high-order Lagrange interpolation polynomials through the 
Legendre-Gauss-Lobatto inlegration points defined per element. 

The Galerkin weighted residual representation of the generalised Darcy equation (5.21) 
is 

2 2 ) -k (V 1/1, w n = (h, w) , (5.26) 

where h = Ca- 1 e-I V x J.L V c, the inner product (a, w)n = fn awd2r and wis the standard 
Galerkin test function . Partial inlegration yields the weak or variational form 

(5.27) 
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1/J =x /2.5, c = -]' JL = 0 

1/J = y/2.5 1/J =0 

c=-l,JL=O i)c = 0, ilJL = 0 
iln iJn 

-4 -2.5 - 0.5 0 x 

ilc iJJL 
1/J = 0, - = 0, - = 0 

an iJn 

Figure 5.2: Schematic picture of the computational domain with a typical mesh and the appropriate 

boundary conditions. 

where the boundary integrals vanish because of the homogeneaus boundary conditions (see 
figure 5.2). Next, the total domain Q is decomposed into Nel non-overlapping sub-dornains 
Qe and a speetral approximation is applied on each element. After assembling the elements 
we obtain the following discrete form for the Darcy equation 

-S."l/r = Mh, (5 .28) 

where s." is the matrix representation of k2V ·I'} V, Mis the mass matrix and lfr and hare the 
discrete vector representations of 1{! and h, respectively. 

The momenturn equation governing the coalescence of cylinders, equation (5.20), is a 
fourth order different ia) equation in 1{!. Si nee the basis functions cp areelementsof H 1, that 
is H 1 (Q) = {cp I cp E L 2 (Q), Vcp E L 2 (Q) x L 2 (Q)}, we split up equation (5.20) into two 
secend order differential equations 

(5.29) 

(5.30) 

Using the sameprocedure as for the Darcy equation, after spatial discretisation we obtain 

SQ = Mh, 

Slfr = MQ. 
(5.31) 

(5.32) 

The local balance equation for c and the chemica) potential also form a set of two second 
order differential equations, which we will solve in a coupled way. Besides spatial discret
isation we now also need temporal discretisation. Using the Euler implicit methad for time 
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discretisation and the same spa ti al discretisation as for the momenturn equation we obtain 

(5.33) 

where Nis the conveelion matrix, where v = (a1/fjay, - a1/f;ax) is used to compute the 
velocity field. Superscript n denotes time t and n + I denotes t + b.t. A Picard iteration 
is used to deal with the nonlinear term (subscript i = I . . . I): the iteration starts using 
c7+ I = c3 and as a stopping criterion we u se max lcr:i -er+ 1

1 < w-4 . After convergence, 

p.~:i and cr:i are used to compute a new h and we can move to the next time step. 

5.5 Results 

In this section we present the diffuse-interface results for coalescence in hyperbalie flows . 
First, we investigate the difference between the two different scalings for the Peelet number, 
as discussed in section 5.3, for coalescence in a Hele-Shaw cell. Secondly, we show the res
ults for different viscosity ratios and, finally, we compare the results for coalescing cylinders 
to classica! results. 

Figure 5.3 shows a time sequence of two coalescing droplets, in a Hele-Shaw cell for 
C = 0.06 (top) and C = 0.1 (bottom), where we used Pe = 1 ;c, Ca= 0.01 and b.t = 0.01 
in both cases. The density and viscosity of the surrounding liquid is equal to the density and 
the viscosity of the droplets. The thick solid line is the c = 0 contour line and the thin I i nes 
represent the vorticity, where the solid lines correspond to clockwise flow and the dashed 
Jin es to counterclockwise flow. The vorticity of a hyperbol ie flow, v ""' (-x, y ), equals zero. 

I= 4.0 I= 9.0 I= 9.25 I= 11.0 

Figure 5.3: Time sequencefor C = 0.06 (iop) and C = 0.1 (bol/om), where Ca= 0.01 and Pe = 1/C. 

Furthermore, equation (5.21) shows that there is no production of vorticity in the absence 
of viscosity gradients, interfacial tension and diffusion. Therefore, for viscosity-matched 
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Figure 5.4: Maximum vorticity as a jw1ction of time for C = 0.1 , 0.08, 0.06 where Ca = 0.0 I and 
Pe = 1/C. 

systems, the vorticity is a measure for the effect of diffusion and interfacial tension on the 
system. The pictures on the left hand side, at t = 4, clearly show that the dropiets are resisting 
to the deformation induced by the hyperbalie flow. At this time the results look similar, but 
when coalescence occurs we see large differences in both the vorticity and the concentration: 
the top sequence shows dimple forming, which is typical for coalescence of dropJets (e.g. 
Bazhlekov et al., 1999), with the corresponding vorticity production, whereas in the bottorn 
sequence coalescence occurs at y = 0 and there is no counterftow. Figure 5.4 shows the 
maximum vorticity as a function of time for C = 0.1 , 0.08, 0.06. The peaks correspond to 
the vorticity production during coalescence. Even though the actual coalescence occurs ju st 
before the peak, the maximum vorticity is clearly a good measure for the coalescence time. 
Figure 5.4 shows that there is a relatively large spread in the coalescence time. 

