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In the past decades, hundreds of articles have explored the mechanisms underlying priming. Most
researchers assume that masked and unmasked priming are qualitatively different. For masked priming,
the effects are often assumed to reflect savings in the encoding of the target stimulus, whereas for
unmasked priming, it has been suggested that the effects reflect the familiarity of the prime–target
compound cue. In contrast, other researchers have claimed that masked and unmasked priming reflect
essentially the same core processes. In this article, we use the diffusion model (R. Ratcliff, 1978, A theory
of memory retrieval, Psychological Review, Vol. 85, pp. 59–108) to account for the effects of masked
and unmasked priming for identity and associatively related primes. The fits of the model led us to the
following conclusion: Masked related primes give a head start to the processing of the target compared
with unrelated primes, whereas unmasked priming affects primarily the quality of the lexical information.
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In visual-word recognition laboratory tasks (e.g., lexical deci-
sion, naming), the response to a target stimulus can be influenced
by the previous presentation of a related item—the so-called prime
(e.g., the response to the string DOCTOR is faster or more accurate
when following a related prime such as nurse than when following
an unrelated prime such as horse). Priming effects can occur in the
absence of explicit instruction to use the prime’s information when
responding to the target. Early research in visual-word recognition
focused on visible, unmasked primes, and the potential role of
participants’ strategies under these circumstances led a number of
researchers to manipulate the stimulus onset asynchrony (SOA)
between prime and target (e.g., Neely, 1977) to explore issues
around automatic versus controlled processes (Posner & Snyder,
1975). Along these lines, the introduction of masked priming
(Forster & Davis, 1984) was an important development; the as-
sumption behind masked priming was that the results would reflect
early automatic processes. In this study, we used an explicit
modeling method (Ratcliff’s, 1978, diffusion model) to examine

the differences among masked versus unmasked priming in the
most popular laboratory word identification task: lexical decision
(e.g., see Dufau et al., 2011).

The masked priming paradigm has been used to examine the
initial stages of visual-word recognition (Forster & Davis, 1984;
see also Forster, Mohan, & Hector, 2003; Grainger, 2008; Ki-
noshita & Lupker, 2003, for recent reviews). The typical trial in a
masked priming experiment consists of a mask (e.g., #####) that is
presented for 500 ms, which is followed by a briefly presented
lowercase prime (for around 30–60 ms) and is subsequently
replaced by an uppercase target (e.g., the target word TRIAL may
be preceded by the identity prime trial or by an unrelated prime
such as ocean). Under these conditions, participants are not only
not aware of the prime’s identity, but are often also unaware of its
existence.

One basic tenet in masked priming studies is that the obtained
priming effects are qualitatively different from priming effects in
standard (unmasked) priming paradigms (Forster et al., 2003;
Grainger, 2008). Indeed, functional MRI evidence has revealed
that masked primes produce some activation in the so-called
“visual word form area,” and activation is negligible in frontal and
parietal areas; in contrast, unmasked primes produce a much larger
activity at parietal, prefrontal, and cingulate areas (see Dehaene
et al., 2001). Unlike unmasked priming, which can be mediated by
an episodic memory trace of the prime, masked priming effects are
supposed to reflect a transitory change in the accessibility of
lexical/semantic information. However, work by Bodner and Mas-
son (2003; see also Bodner & Masson, 2001) has called into
question the alleged qualitative difference between masked and
unmasked priming. Bodner and Masson (2001) suggested that, for
both masked and unmasked priming, “a prime event creates a
memory resource that can be recruited during target presentation to
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aid in the encoding of the target” (p. 646). Bodner and Masson’s
(2001) account is supported by a key finding: The size of the
masked identity priming effect in lexical decision is greater when
the proportion of identity trials in the stimulus list is high (0.80)
rather than low (0.20; Bodner & Masson, 2001; see also Bodner &
Masson, 2003, for a parallel effect with associative/semantic
primes; cf. Perea & Rosa, 2002). This finding matches the usual
result from the standard long-term priming with visible stimuli.
Bodner and Masson (2001) argue that this is so because the
masked prime establishes an episodic record, just like the un-
masked prime (i.e., conscious awareness would not be a prereq-
uisite for establishing an episodic record).

The dissociation of different processing mechanisms in behav-
ioral experiments is often contentious, especially when the mean
latency is the sole dependent variable. In this study, we contrasted
two views of masked/unmasked priming using Ratcliff’s diffusion
model (Ratcliff, 1978, 1981, 1985, 1988; Ratcliff, Van Zandt, &
McKoon, 1999) in an experiment that compared masked versus
unmasked priming. Ratcliff’s diffusion model has been success-
fully applied to lexical decision data (Ratcliff, Gomez, & McKoon,
2004; see also Gomez, Ratcliff, & Perea, 2007; Ratcliff, Perea,
Colangelo, & Buchanan, 2004; Ratcliff, Thapar, Gomez, & McKoon,
2004; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008; see Norris,
2009, for a complete model of lexical access that shares assump-
tions with the diffusion model). Importantly, the model allows
cognitive processing to be divided into several components: the
rate of evidence accumulation (which reflects the goodness of
match between the test string and lexical memory), the decision
criteria (i.e., how much information must be accumulated before a
decision can be made), the nondecision components of processing
(both encoding and response execution), and variabilities in the
various components. In the following paragraphs, we first describe
the diffusion model, and then we indicate what components could
be affected in masked versus unmasked priming depending on
whether or not the priming effects originate from the same sources.
In particular, we examine two of the most studied types of rela-
tionships between primes as targets: identity priming and associa-
tive/semantic priming.

