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Abstract
The diffusion model for 2-choice decisions (R. Ratcliff, 1978) was applied to data from lexical
decision experiments in which word frequency, proportion of high- versus low-frequency words, and
type of nonword were manipulated. The model gave a good account of all of the dependent variables
—accuracy, correct and error response times, and their distributions—and provided a description of
how the component processes involved in the lexical decision task were affected by experimental
variables. All of the variables investigated affected the rate at which information was accumulated
from the stimuli—called drift rate in the model. The different drift rates observed for the various
classes of stimuli can all be explained by a 2-dimensional signal-detection representation of stimulus
information. The authors discuss how this representation and the diffusion model’s decision process
might be integrated with current models of lexical access.

The lexical decision task is one of the most widely used paradigms in psychology. The goal of
the research described in this article was to account for lexical decision performance with the
diffusion model (Ratcliff, 1978), a model that allows components of cognitive processing to
be examined in two-choice decision tasks. Nine lexical decision experiments, manipulating a
number of factors known to affect lexical decision performance, are presented. The diffusion
model gives good fits to the data from all of the experiments, including mean response times
for correct and error responses, the relative speeds of correct and error responses, the
distributions of response times, and accuracy rates.

In the diffusion model, the mechanism underlying two-choice decisions is the accumulation
of noisy information from a stimulus over time. Information accumulates toward one or the
other of two decision criteria until one of the criteria is reached; then the response associated
with that criterion is initiated. In the lexical decision task, one of the criteria is associated with
a word response, the other with a nonword response. The rate with which information is
accumulated is called drift rate, and it depends on the quality of information from the stimulus.
In lexical decision, some stimuli are more wordlike than others, and so their rate of
accumulation of information toward the word criterion is faster; other stimuli, such as random
letter strings, are so un-wordlike that information accumulates quickly toward the nonword
criterion. For the nine experiments presented below, the drift rates can be summarized quite
simply. First, the ordering of the drift rates from largest to smallest is as follows: high-frequency
words, low-frequency words, very low-frequency words, pseudowords, and random letter
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strings. Second, the differences among the drift rates are larger when the nonwords in an
experiment are pseudowords than when they are random letter strings.

For our framework, Figure 1 outlines the relationships among lexical decision data, the
diffusion model, and word recognition (lexical) models, and shows how the data do not map
directly to lexical processes but, instead, map to lexical processes only through the mediation
of the diffusion model. Data enter the diffusion model, which produces the values of drift rates
for the different classes of stimuli that give the best account of the data. In this framework, the
role of a word recognition model is to produce values for stimuli for how wordlike they are.
We call the measure of how wordlike a stimulus is its wordness value (a term intended to be
neutral for the purposes of this article). Wordness values map onto the drift rates that drive the
diffusion decision process to produce predictions about accuracy and response time.

In our framework, wordness values place fewer constraints on word recognition models for
the lexical decision task than has been appreciated. All that is required is that a model produce
the appropriate ordering of wordness values: from high-frequency words to low- and very low-
frequency words to pseudowords and random letter strings, with larger differences among them
when the nonwords in an experiment are pseudowords than when they are random letter strings.
In other words, the disturbing and simple conclusion from the diffusion model’s account of
lexical decision is that, beyond what can be said from a bare ordering of wordness values, the
lexical decision task may have nothing to say about lexical representations or about lexical
processes such as lexical access. Lexical decision data do not provide the window into the
lexicon that might have been supposed in earlier research.

The framework shown in Figure 1 is counter to much previous work that has assumed lexical
decision data do map directly onto lexical processes. Often, lexical decision response time (RT)
has been interpreted as a direct measure of the speed with which a word can be accessed in the
lexicon. For example, some researchers have argued that the well-known effect of word
frequency—shorter RTs for higher frequency words—demonstrates the greater accessibility
of high-frequency words (e.g., their order in a serial search, Forster, 1976; the resting levels
of activation in units representing the words in a parallel processing system, Morton, 1969).
However, other researchers have argued, as we do here, against a direct mapping from RT to
accessibility. For example, Balota and Chumbley (1984) suggested that the effect of word
frequency might be a by-product of the nature of the task itself and not a manifestation of
accessibility. In the research presented here, the diffusion model makes explicit how such a
by-product might come about.

