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A D i f f u s i o n  L imi t  for a Class  

of  R a n d o m l y - G r o w i n g  Binary  Trees  

David  Aldous  1 * and Paul  Shields 2 ** 

1 Department of Statistics, University of California, Berkeley CA 94720 
2 Department of Mathematics, University of Toled, ~801 W. Bancroft Street, Toledo OH 43606, 
USA 

Summary .  Binary trees are g rown by adding one node  at a time, an available 

node at height i being added  with probabi l i ty  p ropor t iona l  to c -~, c > 1. 

We establish bo th  a " s t r ong  law of large number s "  and a "centra l  limit 

t heo rem"  for the vector  X(t )= (Xi(t)), where X~(t) is the p ropor t i on  of  nodes  

of height  i that  are available at time t. We show, in fact, that  there is a 

deterministic process x~(t) such that  

[Xi(t)-xi(t)[ converges to 0 a.s., 

and such that  if c > 2 ~-, 

z~(t) = 2 "/2 {x.  +1 (t c")- x.+,(t~")}, 

and Z" ( t )=  (Z'~(t)), then Z"(t) converges weakly to a Gauss ian  diffusion Z (t). 

The results are applied to establish asymptot ic  normal i ty  in the unbiased 

coin-tossing case for an en t ropy  est imat ion procedure  due to J. Ziv, and 

to obta in  results on  the g rowth  of  the m a x i m u m  height of  the tree. 

1. I n t r o d u c t i o n  

Nodes  of the infinite, roo ted  binary tree Too are labelled as b inary  strings, defined 

by labelling the roo t  with the empty  string qS, then proceeding by induction,  

labelling the two immedia te  successors of the node  labelled with b 1 b2...b h by 

blb2...bhO and blb2...bhl. By a tree we shall mean  a finite subtree of  Too. We 

define and  s tudy limiting propert ies of  a simple class of trees that  grow randomly,  

one node  at a time. Such trees arise natural ly  in Ziv's en t ropy  est imat ion algo- 
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** The work of the second author supported in part byNSF grants 4~ MCS83-03253 and ~ DMS85- 
07189 and in part by a Fulbright fellowship to visit the Mathematics Institute of the Hungarian 
Academy of Sciences, Budapest 
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r/thin, discussed below, which was the impetus for this paper, as well as in 

various models from physics and computer science. 

For  our purposes, a tree T is described by giving the set A = A (T) of available 
nodes c~, that is, nodes that are not in T but whose predecessors are in T. 

Trees evolve by selecting one available node and adding it to the tree to obtain 

a new tree; the chance that a given available node c~ is added being 

B~A 

where h=h(c0, the height of o;=blb2...bh, and c is a parameter larger than 

1. Initially the tree is empty. The first node added is the root q~. We write 

T(n) for the random tree with n nodes. 

A standard trick in probability theory enables us to relate our tree growing 

process to another, more easily studied process. Think of time running contin- 

uously, starting at 0. Write T(t) for the tree and A(t) for the set of available 

nodes at time t. Given that c~ is available at time t, let the chance that c~ is 

added in the small time interval I-t, t + d t] be c-h(~ d t, independently for different 

~. This specifies a continuous-time tree process T(t). Writing S, for the time 

at which the n-th node is added, the process T(S,) is exactly the same as the 

process ~'(n) defined originally. But T(t) has some independence properties which 

make it easier to analyze, and results for T(t) lead to results for T(n) via the 

representation T(n)= T(S,). We later make use, for example, of the fact that 

subtrees that grow from different available nodes are independent of each other. 

To be more precise, let T~(s) denote the subset of T(s) that contains only 

and its successors. The continuous-time model assures that if c~ is available 

at time t the distribution on T~(s), for s > t, is independent of the joint distribu- 

tions on  T~ (s),/~ eA ( t) , /~.  ~. This independence property is an easy generalization 

of the standard "marking"  argument for Poisson processes, (see, for example, 

[15, p. 38].) 

Our results will be stated in terms of the vector of available node proport ions 

X(t) = (Xo(t), X1 (t), X2 (t) . . . .  ), where Xh(t ) is the proport ion of nodes of height 

h that are available at time t. The vector X(t) has nonnegative coordinates 

that sum to 1 and the process (X(t)) is a continuous-time Markov process on 

the countable state space of possible vectors of available node propertions with 

the transitions 

(Xo, . . . ,  x i ,  x i+  1 , - . . )  --' (Xo . . . . .  x i - 2  - / ,  x /+  1 + 2 - i ,  -- .) 

at r a t e  2ixi c-/. 

Although the vector X(t) does not completely describe the tree T(t), many 

interesting functionals of T(t) are functionals of the vector X(t). For  example, 

(a) ~ 2 i X/( t ) -  1 = Number  of nodes occupied at time t. 

(b) ~ ( i -  2) 2/Xi (t) + 2 = Sum of heights of occupied nodes. (1.1) 
i>0  

(c) Max {i: Xdt)> 0 } -  1 = Height of tree at time t. 
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We write )?(n)=(Xo(n), )?l(n), )(2(n), ...) for the vector of available node 

proportions for the discrete-time tree ~(n) with n nodes, and note that )?(n) 

is a discrete-time Markov chain. For convenience in stating and proving some 

of our results we shall extend the vectors X(t )  and X(n) to negative indices 

by defining Xi( t )=Xi (n )=O,  for i<0 ,  for all n and t. 
Our first fundamental result for X(t),  which says that X(t )  is almost determin- 

istic for large t, is an analogue of the strong law of large numbers. 

Theorem 1. There is a deterministic vector process x(t), which is "'shift-periodic " 

in the sense that xi( t )= xi+ l(Ct), for all i and t, such that 

~. [X , ( t ) - x i ( t ) l l  ~ 0  a.s. 
i = - - o O  

a s  t - + o 0 .  

For the discrete-time process _~(n) our result takes the following form. 

Theorem 1D. There is a deterministic vector process 2(n), which satisfies 2i(n) 

= 2i + 1 (2 n) for all i and n, such that 

i = o o  

Z 
i = - - a o  

I x i ( n ) -  2i(n)l ~ 0 a.s. a s  n ----~ oo .  

Our second fundamental result is concerned with second-order properties, 

analogous to the central limit theorem. Here we found it necessary to assume 

that c > 2 ~. A similar result holds for the discrete-time process J~(n). 

Theorem 2. Let Z '~( t )=2"/2(X,+i( tc")-x ,+ l(tc")) and let Z"(t) denote the vector 

process (Z~ (t): - o o  < i <  oo). For c > 2 ~ the process Z"(t) converges in distribution 

(i.e., weakly) as n ~ co to a vector diffusion process Z(t). 

The deterministic process x(t) represents a scaling of the "drift"  and could 

be replaced in the convergence statements of the theorems by the expected 

value, p(t)= E(X(t)).  The "shift-periodic" property of x(t) simplifies many of 

our arguments, however, and can be obtained from p(t) by shifting time into 

the distant future and rescaling. The definition of x (t) and elementary properties 

of x(t) and p(t) are given in Sect. 2. Bounds on the variance of Xi(t) and proofs 

of Theorems 1 and 1D are given in Sect. 3. The limiting diffusion process Z(t)  

is defined and Theorem 2 is proved in Sect. 4. Limit properties of the various 

functionals defined in (1.1) are established in Sects. 5 and 6. 

Various models for random trees have been studied in different contexts; 

two of these are described below and others are mentioned in our final section 

of remarks (sect. 7). Generally people study one model (i.e., without a free param- 

eter c); our model is mathematically natural, and interesting because it exhibits 
at least 4 qualitative changes of behavior, namely, 

c < l ,  c=1 ,  1 < c < 2  ~, 2~<c. 
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Our results are also more precise than those previously obtained. 

We close this section by describing the model that initiated our work and 
another model of interest. 

Remark i. The initial motivation for our work was the desire to obtain asymptot- 

ic normality properties for an entropy estimation algorithm due to Ziv, [,-17], 

which is based on an elegant data compression algorithm introduced by Ziv 

and Lempel, [-18]. A binary sequence {b,} is parsed into blocks called words, 

where each new word is, by definition, the shortest consecutive sequence of 

symbols not seen in the past as a word. (This is a slight modification of the 

definition used in [17, 18].) Thus 

11001010001000100... parses into 1, 10, O, 101, 00, 01,000, 100, ... 

Ziv showed that if the sequence {b,} is a sample path of a stationary, ergodic 

process, and W(n) is the number of words in the first n places, then 

W(n). n-  1 log n converges almost surely, as n ~ Go, to the entropy of the process. 

Similar results for related algorithms are implicit in Pittel, [13]. Computer stud- 

ies by Michael Barall and Shields indicated that if the process {b,} is independent 

and identically distributed then the number of words W(n) is approximately 

normally distributed for large n. Attempts to prove this led to the ideas in 

this paper for, as Barall noted, the Ziv-Lempel parsing process grows a tree, 

where each time a new word e occurs the node c~ is added to the tree. The 

Ziv-Lempel parsing algorithm, when applied to unbiased coin tossing corre- 

sponds to the case when c--2. This asymptotic normality suggests that W(n) 

might be a useful test statistic for independence; power comparisons with various 

likelihood ratio tests are contained in [16]. 

Our diffusion limit result, Theorem 2, does lead to a proof of asymptotic 

normality of W(n) in the case of unbiased coin-tossing (see Theorem 3 in Sect. 5). 

It is natural to conjecture that asymptotic normality holds for a large class 

of stationary processes satisfying some suitable mixing condition. But in view 

of the difficulty of even the simplest case, (i.e., the fair coin-tossing case we 

treat here), we are not optimistic about finding a general result. We believe 

the difficulty of our normality result is intrinsic (i.e., not just due to the limitations 

of our method); the estimator involves the Xi(t) and as Theorem 2 says, their 

limiting behavior does involve an infinite-dimensional diffusion; we cannot imag- 

ine any way of proving asymptotic normality of the estimator without using 

the essence of Theorem 2 and thus having to face the issues we face. 