The Diffusion Model and the Lexical Decision

The diffusion model was developed to account for those deci-
sions that involve a two-alternative choice and take less than a few
seconds (Ratcliff, 1978; Ratcliff & Rouder, 1998). In the model,
the decision-relevant information is accumulated over time in a
noisy manner (see Figure 1). A response is initiated when the noisy
accumulation of evidence reaches one of the two decision bound-
aries. The location of the decision boundaries is related to the
amount of evidence needed to make a response. The two param-
eters of the model that describe the boundary positions are z, the
location of the starting point,1 and a, the distance between the
decision boundaries (with the location of the negative boundary
assumed to be set at zero). The values of a and z reflect
speed–accuracy trade-offs and response biases.2 In the present
study, two aspects of the diffusion model are of particular
interest because they most likely capture the observed priming
effects: the encoding of the perceptual information and the
quality of such information.

Encoding and Response Execution Time

The diffusion model assumes that the reaction time (RT) for a
given trial is a sum of three components: (1) the encoding time, (2)
the time taken by the accumulation of evidence process, and (3) the
time taken by the response execution stage. The sum of Compo-
nents 1 and 3 is represented by the nondecision parameter Ter.
Note that encoding and response execution cannot be separated in
the model. This nondecision time is assumed to be uniformly
distributed with range st. Of particular interest here is the possible
contribution of the masked and unmasked primes to the encoding
process. Some verbally formulated explanations of priming posit
that the presentation of a related prime provides a head start in the
processing of the target (see Forster, 1998), which can be imple-
mented in a diffusion model framework as affecting the encoding
time (Ter parameter). We must note here that the term encoding has
a specific interpretation in the diffusion model. It represents pro-
cesses that terminate before the beginning of the accumulation of
evidence in the decision process (i.e., the decision process itself,
represented by the jagged lines in Panel C of Figure 1). This might
not be the same as other processes that are also termed encoding
processes in other models and theories.

Drift Rate

The average rate of accumulation of evidence is termed drift
rate. It can be thought of as a quality of the extraction of evidence.

1 The model assumes variability in the z parameter, which is uniformly
distributed with range sz.

2 For a comprehensive exploration of the behavior of these parameters in
the lexical-decision task, see Wagenmakers et al. (2008).

Figure 1. Representation of the diffusion model. (A) Sequence of
events in a trial of a lexical-decision task (x � encoding; y � evidence
accumulation; z � motor response). (B) Nondecisional components of
the reaction time (RT), which have a mean expressed by the T_{er}
parameter and a range expressed by the s_t parameter. (C) Diffusion
model. The parameters represented in Panel C are a boundary separa-
tion (z � starting point; s_z � variability in starting point across trials;
v � drift rate; h(greek letter eta) � variability in the drift rate across
trials; and s � variability in drift rate within a trial).
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Easy stimuli, such as high-frequency words in a lexical-decision
task, are associated with large positive drift rates (Ratcliff, Gomez,
& McKoon, 2004). Similarly, non–word-like nonwords are asso-
ciated with large but negative drift rates. Within a trial, the accu-
mulation of evidence has variability that is reflected in the jagged
line in Figure 1. In addition to the within-trial variability, there is
normally distributed variability in the drift rate from trial to trial
(parameter �). This is so because all trials that nominally are in the
same category (e.g., high-frequency words) cannot be expected to
have exactly the same discriminability.

On the Qualitative Differences Between Masked
Versus Unmasked Priming

In Forster’s view, masked priming would reflect a savings
effect, in which some of the processing carried out on the prime is
transferred to the word target (see Forster, 2009; Forster et al.,
2003). Specifically, Forster (1999) indicated that the magnitude of
masked identity priming “ought to be equal to the duration of the
prime (assuming that the target appears immediately after the
prime)” (p. 10), and he provided data supporting this view. If this
interpretation is correct, masked identity priming should be re-
vealed as a shift in the entire RT distribution, without any change
in spread. Thus, if we implement Forster’s verbal explanation
within a diffusion model framework, the effect of the masked
identity prime would be reflected as a change in the nondecision
component (Ter), whereas the rate of accumulation of information
would be the same across conditions. With respect to masked
associative/semantic priming, Forster (2009) indicated that the
“semantic evaluation of the target is completed more rapidly
because the relevant semantic information retrieved by the prime is
still stored in the semantic buffer” (p. 46). We believe that this
latter verbal description does not have a clear translation into the
diffusion model parameters. One could imagine that this buffer
provides a head start (i.e., a change in Ter), but it could also
cascade into the evidence being accumulated in the diffusion
process (i.e., a change in drift rate). Similar views of masked
priming are used in the spatial coding model (Davis, 2010) and in
the letters in time and retinotopic space (LTRS) model (Adelman,
2011). In the spatial coding model, the mechanism at play during
masked priming is that the letter units are reset with the presen-
tation of a new stimulus (e.g., when the prime is removed to
give place to the target). When this happens, if there is lexical
activation already in course, this activation is not reset and
produces the advantage of the identity condition over the un-
related condition. Similarly, in the LTRS model, priming is
considered as a savings effect or a head start that takes place
during the time in which the target is a candidate for lexical
identification of the prime (Adelman, 2011).