The sections below begin with a detailed description of the diffusion model; then nine
experiments are presented, and the model is fit to the data from each one. The main result is
that the differences in performance for various classes of stimuli are all captured by drift rate,
not by any of the other components of processing that make up the diffusion model.

The Diffusion Model
According to the diffusion model, the mechanism underlying binary decisions is the
accumulation of noisy information over time toward one or the other of two decision criteria,
or boundaries, as in Figure 2, where the boundaries are labeled a and 0 and the starting point
is labeled z. The mean rate of approach to a boundary is called the drift rate, and the variation
of sample paths around the mean values in the accumulation process is described by the
diffusion coefficient s2 (within-trial variability). This variation allows processes with the same
drift rate to reach the same boundary at different times (the two jagged lines of Panel A in
Figure 2). Variability also means that a process can reach the wrong boundary by mistake,
yielding an error response. Drift rate is a function of the quality of the information produced
from processing of the stimulus. For example, later in this article, we show that drift rate in

Ratcliff et al. Page 2

Psychol Rev. Author manuscript; available in PMC 2006 March 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



lexical decision is a function of word frequency and of the type of nonwords used as negative
items. Speed–accuracy trade-offs occur when the boundaries are moved farther apart to produce
slower and more accurate responses or closer together to produce faster and less accurate
responses. For example, if the boundaries were moved very close to the starting point in Panel
A, the slower of the two processes in the figure would terminate earlier at the bottom boundary.

Positively skewed RT distributions are automatically predicted by the geometry of the model.
Increasing positive skew is the empirically observed behavior of RT distributions in many tasks
when difficulty of the task is increased. If the drift rates of both the fastest and slowest processes
(the solid lines in Panel B of Figure 2) are reduced by the same amount x, the fastest responses
are slowed by less than the slowest responses (the dashed lines), which produces an increase
in positive skew.

The diffusion model can also explain the relative speeds of correct and error responses by
allowing variability across trials in drift rate and in starting point. With a fixed drift rate and
symmetric boundaries, the model predicts error RTs to be the same as correct RTs. When drift
rate varies across trials, the model predicts that error responses will be slower than correct
responses. Across-trial variability in drift rates was introduced by Ratcliff (1978) in
applications of the model to recognition memory because nominally equivalent items (e.g., the
10th item in a list of items to be remembered) are expected to vary in strength. Similarly, in
the lexical decision task, nominally equivalent items (e.g., high-frequency words) vary in
familiarity across trials. How across-trial variability in drift rate allows the model to predict
slower error responses than correct responses is explained by Panel C of Figure 2. In the figure,
two processes, one with drift rate v1 and the other with drift rate v2, are averaged to show how
errors slower than correct responses come about as weighted averages of finishing times and
response probabilities. Processes with drift v1 have mean RT of 400 ms and accuracy .95, and
processes with drift v2 have mean RT of 600 ms and accuracy .80. The weighted mean RT for
correct responses is 491 ms. The mean RT for errors is 560 ms because the contribution from
processes with drift v2 is four times larger than the contribution from processes with drift v1
(error rates of .20 and .05, respectively). In real implementations of the model, there is assumed
to be a normal distribution of drift rates, not just the two processes used here for illustration.

Error responses faster than correct responses are predicted when the position of the starting
point varies across trials (e.g., Laming, 1968). Figure 2, Panel D, shows this with the averages
of two processes that represent the highest and lowest starting points from a uniform
distribution of starting point values. Processes starting near the error boundary hit it with shorter
RT and greater probability than processes starting near the correct boundary. The weighted
sum gives faster errors than correct responses.