Remark 2. We mention here an intuitively helpful "percolation" description for 

the continuous-time process that guided some of our thinking. With the edge 

connecting node e with its predecessor, associate a random variable ~ with 

exponential distribution, mean c h(~), independent for different edges. Imagine 

water introduced at the base node, and percolating through the tree in such 

a way that node e is wetted a time ~ after its predecessor node is wetted. 

Then T(t), the set of wet nodes at time t, is precisely our continuous-time process. 
Note, however, that standard percolation results, such as in Durrett, [,6], are 
not helpful, due to nonhomogeneity. 
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2. Basic Properties of the Deterministic Approximation x(t) 

Follow the progress of the tree along the left-most branch 0, 00, 000, ..., and 

let H(t)  denote the height of the available node at time t. Then H(t)  is the 

continuous-time Markov chain with H ( 0 ) = 0  and transitions i ~ i + l  at rate 

c -i. Let R~ be the first time t that H( t )= i ,  and let p~( t )=P(H( t )=i ) ,  so that 

p~(t) = E (X  i (t)) = P (R~ < t) -- P (Ri + 1  < t). 

i - 1  

Note that R~ has the same distribution as the sum ~ cJ~j, where the ~j are 
j=o 

independent and exponentially distributed random variables with mean 1. 

Our deterministic approximation x~(t) to Xi(t)  is obtained by letting H*(t)  

denote the Markov chain on the positive and negative integers, started at - oo 

at time 0, with the transitions i - 4 i + l  at rate c - i  and defining x~(t) to be 
i - - 1  

P(H*( t )=i ) .  A precise definition of H*(t)  is obtained by defining R * =  ~ cJ~j 
j =  - c o  

and then defining H* (t) to be i iff R* < t__< R*+ 1, so that 

xi(t  ) = P (H*  (t) = i) = P(R*  < t) - P(R*+ 1 < ~). 

Note that the vector x(t)  is nonnegative, sums to 1, and has the desired shift- 

periodic property xi(t) = xi + a (c t). 

The forward differential equations for the process H(t)  (and for H* (t)) are 

dz~(t)=c-(~-  l~ z~_ l (t) d t - c - ~  z~(t) dr. (2.1) 

A solution z ( t )=  (z~(t)) to this system with 

z~=0, i<0 ,  Zo(0)=l,  z~(0)=0, i>0 ,  

is given by zi(t)=pi(t),  Similarly, x ( t )=  (x~(t)) is a solution vector, satisfying 

~xi ( t )=-  1, x i ( 0 + ) = 0 ,  for all i. 
i 

Informally, x(t)  is the solution that starts with unit mass located at "posi t ion"  

- oo. Similarly, if we define the conditional probabiIities 

Pj, i (t) = P (H (u + t) = i] H (u) =j) 

then zJ(t)= (Pj, i(0) is a solution to the forward equations satisfying 

pj, i(t)-=O, i<j ,  pj , j (O)=l,  pj,,(O)=O, i>j.  
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The forward  equat ions  are linear, so that  given a bounded  set of values at 

time s, {zi(s)}, there is a solut ion valid for t >  s of the form 

J 
z j ( t )=  ~ pi,3(t-- s) zi(s ). (2.2) 

i =  --oc) 

It is clear that  pi(t)~xi(t), for  large i and t, because R i and R* almost  surely 

grow wi thout  bound  as i grows and differ by the almost  surely finite quant i ty  

R*. A precise result is conta ined in the following lemma. 

L e m m a  1. For j >_ O; t, u >= O, 

(a) I pj(t + u ) -  pj(t) l < u c I -J, 

(b) I pj(t) - x~(t) [ < (1 - 1/c)-i  c ~ -~, 
J J 

(c) ~,pi( t )< ~. x,(t), 
i = 0  i = - o e  

(d) ~ Ip j ( t ) -x j ( t ) l~O,  as t ~ o e .  
j = 0  

Proof Par t  (a) follows from the mean  value theorem and the forward  equations.  

The probabil is t ic  in terpre ta t ion  for x(t) yields xj ( t )=E(pj( t -R~)) ,  so that  (a) 

implies 

[pj(t)-- xj(t)l <c 1-tEN*, 

giving (b). The  p roo f  of  (c) is s traightforward.  Par t  (d) follows from par t  (b) 

and the fact tha t  bo th  pj(t) and x j ( t )~  0 as t ~ oe, for fixed j'. 

Nex t  we present  the tail estimates we shall need. Keep  in mind the intuitive 

idea that,  at t ime t near  d, the height H(t), which is the height of a typical 

available node,  is a round  i. First  we estimate the size of  xi(t ) for t large relative 

to i. 

L e m m a  2. There is a constant K, which depends only on c, such that for all 

i>_O, 

xi (t) <= e (e*+ 1 >= t) <= K exp ( - t c -  (i + 1)), 

pi(t)< P(Ri+ l > t)< K exp(--tc-~i+ l)). 

Proof The  first inequal i ty  is clear in each case, and R*+ 1 > R i +  1, so it is enough 

to bound  P (R*+ 1 > t). Fo r  any 0 > 0, 

P(R*+ 1 > t) <= e-~ E e x p ( 0 R *  1), 

i 

so that  if we choose 0 = c  -(i+l) and use the representa t ion R*+I=  ~, cJ~j, 

we obta in  j= - oo 

Eexp(OR*+l)=Eex p c -1 ~, cJ~ = K < o o .  
x j = - o o  

This proves the lemma. 

Next  is our  basic upper  tail estimate. 

L e m m a  3. i t kc -k (k-  Pi+k(tc )< 1)/2, i, k >=O, t >=O. The same result holds for Xi+k(tci). 
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Proof. From the relation pj(t) = P ( R j <  t ) -  P(Rj+ t <-- t) we get 

[i+k-- 1 ) 
P,+k(td)<P(Ri+k <tci)=P~ ~ d ~ < t c  i 

\ j = O  

0 
<=P(~j<= to-J; 0 <j< k-- 1) 

which gives 

i Pi+k(tc) <= l~ P(~J<=tc-J) <= l-[ tc-J=tkc-k(k-1)/2, 
O<_j<_k-i O<=j<_k-1 

proving the lemma. 

The above tail estimate lemmas guarantee that many formal manipulations 

with various series in the x~ and p~ can be rigorously justified. For  example, 

the forward equations (2.1) show that the formal derivative of 

h ( t ) :  ~ 2ixi(t) is h '( t)= ~ 2ic-ixi(t). 
i =  - -  c~z i =  - -  ~x) 

The tail estimate lemmas guarantee uniform convergence of both series on any 

compact subinterval of (0, Go), so that such termwise differentiation is indeed 

valid. We generally omit details of such convergence proofs in our subsequent 

discussion. 

3. Variance and first order results for X(t) 

We first establish our basic estimate of the variance of X~(t), the fraction of 

nodes of dep th j  that are available at time t. We make use of our earlier definition 

Pk,j (t) = P (H (u + t) =j I H (u) = k), 

noting that we can rescale to obtain pl,j(u)=pj_i(uc-i). 

Lemma 4. var X~(t)<_2-J{p~(t)+ ~ 2J-kvarpk,j(t--Rk)}. 
k = l  

Proof Let A~(t) be the event that a node a is available at time t. Fix two 

nodes, c~ and fl, at height j and suppose their highest common ancestor, ;:, 

is at height k -  1_ Let r be the time at which ~ is filled. Then 

n (A~ (t) I "c = s) = Pk,j (t-- S), 

P(A~(t) and A,(t)lr=s)=p2,~(t-s). 
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Note our use of the continuous-time model to obtain these results, for, condi- 

tioned on the value of r < t ,  A,(t)  and Ap(t) are independent. The conditional 

variance formula then gives 

cov (An (t), A~ (t)) = var Pk, j ( t--  Z). 

Now Xj ( t )=2  - j  ~ 1A~(0, where 1A denotes the indicator function of a set 
h(a) = j  

A. There are at most 2 j .2  j-k pairs of nodes of height j whose highest common 

ancestor is at height k - 1 .  A direct calculation then establishes the lemma, 

since vat An(t)<= pj(t) and z has the distribution of Rk. 

Lemma 4 gives us the following variance bounds. 

Lemma 5. There is a constant B that depends only on c such that 

(a) I f  c = 2  �89 then varXj(t)<=Bj2 -j. 

(b) If c < 2  ~ then varXj(t)<=Bc -2~. 

(c) I f  c > 2 ~ then var Xj(t d) ___< S.  2-  j exp ( -  t/2 c). 

Proof  For  any function f, 0=< f <  1, any to > 0, and any random variable R, 

it is not hard to show that 

var f (R) =< max I f '  (u)] 2 var R + P (R < to). 
u > t o  

(3.1) 

We first apply this with 

to = o0, f ( R ) = p j _ k ( e ) ,  e = ( t - R k ) C  -k, 

along with Lemma 1 (a) to obtain 

var Pk, j (t -- Rk) = var p j_ k ((t -- Rk) C - k) < C 2 - 2 j var Rk. 

Lemma 4 then yields the bound 

v a r X j ( t ) < 2  J / l +  ~ 2~varRK . 
~- k = l  

k - i  

Now varRr~= ~ c 2i, and simple algebra leads to parts (a) and (b) and the 
i = 0  

following weak version of (c). 

(c') If c > 2  ~ then v a r X j ( t ) < B 2  -j, t>O. 

To improve (c') to (c) we apply (3.1) with f (R)=varp~_k(R) ,  t o = � 8 9  -k, and 
R = t d  -k --c-kRk t o  obtain 

var Pk,; (t C j -- Rk) = var p~ _ k (R) 

< [max f '  (u)] 2 c -  2k var Rk + P (Rk > �89 t d). 
U >= to 
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We then upper bound var R k by c 2k and use the bounds 

p'i(t)<=c 1 - i  P(Ri > t)=O(c -i e x p ( - t c  -(i+ 1~), 

P (R k _-> t) = 0 (exp ( - t c - (k + 1)), 

which come from the proof  of L e m m a  2 (a), to obtain 

j - -  2 ( j - - k )  varpk,~(tc --Rk)=O(c exp(--tc-X))+O(exp(--�89 

In view of (c'), we may assume that  t > 2 c  and hence bound both terms by 

O(c-2~J-g) e x p ( - t / 2  c)). This bound together with the Lemma 2 bound pj(td) 

=O(exp(-t/c)), can then be used in the inequality of Lemma 4 to obtain the 

desired result (c). 