To explain unmasked priming effects, one influential view is
that when the prime is visible, prime and target are merged in
short-term memory to form a compound cue (see Ratcliff &
McKoon, 1988, for further details).3 More specifically, Ratcliff
and McKoon (1988) indicated that “the familiarity value given by
the computation of the strength of the compound cue is used as the
drift rate in a diffusion (random walk) decision process” (p. 388;
i.e., rate of accumulation of information). This implies that the RT
distribution in the related condition would be less skewed than in
the unrelated condition. We should stress that this mechanism

would apply similarly to associative priming and identity priming,
with the (obvious) difference that the familiarity of the compound
cue of two identical words would be stronger than that of two
semantically related words (i.e., identity priming implies not only
semantic overlap but also form/phonological overlap). Therefore,
both unmasked identity and unmasked associative priming would
reflect changes in drift rate across conditions in a diffusion model.

Alternatively, in Bodner and Masson’s (2001, 2003) view (see
also Plaut & Booth, 2000), both masked and unmasked primes
would form an episodic trace independent of the visibility and the
awareness of the prime. The explanation proposed by Bodner and
Masson (2001, 2003) is similar to that of Ratcliff and McKoon
(1988) for unmasked priming. The only difference is that, unlike
Ratcliff and McKoon, the compound cue would be created regard-
less of the participant’s awareness of the prime. Therefore, the
prediction is clear: The compound cue of the event would deter-
mine drift rate (i.e., rate of accumulation of information). In a
diffusion model, this would imply that priming effects would be
reflected in terms of drift rate for both unmasked and masked
primes.

Previous research comparing masked versus unmasked priming
from an explicit model perspective is very scarce. In a recent
study, Balota, Yap, Cortese, and Watson (2008) compared the RT
distributions of semantic priming effects with masked versus un-
masked primes using the estimates from the ex-Gaussian distribu-
tion rather than fits from the diffusion model. Using a masked
priming paradigm at a 42-ms SOA, Balota et al. (Experiment 7)
found a nonsignificant 13-ms effect of semantic priming; note that
the size of this effect is in line with previous masked semantic
priming experiments (e.g., Perea & Lupker, 2003). In addition,
using visible primes at a 200-ms SOA, Balota et al. (Experiments
2 and 3) found that the semantic priming effect was larger at the
higher quantiles; unexpectedly, this pattern was not reflected in
ex-Gaussian fits in which only the � and � parameters were
affected by priming, but not the � parameter (which has been
traditionally related to changes in spread). The presence of an
increasing associative/semantic priming effect at the higher quan-
tiles is consistent with a compound-cue model (see above),
whereas the apparent mismatch with the fits might be due to
misspecification of the ex-Gaussian parameters.

With respect to unmasked identity priming, previous applica-
tions of the diffusion model to the lexical-decision task suggest
that it might affect drift rates (and consequently the spread of the
RT distribution). In a long-term (unmasked) identity priming ex-
periment in which items were presented more than once in the
experiment, Ratcliff, Gomez, and McKoon (2004) found that the
item identity yielded changes in the drift rate. To our knowledge,
very few published studies have analyzed the differences between
masked and unmasked priming from a modeling perspective;
nonetheless, we would like to note that Pollatsek, Perea, and
Carreiras (2005) reported that form-related priming produced a
shift in the RT distribution relative to an unrelated priming con-

3 Although we acknowledge that there are other potential explanations of
unmasked priming, the compound cue model has three advantages: (1) It
provides a unified account of identity and associative priming, (2) it makes
straightforward predictions in terms of the diffusion model, and (3) the idea
of a compound cue has also been adopted (with some changes) in the
competing view of Bodner and Masson.
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dition. Similarly, Kinoshita, Mozer, and Forster (2011) examined
the prime proportion effects on masked and unmasked priming and
showed that visible primes (but not masked primes) showed ad-
aptation to the prime–target contingency. Taken together, these
data suggest that the mechanism underlying masked and unmasked
priming might be different.