Now, we change the sealing of the Peelet number: instead of Pe = I I C we now use 
P e = C j0.062, such that the value is the same for C = 0.06. Figure 5.5 shows the results 
for C = 0.1 (bottom) and C = 0.06 (top). The top sequence is identical to the one shown 

Figure 5.5: Time sequence for C 
Pe = C/ 0.062. 

0.06 (top) and C 0 .1 (bottom), where Ca 0.01 and 
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10 

Figure 5.6: Maximum vorticity as a function of time for C 
Ca= 0.01 and Pe = C/0.062. 
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0.1, 0.09, 0.08, 0.07, 0.06, where 

in tigure 5.3. The results for C = 0.1 are quite different from those in tigure 5.3: for the new 
sealing the results show dimple forming with the corresponding counterflow and the observed 
coalescence time is a\so closer to the coalescence time for C = 0.06. The maximum vorticity 
as a function of time, p1otted in tigure 5.6, also shows this effect: the spread in the vorticity 
peaks is much smaller than in tigure 5.4. Comparing the two scalings for the Peelet number 
we can con cl u de the following: if the interfacial thickness is replaced by a larger one, the new 
sealing yields a result which is much more similar to the results for the original interfacial 
thickness. This effect can be explained as follows. The new sealing states that, if we choose 
a larger interfacial thickness, the Peelet number has to be replaced by a larger one, such that 
the effect of diffusion is smaller. In other words, the thin interface is replaced by a thicker 
one for which the effect of diffusion is smaller. This way behaviour of the thicker interface is 
more sim i! ar the thinner one. For the P e = 11 C-scaling the effect is opposite: the effect of 
diffusion for the thicker interface is larger. 

In genera!, changing the droplet viscosity will affect the deformation rate and the drainage 
time. Figure 5.7 shows a time sequence of coalescence for two viscosity ratios: TJc/TJd = 2 

----2.7 x 0 

Figure 5. 7: Time sequencefor1Jc/1Jd = 2 (top) and 1Jc/1Jd = 0.5 (bottom), where Ca= 0.01, C = 0.08 
and Pe = C/0.062. 
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Figure 5.8: Maximum vorticity as ajunetion oftimefor TJciTJd = 0.5, I, 2, where Ca = 0.01, C = 0.08 
and Pe = C/0.062 

(top) and T]c/TJd = 0.5 (bottom). For the computations we used linear viscosity profiles, 
that is 77(c) = ~(I - 7Jc/1Jd)c +~(I + 1Jc/7Jd). The other parameters are Ca = 0.01 and 
C = 0.08 and Pe = C /0.062. The results show a clear effect of the viscosity ratio on the 
coalescence process: for 7Jci7Jd = 2 deformation is larger and the layer drainage is slower. 
Due to these effects, coalescence occurs earlier for 1Jc/1Jd = 0.5. The maximum vorticity as 
a function of time, plotted in figure 5.8 for various values of 1Jc/1Jd, also shows this effect 
on the coalescence time. These results are in qualitative agreement with classica] results on 
coalescence (Bazhlekov et al., 1999). 

Finally, we consicter coalescing cylinders, again consictering the two scalings for the Pe
clet number. Figure 5.9 shows time sequences for three different cases: C = 0.06, Pe = 103 

I = I 0 t = 30 t = 40 t = 50 

~~~~ 
~~~~ 
2yl~~~~ 

--2.7 x 0 

Figure 5.9: Time sequence for C = 0.06, Pe 

C = O.l, Pe = ~ 103 (bottom). 

103 (top), C = 0.1, Pe = ~ 103 (middle) and 
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Figure 5. JO: Maximum vorticity as a function of time for the three cases in figure 5.9: C = 0.06, 
Pe = 103 (a); C = 0.1, Pe = ~10 3 (b); C = 0.1, Pe = %9f103 (c). 

(top), C = 0.1, Pe = 103 ·0.06/C (middle)and C = 0.1, Pe = J03 .c;0.06 (bottom). Fur
thermore, we used Ca = I and D.t = 0.5 in both cases. The sealing is the same as the 
one used for the Hele-Shaw system, except for C = 0.06 we now use Pe = I 03 instead of 
Pe = I /0.06. The cylinders shape and the vorticity patternare different from those observed 
for the dropiets in the Hele-Shaw geometry: the vorticity contour lines, which were localised 
at the interface for the Hele-Shaw geometry, now reach further into the surrounding liquid 
and the cylinders have a 'kidney-bean' shape which is not observed in the Hele-Shaw case. 
Concerning the sealing, however, we do see similarities with the Hele-Shaw results. Figure 
5.10 shows the maximum vorticity as a function of time for the three time sequences dis
played in tigure 5.9. As for the Hele-Shaw system, we see that the result for C = 0.1 using 
the new sealing are much closer to the C = 0.06 result than for the other sealing. The overall 
spread in the vorticity peaks is larger than for the Hele-Shaw results, because we used a larger 
value for the Peelet number. 