With the combination of across-trial variability in drift rate and across-trial variability in
starting point, the diffusion model can produce the various patterns of correct versus error RTs
that occur empirically: Error responses are sometimes faster than correct responses and
sometimes slower, and in some experiments, there is a cross-over such that errors are slower
than correct responses when accuracy is low and faster than correct responses when accuracy
is high (Ratcliff & Rouder, 2000; Ratcliff, Van Zandt, & McKoon, 1999; Smith & Vickers,
1988). In the diffusion model as it is applied here (and in recent papers, e.g., Ratcliff &
Tuerlinckx, 2002), drift rate is assumed to be normally distributed across trials, with standard
deviation η, and starting point is assumed to be rectangularly distributed with range sz (a
rectangular distribution has a maximum and minimum, and so with appropriate values of z, a,
and sz, no starting point can lie outside the response boundaries as it might if the distribution
were normal).
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Besides the decision process, any two-choice task includes other components of processing,
such as encoding and response execution. These are summarized in the diffusion model into
one parameter, the nondecision component of RT with mean Ter (which is not shown in Figure
2). Recently, Ratcliff and Tuerlinckx (2002) investigated whether the diffusion model should
include variability in the nondecision component of RT. In the course of fitting the model to
a set of data using a chi-square method, Ratcliff and Smith (in press) found that variability
among the shortest RTs (the .1 quantile RTs) led to poor fits of the model (with misses in the .
9 quantile RT as large as 300 ms). Ratcliff and Tuerlinckx reasoned that the .1 quantile
variability could be due to perceptual and encoding processes. Assigning variability to the
nondecision component of processing led to good fits of the model.

Variability in the nondecision component of processing also plays an important role in fits of
the model to lexical decision data. An important result obtained by Balota and Spieler
(1999) was that there is a relatively large shift in the leading edge of the lexical decision RT
distribution as a function of word frequency for correct responses. The leading edge of the
distribution for high-frequency words is about 30 ms shorter than the leading edge for lower
frequency words. This shift is larger than would be expected from the diffusion model if there
were no variability in the nondecision component of processing. Without variability in the
nondecision component of processing, the model can accommodate only 19-ms of the 30-ms
leading edge shift (assuming parameter values similar to those for the fits of the diffusion model
presented later in this article).

How variability in the nondecision component of processing contributes to leading edge shifts
can be illustrated by considering just three values from a distribution of values of the
nondecision component of processing: one value shorter than the mean value (Ter), another
longer, and another at the mean. Suppose three sets of decision processes are averaged together,
one set for each of the three values, to produce the cumulative RT distribution of the
combination, and suppose this is done with all three sets of processes having the same high
value of drift rate (and also holding all the other parameters of the diffusion model constant).
Then, with the high value of drift rate, the cumulative RT function of the combination rises
rapidly from zero, so rapidly that at its beginning, the RTs come entirely from decision
processes for which the nondecision component of processing has its smallest value; there are
no contributions from processes for which the nondecision component has its mean value or
the long value. Only later in the function are there contributions from processes for which the
nondecision component has the mean or the longer value. In contrast, the situation is different
when the values of drift rates for the three averaged processes are lower. In this case, the
cumulative RT function includes, from shortly after its beginning, processes for which the
nondecision component has all three possible values: the smallest, the mean, and the longest.
This function has none of the very short RTs that occur with the high drift rate function. In
other words, the high drift rate function is shifted toward shorter times in its leading edge
relative to the low drift rate function. As mentioned above, in fits of the diffusion model to
data, generally about one half to two thirds of the shift in the .1 quantile RT as a function of
word frequency (e.g., 19 ms in Balota & Spieler, 1999) can be accounted for with a change in
drift rate without variability in the nondecision component of processing. With this source of
variability, the change in drift rate accounts for an extra 11-ms shift in the .1 quantile (i.e., an
extra third of the shift).

In fitting the diffusion model, variability in the nondecision component of processing is
assumed, for simplicity, to have a rectangular distribution. Assuming a rectangular distribution
instead of any other reasonable assumption has almost no effect on the shape of the predicted
RT distributions relative to the case with no variability in the nondecision component of
processing. This is because the shape of the combination of the rectangular distribution and
the distribution generated from the diffusion decision process is largely determined by the
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distribution with the largest standard deviation, which is the distribution from the diffusion
process.