In addition, previous research has tried to account for priming
from a modeling perspective. Notably, Jacobs and Grainger (1992)
were the first to simulate the masked (form) priming task with a
quantitative model of visual-word recognition—the interactive-
activation model (see also Perea & Rosa, 2000, for simulations of
masked identity priming with this model). In these simulations, the
prime is presented for a short number of processing cycles and
then it is replaced by the target (see also Davis, 2010, for a similar
logic for the simulations with the spatial coding model). That is,
masked priming simulations with the interactive activation model
and the spatial coding model assume that the prime offers a head
start—similar to Forster’s prediction (e.g., Forster, 1999; Forster et
al., 2003). It is important to note, however, that the spatial coding
model also employs Rumelhart and Siple’s (1974) uppercase font.
This implies that the prime and the target in the simulations would
be exactly the same. As Jacobs and Grainger indicated, “a useful
extension of the [interactive-activation] model would include a set
of lowercase letters, thus allowing a more precise simulation of
priming studies involving a change in case” (p. 1179). Finally, it
may be worth noticing that this approach of modeling priming
effects in an interactive-activation model cannot tell masked from
unmasked priming effects.

Overview of the Experiment

In the present experiment, we used the diffusion model to test
Forster’s (e.g., Forster, 1999; Forster et al., 2003) versus Bodner
and Masson’s (2001, 2003) account of the differences between
masked and unmasked priming. We focused on identity and asso-
ciative/semantic priming because these are the two most studied
phenomena in previous priming experiments. To best compare the
effects of the factors of interest in lexical-decision performance,
we performed all manipulations within subjects. In our experi-
ment, we manipulated the relationship between the prime and the
target through identity priming (prime: house; target: HOUSE) and
associative priming (prime: doctor; target: NURSE). In addition,
these targets could be preceded by a masked prime or by an
unmasked visible prime.

Method

Participants

Twenty DePaul University students participated for credit in an
introduction to psychology class.

Materials

For the associative priming and the identity priming experi-
ments, we selected 160 words for each type of stimulus. They were
matched in word frequency: M � 129 per million (Kucera &
Francis, 1967) and other relevant variables (see the Tables 1 and
2). For the associative priming conditions, the items were obtained

from the University of South Florida free association norms (Nel-
son, McEvoy, & Schreiber, 2004). The mean association for the
associative priming pairs was 0.282.4

Procedure

Participants were tested in groups of one to three. PC-
compatible computers controlled presentation of the stimuli and
recording of RTs. Stimuli were presented on a 15-in. computer
monitor in 24-point BrHand font (similar to nonproportional Cou-
rier fonts). For the masked blocks, on each trial, a forward mask
consisting of a row of hash marks (#s) of equal length to the
stimulus (i.e., four, five, or six characters long) was presented for
500 ms in the center of the screen. Next, the prime was presented
in lowercase letters and stayed on the computer screen for 56 ms.
The prime was then followed by the presentation of the target
stimulus in uppercase letters. Both prime and target were presented
in the same screen location as the forward mask. The target
stimulus remained on the screen until the participant’s response.
For the unmasked blocks, there was a fixation area that matched
the size of the stimulus in terms of number of letters (e.g., “� �”)
for 200 ms; the prime was presented in lowercase letters for 200
ms, and then the target in uppercase letters was kept on the screen
until a response was made. Participants were told that words and
nonwords would be displayed on the monitor in front of them, and
that they should press the ? key to indicate whether the uppercase
item was an English word and a different key (Z) to indicate
whether the stimulus was not a word. They were instructed to
respond as quickly as possible while trying not to make errors.
Each participant received a different random order of stimuli, and
half of the participants performed the masked priming trials first,
followed by the unmasked priming trial. Each participant received
a total of 20 practice trials prior to the experimental phase. Par-
ticipants were presented with 40 items per condition (40 words
preceded by an identity prime, 40 words preceded by a identity
control prime, 40 words preceded by an associative prime, 40
words preceded by an associative control prime, 40 nonwords
preceded by an identity prime, and 40 nonwords preceded by a
control prime). There were 160 filler nonwords with word primes
and 80 filler words with unrelated nonword primes; this way, the
primes were not predictive of the lexical status of the target. The
experimental session lasted approximately 45 min.

Results

Empirical Findings

Responses shorter than 250 ms or longer than 1,800 ms were
removed from the analyses (less than 3% of the data); in addition,
one subject was removed because s/he pressed the “word” button
more than 90% of the trials regardless of condition.

The results are straightforward (see Table 3 for a summary of
the empirical results), and because our goal was not to establish the
existence of either identity or associative priming (which are very
well established), but instead to provide a diffusion model account

4 The materials are available online at http://condor.depaul.edu/pgomez1/
WNPL/Online_Appendices_files/materials.txt
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of these phenomena, the results are discussed only briefly. As
expected, for both masked and unmasked modalities, the word
targets were responded to faster when preceded by an identity
prime than when preceded by an unrelated prime: masked, priming
effect � 60 ms, t(18) � 4.55, p � .001; unmasked, priming
effect � 105 ms, t(18) � 9.98, p � .001. Similarly, for the
associative pairs, target words (in both the masked and unmasked
conditions) were responded to faster when preceded by an asso-
ciatively related prime than when preceded by an unrelated prime,
although only for the unmasked condition was the priming effect
significant: masked, priming effect � 12 ms, t(18) � 1.08, p �
.29; unmasked, priming effect � 44 ms, t(18) � 4.75, p � .001.
(Note that, despite being nonsignificant, the size of the masked
associatively priming effect is similar to that in previous experi-
ments in the literature; e.g., Perea & Lupker, 2003.) The priming
effects for the nonword targets (i.e., identity masked priming and
identity unmasked priming) did not produce any significant effects
(ts � 1), and in fact there were very small inhibitory trends.