We shall later need two extensions of Lemma 5, which we state as the next 

two lemmas. 

Lemma 5A. Let Vj(t) be the fraction of nodes of height j that have become available 

before time t. Then the bounds of Lemma 5 hold for Vj in place of X j. 

Proof. Just replace the phrase "available at time t "  in the proof  of Lemma 4 

by "available before time t"  and repeat the arguments of Lemma  4 and Lem- 

ma 5. 

Lemma  5B. I f  c > 2  ~ then there is a bound B that depends only on c such that 

J 
2 j-k varpk,~(t-R*)<B. 

k = --o3 

Proof This is proved by considering the process X*(t) obtained by waiting 

the r andom time R* until the root node becomes available, that is, X*(t )=X(t  

- R*) if t__> R*, X* (t) = 0 otherwise. 

We shall also need another  consequence of Lemma  5, which we state as 

follows. 

Lemma  5C. There are positive constants B and c~, which depend only on c, such 
that 

E~[Xj(t)-pj(t)]<__B.t-=logt, t>e. 
J 

Proof Since E [Xj(t)-p~(t)t is bounded by 2pj(t) and by [var  Xi(t)] ~, we can 

write 

g ~ l x ~ ( t ) - p j ( t ) l <  ~ 2pj ( t )+  ~ [-varXj(t)] ~ 
J J<=Jo J>Jo 

for any jo=Jo(t). Suppose for the moment  that  c > 2  ~ and let 7 = l o g c .  Choose 

c~ so that � 8 8 1 8 9  Given t, choose Jo so that t<=c2J~ Lemmas 2 and 

5 then give 

2 p~ (t) < 2 Jo K-  exp ( - t c -  (to + 1)) = O ( t -  ~ log t), 
J<=Jo 

[vat  Xj (t)] ~ __< 4 B ~ 2-jo/2 = 0 (t-~), 

J>Jo 

which establishes Lemma 5 C in the case c > 2 ~. The proof  for c < 2 ~ is similar 

and even easier for one can take ~ = �89 
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Proof of Theorem 1. As noted in Lemma 1 we have 

so it suffices to show that 

lira ~ [Pi(t)-- x i(t)] = O, 
t -+c~ i 

~[Xj(t)-pj(r)l-*Oa.s. as t--,oe. 
J 

Let 0, ~ 1. Lemma 5 C and the Borel-Cantelli principle imply that a.s. 

~IX~(O~,)-pj(O~)t~O, as n ~ ,  f o r e a c h u > l .  

J 

Fix co where this holds and define 

A( t )=max I ~ Xi( t ) -  ~ pi(t)[. 
J i < j  i < j  

We will show that A ( t )~  0 a.s. as t-~ ~ .  Towards this end note first that ~, Xi(t) 
i < j  

and ~ pj(t) are increasing inj .  Fix u, and define m=m(t) by O•<t<O? +1. Then 
i<_j 

A (t) is bounded by the sum of the three terms 

m + l  m max I ~ Xi(O, )-~,Xi(O,) l ,  
J i ~ j  i < j  

m om max l ~  Xi(O,)- ~ Pi( ,)l, 
J i < j  i<__j 

" X" ~ lom+ h max l ~ pi(O~)-- z_. k'it , ~1. 
J i < j  i<=j 

Letting t ~ ~ and using the fact that ~ [X i(O•)- pi(O~)] approaches 0 for each 

u >  1, we obtain J 

lira sup A(t)< 2. lim sup max I ~ Pi(0~ + ~)-- ~ pi(0~)t. 
t~oa  m--+ea J i < j  i < j  

As 0,$1, the right side tends to O, from the limiting shift-periodicity and conti- 

nuity of the pi (t). 
The fact that A(t) goes to O, together with the limiting shift-periodic property 

of p~(t) implies that ~ IXj(t)-p~(t)l goes to O. (This follows by shifting and using 

the analysis principle that lira [p(n,i)-!3(n,i)l=O, if p,=(p(n.i)) and /3, 
n i = 0  

= (iO(n,/)) are sequences of probability vectors such that 

lim max l ~  [p(n, i)--p(n, i)]I =0 ,  
n j i~=j 
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and if there is a probability vector q = (q(i)) such that 

lim ~ [-/~ (n, i ) -  q(i)] = 0, 
n i<=j 

for each j.) This completes the proof  of Theorem 1. 

Proof of Theorem 1 D. Define 

h(t)= ~ 2ixi(t). 
i = - - G O  

The forward equations, (2.1), yield the derivative h'(t)= ~ 2ic i xi(t ), hence h(t) 

is an increasing function. Let N( t )=  ~, 2~Xi(t), so that N(t ) -1  is the number 
i = 0  

of nodes filled at time t. We first prove 

N(t)/h(t) ~ 1, a.s. as t ~ oo. (3.2) 

This is proved as follows. First note that the shift-periodic property xi(t) 
=x/+l (c  t) gives the corresponding property for h, h(c t )=  2h(t). Choose i=  i(t) 
such that c ~ < t < c i + 1. We first show that there is a 7 > 0 such that 

2-~EIN(t)--EN(t)I=O(t-r), as t ~ o o .  

Since EN(t)= ~ 2 i Pi (t) this reduces to showing 

2J E l X i + j ( t ) - p ~ + j ( t ) l  = O ( t - ' O .  
j = o o  

Since E [Xj(t)- pj(t) < 2pj(t), we can write 

~, 2JElXi+j(t)-pi+j(t)] 
j =  -- o9 

< 2 j~ ~ E [Xi+j(t)-pi+j(t)l + ~ 2Jpi+j(t), 
J J > J o  

for any Jo. If j0 = [d i], where [u] denotes the greatest integer in u, then for 

a given c we can choose d > 0  and use Lemma 5C to bound the first term 

by O(t-~). Lemma 3 then gives the same bound for the second term. A similar 

(but simpler) argument shows that 2 -~ ]EN(t)--h(t)l ~0. The two facts, 

2-iEIN(t)--EN(t)I=O(t-~), and lim 2-i l  g g (t) - h (t) l = O, 
t 

imply that for each 0 > 1, 

N(O")/h(O")~l, a.s., as n ~ o o .  

The monotonicity of N(t) and h(t), together with the shift-periodic property 
of h then imply (3.2). 
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Now we let s(u) be the inverse function of the increasing function h(t), so 

that, in particular, h(s(n)) = n. Next we define 

S , = m i n { t :  g ( t ) = n +  1}, 

that is, S, is the time until n nodes are filled. The shift property, h(ct)=2h(t), 

together with (3.2), then leads to the following inverse form of (3.2). 

S, /s (n)~ 1, a.s., as n-*oo.  

To prove this we define integers a (n), b (n) and numbers u~, v. S6ch that 

S,,=c~ s(n)=cb~"~v,, l < u , , v , < c .  

(3.3) 

Since N(t)/h(t)~ 1, a.s., and u. and v, are bounded, we can drop to a subsequence 

and relabel to obtain 

N(S.) 
- - - * 1 ,  u, -~u, and v~ -~ v as n ~ o e .  
h(S,) 

The shift-periodic property h(c t)= 2 h(t), together with N(S,)= n + 1 and h(s(n)) 

= n, then gives 

h(S,) 
-- 2a(")-b(") h(u") --+ l, as n ~ o e .  

h(s(n)) h(v,,) 

However, h(u,)/h(v.)~h(u)/h(v), so that a(n)-b(n) is eventually a constant, say 

k, and 2k=h(v)/h(u). Since h is strictly increasing we must have v=cku and 

hence 

Sn = c,,(,, )_b(,,) u, ~ c k u = 1. 

s(n) vn v 

This proves (3.3). Note that since 1 <u, v<c,  the integer k can only have the 

values - 1 ,  0, 1. Thus, if we require only that c - 1 <  u,, v ,<  c, we can if necessary 

replace u, by c - l u ,  or v, by c-iv,,  and thereby force k to be 0 and a(n) and 

b(n) to be eventually equal. We shall use this observation in the next paragraph. 

We now set 2(n)=x(s  (n)) and X(n)=X(S, ) ,  so that )~(n) is the discrete-time 

process. The shift properties, xi(t)=xi+~(ct ) and h(ct)=2h(t), imply the shift- 

periodicity of 2, i.e., 2dn)=2~+t(2n). To complete the proof  of Theorem 1D 

we must show that 

lim ~ ]J?i(n)- 2i(n)[ = lim ~ [Xi(S,)-  xi(s(n))l = 0, a.s. 
n --* oo  n ~ o ~  

By Theorem 1 it is enough to show that 

lim ~ ]xi(Sn)-xds(n))[ =0,  a.s. 
n --+ c~o 

Using the notat ion of the proof  of (3.3) and the observation at the end of 

that proof  we can assume that u, and v, both go to the same value u and 
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that a(n)=b(n), for n sufficiently large. If n is large enough we use the shift 

property of x to obtain 

Ixi(S.)-x,(s(n))[ = F Ixi 

which approaches 0 as n ~ o e  since u, and v, both  approach the same value 

u. This completes the proof  of Theorem 1 D. 

For  use in Sect. 6, note that  the shift-periodic property h(ct)=2h(t)  implies 

that logzh( t ) - log~t  is bounded as t ~ o e ,  and hence the inverse function s(n) 

satisfies 

log z n - logr  s (n) is bounded as n ~ oe. (3.4) 

4. Second-order Structure 

We start by recalling some standard theory. For  each t > 0  let A(t) and a(t) 

be nonrandom d x d  matrices, varying continuously with t. Let W(t)=(W~(t)" 

1 < i < d) be d-dimensional Brownian motion, the stochastic differential equation 

dZ  (t) = A(t) Z (t) d t + a (t) d W(t) 

together with an initial distribution Z(0), defines a d-dimensional diffusion, (i.e., 

a continuous-path,  Markov  process) which is also a Gaussian process, provided 

Z(0) is Gaussian. Writing A X = X (t + A t ) - - X  (t), we have 

E(AZIZ(t )=z) . .~  A(t ) z At 
(4.1) 

E(A Z, A ZjlZ(t) = z) J (t)),j A t, 

where we use the symbol .-~ to indicate equality up to terms of order o(A t) 

(in probability) as A t ~ 0 for fixed t. 