5.6 Discussion 

We presenled computational results for coalescence in hyperbolic flows using a diffuse
interface method. The diffuse-interface method allows us pass the topological transition in 
a physically justified way. The results for different viscosity ratios suggest that, even for 
the relatively large interfacial thickness used ( C = 0.08), qualitatively correct results can be 
obtained. 

It was argued that, if the interfacial thickness is replaced by another one, the sealing 
should be such that similar results are obtained. The sealing introduced insection 5.3, is such 
that, if an interface is replaced by another one with a larger thickness, interfacial tension is 
the same. Applying the same sealing to the Peelet number, we found that the Peelet number 
should be proportional to the Cahn number. Lowengrub and Truskinovsky (1998) used the 
same sealing for the capillary term to obtain a finite value for the interfacial lension in the 
sharp-interface limit. However, for the Peelet number they used Pe = I IC. For this sealing 
they showed, by means of matched asymptotics, that the classica) equations can be obtained in 
the sharp-interface limit. Fora Pe = C-scaling it is not possible to obtain a classica! Navier-
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Stokes sharp-interface limit (Lowengrub and Truskinovsky, 1998). Pego ( 1989) showed that 
the classica! Hele-Shaw limit can be obtained for Pe = C in the sharp-interface limit, but 
he did not include convection in the local balance equation for the concentration . However, 
the proposed Pe ,...., C-scaling is notbasedon obtaining the classica! equations in the sharp
interface limit: it is assumed that the diffuse-interface equations yield the correct results 
when the real interfacial thickness is used. The real interfacial thickness is then replaced by a 
numerically larger one, where the sealing is such that interfacial tension is kept constant. To 
test if the new sealing works the results have to be compared to classica! results and a larger 
range of interfacial thicknesses has to be considered. 

The results presented in section 5.5 show that for the Pe ,...., C-scaling the difference 
in the results for various values of the Cahn number C is smaller. However, there is still a 
difference. Further investigation is needed to check if it is possible to find a sealing for the 
Peelet number for which there is a perfect match. 
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CONCLUSIONS AND RECOMMENDATIONS 

In the preceding chapters the theoretica) aspects of diffuse-interface theories were discussed 
in detail and the results of applications to several phenomena were presented: phase separa
tion, interfacial instabilities, thermo-capillary flow and coalescence. The essential ingredient 
of diffuse-interface modelling is the inclusion of the range of molecular interactions, which 
is closely related to the interfacial thickness. Thermodynamically, this interaction range is 
represented by a non-Jocal effect in the free energy of the system. The main advantage of 
diffuse-interface modelling over the classical, sharp-interface model is that it deals with to
pological interface changes, which occur during processes such as coalescence and phase 
separation, in a physically justified way: the range of molecular interactions, which is in
cluded in the diffuse-interface approach, controls topological changes. In genera), the inter
facial thickness is a small parameter, typically about 0.1 nm. A diffuse-interface model is, 
therefore, essentially a smali-scale model. In the first part of chapter 3 and references therein, 
it was shown that it can be successfully applied to smali-scale phenomena, such as the initia] 
stages of phase separation, where the interfacial thickness can be captured numerically. 

For large-scale systems, the interfacial thickness can not be captured numerically, in gen
era!. In this thesis we, therefore, focussed on the question whether it is possible to replace 
the real interfacial thickness by a numerically acceptable one and still get physically correct 
and accurate results . In chapter 3, section 3.3, we considered interfacial instabilities in a 
Hele-Shaw geometry. The results show convergence for large values of the Peelet number 
and smal! val u es of the dimensionless interfacial thickness, the Cahn number, which suggests 
that there is a sharp-interface limit (see figure 3.6). However, in this example we did not 
consider the sealing involved with changing the interfacial thickness. 

In chapters 4 and 5 special attention has been paid to the sealing problem. It was argued 
that, if an interface is replaced by another one with a different thickness, the sealing of the 
capillary term should be such that the interfacial lension stays the same. This sealing for the 
capillary term was investigated in detail in chapter 4, where the diffuse-interface results for 
thermo-capillary flow were compared directly to classica! results. Using the sealing for the 
capillary term which ensures that interfacial tension remains the same if we change the inter
facial thickness, we found that the results for pinned linear and circular interfaces converge 
to the classica! results for small values of the Cahn number. Sufficiently accurate results were 
obtained if the interfacial thickness was chosen smal! compared to the size of the thermo-
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capillary boundary layer. In chapter 4 we also considered thermo-capillary instabilities, but 
forthese results we kept the Cahn number and the Peelet number fixed: we used C = 0.01 
and Pe = 104 . The results for interfacial instabililies presenled in chapler 3 suggest lhal, if 
we choose a smaller inlerfacial lhickness and a larger Peelet number, lhe same results wiJl 
be oblained. However, lhis is nol lrue in case there is a lopological change in lhe interface. 
In lhis case, lhe sealing of lhe Peelet number needs special attenlion. This was lhe topic of 
chapler 5. 