In terms of the accuracy data, performance for all word condi-
tions were at a near-ceiling performance (all accuracies were at or
above 95%), and none of the t tests showed significant effects. The
analysis of the nonword targets, on the other hand, showed a lower
accuracy for the nonwords when preceded by an identity prime
than when preceded by an unrelated prime in the masked condi-
tion: accuracy for primed � 0.917 versus accuracy for control �
0.944, t(18) � 2.19, p � .04, as well as the unmasked condition,
accuracy for primed � .910 versus accuracy for control � 0.936,

t(18) � 2.77, p � .01. This effect is discussed with the fits of the
model to nonword data.

Modeling

We use the diffusion model to test Forster’s (Forster, 1999;
Forster et al., 2003) versus Bodner and Masson’s (2001, 2003)
account of the differences between masked and unmasked priming.
We fitted the data from the masked and the unmasked trials
separately. We performed the fits of the model in two ways: First,
for display in the figures and tables, we present the fits to the
grouped data that we obtained using the fitting routines described
by Ratcliff and Tuerlinckx (2002). We calculated the accuracy and
latency (i.e., the RTs at the 0.1, 0.3, 0.6, 0.7, and 0.9 quantiles) for
word and nonword responses for all conditions and for all subjects,
and we obtained the group-level performance by averaging across
subjects (i.e., vincentizing; Ratcliff, 1979; Vincent, 1912). Second,
for the analyses of the effects of priming on the parameters of the
model, we fitted the model to each subject’s data and then exam-
ined the difference in the Ter and drift rate parameters using
standard inferential statistics techniques.

Fitting averaged data is an appropriate procedure for fitting the
diffusion model. In previous research (Ratcliff, Thapar, et al.,
2004; Ratcliff, Thapar, & McKoon, 2001), fits to averaged data
provided similar parameter values to parameter values obtained by
averaging across fits to individual subjects. The quantile RTs were
fed into the diffusion model.

Table 1
Parameters of Materials for the Word Items Obtained With N-watch (Davis, 2005)

Priming target CELEX KF-FR BNC-FR EST-FR FAM LEN-L N AOA AOA2 IMG IMG2

Identity
Mean 119.1 129.1 118.7 271.1 413.1 4.8 3.8 208.8 140.9 350.5 101.1
SD 235.9 247.2 250.8 242.4 224.9 0.62 3.9 201.2 185.8 206.8 187.8

Associative
Mean 136.5 129.4 120.0 297.6 430.4 4.8 5.3 138.6 117.7 383.7 100.6
SD 278.7 244.2 236.8 252.4 240.9 0.6 4.6 153.0 150.3 233.4 197.3

Note. See Davis (2005) for a full discussion of these statistics. CELEX, KR-FR, and BNC-FR � word frequency counts according to the Celex (Baayen,
Piepenbrock, & van Rijn, 1995), Kucera and Francis (1967), and British National Corpus (Leech, Rayson, & Wilson, 2001), respectively; EST-FR �
estimated word frequency (Balota et al., 2001); FAM � familiarity in a (1 to 7 scale); LEN-L � number of letters; N � Coltheart’s neighborhood size;
AOA and AOA2 � age of acquisition based on Gilhooly and Logie (1980) and Bird, Franklin, and Howard (2001), respectively, IMG and IMG2 �
imaginability from MRC Psycholinguistic Database (Coltheart, 1981) and Bird et al., respectively.

Table 2
Parameters of Materials for the Nonword Items Obtained With
N-watch (Davis, 2005)

Nonword
item BTK BTY TTK TTY N HFMAX NFM

Mean 1038.9 24.21 103.25 2.84 2.28 110 34.29
SD 992.4 20.52 220.61 2.33 3.12 434 128.81

Note. See Davis (2005) for a full discussion of these statistics. BTK and
BTY � bigram token and type frequencies obtained from the COBUILD/
CELEX (Baayen et al., 1995) corpus; TTK and TTY � trigram token and
type frequencies obtained from the COBUILD/CELEX corpus; N �
Coltheart’s neighborhood size; HFMAX � highest frequency of a neigh-
bor; HFM � mean frequency of neighbors.

