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Abstract

Seeded image segmentation is a popular type of super-
vised image segmentation in computer vision and image
processing. Previous methods of seeded image segmen-
tation treat the image as a weighted graph and minimize
an energy function on the graph to produce a segmenta-
tion. In this paper, we propose to conduct the seeded im-
age segmentation according to the result of a heat diffu-
sion process in which the seeded pixels are considered to be
the heat sources and the heat diffuses on the image start-
ing from the sources. After the diffusion reaches a stable
state, the image is segmented based on the pixel temper-
atures. It is also shown that our proposed framework in-
cludes the RandomWalk algorithm for image segmentation
as a special case which diffuses only along the two coor-
dinate axes. To better control diffusion, we propose to in-
corporate the attributes (such as the geometric structure) of
the image into the diffusion process, yielding an anisotropic
diffusion method for image segmentation. The experiments
show that the proposed anisotropic diffusion method usu-
ally produces better segmentation results. In particular,
when the method is tested using the groundtruth dataset of
Microsoft Research Cambridge (MSRC), an error rate of
4.42% can be achieved, which is lower than the reported
error rates of other state-of-the-art algorithms.

1. Introduction

Image segmentation is an important process in computer
vision and image processing, which divides an image into
a number of disjoint regions such that the pixels have high
similarity in each region and high contrast between regions.
While unsupervised segmentation groups elements of an
image automatically according to some criteria, supervised
algorithms incorporate user intervention into the process to
influence the segmentation, which have recently become
popular. One type of supervised segmentation methods is
seeded segmentation, in which the user provides labelling
of some pixels (called seeds) as belonging to the foreground
or the background and the algorithm completes the labelling

for the remaining pixels.

There have been some seeded image segmentation meth-
ods published [6, 4, 5, 10, 15, 2, 3, 17, 14]. They basically
treat an image as a weighted graph with nodes correspond-
ing to pixels in the image and edges being placed between
neighboring pixels, and minimize a certain energy function
on this graph to produce a segmentation. Different energy
functions give different behaviors of the corresponding al-
gorithms [15].

In this paper, we propose to conduct the seeded image
segmentation based on the result of a heat diffusion process.
Our work is motivated by the observation that the image
segment boundary is often embedded in a crowd of “spuri-
ous” edges due to noise or texture, and the statement that the
solution of the heat diffusion equation with the initial sig-
nal is equivalent to the convolution of the initial signal with
Gaussian filter at each scale [1]. In our diffusion-based seg-
mentation framework, the seeded pixels are treated as the
heat sources and the heat diffuses on the image starting from
the sources. After the state goes stable, the image can be
segmented according to the temperature at each pixel. The
segmentation result depends on how the heat diffuses. The
diffusion process is controlled by the diffusion direction and
velocity. Our goal is to partition the image along semanti-
cally meaningful edges and thus our basic idea is that the
heat should diffuse more in the direction parallel to the edge
and less in the perpendicular one. With this in mind, we in-
corporate the local geometric structure of the image into the
diffusion process and thus suggest an anisotropic diffusion
for segmentation. As a consequence, the local structure in-
formation guides the diffusion to give more accurate and
reliable segmentation.

One major novelty of this work is the brand new for-
mulation of the seeded image segmentation problem based
on diffusion with Dirichlet conditions, where the segmen-
tation relies on the pixel temperatures at the steady state.
Another major novelty lies in the proposed anisotropic dif-
fusion method that well controls the diffusion process. Par-
ticularly, we modify the heat equation so that the diffu-
sion respects both the local geometric structure of the image
and the color difference between neighboring pixels. This
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modification significantly improves the segmentation per-
formance.

The rest of the paper is organized as follows: Section 2
briefly describes some related work. Section 3 explains
the definition and computation of the structure tensor for
a pixel in an image, which will be used in Section 4. In
Section 4, we propose a diffusion based image segmenta-
tion framework, show that the RandomWalk algorithm [10]
is a special case of our framework, and further present an
anisotropic diffusion method for seeded image segmenta-
tion, which uses the geometric structure of the image to
guide diffusion. The numerical scheme is suggested in Sec-
tion 5 and the experiments are conducted in Section 6. Fi-
nally, we conclude the paper in Section 7.