In chapter 5 the diffuse-interface approach to coalescence in hyperbol ie flows was invest
igated. The same sealing which ensures lhal interfacial lension stays the same if we change 
lhe inlerfacial thickness, was applied to diffusion. Th is way, we found lhal the Peelet number 
should be proportional to the Cahn number. This sealing for the Peelet number differs from 
the sealing used by Lowengrub and Truskinovsky (1998): they used a Peelet number which 
is proportional to the reciprocal of the Cahn number and they showed, by means of matched 
asymptotics, that the classica! governing equations can be obtained in the sharp-interface limit 
for this sealing. In chapter 5 we compared these two scalings for the Peelet number (see fig
ures 5.3 lo 5.6): the difference in the results for various values of the Cahn number using the 
Pe ~ C-scaling was much smaller than for the sealing used by Lowengrub and Truskinovsky 
(1998). However, the results for coalescing cylinders (see figures 5.9 and 5.1 0) show that for 
larger values of the Peelet number, there is still a relatively large difference in coalescence 
time if we change the Cahn number. Further research is needed to investigate what the origin 
of this difference is. In chapter 5 it was assumed that the phenomenological coefficients, lhe 
mobilily parameter and the viscosity, are not affected by the sealing. Changing the interfacial 
thickness also implies a change in the interaction length, which might also affect the sealing 
of the phenomenological coefficients. Th is issue needs further investigation. 

A direct comparison of diffuse-interface results to classica! results for coalescence is dif
ficult, because classical results normally do not go beyond the topological change. However, 
there are well-established classical results on film drainage, which include intermolecular 
van der Waals attraction force by means of a Hamaker constant (e.g. Bazhlekov et al., 1999; 
Rother et al., 1997), which can be used as a reference. Computationally, the comparison is 
also more difficult than for the thermo-capillary flow in chapter 4, since we are now deal
ing with rnaving interfaces and we have to include the local concentration balance equation, 
which can lead to computational difficulties. 

Firstly, the sealing proposed in chapter 5 prediets that if the real interfacial thickness is 
replaced by a larger one, the Peelet number should be increased. For large scale systems, this 
means that the numerical value of the Peelet number can become very large. In this thesis, 
we used the Euler explicit methad for time integration. However, for large Peelet numbers 
the local balance equation for the concentration becomes conveelion dominated and, in this 
case, the Euler explicit methad is stabie only for very small time steps. Therefore, to be able 
to make a proper comparison to classical results, it is advisable to use an operator splitting 
technique (Timmermans et al., 1994) or another time inlegration technique, such as a high 
order Runge-Kutta scheme. 

Secondly, rnaving interfaces can lead 10 compulational difficulties when the interfacial 
thickness is decreased. To be able to make a comparison with the classica) results and to 
test the sealing is it also necessary to use interfacial thicknesses smaller than those used in 
chapter 5. The use of a high order speetral element approximation generally allows us to 
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capture an interface with a small thickness with the same accuracy using less nodal points 
(Verschueren et al., 1998). However, increasing the order of the element generally increases 
the required CPU-time. The use of high-orderelementscan be made more efficient by using 
finite element pre-conditioning techniques (Anderson, 1999), but even then we can not de
crease the interfacial thickness much further because the moving interfaces force us to use a 
fine mesh everywhere in the domain. In chapter 4, where we considered pinned interfaces, we 
could easily choose the interfacial thickness as small as one per mille of the computational 
domain, because we were able to use local mesh refinement near the interface in that case. 
For moving interfaces, an adaptive re-meshing technique is required if one wishes to have 
local refinement near the interface at all times. 

The results presented in this thesis show that the diffuse-interface approach is a very 
powerful tooi: topological changes are dealt with in a physically justified way and the model, 
even though it is essentially a smali-scale model, can also be applied to large-scale sys
tems. The results, even though preliminary, show that, if the proper sealing is used, the 
diffuse-interface approach is capable of bridging the gap between smali-scale and large-scale 
systems. Furthermore, the diffuse-interface model can easily be extended to include visco
elastic effects or chemica) reactions and the numerical implementation can also be adapted 
for three dimensional systems. 
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Appendix A 

THERMODYNAMIC RELATIONS 

A.l Gibbs relation: derivation of equations (2.54) and (2.55) 

Consider a homogeneaus mixture of N fluids. The total internal energy U can be written as 

U= U(S, V, {M;}) i=l ... N, (A.l) 

where S is the total entropy, V is the total volume, M; is the total mass of component i and 
{M;} denotes the set {MJ, M2, ... , MN }. The total differential yields the classica! Gibbs 
relation 

N 

TdS = dU + pdV- LJI;dM;' (A.2) 
i=l 

where the temperature T, the pressure p and chemica! poten ti al Jli of component i are given 
by 

T--(au) 
- as v.{M;), (au) p- -

av s.{Mil 
and Jli = -- , (au) 

aM; S.V.{Mj;<;} 
(A.3) 

respectively. The subscripts denote the constraints, that is, which variables are kept constant. 
Intherest ofthis appendix we will omit these subscripts. Dividing the classica! Gibbs relation 
by the total mass M we obtain 

p N 
Tds = du- 2 dp- LJI;dc;, 

p i=l 

(A.4) 

where s = SIM is the specific entropy, u = U I M is the specific intern al energy, p = MI V 
is the density of the mixture and c; is the mass fraction of component i. 