We quote a standard result. 

Proposition 1. Let A(t), a(t), and Z(t) be as above. For each n, let Z"(t) be an 

Rd-valued Markov process. Suppose 

(i) E ( A Z " I Z " ( t ) = z ) - A ( t )  z At ,  

(ii) E (A Z~ A Z~ [ Z" (t) = z) ~ B~j(t) A t, 

where B" (t) is a random matrix process such that for to f ixed 

sup IBTj(t)-(a(t) crr(t))id[ ~ 0  as n ~ ~ .  
t <= to P 

(iii) There exist constants 6,~0 such that the jumps [ Z " ( t ) - Z " ( t - ) [  are 

bounded by 6,. 

(iv) Z" (0) ~ Z (0) as n ~ co. 

Then Z" --+ Z as n ~ 0% in the usual sense of weak convergence of processes. 
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The underlying idea is that Z(t) is determined by the properties (4.1) and 

by having continuous paths; the hypotheses of Proposition 1 ensure that any 

possible weak limit process must have these properties and therefore must be 

Z; so it is only necessary to prove tightness of (Z"). A treatment of these ideas 

can be found in [-8, Sect. II.3]. 

Our main result, Theorem 2, uses an infinite-dimensional version of Proposi- 

tion 1. Let X(t) be the vector of available node proportions for our random 

continuous-time tree T(t) and let x(t) be its deterministic approximation defined 

in Sect. 2. A straightforward calculation using the infinitesimal transition rates 

for X(t) yields the following conditional means and covariances. 

(a) E(AX~]X(t))~c-( i -1)  X~_l( t)At--c-~X~(t)At ,  

(b) E([AX~] 2 ] X(t)) ~(2c) -~ X~(t) A t + (2c) -(~- 1) X~_a(t) A t, 

(c) E(A Xi A X~-I [X(t)) ~(2c) -(~- 1) X~_~(t) A t, (4.2) 

(d) E(AX~AXj[X( t ) )~O,  if [ j - - i [> l .  

Now define the infinite-dimensional process Z" (t) = (Z~ (t)) by 

Z~(t)=2"/z{X,+i( tc")-x ,+i( tc")} ,  - o e  < i <  oo. 

Note that we center by x,+i(tc"), instead of p,+i(tc")=EX,+i(tc").  However, 

from Lemma 1 (b), 

2 "/2 Ix, +i(t c")-p,+ ,(t Cn)l <= (C -- 1) C -i(2 �89 c-S) ", 

which goes to 0 as n--, o% so the difference is asymptotically negligible. 

Of course, Z" inherits the Markov property of X. The conditional mean 

and covariance results, (4.2), and the fact that the xl satisfy the forward equations, 

(2.1), combine to give the following. 

(a) E(AZT[Z"( t )=z)~{c-( i -1)z i_~--c- iz~}  At. (4.3) 

(b) E([AZ~]Z]Z"(t)=z)~(2e)-~ X,+~(tc")At +(2c)-(~-l) x ,+i_~(tc")At .  

(c) E(AZ~ A Z  7_ 11Z"(t)=z)~ - (2c)  -(i- 1) X,+i_l(tC")At.  

(d) E(AZTAZ~[Z"( t )=z)~O for I j - i [ >  1. 

Theorem 1 tells us that for large n, X ,  + i(t c") ~ x.  +~(t c") = xi(t). These calcula- 

tions, and the finite-dimensional result, Proposition 1, strongly suggest the fol- 

lowing result, which is the explicit form of Theorem 2 that we shall prove. 

Theorem 2. Assume that c > 2  ~. Then Z"(t) converges weakly to Z(t) as n--+o% 
where Z ( t) = (Z~(t); - oo < i < oo) is an infinite-dimensional Gaussian diffusion spe- 

cified by Zi(O)= 0 and the following four conditions. 

(a) E(AZ i [Z ( t )=z )~{c - ( i - 1 ) z i_ , - - c - i z i }  At,  

(b) E ([A Zl] 21Z (t) = z) ~ { (2 c) -i x, (t) + (2 c) -(i -1) xi -1 (t)} A t, 

(c) E ( A Z  i A Zi-11Z(t)  = z) ~ --(2c) -(i- 1) xi-a(t) A t, 

(d) E(AZ~ AZjIZ(t)=z),-~0 for l J - i l  > 1. 
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To outline the structure of the proof, recall that to prove Z" ~ Z  on a 

metric space (S, d) it suffices to construct Z "'i~ Z ~176 such that 

(a) Z . . . .  ~ Z ,  as  ~o ~ oo,  

(b) Z"' ,o ~ Z ~, % as n --+ oo for each io, 

(c) lim lim sup P(d(Z"" i% Z") > e) = 0,  for each e > 0. 
i o ~ o o  n 

(4.4) 

We shall use this technique by defining Z ~ ~~ to be the process satisfying the 

four conditions (a)-(d) of Theorem 2, but with Zi( t)= 0, for i<  i o. Later we shall 

define Z "'io as the normalised version of the tree process which has been "con-  

trolled" by making the nodes at height n - i o  become available at deterministic 

times. 

We start by considering the question of the existence of the process Z. Trans- 

lating (a}-(d) into the language of stochastic differential equations gives 

dZi(t) = c-(i- 1)Zi - l(t) d t -  c-i Zi(t) dt 

+(2c)-~(i-1)x~_~(t)dWi_l(t)-(2c)-~ix~(t)dW~(t) (4.5) 

where the W~(t) are independent Brownian motions. Using formula (2.2) we 

can just write down a solution of the stochastic equation, namely, 

J 

zj(t)-- Z P,,i(t) z,(o) 
i = - - 0 o  

' i  + ~ Pi, j(t--s){(2c) -~(i-1) Xi_l(S ) � 8 9  dWi_l(s) 
i = - o o  0 

- ( 2 c ) - i / 2  x)(s) d W/(s)} .  (4.6) 

We can make a precise statement by truncation. Fix io < oo. Interpret the stochas- 

tic differential equations (4.5) as equations for Z~(t), i> - io ,  by putting W~(t)-0 

and Z~(t)=O, for i < - - i  o, and Zi(0)=0,  for all i. Then the infinite series (4.6) 

does indeed form a solution; later we will refer to this solution as Z['~~ (t). 

Thus the only real issue in proving that the infinite series (4.6) makes sense 

and defines a solution of the full set of stochastic differential equations (4.5), 

with the initial condition Z(0)=0 ,  say, is to prove convergence of the sum 

(4.6). Recall that ~f(s)dW(s) has variance [,f2(s)ds. Thus we can group the 

two terms in dWi(s) and use independence of the W~ to obtain 

J t 

EZ~(t)= ~ [, {pi+ld(t--s)--pl, j(t--s)}2(2c)-ixi(s)ds. (4.7) 
i = - o o  0 

It is enough to prove the convergence of this sum. The task is not hard if 

we think probabilistically, for if Theorem 2 is correct, then Z(t) is a limit of 
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rescaled X,(t') and therefore E Z  2 must be a limit of resealed var(X,(t')), so 

formula (4.7) must be a disguised and rescaled version of the bound on the 

variance of X,(t) which we derived in Lemma 4. Let us show how. 

As in Sect. 2, let H*(t) be the Markov chain on the integers, started at 

- o o  at time t=0 ,  with transitions i ~ i +  1 at rate c- ' ,  and let R* be the waiting 

time until the process reaches i. We showed in Lemma 5 B that if c > 2 ~ then 

there is a constant B, independent of j, such that 

J 

2 J-k varpk.j(t--R~) <=B. (4.8) 
k = -co  

We shall use this to show that the sum (4.7) indeed converges. 

The next lemma provides the link between (4.7) and (4.8). 

Lemma 6. Let a be a state of  a continuous-time Markov chain V(t). Let T o be 

the first hitting time on a and T 1 the time at which a is exited (so that TI - T o 

is exponentially distributed). Let A be an event such that P(AIT~, V(u) ,u<T 0 

=f(T1), for some function f(t). Let g ( t )=P(AIV( t )=a ). Suppose f and g are 

differentiable. Then 

vat f ( T  0 > E {U(T1)- g (T1)} 2. 

Proof We shall prove the stronger identity 

E(var(f(T1) J To))= E {f(T1)--g(TO} 2. 

Without loss of generality we can take T~--T o to have mean 1 so that g'(t) 

= g (t) - - f ( t ) .  

We shall do some stochastic calculus with the martingale Mt=P(AI  V(t)). 

(See [7] for a treatment of the martingale ideas used here.) We have Mt=g( t  ) 

on T o =< t < T1, Mr1 =f(T1) and 

d (M,  M},  = (f(t)--  g(t)) 2 dt, (4.9) 

d(f(t) Mr) =if ( t )  Mt dt + f(t)  dM,. (4.10) 

Integration over (To, T1) gives 

T1 

EfZ(T~)--Eg2(To)=E(M 2 , - M 2 o ) = E  ~ d ( M ,  M}t  
To 

T1 

=E ~ (g(t)- f ( t ) )2dt  (by(4.9)) 
To 

T1 T1 

=E ~ g'(t) g ( t )d t - -E  ~ f( t )g ' ( t )dt  ( s i n c e g ' = g - f )  
To To 

= 1 E {g2  (T1)  __ g 2  (To)} - -  E f ( T , )  g ( T 0  

T1 

+ Ef(To) g(To) + E ~ if(t) g(t) dt (4.11) 
To 
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and 

E (f2 (T1)_f(To) g(To) ) = E(f(T1 ) MT 1 _ f ( T o  ) MTo) 

T t  

= E  ~ f ' ( t ) M t d t  (by(4.10)) 
To 

T1 

= E  ~ f ' ( t )g( t )dt .  
To 

(4.12) 

Subtracting (4.12) from (4.11) and rearranging gives 

so that 

The proof is 

E f ( T  0 g(T1) = �89 {E g2 (T 0 + E g2 (To) } 

E {f (T1)-  g (Ta)} 2 = E f  2 (7"1)- E g2 (To) . (4.13) 

completed by first noting that g(To)=MTo=E(MT,  ITo) 
= E(f (TI)  [ To), so that var (f(T1) [ To) = E ( f  2 (T0] To) - g2 (To) , and hence 

E var ( f (T0 ] To) = E f  2 (T1)-- E g2 (To). 