2. Related work

2.1. Seeded image segmentation

Three popular seeded image segmentation algorithms are
GraphCut [6, 5], RandomWalk [10] and the Geodesic seg-
mentation [2]. They are based on energy functionals which
are minimized via discrete optimization. It is shown in
[15, 3] that these three methods minimize a similar energy
function while under different Lq norm (q = 1, 2,∞).

The GraphCut method [6] treats the fore-
ground/background as source/sink, and uses a “max-
flow/min-cut” algorithm to find a set of edges that
separates the source and the sink with the minimum total
weights. The cut across the found edges is returned as the
segmentation boundary.

The RandomWalk method [10] computes for each un-
seeded pixel the probability that a random walker starting at
that pixel first reaches the foreground or background seeds,
and then classifies each pixel into the corresponding group
according to the maximal probability. In this paper, we will
show that RandomWalk can be viewed as a special case un-
der our diffusion-based segmentation framework, in which
the diffusion is conducted only along the directions of the
two coordinate axes. Our proposed anisotropic diffusion
method improves the RandomWalk method by allowing dif-
fusion along arbitrary directions which respect the local ge-
ometric structure of the image.

The Geodesic algorithm [2] classifies the unseeded pix-
els according to their geodesic distances to the “foreground”
and “background”. It intrinsically belongs to the L∞−norm
approach [3].

As have been shown in [15], the GraphCut method is
sensitive to seed quantity and has the problem of “small cut”
behavior because it tries to minimize the total edge weights
in the cut, the RandomWalk tends to give the “average” cut
result, and the L∞−norm approach is strongly influenced
by the position of the seeds.

2.2. Diffusion for image processing

Partial differential equation (PDE) based methods have
been widely used in many image processing tasks such as
restoration, multiscale representation, inpainting, smooth-
ing and edge detection [9, 11]. In particular, the diffusion
equation has been successfully used for image smoothing,
restoration and regularization [11, 8, 1, 13, 18, 16]. The dif-
fusion equation is an important partial differential equation
that describes the distribution of heat in a given region over
time. For a function U(t;p) with the time variable t and
the location variable p, the heat diffusion problem can be
written as

∂U(t;p)
∂t

= div(D(t;p)∇U(t;p)),

s.t. U(0;p) = U0(p)

(1)

where D(t;p) is the diffusion conductance or the diffusivity
at location p at time t and U0(p) is the function at the initial
state. It has been known that this diffusion process is similar
to the convolution with a Gaussian kernel of variance t [1].
Much attention has been paid to apply this diffusion equa-
tion to various image processing problems. However, little
work has been done to use the equation for seeded image
segmentation. In this paper we explore the use of this diffu-
sion equation in seeded image segmentation. While in most
previous work the function U(t;p) stands for the color of
the image and the image processing problem is formulated
as an initial value problem of a PDE, we treat U(t;p) as
a scalar quantity called temperature, which we assign to
each pixel of the image and use to perform the segmenta-
tion. We focus on the steady state of the diffusion equation,
and therefore our formulation is more like a boundary value
problem than an initial value one.

3. Differential geometry of images

To analyze the local geometric structure of an image,
the classic differential geometry theory [7] provides an el-
egant method if we consider that the image is obtained by
discretizing a differentiable surface. For simplicity, we as-
sume that an image is defined by a differentiable function
I(p) : Ω → Rn where Ω ⊂ R2 is the domain of the image
(a 2D rectangular area), n ∈ N+ is the number of image
channels, and p = (x, y) represents a point on the domain.
We examine the difference of image colors at two points p1

and p2, which is given by I(p1) − I(p2). When the dis-
tance between p1 and p2 tends to zero, the difference can
be written

dI =
∂I
∂x

dx +
∂I
∂y

dy = Ixdx + Iydy.



Thus, its squared magnitude is

||dI||2 = dIT dI = IT
x Ixdx2 + 2IT

x Iydxdy + IT
y Iydy2

=
[

dx dy
] [

g11 g12

g21 g22

] [
dx
dy

]

where g11 = IT
x Ix, g12 = g21 = IT

x Iy and g22 = IT
y Iy .

This quadratic expression is actually the first fundamental
form of I(p), which measures the changes of the image.
Specifically, for a unit vector θ = (θ1, θ2),

||dI||2(θ) =
[

θ1 θ2

] [
g11 g12

g21 g22

] [
θ1

θ2

]
(2)

is a measure of the rate of change of the image in direction
θ.