To summarize, the parameters of the diffusion model are as follows: the starting point, z; across-
trial variability in starting point, range sz; the boundary separation parameter, a; within-trial
variability in drift, s (a scaling parameter which is set to 0.1 in all fits); across-trial variability
in drift, standard deviation η; a different value of mean drift rate (v) for each condition of an
experiment (e.g., for high- versus low-frequency words); a mean residual time for nondecision
parts of RT, Ter; and across-trial variability in the nondecision component of processing, range
st (see Table 1).

The diffusion model quantitatively fits the data from a number of binary decision tasks,
including recognition memory, numerosity judgments, brightness discrimination, color
discrimination, auditory discrimination, same–different judgments, letter discrimination, and
visual search (Ratcliff, 1978, 1981, 1988; Ratcliff & Rouder, 1998, 2000; Ratcliff et al.,
1999, Strayer & Kramer, 1994). The model can fit all aspects of the data—the probabilities of
and the RTs for both correct and error responses and the shapes of RT distributions (and their
hazard functions). It accurately accounts for the patterns of data that result from manipulations
of speed versus accuracy and from manipulations that curtail decision processes, such as
deadline, response signal, and speed–accuracy decomposition procedures (e.g., Meyer, Irwin,
Osman, & Kounios, 1988). Diffusion models have also been applied in the domains of simple
RT (Smith, 1995) and decision making (Busemeyer & Townsend, 1992, 1993; Diederich,
1997; Roe, Busemeyer, & Townsend, 2001), and diffusion models are close cousins of random
walk models (Laming, 1968; Link, 1975; Link, 1992; Link & Heath, 1975; Smith, 1990; M.
Stone, 1960).

In applying the diffusion model to data from the lexical decision task, we expected the degree
of wordness to be higher for high-frequency words than for low-frequency words. For
nonwords, we expected the degree of wordness to be lower for random letter strings than for
pronounceable pseudowords. Degree of wordness determines drift rate in the diffusion model.
A criterion is placed in the distribution of wordness values such that word stimuli generally
have positive drift rates and nonwords generally have negative drift rates (see the drift rate
criterion or relatedness criterion in Ratcliff, 1978, 1985; Ratcliff et al., 1999).

Overview of the Experiments
The lexical decision experiments presented in this article were designed to provide data for
evaluating the diffusion model as a model of the decision process in lexical decision. The
experiments included manipulations of word frequency, the type of nonwords (nonword
lexicality, e.g., Davelaar, Coltheart, Besner, & Jonasson, 1978; James, 1975; Shulman &
Davison, 1977), the proportion of high- versus low-frequency words, and repetition of words
and nonwords. The effects of these manipulations have been targets for modeling lexical
access, so they were chosen to allow examination of how their effects can be interpreted through
the decision process in the diffusion model.

Experiments 1–6
The experiments varied word frequency and whether nonwords were pronounceable
pseudowords or unpronounceable random strings of letters. The aim was to examine accuracy
and the shapes of RT distributions for correct and error responses as a function of the two
variables. The words were high-, low-, and very lowfrequency words (with mean frequency
values of 325, 4.4, and .37 per million, respectively; Kučera & Francis, 1967). Experiments 1
and 2 included all three levels of frequency, and Experiments 3 and 4 included only the high-
and low-frequency words. In Experiments 1, 3, 5, and 6, the nonwords were pseudowords, and
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in Experiments 2 and 4, they were random letter strings. Experiments 5 and 6 examined the
hypothesis (e.g., Glanzer & Ehrenreich, 1979) that word frequency effects are a product of
strategies used by subjects, such that the choice of strategy depends on the proportions of high-
versus low-frequency words in the experiment. In Experiment 5, 80% of the words were high-
frequency words, and in Experiment 6, only 13% were high-frequency words.

Method
Subjects—Northwestern undergraduates participated in the experiments for credit in an
introductory psychology class. Sixteen students participated in Experiment 1, 14 in Experiment
2, 15 in Experiment 3, 17 in Experiment 4, 15 in Experiment 5, and 9 in Experiment 6.