Now we rewrite the pressure, the temperature and the chemica) poten ti als in terms of the 
specific internal energy u, which is a function of the specific s entropy and the densities {p;}: 
that is 

u= u(s, {pi}) i=l ... N. (A.S) 
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Carefully taking into account the constraints used in (A .3), the chemica] potential can be 
rewritten as 

op u V op u op; op u as op u s op u 
f.Li = -- = V---+V--- =----

oM; ap; aM; as aM; ap; p as 

and the temperature as 

op u V op u V os 1 op u au 
T=--=---=--=- . 

as as as p as as 

Combining these relations we obtain 

op u 
f.Li = --Ts. 

ap; 

The pressure can be rewritten as 

(A.6) 

(A .7) 

(A.8) 

N N N N 
p = - L op u V op; = L apu M; + puL a V M; = L op u Pi - pu . (A.9) 

i=' op; av i=' ap; v i=' ap; v i=' ap; 

Combining this relation with (A.8) yields 

N 

p = Lp; f.Li - pu + p T s . 
i=l 

(A. JO) 

The specific internal energy u is a locally defined variable. The gradient densities can be 
added as independent variables: 

u = û(s, {p;), {'V Pi}) i= 1 . .. N. (A.ll) 

The non-classica] Gibbs relation now reads 

N N 
0

~ 

' p "' "' u Tds = du- 2 dp- ~JL;dc;- ~ --·d'Vp;. 
P i=' i= I av p; 

(A.l2) 

Even though the system is no Jonger homogeneous, we can still u se (A .8) and (A .l 0) as local 
definitions of the chemica! potential and the pressure: that is 

and 

apû 
f.Li = --Ts 

ap; 

N 

p=LP;JL;-pû+pTs, 
i= I 

(A.13) 

(A.l4) 

where opûjop; is now such that also the density gradients {'V p;} are kept constant. The 
chemica] potential (A.l3) and the pressure (A.l4) can be identified with f.Loi and Po as defined 
in equation (2.55). 
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A.2 Quasi-incompressible systems: derivation of equation (2. 76) 

The chemica! potential (A.I3) for component i can be rewritten as 

apû aû 
f.-Li = - - Ts = f + p- , 

api api 
(A.I5) 

where f = û- Ts is the specific Helmholtz free energy. For quasi-incompressible, isothermal 
systems the densities depend only on mass fractions {ei} . Therefore, we may write 

û = Û(s , {ei}, {Vei}) i= I . .. N . (A.I6) 

Consequently, 

aû N aû aek 1 N aû -=I:--=- L-(Oik -ek), 
api k=l aek api p k=l aek 

(A.17) 

where Oik is the Kronecker delta. Combining (A.15) and (A.17) we obtain 

N-I ( aû aû ) ( aû aû ) w-J- Ck --- + ---
' - {; aek aeN aei aeN ' 

(A.I8) 

where we used 'L~ 1 ei = I. Furthermore, combining (A.I4) and (A.I8), we naturally obtain 
p = 0. Using 

û = u(s, {ei}, {'ii'ei}) i= I ... N- I, (A.19) 

the homogeneaus part of the Gibbs relation for quasi-incompressible systems can be written 
as 

where 

N-1 a 
Tds = du- L __!!_dei , 

i=l aei 

au aû aû 

aei aei aeN 

(A.20) 

(A.21) 

To obtain the non-classica] Gibbs relation we have to rewrite the last term on the right hand 
side of equation (A. I2) in terms of the mass fractions . For quasi-incompressible systems 
aû;av p; and d'il Pi can be rewritten as 

and 

aû _ ~ aû avek 
---~---

av Pi k=t avq av Pi 

N a'ilpi 
d'il Pi = L --d'il ek , 

k=l a'ilq 

(A.22) 

(A.23) 
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respectively. The partial differentials a 'V ckf a 'V Pi and a 'V Pi ;a 'V Ck can be written as 

ave* a'V(Pk/ p) 1 -- = = -(oik- Ck) 
avpi avpi P 

(A.24) 

and 

av p; a'V(pci) 
a'Vck = a'Vc* = p(oik- p;/Qk)' (A.25) 

respectively, where we used the simple mixture relation: p- 1 = L~l Ci/Qi· Consequently, 
the non-classica! term in the Gibbs relation can be written as 

which yields 

N a' N a' N-1 a L _u_·d'Vpi = L _u_·d'Vc; = L _u_·d'Vci ' 
i= I a 'V Pi i= I a'Vc; i= I a 'Vei 

where 

au aû aû 
=-----

a'Vc; a'Vc; a'VcN 

Finally, the non-classica! Gibbs can be written as 

N-1 a N-1 a 
Tds = du- L _!!_de;- L _u_ ·d'Vc;, 

i=l aci i=l a'Vci 

which is indeed identical to equation (2.76). 