Let G be the 2 × 2 matrix [gij ]. It is a symmetric and
semi-positive-definite matrix. G is called the structure ten-
sor [19] because it indicates the local geometry of the im-
age. In fact, the extrema of ||dI||2(θ) of (2) are obtained
in the directions of the eigenvectors of G and the values at-
tained are just the corresponding eigenvalues [13]. Denote
by λ+ and λ− the maximal and minimal eigenvalues and
by θ+ and θ− the eigenvectors corresponding to λ+ and
λ−. Then θ+ and θ− are two orthogonal vectors giving the
direction of maximal and minimal changes at a given point
in the image and λ+ and λ− tell the corresponding change
rates. In particular,

• when λ+ � λ−, there are a lot of variations. The point
may be located on an edge. θ+ and θ− are respectively
the directions across the edge and along the edge.

• when λ+ � λ− � 0, there are very few variations
around the point. The region is almost flat and does
not contain any edge or corner.

• when λ+ � λ− � 0, the point is located on a saddle
point of the surface, which is possibly a corner struc-
ture in the image.

Note that for scalar images (i.e., n = 1), the eigenvectors
θ+/− and the eigenvalues λ+/− of G are

θ+ =
∇I

||∇I|| , θ− =
∇I⊥

||∇I||

and

λ+ = ||∇I||2, λ− = 0.

That is, the direction of the maximal change is the gradient
direction, the maximal eigenvalue is the squared magnitude
of the gradient, and the minimal eigenvalue is zero.

4. Diffusion based segmentation framework

We first would like to explain our principle by looking at
a simple physical problem which may give more intuition.
The physical model is an object composed of two differ-
ent materials as shown in Figure 1. The green part is wood
and the blue part is copper. We place two heat sources on
the object: Hot with the constant temperature of 100 and
Cold with the constant temperature of 0. We can imagine
that there is an obvious temperature difference between the
wood and copper after the temperature goes stable on the
object. The barrier can be found by checking the temper-
ature against 50. Actually, this process can be modeled by
the heat diffusion equation with spatially varying diffusiv-
ity.

�

�

Cold

Hot

barrier

Figure 1. A physical model for the seeded segmentation algorithm.

Now we are ready to describe our diffusion based seg-
mentation framework. Suppose we are given an image I
defined over domain Ω. Denote by F the set of foreground
seeds and by B the set of background seeds. We assign a
scalar value called temperature to each pixel of the image
such as the pixels of F have a constant temperature of 1 and
the pixels of B have a constant temperature of 0. Denote by
u(t;p) the temperature of pixel p at time t. We formulate
the diffusion process for seeded image segmentation as

∂u(t;p)
∂t

= div(D(p)W(p)∇u(t;p)),

s.t. u(t;p) ≡ 1 for p ∈ F
u(t;p) ≡ 0 for p ∈ B

(3)

where D(p) is a 2 × 2 symmetric matrix called the dif-
fusion tensor and W(p) is a 2 × 2 diagonal matrix called
the inhomogeneous metric tensor. After the diffusion pro-
cess goes steady, the segmentation is done by examining the
temperature at each pixel. That is, pixels with temperature
u ≥ 1/2 are labelled as the foreground and pixels with tem-
perature u < 1/2 are labelled as the background. Similar to
the classical RandomWalk algorithm, the general model (3)
can also be used for multiple objects segmentation.

Note that the proposed equation (3) is a diffusion equa-
tion with Dirichlet boundary conditions, which is slightly



different from the one used in regularization or smooth-
ing (1). In addition, the inhomogeneous metric tensor
W(p) that changes in response to color changes is intro-
duced to amend the gradient [15]. The diffusion tensor
D(p) and the inhomogeneous metric tensor W(p) serve
different purposes: D(p) describes the diffusivity, control-
ling the diffusion directions and velocities, and W(p) re-
spects the color variance between neighboring pixels.

For our segmentation purpose, we are more interested in
the situation when the diffusion has reached the steady state.
Without ambiguity, we omit the time t in our notation and
just write u(p) after the diffusion becomes stable. Thus, we
seek the solution to the following problem:

div(D(p)W(p)∇u(p)) = 0

s.t. u(p) = 1 for p ∈ F
u(p) = 0 for p ∈ B

(4)

Given the temperatures at the source pixels, the diffusion
process is closely related to the choice of D(p) and W(p)
as well. Different conduction directions and velocities lead
to different stable states.