Materials—There were 800 high-frequency words, with frequencies from 78 to 10,600 per
million (M = 325, SD = 645; Kučera & Francis, 1967); 800 low-frequency words, with
frequencies of 4 and 5 per millionM = 4.41, SD = 0.19); and 741 very low-frequency words,
with frequencies of 1 per million or no occurrence in Kuc era and Francis’s corpus (M = .365,
SD = .48). All the very low-frequency words did occur in the Merriam-Webster’s Ninth
Collegiate Dictionary 1990, and they were screened by three Northwestern undergraduate
students; any words that any one of the three students did not know were eliminated.

From each word, a pseudoword was generated by randomly replacing all the vowels with other
vowels (except for u after q), giving a pool of 2,341 nonwords. There was also a pool of 2,400
random letter strings, created by randomly sampling letters from the alphabet and then
removing those strings that were pronounceable. The distributions of the numbers of letters
per word for each type of word are shown in Table 2. The random letter strings had the same
proportions for each length as the word strings for the three frequency groups combined, and
these are also shown in Table 2.

Procedure—Stimuli were presented on a personal computer screen, with responses collected
from the keyboard. Stimulus presentation and response recording were controlled by a real-
time computer system.

Subjects were presented with strings of letters and instructed to decide if each string of letters
was or was not an English word, pressing the/key for a word response and the z key for a
nonword response. If a response was incorrect, the word “ERROR” was presented on the screen
for 750 ms. The intertrial interval was 150 ms. Trials were grouped in blocks of 30; after each
block, subjects had a self-paced break. The first block was used for practice and was not
included in the data analysis.

In Experiment 1, 5 high-frequency, 5 low-frequency, 5 very low-frequency words, and 15
pseudowords were randomly selected without replacement for each of 50 blocks. No
participant was ever presented with both a word and the pseudoword derived from it, and
pseudowords were selected from the three pools in proportion to the words used in the
experiment in this and subsequent experiments. Each subject was tested on 250 words of each
type and on 750 pseudowords. The design of Experiment 2 was the same, except that the
nonwords were random letter strings.

In Experiments 3 and 4, we did not use the very low-frequency words to test whether their
absence would change the results from Experiments 1 and 2. There were 50 test blocks, each
composed of 8 high-frequency words, 7 low-frequency words, and 15 nonwords (pseudowords
in Experiment 3 and random letter strings in Experiment 4).

In Experiment 5, in each of 50 blocks of trials, there were 12 high-frequency words, 2 low-
frequency words, 1 very low-frequency word, and 15 pseudowords. In Experiment 6, there
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were also 50 blocks, each with 2 high-frequency words, 13 very low-frequency words, and 15
pseudowords.

Results From Experiments 1–6
Responses longer than 2,000 ms and shorter than 350 ms (around 0.6% of the responses across
all the experiments) were eliminated from the analyses. Data from three subjects who stopped
participation early were discarded. Table 3 shows error mean RTs and correct mean RTs as
well as standard errors for those RTs. It also provides predictions (discussed later) of the
diffusion model. Observed and predicted .1 quantile RTs are also shown in Table 3.

The three pools of words—high-, low-, and very low-frequency—had different numbers of
words for each word length. Consequently, any observed effects of word frequency could be
due to the differing distributions of word lengths. For each experiment, we analyzed the data
using only four- and five-letter strings (which allowed us to almost equate word length) and
found that the patterns of results were in each case similar to the ones found with all the stimuli.
Thus, all of the analyses that we present are based on all the stimuli.

Correct Responses for Words: Accuracy and Mean RT
As shown in Table 3, the data replicated previous research: RTs increased and accuracy
decreased as word frequency decreased, and responses were slower and less accurate when
pseudowords were used in the experiment than when random letter strings were used. The
differences in accuracy rates and RTs among the frequency conditions were larger with
pseudowords than with random letter strings.