A.3 Stress tensor: derivation of equation (2.90) 

The reversible part of the stress tensor Tr, given by equation (2. 79) reads 

N-1 au 
Tr =- L p--'Vc;. 

i=l a'Vc; 

The divergence of 1;-, which appears in the momenturn equation, can be written as 

N-1 au N-1 ( au ) 
'V·Tr = -p L --·'V'Vc;- L '\/. p-- 'Vc; . 

i=l a'Vc; i=l a'Vci 

Using chemica! potential, defined by equation (2.81 ), we obtain 

N-1 a N-1 N-1 a 
"ïl·Tr = -p L _u_·'V'Vc; + p L(P-i- tLN)'Vci- P L _!!_'\Ie; . 

i=l a'Vc; i=l i=l aci 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 



The gradient of u can be written as 

au N-I au N-I au 
'Vu= -Vs + L -'Vc; + L --·'V'Vc;. 

as i=l ac; i=l ave; 

Combining (A.32), (A.33) and (A.7) we obtain 

N-1 

'V·Tr = -p'Vu + pT'Vs + p L(/.L;- f.LN)'Vc;. 
i=l 

For isothermal systems, this can be written as 

N-1 

"ïl ·Tr = -p'V f + P L(f.L;- f.LN)'Vc;, 
i=l 

which is identical to equation (2.90). 
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(A.33) 

(A.34) 

(A.35) 
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SUMMARY 

Processes such as phase separation, phase inversion, interfacial deformations, coalescence or 
break-up are frequently encountered in modern technology and industrial processing. Very 
often, these processes, which can occur simultaneously, are subject to an imposed flow, which 
ensures that the desired structure is obtained . A better understanding of this way of rnanipu
lating structure development can lead to an increase in the quality of industrial products. One 
way to obtain a better understanding is through modelling. 

Several aspects of structure development complicate the development of a suitable phys
ical model and an appropriate numerical implementation. Firstly, rnadelling of structure de
velopment in flow involves both multi-component hydrodynamics and non-equilibrium ther
modynamics, which have to be included in a coupled way. Secondly, processes such as phase 
separation and coalescence involve changes in the interfacial topology : that is, interfacescan 
interseet or (dis)appear. Thirdly, the length scales involved with structure development range 
from the macroscopie size of the system to the microscopie molecular interaction length : the 
flow is normally controlled on a macroscopie level, but the topological changes are controlled 
by the range of molecular interactions. Bridging this gap between microscopie and macro
scopie scales is clearly the biggest challenge in rnadelling structure development in flow. 

The model proposed in this thesis is a diffuse-interface model, which goes back to the 
ideas of van der Waals . In contrast with the classica! sharp-interface model, an interface 
between immiscible fluids is represented by a continuous concentration profile. The thickness 
of the interface is closely related to the range of molecular interactions. Thermodynamically, 
the fini te interaction range is represented by a non-Jocal effect inthefree energy: the localfree 
energy density not only depends on the local composition, but also on the composition of the 
immediate environment. Cahn and Hilliard used a Taylor expansion of the free energy density 
about the homogeneaus state. In this way, the non-Jocal effect is represented by a dependenee 
on local composition gradients rather than non-Jocal composition . Including the non-Jocal 
effect in this way, non-classica! expressions for the chemica! potential, the stress tensor and 
the energy flux are derived in this thesis, following the principles of classica! irreversible 
thermodynamics. The obtained expressions have a differential form, which allows a direct 
coupling with the equations of ftuid dynamics. 

The obtained set of non-classica! governing equations combines multi-component hydro
dynamics and non-equilibrium thermodynamics. Furthermore, changes in interfacial topo
logy are included in a physically justified way, since the molecular interaction length which 
controls the topological changes is included in the model. Computationally, the diffuse
interface approach also has some advantages over the classica! sharp-interface approach, in 
which boundary conditions are applied to conneet the bulk phases. The non-classica! ex
pression for the stress tensor includes interfacial tension as a body force in the momenturn 
equation, which makes a direct application of boundary conditions not necessary. This means 
that a fixed grid numerical technique can be used, which is convenient in case the topology 
of the interface changes. 

In this thesis the diffuse-interface model is applied to several phenomena: phase separa
tion, interfacial instabilities, thermo-capillary flow and coalescence. For the initia! stages of 
phase separation the interfacial thickness, which is typically of the order 0.1 nm, can be cap-
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tured numerically and the model can be directly applied . For large-scale systems, in which 
the real interfacial thickness can not be captured numerically, sealing needs special attention. 
In this thesis it is argued that, if the interface is replaced by one with a numerically accept
able thickness, sealing should be such that interfacial tension retains its value. Using this 
sealing, it is shown that the diffuse-interface results for thermo-capillary flow converge to the 
classica! results for pinned interfaces. In case of moving interfaces and topological changes, 
an additional sealing of the diffusion term is required. Applying the same sealing which is 
used for the capillary term to diffusion it is found that the diffusional Peelet number is pro
portional to the dimensionless interfacial thickness. This sealing is different from the ones 
used in literature, which are based on obtaining the classical equations in the sharp-interface 
limit. Results for coalescence of fluid domains in hyperbol ie flows indicate that the sealing 
proposed in this thesis performs better than the sealing used in literature: when the interfacial 
thickness is replaced by a larger one, the obtained spread in coalescence times for the sealing 
proposed in this thesis is typically about four times smaller than for the other sealing. 