4.1. Isotropic diffusion

Let us first examine a simple situation, in which D(p)
is chosen to be a 2 × 2 identity matrix. Thus, (4) becomes
div(W(p)∇u(p)) = 0. This is the Euler-Lagrange equa-
tion of the following minimization problem:

min E(u) =
∫

Ω

||W 1
2∇u||2dΩ

s.t. u(p) = 1 for p ∈ F
u(p) = 0 for p ∈ B

(5)

By appropriately discretizing, the problem (5) can be
changed to a discrete version:

min E(u) =
∑

||q−p||1=1

wpq(u(p) − u(q))2

s.t. u(p) = 1 for p ∈ F
u(p) = 0 for p ∈ B

(6)

If the weights are chosen to be

wpq = exp(−β||I(p) − I(q)||2), (7)

the above minimization problem just describes the Ran-
domWalk algorithm [10, 15]. The temperature of an un-
seeded pixel p at the stable state can be explicitly obtained:
u(p) = 1

dp

∑
||q−p||1=1

wpqu(q), where dp is the degree of

pixel p. Apparently, from the viewpoint of the isotropic
diffusion, we can see that the RandomWalk algorithm im-
plicitly admits the the following two assumptions:

• The more similar the colors between adjacent pixels
are, the more likely the pixels belong to the same re-
gion.

• The heat diffuses only along the x- and y-axes.

However, they are not always true in practice.

4.2. Anisotropic diffusion

Note that our diffusion model (3) is very flexible and al-
lows us to locally design the tensors to affect the diffusion.
While the inhomogeneous metric tensor can be set up based
on the popular weight choice (7) used in the RandomWalk
algorithm, the diffusion tensor should be carefully designed
to well control the diffusion process. It is natural to expect
that the diffusion should obey the geometric structure of the
image, e.g. performing a local conduction more in the di-
rection along the edge and less in the perpendicular one.
Diffusion only along the x- and y-axes is in general not a
good choice. Therefore, we need to measure the local ge-
ometry of an image first. The structure tensor we discussed
in Section 3 provides us such desired information. We now
proceed to derive the diffusion tensor based on the the struc-
ture tensor.

For a pixel, suppose that we have already computed its
structure tensor G with the maximal and minimal eigenval-
ues λ+ and λ− and the corresponding unit eigenvectors θ+

and θ−. By some matrix conversion, we can rewrite G as

G = λ−θ−θ−T + λ+θ+θ+
T .

Although θ+ and θ− are two good orthogonal directions for
guiding the diffusion, G is not suitable to be used as the
diffusion tensor. This is because the eigenvalues of the dif-
fusion tensor reflect the diffusion velocities along the direc-
tions of the corresponding eigenvectors. Directly employ-
ing the structure tensor G as the diffusion tensor will lead to
fast diffusion across the edge and slow diffusion along the
edge, which is opposite to our intention.

Therefore, we construct the diffusion tensor D as

D = λ1θ−θ−T + λ2θ+θ+
T (8)

where

λ1 =
1

1 + λ−
, λ2 =

1
1 + λ+

. (9)

This diffusion tensor D is a 2 × 2 symmetric and positive-
definite matrix with two positive eigenvalues λ1, λ2 and two
corresponding eigenvectors θ−, θ+. It can be visualized
with an ellipse, oriented by vectors θ−, θ+ and elongated
by λ1 and λ2, as illustrated in Figure 2. It satisfies our re-
quirement and gives good diffusion rates and directions at
each pixel. In fact,



• when the pixel locates on an edge, λ1 � λ2 and thus
the diffusion velocity along the edge is larger than the
one perpendicular to the edge. This means the diffu-
sion is hard to cross the edge;

• at a flat region, λ1 � λ2 � 0 which gives large dif-
fusion velocities along the two directions, making the
temperatures in this region almost the same;

• at a corner, the heat almost stops flowing.

So far we have described how to appropriately set up the
diffusion tensor, thus providing an anisotropic diffusion
method for seeded image segmentation.

O

λ2θ+
λ1θ−

Figure 2. Illustration of tensor D.

Finally we give an example to illustrate how G and D
work on images. The example image is chosen from the
top of the Lena hat as shown in Figure 3(a). There is an
apparent edge along the diagonal. The structure tensor G
in Figure 3(b) has large variance across the edge and small
changes along the edge. In addition, the flat area has smaller
variance compared with the edge and corner areas. The
field of the diffusion tensor D is shown in Figure 3(c), from
which we can see that the diffusion rate along the direction
perpendicular to the edge is very small.