In all six experiments, the effects of word frequency were significant. In Experiment 1, with
pseudowords, the difference in mean correct RTs between high- and low-frequency words was
68 ms, and the difference between low- and very low-frequency words was 40 ms, F(2, 30) =
188.45, MSE = 252 ( p < .05 throughout this article). The difference in probability correct from
high- to very low-frequency words was .167, F(2, 26) = 102.97, MSE = .0015. In Experiment
2, with random strings of letters as nonwords, responses were about 100 ms faster overall and
between −.004 (high-frequency words) and .127 (very low-frequency words) more accurate
relative to Experiment 1. The differences in mean RTs for high- and lower frequency words
were reduced to 40 ms and 20 ms (cf. James, 1975; Neely, 1977) but were still significant, F
(2, 26) = 50.28, MSE = 237. The decrease in accuracy from high- to low- and very low-
frequency words was also reduced to about .04, which was still significant, F(2, 26) = 16.21,
MSE = .00028.

Experiments 3 and 4, which did not include very low-frequency words, showed the same
patterns of results as Experiments 1 and 2. The RT difference between high- and low-frequency
words was 66 ms with pseudowords as the nonwords, F(1, 14) = 119.94, MSE = 415, and 38
ms with random letter strings as the nonwords, F(1, 14) = 68.68, MSE = 172; the accuracy rates
differences were .127 with pseudowords, F(1, 14) = 55.06, MSE = .0017, and .017 with random
letter strings, F(1, 14) = 26.84, MSE = .0000934.

The manipulation of the proportion of high- versus low-frequency words had little effect on
the patterns of results in Experiments 5 and 6 compared with Experiments 1 and 3 except that
for Experiment 5, there were greater differences between RTs for high-, low-, and very low-
frequency words. In Experiment 5, with a high proportion of high-frequency words, mean RTs
and accuracy rates were similar to those in Experiment 1. The differences in mean RTs and
accuracy across the three levels of word frequency were 89 ms and .072 between high- and
low-frequency words and 61 ms and .117 between low- and very low-frequency words, F(2,
26) = 85.20, MSE = 915, for RT; and F(2, 26) = 103.56, MSE = .0012, for accuracy. In
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Experiment 6, the result of using a high proportion of very low-frequency words was to produce
slower responses in all conditions relative to Experiments 1 to 5 and to reduce the difference
between high- and very low-frequency words relative to Experiment 5. The difference between
high- and very low-frequency words in mean response time was 100 ms and in accuracy rates
was .130, both significant: F(1, 8) = 58.09, MSE = 1005; and F(1, 8) = 28.32, MSE = .0028,
respectively.

The manipulation of the proportion of high-frequency words in Experiments 5 and 6 was
similar to a manipulation that has been labeled frequency blocking. In frequency blocking,
blocks of trials that include only high-frequency words are compared to blocks that include
equal proportions of high- and low-frequency words. Generally, RTs for high-frequency words
are shorter in blocks that include only high-frequency words (Glanzer & Ehrenreich, 1979;
Gordon, 1983; G. O. Stone & Van Orden, 1993). This result contrasts with the results presented
here: RTs for high-frequency words were only about 30 ms shorter in Experiment 5, where
there was a large proportion of high-frequency words, as in Experiment 6, where there was a
low proportion. Also, RTs for high-frequency words in Experiment 5 were longer than in
Experiment 1, where the proportions of high- and lower frequency words were about equal.
However, the difference in RTs between high- and very low-frequency words was larger in
Experiment 5 than in Experiments 1 and 6, suggesting something like a frequency blocking
effect on the difference between high- and low-frequency RTs instead of on the RT for high-
frequency words alone.

Correct Responses for Nonwords
In general, correct nonword responses had about the same RTs or were a little shorter than the
slowest word responses, which were responses for the low- or very low-frequency words. Also,
nonword RTs were shorter for random letter strings than for pseudowords (by about 70 to 200
ms) and were more accurate (by about .02 to .04). In Experiments 1 through 6, type of nonword
was manipulated between experiments. Experiment 7 compared responses to random letter
strings and pseudowords in the same experiment.