Table 3
Summary of Results

Condition Related Control RT t(18) p

Masked associative
words 634 (0.04) 646 (0.04) �12 1.08 .29

Masked identity
words 604 (0.04) 665 (0.05) �60 4.55 �.001

Masked nonwords 750 (0.08) 743 (0.06) 7 0.55 .59
Unmasked

associative words 654 (0.04) 698 (0.03) �44 4.75 �.001
Unmasked identity

words 599 (0.04) 704 (0.05) �105 9.98 �.001
Unmasked nonwords 763 (0.09) 761 (0.06) 2 0.13 .90

Note. Error rates appear within parentheses. RT � reaction time.
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For the two modeling methods (i.e., grouped data and subject-
by-subject), the model generated for each response the predicted
cumulative probability within the timeframes bounded by the five
quantiles. Subtracting the cumulative probabilities for each suc-
cessive quantile from the next higher quantile yields the proportion
of responses between each quantile, which are the expected values
for the chi-square computation. The observed values are the em-
pirical proportions of responses that fall within a bin bounded by
the 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0 quantiles, multiplied by the
proportion of responses for that choice (e.g., if there is a 0.965
response proportion for the word alternative, the proportions
would be 0.965 	 0.1, 0.965 	 0.2, 0.965 	 0.2, 0.965 	 0.2,
0.965 	 0.2, and 0.965 	 0.1).

Masked priming. There are two features of the masked prim-
ing data that needed to be accounted for (see Figure 2): (1) There
was a shift in the RT distributions as a function of both identity and
associative priming; and (2) there was a null effect of priming in
the mean RT for nonwords; however, there was an effect of the RT
distributions: In lower quantiles, the RTs were shorter for the
related condition than for the unrelated condition and, at the same
time, this pattern reversed in the higher quantiles.

Grouped data. Our model comparison strategy for the grouped
data was to begin with the simplest implementation of the model (with
the fewest number of free parameters) and then to add free parameters
until the gain in the quality of fits was negligible.5 In other words, we

looked to jointly maximize descriptive accuracy (goodness of fit) and
parsimony (small number of free parameters).

Pure distributional shifts (changes in the location of the distri-
butions) are naturally accounted for by allowing the Ter parameter
to vary from the unrelated primes to the related primes. A model
with a single Ter for all conditions yielded 
2 � 362, and allowing
Ter to vary yielded 
2 � 81.3, which is 77% smaller (see Ratcliff
& Smith, 2010, p. 90, Table 1, for a similar result).

A model with only Ter free to vary as a function of priming,
however, could not account for the pattern of results for nonwords.
Hence, we needed to allow the drift rate for the primed nonwords
to be different from the drift rate for their controls, with less
negative drift rate for the primed nonwords than for their controls.6

Individual subject data. Another way to analyze the effect of
manipulations on the parameters of the model is by fitting a model
with free parameters to data for each subject, and then to carry out
standard inferential statistics on the model’s parameters. To this
end, we conducted subject-by-subject fits and we obtained the drift
rates and Ter parameters for each of the conditions. Planned t tests

5 The chi-square values in Table 4 are based on group data, so they
cannot properly be used as absolute measures of fit.

6 For the Ter-only model, 
2 � 81.30, and for the Ter � driftnonword

model, 
2 � 74.55; hence 
Ter
2 – 
Ter�drift

2 � 6.75, or an 8% improvement
in the quality of the fit.
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Figure 2. Latency probability function for unmasked and masked priming conditions for the grouped data. The
points represent (from bottom to top) the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles. Within each panel, from left to right,
the columns of quantile reaction times (RTs) represent the responses to associative/semantic primes (A) and their
controls (c), identity primes (I) and their controls (c), and nonwords (N) and their controls (c). The light circles
show the model’s fits.
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were performed to compare the parameter values for the primed
conditions against the parameter values for their controls. For Ter,
all effects of priming were significant: for associative priming,
t(18) � 2.154, p � .045; for identity priming, t(18) � 9.749, p �
.01; and for nonwords, t(18) � 2.158, p � .045. For the drifts,
neither word identity priming nor associative priming yielded
significant differences, t(18) � 1; however, for nonwords, there
was a significant difference in drift rate between related and
control items, t(18) � 2.411, p � .027.

The two fitting methods provide converging evidence: Accord-
ing to the diffusion model-based account, the locus of the masked
priming effects for words is the encoding process (with larger
effects in the Ter parameter for identity priming than for associa-
tive priming, as can be seen in Table 4). In contrast, for nonwords,
identity priming seems to facilitate the encoding process (reducing
the Ter value) while increasing the word likeness of the stimuli
(making the drift rate value less negative).

Unmasked priming. Compared with masked priming, un-
masked priming produced numerically larger effects in the mean
RT as a function of priming. For the nonwords, although there was
no significant difference in the mean RT between the related
targets and their controls, the RTs for the 0.1 and 0.3 quantiles
were shorter for the related condition than for the unrelated con-
dition. However, for the 0.7 and 0.9 quantiles, the direction of the
effect reversed.