4.3. Discussion

As pointed out in [10, 15], the RandomWalk algorithm
can be seen as a Dirichlet integral minimization problem
with boundary conditions. Similarly, the problem (4) can
be viewed as the energy minimization problem with an ap-
propriate tensor T:

min E(u) =
∫

Ω

||T∇u||2dΩ

s.t. u(p) = 1 for p ∈ F
u(p) = 0 for p ∈ B

(10)

This tensor-driven Dirichlet integral expression implies that
our model has many good properties. In particular, en-
ergy function (10) has a unique minimum value since it
is convex. The solution to the Dirichlet integral is a har-
monic function, which gives the maximum/minimum prin-
ciple, uniqueness and mean value properties. The maxi-
mum/minimum principle guarantees any unseeded pixel’s

Figure 4. At each pixel, heat diffuses along orthogonal axes ξ and
η with different flow rates.

temperature to be in the range of [0, 1]. The mean value
property ensures that the pixels belonging to the same seg-
ment are connected.

Our anisotropic diffusion may also be seen as the si-
multaneous juxtaposition of two oriented 1D heat flows,
leading to 1D Gaussian smoothing processes along ortho-
normal directions ξ⊥η, with different weights c1 and c2

[13]:
∂u

∂t
= c1uξξ + c2uηη (11)

The diffusion weights c1, c2 and directions ξ, η are induced
from the spectral elements λ± and θ± of G, in order to per-
form edge-preserving diffusion, mainly along the direction
θ− orthogonal to the image discontinuities. As shown in
Figure 4, each pixel has two diffusion directions. The one
along the edge has larger diffusion rate.

5. Numerical scheme

We have formulated our segmentation problem based on
a heat diffusion process and we are especially interested in
the steady state of the diffusion, which is described by (4).
In this section, we present a simple numerical scheme based
on D and W to approximate the solution. The numerical
scheme has the advantage that the maximum principle is
preserved due to the fact that the local filtering is done only
with normalized kernels.

Using an approach similar to the one given in [16], we
can derive an approximate solution to (3), which is:

ut = u0 ∗ K(DW,t), (12)

where ∗ stands for the convolution operator and K(DW,t) is
an oriented Gaussian kernel defined by:

K(DW,t)(x) =
1

4πt
exp(−xT (DW)−1x

4t
). (13)

Since we only need the temperature at the stable state, there
is no need to compute the convolution repeatedly. Con-
sidering the boundary conditions and the fact that the tem-
perature goes stable when the convolution process will not
change the temperature anymore, we can directly get the
temperature at the stable state. After calculating the diffu-
sion tensor D and inhomogeneous metric tensor W at each



(a) original image (top of the Lena hat) (b) field of structure tensor G (c) field of constructed diffusion tensor D

Figure 3. G reveals the image geometry structure and D suggests the diffusion directions and amplitudes. Both tensors at each point are
illustrated by ellipses.

pixel p, we then get

K(p,q) = exp(− (p − q)T (DW)−1(p − q)
σp

), (14)

where W at pixel p is a diagonal matrix whose element
is the square of the forward color difference with periodic
boundary condition and its value is normalized to [0, 1] over
the entire image, and σp is a pixel-varying parameter and
is set to the inverse of the maximal eigenvalue of DW at
pixel p for normalization. Since D is symmetric and semi-
positive definite and W is a diagonal matrix with nonnega-
tive elements, DW is semi-positive definite. This property
guarantees that the value of (14) is within interval (0, 1] and
matrix DW has two nonnegative eigenvalues.

If we choose a k × k convolution kernel to represent the
filter (14), the discrete formulation of our diffusion process
for seeded image segmentation (3) becomes

u(p) = 1
dp

∑
||q−p||∞≤ k−1

2

K(p,q)u(q),

s.t. u(p) = 1 for p ∈ F
u(p) = 0 for p ∈ B

(15)

where dp =
∑

||q−p||∞≤ k−1
2

K(p,q). This is a linear system

which can be written in the form of AU = b, where the
coefficient matrix A is sparse and positive-definite. Thus we
use the preconditioned conjugate gradient method to solve
the system. In our study, we find setting k = 3 is sufficient
for most images. In this case, there are at most 9 nonzero
elements in each row of the coefficient matrix A while it
is 5 for the original random walks [10]. Thus, for all the
images tested, our proposed system runs almost as fast as
the original random walks, which can provide instantaneous
feedback.