Error RTs
The effects of the two main variables—word frequency and type of nonword—on RTs for
word stimuli were generally the same for error responses as for correct responses. Just as for
correct RTs, error RTs decreased as word frequency increased, and error RTs were shorter
when the nonwords were random letter strings than when they were pseudowords. Error RTs
for nonwords were about the same as error RTs for low- and very low-frequency words.

The aspect of error responses that strongly constrains the diffusion model is their RT relative
to the RT for correct responses. In the experiments with random letter strings as nonwords
(Experiments 2 and 4), which were those with highest overall accuracy rates, the pattern was
clear: Error RTs were shorter than correct RTs for both words and nonwords.

For Experiments 1, 3, 5, and 6—the experiments with pseudowords—the pattern was complex
because there were individual differences (a complexity that is not shown in Table 3 because
the RTs reported in the table are means across subjects). For some subjects in the conditions
with highest accuracy (high-frequency words), there were no error responses or very few error
responses. These subjects tended to be the slower and more accurate subjects. Because these
subjects had few errors in the high-accuracy conditions, the error RTs in these conditions tended
to come from fast, lower accuracy subjects (and so the entries in Table 3 reflect these subjects).
In addition to this speed–accuracy effect, we noticed that the fast subjects tended to produce
errors faster than correct responses, and the slow subjects tended to produce errors slower than
correct responses. To show this, Table 4 combines Experiments 1, 3, and 5 (Experiment 6 did
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not have low-frequency words) and splits the data so that accuracy and RTs for the fast and
slow subjects are presented separately. Subjects put into the fast group (n = 24) had mean RTs
shorter than the overall mean RT, and subjects put into the slow group (n = 21) had mean RTs
longer than the overall mean RT. This split shows that error RTs for the fast subjects were
shorter than correct RTs, whereas error RTs for the slow subjects were longer or about the
same as correct RTs (the correct RT – error RT difference was about 30 ms for fast subjects
and about −20 ms for slow subjects, averaged over high- and low-frequency words and
pseudowords in Experiments 1, 3, and 5). The fast subjects were also somewhat less accurate
than the slow subjects (see Ratcliff et al., 1999, Experiment 1, for discussion of similar speed–
accuracy differences across individual subjects).

The differing patterns for fast versus slow subjects’ correct and error RTs provided one of the
main constraints on fitting the diffusion model. The only means the model had to account for
the differing patterns was to allow boundary separation and variability in starting point to vary
between fast and slow subjects. If we required variability in starting point to be the same for
fast and slow subjects, the range of starting points would be a larger proportion of the total
boundary separation when the boundary separation was small than when it was large. This can
produce fast errors relative to correct responses when boundary separation is small (fast
subjects) and slow errors relative to correct responses when boundary separation is large (slow
subjects). This pattern of fast versus slow errors also depends on the other parameters; for
different combinations of parameter values, the pattern also could be all fast errors or all slow
errors for both speed and accuracy conditions (see Ratcliff & Rouder, 1998; Ratcliff et al.,
1999).

RT Distributions
To examine RT distributions, we used the RTs of each subject to calculate five quantile RTs:
the .1, .3, .5, .7, and .9 quantiles. Then we averaged the quantiles across subjects to form the
average quantiles shown in Table 5. (The average quantiles are not Vincent averages [Vincent,
1912], which are the averages of means of the RTs within bins [Ratcliff, 1979]; instead, the
averages used here are averages over individual subjects’ quantile RTs. Average quantiles were
used because it was more efficient for the model to generate predictions for quantiles.)