SAMENVATTING 

Structuurontwikkeling is een essentieel onderdeel van veel moderne industriële processen en 
technologieën. Processen als fasenscheiding, faseninversie, deformaties van het scheidings
vlak tussen vloeistoffen en het samenvloeien of opbreken van vloeistofdomeinen kunnen de 
structuur( ontwikkeling) beïnvloeden. Eigenschappen van producten worden bepaald door de 
structuur. Voorbeelden zijn de smaak van voedsel, de belastbaarheid van vezels en de kwali
teit van producten als verf, papier en cosmetica. Ook voor technologieën als inkt-jet printen 
en oliewinning is structuurontwikkeling van belang. Om de gewenste structuur te krijgen is 
het vermogen om de structuurontwikkeling tijdens het proces te sturen en manipuleren essen
tieel. Soms wordt een extern opgelegd snelheidsveld gebruikt om de structuur te beïnvloeden. 
Een bekend alledaags voorbeeld hiervan is het kloppen van slagroom. 

Fysische modellering is een manier om een beter inzicht te krijgen in de processen die 
een rol spelen tijdens structuurontwikkeling. Het modelleren van structuurontwikkeling is 
moeilijk om een aantal redenen. Ten eerste kunnen meerfasenstroming en niet-evenwiehts 
thermodynamica niet ontkoppeld worden: structuurontwikkeling door fasenscheiding kan in 
principe beïnvloed worden door een opgelegde stroming. Verder moet er bij de numerieke 
implementatie van het model rekening mee gehouden worden dat er veranderingen in de 
topologie van de scheidingsvlakken tussen de vloeistoffen kunnen optreden. Ten derde spelen 
lengteschalen een rol die variëren van de macroscopische afmetingen van het systeem tot de 
schaal van microscopische interacties tussen moleculen. 

Op het oog lijkt het scheidingsvlak tussen twee niet mengbare vloeistoffen een scherpe 
overgang. In de klassieke modellering van meerfasenstroming wordt dan ook aangenomen 
dat er een discontinue overgang is in de concentratie. Eigenschappen als oppervlaktespanning 
worden opgelegd via randvoorwaarden. Numerieke implementaties van het klassieke model 
maken vaak gebruik van een discretisatie waarbij de knooppunten het scheidingsvlak volgen, 
zodat de randvoorwaarden op een eenvoudige manier kunnen worden opgelegd. Deze vorm 
van discretisatie leidt tot moeilijkheden als er topologisch veranderingen in het scheidings
vlak tussen de vloeistoffen optreedt. Deze tekortkoming heeft ook een fysische achtergrond: 
topologische veranderingen worden veroorzaakt door moleculaire interacties in de buurt van 
het scheidingsvlak. De moleculaire interactielengte, die niet in de klassieke modellering 
wordt meegenomen, is daarom een belangrijke parameter. 

Het model in dit proefschrift is een zogenaamd 'diffuse-interface' model (diffuus-schei
dingsvlak model). De basis voor dit model is gelegd door Van der Waals. De essentie van 
het model is dat een scheidingsvlak tussen twee niet mengbare vloeistoffen diffuus veronder
steld wordt. Met andere woorden, er wordt aangenomen dat het verloop in de concentratie 
van de ene naar de andere vloeistof continu is. De afstand waarover de concentratie vari
eert wordt bepaald door de moleculaire interactielengte die nauw samenhangt met de dikte 
van het scheidingsvlak. Thermodynamisch gezien komt deze interactielengte tot uiting in 
een niet-locaal effect in de vrije-energiedichtheid van het systeem: de vrije-energiedichtheid 
hangt niet alleen af van de locale waarde van de concentratie, maar ook van de waarden van 
de concentratie in de nabije omgeving. Gebruik makend van een Taylor-ontwikkeling van de 
vrije-energiedichtheid om de homogene toestand, kan het niet-locale effect worden vertaald 
naar een afhankelijkheid van locale concentratiegradiënten. Uitgaande van deze representatie 
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van het niet-locale effect, worden in dit proefschrift niet-klassieke uitdrukkingen voor de che
mische potentiaal, de spanningstensar en de energieflux afgeleid. Deze uitdrukkingen hebben 
een differentiaalvorm, waardoor ze eenvoudig te koppelen zijn met de locale behoudswetten 
voor massa, impuls en energie. De op deze manier verkregen set vergelijkingen stelt ons in 
staat om structuurontwikkeling tijdens stroming te simuleren . Het model omvat zowel meer
fasenstroming als niet-evenwichtsthermodynamica. Verder zorgt de continue representatie 
van het scheidingsvlak ervoor dat oppervlaktespanning als een volumekracht wordt meege
nomen in de impulsvergelijking. Hierdoor is het opleggen van randvoorwaarden niet meer 
nodig. 