6. Experiment results

In this section, we conduct experiments to verify the ef-
fectiveness of the proposed anisotropic diffusion approach.
We first use a synthetic image to illustrate the limitation

(a) RandomWalk (b) Proposed

Figure 5. The segmentation results of a synthetic image with white
(blue) strokes indicating foreground (background) and red lines in-
dicating the cut boundary. Note that the bottom-left region actually
contains the two colors of (128, 128, 128) and (156, 116, 56), and
the top-right region actually contains the two colors of (128, 128,
128) and (100, 140, 200).

of isotropic diffusion, i.e. the classic RandomWalk algo-
rithm. In particular, the RGB values of the synthetic image
in Fig. 5 are constructed as

I(x, y) = (128, 128, 128), x + y = 2n

I(x, y) = (100, 140, 200), x + y = 2n + 1, x > y

I(x, y) = (156, 116, 56), x + y = 2n + 1, x ≤ y

As shown in the figure, the RandomWalk algorithm gives
the “average” cut between the foreground and the back-
ground seeds, which does not follow the apparent diagonal
edge at all. This is mainly because the exactly same weight
of wpq = exp(−β||I(p) − I(q)||2) is used over the entire
image. In comparison, the proposed anisotropic diffusion
method incorporates the local geometry structure informa-
tion into the weights, which well controls the heat diffusion
and leads to accurate cut.

Fig. 6 and Fig. 7 show the segmentation results on sev-
eral natural images and medical images, respectively. We
compare the proposed anisotropic diffusion approach with
not only the RandomWalk algorithm but also the Grabcut
algorithm [12], which improves the classical GraphCut al-
gorithm by incorporating better prior models and various
types of user inputs. From the results, we can see that
GraphCut has the disconnection problem, i.e. its segmen-
tation results contain many isolated regions, as shown in



the first two rows of Fig. 6, and the “small cut” problem as
shown in the first row of Fig. 7. As expected, the results
of RandomWalk often miss the edges. All the results re-
ported above for the RandomWalk and Grabcut algorithms
are the best results obtained through exhaustively search-
ing for their optimal scaling parameter β. We also test our
method using the MSRC benchmark dataset, which con-
tains 50 test images with ground truth. As shown in Ta-
ble 1, the error rate (percentage of mislabeled pixels) of our
method is lower than other approaches. These extensive
experiments demonstrate that our method has a consistent
performance. In general, our approach achieves better seg-
mentation results with more accurate boundary.

Table 1. Error rate comparison using the benchmark dataset with
exactly the provided trimaps.

Segmentation model Error rate
GMMRF [4] 7.9%
GrabCut [12] 5.6%

Random Walker [10] 5.4%
Proposed 4.42%

7. Conclusions

In this paper, we have formulated the seeded image
segmentation based on the result of a heat diffusion pro-
cess. The RandomWalk algorithm is showed to be an
isotropic diffusion approach, i.e. a special case of our pro-
posed diffusion framework. To overcome the limitation of
isotropic diffusion, we further proposed an anisotropic dif-
fusion method for seeded segmentation, which takes the lo-
cal geometric structure of the image into consideration. The
experimental results show that the proposed anisotropic dif-
fusion approach generally has good diffusion direction and
velocity than the RandomWalk algorithm and thus provides
more accurate segmentation. As for future work, we plan
to incorporate the tensor based weights into other seeded
image segmentation methods such as GraphCut and the
Geodesic algorithm to improve their performance.

The major limitation of the proposed anisotropic diffu-
sion approach is that its performance is still affected by
the seed locations, although not as sensitive as the Ran-
domWalk algorithm. As shown in the experiments, the
strokes need to be placed in a way that the desired bound-
ary is roughly in the middle of background and foreground
strokes. If one type of strokes is relatively too far away from
the boundary, the diffusion based approach cannot achieve
satisfactory performance.
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(a) GrabCut (b) RandomWalk (c) proposed

Figure 6. The segmentation results of three natural images, “flower”, “music” and “stone”, with green (blue) strokes indicating foreground
(background) and red lines indicating the cut boundary.

(a) GrabCut (b) RandomWalk (c) proposed

Figure 7. The segmentation results of two medical images with green (blue) strokes indicating foreground (background) and red lines
indicating the cut boundary.