This final equality combines with (4.13) to establish the desired result 

E (var( f  ( Tx) [ To)) = E { f ( T 0 -  g (T1)} 2. 

This completes the proof of Lemma 6. 

We apply the lemma with 

V(t) = H* (t); o-= i; A the event "H* (t) = j "  

so that 

To=R*, 7"1 = R*+ 1, f (s)=Pi+l, j( t--s) ,  g(s)=pi, j(t--s). 

The conclusion of the lemma is 

var Pi + 1, j ( t  - -  R*+a) >= E {Pi + 1, ~(t -- R*+ 1) -- Pi, j(t -- R*+ 1)} 2 

t 

= ~ {pi+L~(t--s)--Pi, j(t--s)} 2 c-ixi(s) ds, 
0 

where the second equality holds because R*__ a has density c-ixi(s). This, com- 

bined with (4.7) and (4.8), shows that EZ2(t) is bounded by B, independent 

of t, which completes the proof of the existence of Z(t). 
This finishes part (a) of the outline (4.4). Before proceeding to the other 

parts, it is convenient to establish a lemma. Fix k and let qk(m) and q*(m) 
be the respective times t and t* such that 

P(Rk <=t)= ~ p i ( t ) = m 2 - k ;  P (R*<t* )=  ~ x i ( t* )=m2 -k. 
i>=k i>_k 
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Let Qk(m) be the random time at which the m-th node at height k becomes 

available. (In fact, pairs of nodes become available simultaneously at the time 

when their parent node at level k - 1  is filled, but this does not affect our  argu- 

ment.) 

We use the notation [s 1 --s2[t = [min(sl, t ) -min( s2 ,  t)[, so that 

Is l-s21t=lsl-s21,  if max(sl ,s2)<t  

= 0 ,  if min(sl, S2)~=t. 

Lemma 7. Suppose c > 2 3. Then 

E ~ IQk(m)- q* (m)lt <= 4 t + B c k 2 k/z, 
?n 

t>O,k>l, 

where B depends only on c. 

Proof Define Vk(t)=P(Rk<t). Let Vk(t) be the proport ion of level k nodes that 

become available before time t, so that Vk(t)=EVk(t). Fix t. Define 

A = {(s, y): 0 < s < t, y is between Vk(S) and Vk(S)}, 

and consider A as a random region in the plane. Clearly 

area(A) = i I Vk(S)-- Vk(S)[ ds. 
0 

Now we may represent A as the union of disjoint regions A,,, m>0 ,  defined 

by 

Am= A C~ {(s, y): m2-k<=y <(m + l) 2 -k} 

={(s,y):  O<<-s<--t, m 2-k < y <(m + l) 2 -k, 

y is between Vk (s) and Vk (S)}. 

By drawing a diagram and recalling the definitions of Qk(m) and qk(m), it is 

easy to verify that 

area (A,,) = 2-k {1Qk (m) -- qk (m) lt + e (m)}, 

where 

]e(m)] < ]Qk(m+ 1)--Qk(m)lt+ ]qk(m+ 1)--qk(m)lt. 

Since area (A) = ~ area (A,,), we find that 
m 

d s  Z' k(m)qk(m),t 
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But using the fact that Qk(m) and qk(m) are nondecreasing in m, we see that 

I~(m)l < 2t. Rearranging gives 
m 

~', [Qk(m)--qk(m)l,<=2t + 2 k ~ lVk(s)--vk(s)l ds. 
m 0 

Writing v* (s)= P(R* < s), the same argument shows that 

c o  

]q~(m)--qk(m)lt <2 t  + 2 k ~ ]V*(S)--Vk(S)] ds. 
m 0 

Adding and taking expectation, we obtain 

E ~ IQk(m)--q*(m)It <4 t  + 2 k IV~(S)--Vk(S)i ds + 2 k ~ EtVk(s)--Vk(S)l ds. 
m 0 0 

(4.14) 

Recalling the definitions of R k and R*, we may write * * Rk = R 0 + R k ,  so the first 

integral in (4.14) is 

{P(Rk <=S)-P(R*<=s)} ds= {P(R*>s)--P(Rk>S)} ds 
0 0 

= ER k - ER k = ER o - 

c - 1  

Since c > 2 ~ we have U <  c k 2 k/2, SO the first integral term of (4.14) has the correct 

bound. Next, since v k(s) = E Vk (S) we can bound the second integral by 

{var(Vk(S))}~ds<B~2-k/2 ~o exp dS<(4cB~)2-k/Zck, 
0 

where we used Lemma 5A to bound the variance of Vk(S). Thus the second 

integral term in (4.14) has the correct bound and the proof of Lemma 10 is 

completed. 

We now introduce the idea of "controlling the process at height k". This 

is best understood using the percolation description of remark 2, Sect. 1. Consid- 

er the 2 k edges from height k -  1 nodes to height k nodes. In the original "uncon-  

trolled" process, percolation along these starts at random times which, when 

arranged in increasing order, are the times Qk(1), Qk(2), ..., Qk(2m), considered 

above. The controllled process is defined to make percolation along these edges 

start at the deterministic times qk(1), qk(2) . . . .  , qk(2 m) defined above; the subse- 

quent evolution of the process following the original rule. Formally, let H~ 

denote the time at which node ~ becomes available. Consider a node ~ at height 

k; this is the M~'th node at height k to become available, for some random 

M~, l < M ~ < 2  k. Let A~=q*(M~)--H~. For  each node 7 that is a descendant 

of ~ (or c~ itself), define/4~ = H~ + A,. If this is done for each node c~ of height 

k then / t~  is defined for each node 7 of height > k. The family {/t~} then defines 
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a randomly-growing tree-process on nodes at heights i > k, namely, the process 

in which node 7 becomes available at time/qT" Call this " the process controlled 

at level k". 

Now switch back to describing tree-processes in terms of available nodes. 

Let X~(t), i>k, be the proport ion of height i nodes which are available at 

time t, in the process controlled at level k. Except at level k, the controlled 

process evolves in the same way as the uncontrolled process, and in particular 

the calculations (4.2) of the conditional incremental means and covariances 

remain true for Xf (t) for i > k + 1. At level k we find 

(a) E (A X~ [ X k (t)) ~ - c - k X ~  (t) A t + 2 -  (k - 1 )  A F k ( t ) ,  

(b) var (A X~[X k (t)),,~ (2 c)- k X~ (t) A t 

where Fk(t) is the integer part of 2 k-1P(R~ < t). For  the purposes of estimating 

conditional means and variances as k ~ o o  in the sequel, we may replace 

2 -(k- X)Fk(t ) in (a) by its continuous approximation P(R* <t). Since d/dtP(R~ 
t )  = C - ( k -  1)Xk_t(t), we may suppose 

(a') E (A X ~  (t)[  X k (t)) ~ - c - k X ~  (t) A t + c - (k - i) Xk _ 1 (t)  A t .  

We use the controlling idea as follows. Fix io, and for each n consider the 

process controlled at level n - i o ,  that is, the process XT-*~ i> n- io .  Rescale 

as at (4.3) to define 

Z'],io(t)=Z"/Z{X",+io(tc")-x,+i(tc")}, i>= - io .  

As was indicated just after (4.6), define Z~'i~ i > - i o ,  to be the solution 

of the stochastic differential equations (4.5) satisfying Z~(t)=- W~(t)= O, for i<  - i o ;  

Z~(0)=0, for all i. Fix il. We want to show that 

(Z~',io(t); --io<=i<=il, t>=O)~(Z~~ -io<=i<=ia, t>=O) (4.16) 

in the sense of weak convergence of (i o + il + 1)-dimensional processes. To do 

this, we verify the hypotheses of Proposition 1. Hypothesis (iv) holds because 

all the processes are zero at t = 0. Hypothesis (iii) holds because the tree grows 

only one node at a time. To verify hypotheses (i) and (ii), we must match the 

conditional means and variances. For  i >  - i o  + 1, this is done by (4.3) and Theo- 

rem 1. For  i = - io, (a') and (b) give 

E (A Z~ o io [ Z"' io = z) ~ - c -  io z~ ~ A t, 

E([ AZ~oZO] 2 [Z ",io = z)~(2c)-io X._io(t c"-io) At 

whereas the boundary conditions for Z ~176176 give 

E(AZ~o,iO]z~ z),,~ -c-iO zio A t, 

E(EAZ~o,'o]Z]Z~,io=z),,~(2c)-*o xlo(t) At 

and again Theorem 1 matches these as n ~ or. Thus we can apply Proposition 1 

to obtain (4.16). Moreover, letting i1~oo and setting ZT"~~ for i < - - i o ,  

we may regard (4.16) as holding for the infinite vector processes indexed by 
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- o 0  < i < o %  since the topology on R z is coordinatewise convergence. This 

establishes part (b) of the outline (4.4). 

For  the proof of part (c), we first use Lemma 7 to bound the effect of control- 

ling. 

Lemma 8. ElXk(t)--Xi(t)l<--<Cl+k-i2-k/2 B (1+tc -k22 -k /2 ) ,  k<=i, t >O, 

where B is the bound of Lemma 7. 

Proof  Consider a node c~ at height k. Condition on M~ and Ha=Qk(M~). Let 

be a descendant of c~ at height i > k. Conditionally, 

P(~ available at t for uncontrolled process)=Pk, i ( t -Qk(M~)) ,  

P(7 available at t for controlled process)= Pk, i( t -  q* (M~)). 