Grouped data. For unmasked priming, the first model we fit to
the data was the one we used for the masked priming condition
(with Ter allowed to vary as a function of priming). This model
missed some important features of the data quite badly (
2 �
246.92). Bear in mind that changes in the Ter parameter produce
shifts in the RT distributions; however, in unmasked priming for
word targets, the effects go beyond a shift in the distribution and
include a larger spread in the higher quantiles for the unrelated
conditions relative to the related conditions. In addition, for non-
word targets, there was a nonmonotonic effect of priming as a
function of quantiles. Adding a free drift rate parameter for primed
nonwords improved the quality of the fits for nonwords but still
misses the qualitative features of the word data (
2 � 225.71 for
the Ter � driftprimed.nonwords model). Augmenting the model by
allowing not only the Ter parameter but also the drift rates to vary

as a function of primes for both word and nonwords trials im-
proved the quality of the fits, 
2 � 136.69, which is smaller by 110
from the Ter-only model. We prefer this augmented model be-
cause, with two extra parameters the gain in goodness of fit is quite
large. Note that for the associative unmasked priming condition,
the Ter parameter has the same value as the unrelated control
condition, and there is no loss in the goodness of fit if the Ter

parameter is kept the same for the unrelated condition and for the
associative priming condition. This finding reveals that although
unmasked associative priming increases the word likeness of the
target item, it does not contribute to the encoding of the target string.

It is worth mentioning that although the focus of this research
was not the effects of priming on nonwords, there is a robust
debate on this issue. Our analysis suggests that the facilitatory
effects on Ter and the inhibitory effects on drift rate cancel each
other out, so future research might need to include a neutral
condition to fully explore this issue. In any case, Kinoshita and
Norris (2010) have shown robust masked priming effects for
nonwords in a same–different task, which suggests a prelexical
status of the facilitatory effect.

Individual data. The subject-by-subject fits were carried out
the same way as for the masked priming data. The effects of
priming on the drift rates were significant for associative priming
of words, t(18) � 2.509, p � .022; for identity priming of words,
t(18) � 2.134, p � .046; and also for nonwords, t(18) � 2.911,
p � .009. The effects of unmasked priming on Ter were significant
for all priming conditions; for word identity priming, t(18) �
7.808, p � .01; for nonword identity priming, t(18) � 3.030, p �
.01. Somewhat surprisingly, we also found an effect on Ter for
associative priming, t(18) � 2.150, p � .045, although the effect
was numerically very small.

Discussion

The empirical results of the present experiment are clear:
Masked identity priming effects were approximately the same at
each quantile in the RT distributions (i.e., they involved a shift in
the entire distribution); in contrast, unmasked priming effects (both
identity priming and associative priming) involved a change in the
spread of the RT distributions. More important, these findings can

Table 4
Parameters of the Diffusion Model

Masked priming

a z sz Drift � Ter st p0 
2

0.136 0.072 0.001 Words: 0.275 0.094 W assoc: 0.414 0.087 .001 74.56
NW id: –0.204 W id: 0.373
NW cntrl: –0.240 W cntrl: 0.427

NW id: 0.441
NW cntrl: 0.461

Unmasked priming

0.141 0.075 0.008 W assoc: 0.275 0.010 W id: 0.364 0.056 .001 136.69
W id: 0.278 W ctrl & assoc: 0.418
W ctrl: 0.217 NW id: 0.401
NW id: –0.152 NW ctrl: 0.434
NW ctrl: –0.198

Note. W assoc � word targets with associative primes; W id � word targets with identity primes; W crtl � word targets with unrelated primes; NW id � nonword
targets with identity primes; NW crtl � word targets with unrelated primes.
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be accounted for by the diffusion model in a straightforward
manner: On the one hand, masked identity priming affects the
parameter corresponding to encoding processes (Ter), but not the
parameter corresponding to the quality of information (drift rates).
On the other hand, unmasked priming affects both parameters: the
quality of information (drift rates) in both associative and identity
priming, and also the encoding process (particularly for identity
priming; note that in the subject-by-subject fits, there was a fairly
small but significant effect in the difference in Ter between the
related and unrelated primes for associative unmasked priming).
Therefore, masked priming is qualitatively different from unmasked
priming. To our knowledge, this is the first dissociation between these
two parameters in the model in the lexical-decision task.

The diffusion model is a model of the decisional process in the
lexical-decision task and is void of a lexicon or explicit word
recognition processes. However, we can use the parameter behav-
ior in the present work to deepen our understanding of the priming
processes by interpreting existing models through the lens of the
diffusion model. To this end, theories that have been verbally
stated of even computationally implemented can be mapped into
diffusion model parameters.

If we interpret the diffusion model fits in light of other theories,
we find that our account of masked identity priming is compatible
with a “savings” account, in which priming occurs mainly because
of changes in encoding time (e.g., note that the value of Ter is close
to that of the prime duration; see Forster, 1999), whereas un-
masked priming is consistent with a compound-cue account in
which prime–target relatedness increases the quality of the lexical
information that drives the decision process. To our knowledge,
this is the first dissociation between drift rate and Ter in the model
within the lexical-decision task.