In dit proefschrift wordt het 'diffuse-interface' model toegepast op fasenscheiding, insta
hiliteilen in scheidingvlakken tussen vloeistoffen, thermocapillaire stroming en samenvloei
ing van vloeistofdomeinen. Voor de meeste systemen is de dikte van het scheidingsvlak erg 
klein: een typische waarde is 0.1 nanometer. Dit betekent dat het 'diffuse-interface' model 
alleen direct kan worden toegepast op kleinschalige systemen, zoals bijvoorbeeld de initiatie 
van fasenscheidingsprocessen . Voor processen die plaatsvinden op een grotere schaal is het 
meestal niet mogelijk om de echte waarde van de dikte van het scheidingsvlak te gebruiken. 
Het is dan noodzakelijk om het echte scheidingsvlak te vervangen door een scheidingsvlak 
met een numeriek acceptabele dikte. In dat geval moet er extra aandacht besteed worden aan 
de schaling: de schaling moet dusdanig zijn dat het systeem met het dikkere scheidingsvlak 
zich hetzelfde gedraagt als het originele systeem. De in dit proefschrift voorgestelde schaling 
zorgt ervoor dat de oppervlaktespanning niet verandert als de dikte van het scheidingsvlak 
verandert. De resultaten voor thermocapillaire stroming in dit proefschrift tonen aan dat, voor 
systemen waarbij geen topologieveranderingen optreden, het scheidingsvlak inderdaad mag 
worden vervangen door een andere: de resultaten convergeren naar de klassieke oplossing als 
de scheidingsvlakdikte naar nul gaat. Voor systemen waarin wel topologieveranderingen op
treden, zoals samenvloeiing van vloeistofdomeinen, levert de in dit proefschrift voorgestelde 
schaling een kleinere spreiding in de resultaten bij verandering van de scheidingsvlakdikte 
dan een schaling die gebruikelijk is in de literatuur. 
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Stellingen 

behorende bij het proefschrift 

A Diffuse-Interface Model for Structure Development in Flow 

1. De moleculaire interactielengte speelt een belangrijke rol tijdens structuurontwikkeling 
en mag daarom niet zonder meer worden weggelaten uit de modellering. 
• Dit proefschrift. 

2. Zowel vanuit fysisch als numeriek oogpunt verdient het 'diffuse-interface' model de 
voorkeur boven de klassieke modellering. 
• Dit proefschrift. 

3. Indien er geen veranderingen in de topologie van een scheidingsvlak tussen niet-meng
bare vloeistoffen optreden mag de scheidingsvlakdikte vervangen worden door een 
grotere, mits de juiste schaling wordt toegepast. 
• Dit proefschrift, Hoofdstuk 4. 

4. In de literatuur worden regelmatig incorrecte uitdrukkingen voor de oppervlaktespan
ning afgeleid. Deze fouten worden niet opgemerkt als er geen vergelijking met experi
menten of met resultaten van andere modellen plaatsvindt. 
• Jasnow, D. and Viiials J. (1996). Coarse-grained description of thermocapillary flow. 
Phys. Fluids, 8(3), 660-669 
• Gurtin, M.E., Polignone D., Viiials J. (1996). Two-phase binary fluids and immis
cible ftuids described by an order parameter. Math. Models Methods Appl. Sci., 6, 
815-831. 

5. De wetenschap- en techniekvoorlichting is in Nederland gefundeerd op een democra
tische en een economische pijler. De democratische pijler dreigt nu uit het zicht te 
verdwijnen. 
• Rapport over de instelling van een dienst wetenschapsvoorlichting, KNAW, mei 
1977. 
• N. Wiedenhof,Aarde, Appel, Ei, wetenschaps- en techniekvoorlichting in Nederland 
en ook wat daarbuiten 1985-1995, rapport aan de stichting PWT, Stichting Publiek, 
Wetenschap, Techniek (inmiddels opgegaan in WeTeN), Utrecht 1995. 
• Kiezen voor Kracht en Kwaliteit, rapport evaluatie van de stichting WeTeN i.o.v. 
ministeries van OCenW en EZ, Den Haag, mei 1999. Zie ook Persbericht OCenW, 
Conclusies evaluatie Stichting WeTeN, 16 juni 1999. 



6. Bureaucratie wordt meestal voelbaar door een onvolledige of ondoorzichtige voorlich
ting naar het publiek toe over de te volgen procedures. 

7. Vanuit het oogpunt van de lezer is Japans een efficiënte taal. 

8. Voor veel wetenschappelijk onderzoek is serendipiteit essentieel. 

9. Het belang van het visuele aspect van een muzikaal optreden is ouder dan de videoclip. 

10. Lange sommen zijn vervelend . 

Maykel Verschueren, 
Eindhoven, 4 oktober 1999. 