By Lemma l(a), the difference between these conditionsal probabilities is 

bounded by c l - i lQk(M~) -q~(M, ) l .  Since Pk, i(s)=O for s<0 ,  we can replace 

this bound by c 1 -ilQk (M~)-q~ (M~)lt, in the notat ion of Lemma 7. Uncondit ion 

and sum over 7 to obtain 

E IX~( t ) -X , ( t ) l  ~ 2 - '  c ~ - ~  E IQk(M~)- q* (M~)[, 

<=2-k C 1 - i  Z EIQk(M~)--q~(M~)It 

since each 7 has 2 i-* ancestors ~ of height k. Lemma 7 now completes the 

proof of Lemma 8. 

Now set b = c -  ~ 2 ~ < 1. Lemma 8 and the definition of Z"' ~o give 

E IZT, io ( t ) -  Z 7 (t) l < b i~ c 1 - i B (1 + t c i~ 2 2 + io/2 -,/2). 

In particular, for fixed i and t, 

lira lim sup E IZ 7" io (t) - Z 7 (t) l = O. 
i o ~  n~cX) 

(4.17) 

Now refer back to the outline of the proof, (4.4). The Z" are random elements 

of the space of maps z: [0, o v ) ~ R  z. We have already proved (a) and (b) of 

(4.4). to prove (c) for this space we would want, in place of (4.17), a similar 

result for E sup IZT"i~ This seems hard to obtain directly; we will fin- 
t <=to 

esse the problem as follows. Fix tl and consider Z"(q)  as a random element 

of R z. Then (4.17) certainly implies (4.4)(c) in this one-dimensional setting, so 

we have proved Z " ( q ) ~  Z(tO. Similarly, for fixed (tl, t2 . . . .  , tq) we have conver- 

gence of finite-dimensional distributions. To complete the proof  it suffices (be- 

cause convergence on R z is coordinatewise) to fix a coordinate i and to prove 

(Z~(t); t>=O)~(Z~(t); t>=O) in D([-0, oo), R. 
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From Lemma 1 and Lemma 5 we have 

E[Z'~(t)]2<=Ac-2i+B2 -i , A, B constant, 

so that, for each fixed i the random variables ZT(t) are uniformly integrable; 

here and below, uniJbrm is with respect to n > 1 and 0 < t < to. Fix i. Convergence 

of the finite dimensional distributions ZT(')~Zi( ')  implies weak convergence 

on the function space Lo [0, oo), that is, convergence in Lebesgue measure on 

bounded intervals, see, e.g., Grinblat [-91. Uniform integrability extends this 

to weak convergence on LI[0, oo). Next the conditional mean calculation at 

the beginning of this section 

E(zlZ'~lZ"(t)=z)~{c-(i-1)zi_l--c-izi} At, 

implies that MT(t) is a martingale, where 

M7 ( t )  = Z7 (0-17 (0 + J" (t), 
t 

xr(t)= i c-( ' - 'zr_As)ds,  J~(t)= S c-~z'~(s) as- 
13 0 

(r 

Now weak convergence of ZT(" ) on L 1[0, oo) implies weak convergence of J~"(.) 

on C[0, m); and similarly for 17(. ). Thus MT(') converges, in the sense of finite- 

dimensional distributions, to the limit martingale M i ( ') defined similarly in terms 

of Z. Moreover  MT(t) is uniformly integrable, since ZT(t ) is. Applying the result 

(4.19), below, M7 (') converges weakly in D E0, oo), and therefore, Z7 (t) = My (t) 
+I~(t)-J~(t) converges weakly in D[0, oo). This final step made use of the 

following result, which is given in [1]. It extends a result of Loynes, [111, which 

required an extra technical condition. 

Let {M,(t)} be a sequence of martingales that is uniformly integrable 

for each t, and suppose M,  ~ Moo in the sense of finite-dimensional 

distributions. If M~ is continuous then M,--Moo weakly in D[0, oo). (4.19) 

5. The Entropy Algorithm 

The results of Sect. 4, in the special case c =  2, lead to a description of the 

second-order properties of the Ziv entropy algorithm discussed in Remark 1, 

Sect. 1. Let 

N(t)=ZUX,(t);  B(t)=~(i--2)2iX~(t). 

Thus, as noted in (1.1), N(t) is essentially the number of nodes filled at time 

t and B(t) is essentially the number of bits used at time t, in the random tree 

grown by applying the entropy algorithm to fair coin-tossing. Let W(b) be the 
value of N(t) at the first time t such that B(t)> b. Ziv showed in [-17] that 

W(b). b-  1 log 2 b ~ 1 a.s., as b ~ oo. 



A Diffusion L imi t  for Binary  Trees 531 

To state the corresponding central limit theorem, let us put 

h(t)=EN(t)--- ~ 2ipi(t); b(t)=EB(t): ~ (i--2)2ipi(t). 
i = 0  i = 0  

The forward equations, (2.1), give 

h'(t) = ~ pi(t); b'(t) = i pi(t), 
i = 0  i = 0  

so b(t) is an increasing function and h(t)= t + 1. Let t(b) be the inverse of b(t). 

Theorem 3. W(b)-t(b) ~Normal (0 ,  1) as b ~ oo, where a(b)=b~(log2b)-~ f(b), 
a(b) 

and f is bounded away from 0 and oo. 

Our first step in the proof of Theorem 3 is to show that we can replace 

t(b) by t* (b), the inverse function of 

b * ( t ) -  ~ (i-2)2~xi(t). 
i=--oo 

The forward equations, (2.1), show that db*/dt= ~ ixi(t), hence, the lower 
i=  --co 

tail estimate, Lemma 2, together with the shift-periodic property xi(t) = x, + 1 (2 t)  

then guarantees the existence of positive constants ~ and K so that 

db*/dt>a, for t>K. (5.1) 

In particular, when t>K, b*(t) will have an inverse function t*(b). Note also 

that ~ 2 i xi(t)= t, since the forward equations yield the derivative ~ xi(t ), which 

is identically 1 for t > 0. Thus, for any j we can write 

b*(t)--j ~ 2ix~(t)+2 j ~ ( i - j - 2 )  2i-Jxi(t) 
i = - - o o  i = - - c ~  

=j t + 2Jb*(t2-J). 

Equivalently, b* (to 2 j) = 2J(j to + b* (to)), which shows that 

and hence that 

b* (t) ~ t log 2 t as t ~ oo 

t* (b) ~ b/log 2 b as b ~ o0. 

We now prove the following estimate 

[b( t ) -  b* (t) l-- 0(?/4) a s  t - ~  c~3. (5.2) 
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Note that 

b ( t ) - b * ( t ) =  ~ ( i - 2 )  2i(pi(t)-x~(t)). 
i = - - ~  

The sum over the indices i < 0  is uniformly bounded since pi=O and x i < l  

for those indices. The sum over the indices i > 2 i  o is bounded for 2 i ~  ~~ 

uniformly in io, from our upper tail estimate, Lemma 3, while Lemma l(b) 

shows that the sum over the indices 0_<iN 2i o is bounded by 8i 2. This proves 

(5.2). 

The result (5.2) and the derivative bound (5.1) give the estimate 

[t* (b) - t(b)[ ___ 1 [b (t (b)) -  b* (t (b))[ =< 1 t+ (b), 

which holds for b large. The result (5.2) and the fact that b* (t)~ t log 2 t together 

imply that b (t) ~ t log2 t, which then implies t (b) ~ b/log2 b so that It* ( b ) -  t (b) J 
=O(b~). This completes the proof that it is enough to establish Theorem 3 

with t*(b) in place of t(b). 

Our next step in proving Theorem 3 is a time-change argument, which can 
be expressed in the following purely analytic form. 

Lemma 9. Let L] (t) and L"2 (t) be right-continuous on the interval I = [a, oo), where 

a is a f ixed positive number. Let L~(t), and L2(t ) be continuous functions on 

I, let u(t) be a bounded continuously differentiable function such that u'(t)>O 
on I. Let 6, and e, both decrease to 0 such that the following hold. 

(a) lira I2~ = Li, uniformly in any compact subset of I, i = 1, 2. 
n--+ oo 

(b) The maximum jump of L](t) is o(6,). 

For each b > 0 let t,(b) be a solution to t + b, u(t)= b. Define the scalar functions 

y~(t)=t +~nL~(t) 

y~( t )=t  + ~)nU(t)+ e~L](t)+ gnb~L~2(t), 

and define s,(b) to be the smallest t such that y[(t)>=b. Then, as n ~ o e  

(i) s, (b) and t, (b) ~ b, 

y] (s, (b)) - t, (b) 
(ii) + u'(b) L1 ( b ) -  L2 (b). 

/3 n C~ n 

Proof Since u is strictly increasing the existence and uniqueness of t~ (b) is guaran- 
teed, while right continuity guarantees that y"2(s,(b))>b. Write t, for tn(b) and 
Sn for s,(b). By assumption (a), yT(t)~ t, uniformly on bounded intervals, i=  1, 2, 
so t, and sn both converge to b. Also, assumption (a) implies that the maximum 
jump of L"2 is 0(1), so assumption (b)implies that 

y~ (s.) = b + o (e, (~,). 



A Diffusion Limit for Binary Trees 533 

Hence, 

y](s.(b))-t.(b) 
: - + , .  l ( u ( t . ) -  u(s . ) )  + o (1 ) .  

/3n (~n 

Certainly L"2 (s . )~  L 2 (b) and u ( t . )-u(s .)~ (t.-s.)u'(b), so it suffices to prove 

8~ -1 (t. - s.) --* L1 (b). (5.3) 

Now y"2(t.)=b+e.L](t.)+O(~.6.), so the fact that y~2(s.)=b+O(e.(~.) implies 

that 

~- 1 (y~ (t.) - y~ (s.)) ~ L1 (b). 