The effect on Ter has several implications for theories of priming
and for general theories of perceptual decision making. The as-
sumption behind this parameter is nontrivial: There is a stage in the
processing of perceptual information in which the incoming evi-
dence is not used toward the accumulation of evidence driving the
decision process (e.g., the “word” vs. “nonword” decision in the
lexical-decision task). Hence, to make a decision about a string of
letters, participants must first encode it, and only after that process
is over, can they match the obtained perceptual representation
against their lexical knowledge.7 Within the context of evidence
accumulation models as applied to lexical processes, two questions
arise: (1) How is it that the system ends the accumulation-free
encoding stage and begins the accumulation process (the diffusion
per se)? (2) What exactly do we mean by encoding in the domain
of masked priming? Regarding the first question, Ratcliff and
Smith (2010) offered two possible explanations in the context of a
letter discrimination task; according to the first one, it is not until
the stimulus is encoded in visual short-term memory that the
accumulation of evidence begins; according to the second one,
there is large inhibition of the accumulation of evidence process
until the quality of the stimulus representation reaches a threshold.
In their research, Ratcliff and Smith found that the effects in the
first quantiles of the RT distributions happened only when a more
abstract representation was needed to perform the task (i.e., there
was an effect for letter discrimination but not for luminosity
discrimination). Arguably, the lexical-decision task requires an
even more conceptual representation than their letter discrimina-
tion task.

This leads us to the second issue: What is the nature of the
encoding process in masked priming? Identity priming amounts to
a head start relative to an unrelated prime, and identity priming
does not seem to affect the quality of the lexical information in the
decision; however, it does not seem to affect the quality of the
lexical information. A number of models are compatible with this
view, most notably, those that assume that there is some form of
“reset” or “self-inhibition” mechanism (see Grainger & Jacobs,
1999) in which a mismatch between incoming sensory information
(e.g., a prime and a target) triggers an inhibitory reset. Jacobs and
Grainger (1992) had a similar intuition when they suggested that in
an interactive-activation model-based account, identity priming
amounts to having a head start of a few cycles of processing (see
also Adelman, 2011, and Davis, 2010, for recent modeling efforts
along the same lines). Note, however, that the mapping from an
interactive-activation model into a stochastic accumulation of ev-
idence framework (e.g., the diffusion model) is not trivial. This is
because activation of nodes in the interactive activation architec-
ture is deterministic, and errors occur because of stochastic choice
only at the very end of processing. The diffusion model represents
noise in the decision process (within-trial noise) and noise in the
stimulus/lexical representation driving the decision process as
across-trials variability in drift rate.

The distinction between the encoding process and the evidence
accumulation process is particularly clear in the case of identity
priming for nonwords. Related nonwords (compared with their
controls) are less accurate, have shorter RTs at 0.1 and 0.3 quan-
tiles, but have longer RTs at 0.7 and 0.9 quantiles.8 Identity
priming seems to provide time savings relative to the unrelated
controls, and it makes it more difficult to correctly identify the
string as a nonword. Modeling unmasked priming with drift-only
and Ter-only models does not allow us to capture a pattern like this.
The interplay of these two parameters yields inconsistent effects of
priming on nonword targets (see Perea, Gomez, & Fraga, 2010,
and Whitney, Bertrand, & Grainger, 2011, for discussion). Differ-
ent studies might have elicited different proportions of facilitatory
and inhibitory trials, and future research should try to dissociate
the factors that may contribute to the encoding benefits from the
factors that may inhibit the identification of a nonword target.

It is important to note that our findings are consistent with the
semantic priming experiments conducted by Balota et al. (2008).
With unmasked primes, they found an increasing semantic priming
effect at the higher quantiles (see Figures 7 and 8 of Balota et al.);
note, however, that they failed to find a change in the � parameter
of the ex-Gaussian distribution.9 With masked primes, Balota et al.

7 It is important to note that during this stage, noise (without the signal
from the stimulus) is most likely not accumulated either, as that would
create a large proportion of fast errors.

8 We explored whether this pattern of results might have been produced
by a combination of a few items producing facilitation and other items
producing inhibition; to this end, we performed a multiple regression using
all the orthographic variables as regressors and the priming effect as the
dependent variable, but none of the effects were significant. We also
wondered whether this pattern was produced by just a handful of subjects,
but 15 of the 19 participants showed it.

9 In Experiments 2 and 3 of Balota et al. (2008), the effect of semantic
priming was assumed to be due to changes in the � and � components of
the ex-Gaussian distribution and not in the � component, which is usually
the responsible for the tail of the RT distribution.
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found a small, nonsignificant masked semantic priming effect, as
also occurred in the present experiment. Clearly, the small mag-
nitude of masked semantic priming does not allow to make strong
inferences on the precise nature of the underlying effects; note that
previous experiments with masked associative/semantic priming
have usually employed a large sample size to obtain a significant
effect (e.g., see Perea & Lupker, 2003).

In summary, by using explicit modeling methods (i.e., fits from
the diffusion model), the present lexical-decision experiment has
revealed that masked and unmasked priming involve different
cognitive processes: Related primes give a head start to the pro-
cessing of the target compared with unrelated primes, whereas
unmasked priming involves changes in the decision processes.
This provides support for the use of the masked priming technique
to examine the encoding mechanisms during the early stages of
visual-word recognition.
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