F rom the definition of y~, and the fact that t., s. ~ b, we get 

g.n 1 (yn 2 (tn) - -  yn 2 (Sn)) = ~,n 1 (in - -  Sn) + ,~n 1 (~n (U (tn) - -  U (Sn)) -~ 0 (1) 

= e~-i (t. - s.) (1 + o (1)) + o (1), 

and so our desired result (5.3) follows from the relation 8~-1 (y~ ( t . ) -  y~ (s.))~ Ll(b). 

The lemma is proved. 

To apply Lemma 9 we use the expressions 

X.+i(t2")=x.+i(t2")+2-"/2Z~(t), b*(t)=~(i-2)2ixi( t) ,  

in the definitions of N(t) and B(t) and a little algebra, including the fact that 

2 / xi(t) - t, to obtain 

2-" N(t 2") = t + 2-"/2 Z 2~ Z~(t), 

n - lZ-"B( t2" )=t+n lb*(t)+2-"/z~2iZT(t)+n '2-"/2~(i--2)UZ~(t). 

Define e. = 2 -"/2, 6. = 1/n, u(t)= b* (t), and 

L](t)=~2iZ~(t), L"2(t)=~(i--2)2iZ~(t), 

Ll( t )=~2iz i ( t ) ,  L2(t)=~(i--2)2izi(t) ,  

where the vector process Z(t)= (Zi(t)) is the limit, in distribution, of the processes, 

Z"(t)=(Z~(t)), as given by Theorem 2. The forward equations, (2.1), give u'(t) 
=~ixi( t) ,  hence the lower tail estimate, Lemma 2, implies that u(t) satisfies 

the conditions of Lemma 9 for sufficiently large a. The L i are continuous, the 

L~- are right continuous, and a direct calculation, using the transition rates for 

the Markov chain X(t), shows that the maximum jump of L] is o(6.). Thus 

to apply Lemma 9 we need only show how the L~ and L i can be joined on 
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an appropriate space so that uniform convergence of L~ to L i on compact subsets 

of (0, oo) will hold. Theorem 2 implies that, for any fixed I o, 

2'Z~'(t)--* ~, 21Z~(t), 
1i1 =<Io Ill _-<Xo 

(i--2)2iZ~(t) ~ ~ (i-2)2iz~(t). 
Iil < I o  [il _-<lo 

Let us suppose the following lemma is true. 

Lemma 10. I f  to > 0 then 

lim lira sup ~ ]i]. 2iEmaxlZ~(t)]=O. 
I o ~  n--+ co [ i 1 > I o  t < t o  

We can then obtain 

L'~(t)= ~ 2iZ~(t)~L,(t)= ~ 21Zi(t), 
i =  - -o r  i = --co 

L"2(t)= ~ (i-2)2iZ~(t)~L2(t) = ~ 2r 
i = - - o 0  i = - - a O  

n ~ and, moreover, (L], I22) --, (L 1, L2). This will be enough to establish Theorem 3, 

for by the Skorohod representation theorem, together with Lemma 10, we can 

assume that the convergence (L], L"2) to (L1, L2) is also almost surely uniform 

on bounded intervals. We can then fix an co for which such uniform convergence 

holds and apply Lemma 9 to obtain, for fixed b, 

2-" N(S, (b))- t, (b) ~ , 
n-1 2-"/2 * u (b) ~ 2 i Z i (b)-  ~ ( i -  2) 2 i Z i(b). (5.4) 

where t,+6,u(t,)=b, and S, is the smallest t2" such that n-a2-"B(t2")>b. 
In the notation of the beginning of this section t,= 2-" t* (n b 2") and N(S,) 
=W(nb2"). Moreover, since the limit process Z(t) is Gaussian, mean 0, the 

right side of (5.4) is Normal(0, g2(b)), for some g(b), such that 0 < g(b)< oo. (See 
(d), Sect. 7.) Thus (5.4) becomes 

W(bn2")--t*(bn2") ~+Normal(0, 1), as n ~ o o .  
n - 12,/2 g (b) 

(5.5) 

By modifying the statement and proof of Lemma 9, it can be shown that 5.4 
and (5.5) remain true if b is replaced by a sequence b. that converges to a 

finite, positive value b. Then by considering subsequences, (5.5) remains true 
for any sequence {b,}, bounded away from 0 and oo. Now let m--, 0o and define 
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sequences b =bm and n = nm so that m = b n 2" and {bin} is bounded away from 

0 and o0. Then n~log2  m, 2"~m(b .  log2 m) -1, and so 

n-12./2 g (b) ~ m 1/2 (log 2 m)- 3/2 f (m) 

where f (m)=b-1/2g(b) is bounded away from 0 and oo. Now (5.5) gives Theo- 

rem 3. 

Thus it is enough to establish Lemma 10. We shall write out in detail the 

proof  of the weaker result in which "E  max"  is replaced by "max E":  

lira lim sup ~ Ii[ 2~EmaxElZT(t)l=O. (5.6) 
Io~oo n ~ o o  1i1>10 t<~o 

To go from here to Lemma 10 involves the same issues as were in the argument 

at the end of Sect. 4: We use the decomposition (4.18) 

Z~ {t) = M 7 (t) + 12 (t) - Jp (t), 

and then appeal to maximal inequalities for the martingales M n and smoothness 

properties for the integrated processes P,  J". We omit the details of this argu- 

ment. 

To establish (5.6) we first prove two lemmas. 

Lemma 11. There is a constant c~ such that for all n> 1, i> 1, and 0 < t<_ 1, 

2 "+i varX.+i(t  2") < ~ 2-  3i /2  

Proof. By our variance bound, Lemma 4, it is enough to show that 

i 

p.+i(t2")+ ~ 2i-kvarp.+k,.+i(t2. R.+k)<=~2 3i/2. (5.7) 
k = - (n - 1) 

From our basic upper tail estimate, Lemma 3, the first term has the correct 

bound. Now consider the sum over k < - i/2. We noted in the proof of Lemma 5 

that v a r p u ( t - R i ) < ( 1 - c - 2 ) - 1  c2i-2J. In our case, c = 2  and we obtain 

2i-kvarp,+k.,+i(t2"--R,+k)< 4 ~ 2 (i-k)Nw 
k<~ - i / 2  k < --i /2 

and this bound has the right form. 

Now consider the sum in (5.7) over - i/2 _< k_< i -  1. We have 

sup P,+k,,+i(S) <_ sup Pi-k(S) < t i-k 2 --i{i-k)(i+k- 1), 
s<=t2" s < t 2  - k  

where the first inequality comes from the general scaling fact that pi.j(u) 

-=pj- i(u 2-  % and the second inequality from the upper tail estimate of Lemma 3. 

For  any nonnegative random variable Y,, var Y_<_ (max y)2, so 

v a r  Pn+ k, n+ i( t 2"-- Rn+ k) ~ t 2(i-k) 2 - ( i - k )  (i + k -  1) 
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Summing over - i/2 < k_< i -  1 then gives an upper bound of the desired form. 

Finally consider the case when k=i. Note that if 0_<Y<I,  then 

var Y<P(Y+-O), so that 

var p.+i,.+i(t 2 " -  R.+i) < P(R.+i < t 2"), 

and this has the correct upper bound, by Lemma 3. This establishes Lemma 11. 

Our next lemma is another variation on Lemmas 3 and 1 (b). 

Lemma 12. For fixed to, 

2"/2max ~ i2ilx.+i(t2")-p.+i(t2")[~O, as n - ~ .  
t<--to i > - 1 

Proof Recall that p. + i(t 2") = P(R. + ~ < t 2" < R. + ~ + 1) and 

x.+i(t 2")=P(R*+i<t 2"<=R*+i+ O= P(R.+i + R~ <t 2"< R.+i+l + R~). 

Thus 

Ip.+~(t 2 n) - Xn+i(t 2")1 

<P(R.+i<t2"<=R.+i+R~)+P(R.+~+I<t2"<R.+i+I+R~). (5.8) 

Now, for 0 < x < t 2", conditioning on R. + ~_ 1 gives 

P(R.+i<t2"< R.+i+ R~]R.+i_ l=x)=P(x  + 2"+i ~ .+i<t2"~x  + 2"+i ~.+i+ R~) 

<=ER~/2.+i=21-.-i, 

where the inequality holds by conditioning on R* and noting that the density 

of 2"+i~.+ i is bounded by 1/2 "+I. So 

P(R.+i<t2"<R.+~+R~)<_21-"-~P(R.+~_l < t2"). 

Applying the same argument to R.+~+, and using (5.8) we get, 

[p.+i(t2")- x.+i(t2")] <=22-"-i P(R.+i_ 1 <=t2.)~22-.-i t i-12-(i-1)(i-  2)/2, 

by the proof  of Lemma 3. Thus the quantity of interest to us 

2"/2max ~, i2iJx.+i(t2")--p.+i(t2")r 
t<=to i > 1  

is bounded by 

2 -"/2 ~ i t~o -122-(I-1)(i-2)/2. 

i>=1 

Since this sum is finite the lemma is established. 
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N o w  we are ready  to p rove  (5.6). Fo r  the sum over  i <  - I 0 ,  we write 

Iil" 2imax ElZ~'(t)l 
i <  - I o  t<=t~ 

= ~ i2 imaxElZ"_i(t)[+ ~. i2-imaxE[ZLi(t)[ .  
i =  Io  t<=to i = n +  1 t<~to 

In the sum over  i>n, X , _ i ( t ) = 0  and  x,_i(t)< 1, so the sum is bounded  above  

by 2 "/2 ~ i2 -i, which goes to 0. F o r  the sum over  the range I o<i<n,  we 
i = n + l  

have  the upper  b o u n d  

2n/2 Z i 2-i  m a x  [var  X . _ i ( t  2")]~ + 2 "/2 Z i 2 - i  m a x  [x._i( t  2") -- p.  - i ( t  2")1. 
i = I o  t < t o  i = I o  t<=to 

The first sum is b o u n d e d  by B ~ ~ i2-i/2, f rom L e m m a  5 (c), while L e m m a  l(b)  
i = I o  

can be used to b o u n d  the second sum by 4 . 2  -"/2 ~ i. This establishes (5.6) 

in the case when  i < - - Io .  i :  to 

N o w  consider  the case when  i > I o. We  m a y  take  t o = 2 ~ say. F o r  i > q + 1 

we then have, 

var  Z~ (t) = 2" var  X .  + i(t 2") 

= 2 - i 2  "+i var  X(n+q)+(i_q)(t 2 -q 2 "+g) 

<=2-ic~2 -3(i-q)/2, for t<2  q, 

by L e m m a  11, since t 2 - q <  1. Thus  

m a x  [var  Z7 (t)] ~ __< c~ ~ 2 3 q/4. 2-- 5 i/4. 
t<_2q 

This implies 

lim lira sup ~ i 2 i m a x [ v a r  Z~( t ) ]~=0 .  
I o -~ Oo n ~ eo i > l o t <= 2 q 

N o w  

E [Z7 (t)[ < [var  ZT(t)] ~ + IEZT(t)l 
and 

lENT(t)] = 2n/2lPn+i(t 2n)-- X,+i(t R")[, 

SO the uppe r  b o u n d  for (5.6) follows f rom (5.9) and  L e m m a  12. 

(5.9) 

6. The Height of the Tree 

Let  M ( t ) - - I  denote  the height  of  the tree at t ime t. 

M(t) = m a x  {i: Xi(t)> 0}. We shall p rove  the following 

As noted  in (1.1), 
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Theorem 4. For c > 1, 

M(t)--logct ~ 2 "~ 

(logc t) ~ ( l og  2 cJ  ' a.s. 

Remark. By analogy with standard theory for maxima of i.i.d, discrete variables 

with faster than geometric tails, one would expect the stronger result that a.s. 

M (t)= re(t) or m (t + 1) ultimately, for some deterministic re(t). H. Kesten (private 

communication) has results in this direction. 

Proof. Write flo={2/log2c} ~. Let c~ be a node at height i+k. Our upper tail 

estimate, Lemma 3, implies 

SO 

P(e is available before time d)<= c-k(k- *)/2, 

P(M (d) > i + k)_<- 2 i + k C- k(*- 1)/2. 

Now fix fi>flo and let k=k(i)=[fii~], where [ . ]  denotes the greatest integer 

function. Then 

E 2 i + k c - k ( k -  1)/2 < 00,  

i 

so by the Borel-Cantelli lemma we have a.s. 

M (c i) < i + k (i), ultimately. 

This gives the desired upper bound. For  the lower bound, fix fl < flo and again 

let k = k(i)= [fl i}]. We then have the following. 

2iP cJ{j<l --,oo, 
\j= 1 / 

geometrically fast as i-+ m. (6.1) 

To prove this, note that 

P ~c-i~j~l >P(d~j<k-*, f o r l < j < k )  
xj=  1 

k 

= I~ {1 - e x p ( -  c-J/k)} 
j = l  

>1 [I (c-J/k) 
: 2 j =  1 

= l k - k  C - k ( k +  1)/2. 

Multiplying by 2 ~ then gives a lower bound of the form �89 ~, where 0 
= 2c-p2/2 > 1, and since k = O(i ~) this grows geometrically, proving (6.1). 
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Continuing with the proof  of Theorem 4, for each node 5 of height i associate 

one descendant node ~ of height i +  k. Let R~ and Ra be the respective times 

that e and ~ first become available. Then 

�9 / i+k  . .\ / k . \ 

\ j = i +  1 / j :  1 / 

and then the result (6.1) implies 

qi - P(R~ - R~ < c i, for some 5) ~ 1, 

geometrically fast. Since ER~ = B d,  for some constant B, we have 

P(R~ < i 2 c i) >= 1 - B / i  2, 

so that 

P( M ( i 2 c i + c ~) > i + k) > P(  R~ < i 2 c i, R~ - R~ ~ c ~, for some 5) 

> q i -  B~ i2. 

The Borel-Cantelli lemma then implies that a.s. 

M (i2 c i + c i) > i + k (i), ultimately, 

and this leads to the lower bound. 

Now write M(n) for the height of the discrete-time tree when it has n nodes. 

Embedding into the continuous-t ime tree gives ~ ( n ) =  M ( S , ) ,  where, as in Sect. 3, 

S, is the time at which the n'th node is filled. Theorem 4 implies 

(n)-- logo S, 
(logo S,) ~ -, (2/log2 c) ~, a.s. 

By (3.3) and (3,4), l o g ~ S , - l o g z n  is bounded a.s. as n---> oe, so we can rearrange 

to obtain the following corollary to Theorem 4. 

Af (n) -- logc n 
1, a.s. (6.2) 

(2. log~ n) �89 

7.  F u r t h e r  R e m a r k s  a n d  C o n n e c t i o n s  w i t h  O t h e r  W o r k  

(a) For  the continuous-t ime model the rate at which new nodes are being added 

at time t is ~ 2 i c - i X i ( t ) .  In the special case c = 2  this rate is identically 1 so 

that the times at which new nodes are added is a Poisson process of rate 1. 

For  c > 2 the rate slows down as the tree grows, while for c < 2 the rate speeds 

up. These features are artifacts of the continuous-time formulation and have 

no direct interpretation for the shape of the tree T(n) with n nodes. 
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(b) The case c = 2 ~ is a critical case in our proof of Theorem 2. We conjecture 

that a Gaussian limit holds here also, but that for c < 2 ~ there is some non- 

Gaussian limit process obtained by scaling by c" instead of 2 "/2. Partial results 

on this latter conjecture have been obtained by H. Kesten, (private communica- 

tion). 

(c) The condition c > 1 means that available nodes of lesser height are likely 

to be filled before available nodes at greater height. This leads to a strong 

"stable growth" property of the random tree, in that heights of different terminal 

nodes at time t do not vary much, and the typical variation stays bounded 

as t ~ o e .  Our results show this "stabili ty" property in that the vector Jr(2") 

looks like the fixed vector 2(1) shifted n units to the right. 

(d) Good  asymptotic estimates of the standard deviation of W(b) are needed 

to make Theorem 3 into a useful hypothesis testing tool. This is tantamount  

to estimating the variance g2(b) of the right-hand side of (5.4). In principle 

this can be evaluated as follows. First, note that u'(b)=~ ixi(b). Second, use 

the integral representation (4.6) for Zi(b) in terms of the Brownian motions 

Wi(t), then collect terms in each Wj. This eventually leads to a complicated 

expression for g(b) in terms of xi and Pi. In particular, it can be shown that 

g(b) is bounded away from 0 and oc on bounded intervals. 

(e) A model equivalent to the case c = 2 of our discrete-time tree has been 

discussed by Bradley and Strenski, who call it "directed diffusion-limited aggre- 

gation", [3], and obtain results weaker than our Theorem 1 D and (6.2). They 

show, in our notat ion of Sect. 6, that if Gh(n ) = P(f4(n)< h) then 

m = 0  

They show essentially that M(n)--log 2 n-* 0% which is of course weaker than 

our (6.2); but it is possible that a more refined analysis of their recursion might 

lead to stronger results in the spirit of our results. They also consider the quantity 

(h) = 2 -  h E rain {n: M (n) = h}. 

Our (6.2) implies that fi(h) is roughly of the order of 2 -(2h)~, confirming their 

conjecture that t5 (h)~  0, slower than exponentially. 

(f) A tree can be identified with a partition of the unit interval into intervals 

of length 2-h. Thus a process of randomly-growing trees can be identified with 

a process of randomly splitting intervals in half. Brennan and Durret t  have 

studied more general processes where intervals are split into parts according 

to some continuous distribution V, obtaining results related to some of ours, 

[4, 5]. Unfortunately their results do not cover the degenerate distribution which 

is discussed here, although some of their arguments are the same as ours. 

(g) Randomly-growing trees are also of interest in computer  science. One 

model closely related to ours is the binary search tree described in Knuth, 

[10, Sect. 6.22]. Such trees are structures for storing numbers x, (regarded as 

labels of files) so that a given number x can be rapidly located. The first number 

x0 is stored at the root. Subsequent numbers are then stored at available nodes 
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by making comparisons with numbers already stored and moving along the 

0-branch if smaller and the 1-branch if larger. To be precise, suppose 

xo ,x l ,  . . . , x ,  have already been stored at the nodes of a tree t(n). The next 

number x,+~ is stored at the first available node of the branch b I b 2 b3 ... defined 

by the rule: 

I f .b l  b2 ... bm contains y, then b,,+l =0,  x<y,  else bm+l = 1. 

If the numbers Xo, X1, Xz, ... are independent with a common continuous distri- 

bution, then the random tree T(n) obtained is our discrete-time tree for the 

case when c = 1. In this context, quantities like the mean number of nodes which 

must be examined to locate a given random x are of interest, and these are 

functionals of T(n). PitteI, [12], contains the deepest known results, partly using 

the same embedding into the continuous-time process that we exploit. The trees 

T(n) are rather less "balanced"  in the c = 1 case; for instance, the average height 

and maximum height of occupied nodes are asymptotic to 2.1ogzn and 

4.3 i1. log2 n, respectively; whereas in the case c > 1 both are asymptotic to log 2 n. 

Other related results are contained in Pittel, [-13, 14]. 

(h) Though our results concern only the case c >  1, the models make sense 

for 0 < c <  1 also. The case c = l  is mentioned in the preceding remark. Let 

us mention some known results and open problems for the case c <  1. First, 

we note that the "stabili ty" property mentioned above doesn't hold, as shown 

by Brennan and Durrett,  [-4, 51. In this case the long branches tend to grow 

faster than the short branches. In the continuous-time model, the height reaches 

infinity at some random finite time L, hence our technique of studying the 

discrete-time model by embedding into the continuous-time model does not 

work. By considering the time required to add the first node, we get the relation, 

L--* ~+c -min (L1 ,  L2) (7.1) 

where r has exponential, mean 1, distribution; L1 and L 2 are distributed as 

L; and ~, L1, and L2 are independent. Athreya, [-2], studies a more general 

problem of this type: his results imply that (7.1) has a unique solution. For  

the discrete-time model, the height N(n) of the tree with n nodes has M(n)<n; 

of course, the behavior of M(n) as n ~  oo is an interesting open problem. 
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