Figure 3 shows the five quantiles for correct responses for the various types of word stimuli
and for nonwords for Experiments 1 and 2. The data are represented by the crosses. The dark
gray dots are the output of Monte Carlo simulations of the diffusion model, the +s are best-
fitting values from the diffusion model, and the light gray dots are bootstrap samples designed
to show the range of the data if the experiment was repeated; these are discussed later. The
leading edges of the RT distributions are represented by the .1 quantiles (the lowest cross in
each column), whereas their skews are represented by the spread of the higher quantiles.
Overall, the RT distributions were positively skewed (i.e., larger separation among the higher
quantiles than among the lower quantiles), the typical result in RT studies. When mean RT
increased across the word frequency conditions, the distributions moved both in leading edge
and spread, with the larger part of the increase in the mean coming from increasing spread of
the longer quantiles. Although the effects in the leading edges of the distributions were small,
they were significant. When the nonwords were pseudowords (Experiments 1, 3, 5, and 6), the
leading edge shifted among the different word frequency conditions more than when the
nonwords were random letter strings (Experiments 2 and 4), as is shown in Figure 3 for
Experiments 1 and 2 and in Table 3 for Experiments 3 through 6. With pseudowords, averaging
across experiments, the .1 quantile RT for high-frequency words was about 40 ms shorter than
the .1 quantiles for low- and very low-frequency words. With random letter strings as
nonwords, this difference in the .1 quantile RTs was smaller: 13 ms in Experiment 2 and 14
ms in Experiment 4 (see Table 3). The leading edges as measured by the .1 quantile RT varied
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significantly as a function of word frequency: Experiment 1, F(2, 30) = 81.37, MSE = 105.40;
Experiment 2, F(2, 26) = 23.21, MSE = 55.23; Experiment 3, F(1, 14) = 112.68, MSE = 126.73;
Experiment 4, F(1, 16) = 34.67, MSE = 47.12; Experiment 5, F(2, 26) = 35.78, MSE = 292.67;
Experiment 6, F(1, 8) = 27.79, MSE = 385.31.

Summary
There were six main features of the data for modeling:

1. For words, accuracy increased and RT decreased (for both correct and error responses)
as word frequency increased, and this was true whether the nonwords were random
letter strings or pseudowords. The differences between the high- and low-frequency
conditions were larger when the nonwords were pseudowords.

2. For words, RTs were shorter and accuracy was higher when the nonwords were
random letter strings than when they were pseudowords.

3. For nonwords, correct responses had about the same RTs as correct responses for the
slowest words. Responses were faster for random letter strings than for pseudowords,
and accuracy was a little higher.

4. Most of the differences in RTs that occurred with increased word frequency were due
to decreased skew of the RT distribution.

5. However, when the nonwords were pseudowords, there was a moderately large effect
of frequency on the leading edge of the RT distribution: The leading edge for high-
frequency words was shorter by 40 ms than the leading edges of the RT distributions
for lower frequency words and nonwords. When the nonwords were random letter
strings, the differences were considerably smaller, about 13–14 ms, but still
significant.

6. With random letter strings, error RTs were shorter than correct RTs. Error RTs were
also shorter than correct RTs with pseudowords but only for fast subjects; for slow
subjects, error RTs were about the same as or longer than correct RTs (we present
error RT distributions later).

Overall, these six features of the data provide severe constraints on fitting the diffusion model.
With only six parameters plus one value of drift rate for each type of word (high-, low-, and
very low-frequency) and each type of nonword (pseudowords and random letter strings), the
model is required to fit the effects of word frequency and type of nonword on the complete
sets of data: mean correct and error RTs for words and nonwords; accuracy rates for words and
nonwords; the shapes of the RT distributions, including both skew and leading edge for correct
responses for words and nonwords; and the relative speeds of correct versus error responses
for words and nonwords.

Method for Fitting the Diffusion Model to Data
To fit the diffusion model to the data, we formed a chi-square statistic and minimized it by
adjusting the parameter values using a general SIMPLEX minimization routine. The data that
were entered into the minimization routine for each experimental condition were the five
quantile RTs averaged across subjects for both correct and error responses and the accuracy
values. The quantile response times were fed into the diffusion model, and for each quantile,
the cumulative probability of a response by that point in time was generated from the model.
Subtracting the cumulative probabilities for each successive quantile from the next higher
quantile yields the proportion of responses between each quantile. For the chi-square
computation, these are the expected values, to be compared with the observed proportions of
responses between the empirical quantiles. The expected values were multiplied by the number
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of observations to produce expected frequencies. The observed proportions of responses for
the quantiles are the proportions of the distribution between successive quantiles (i.e., the
proportions between the 0, .1, .3, .5, .7, .9, and 1.0 quantiles are .1, .2, .2, .2, .2, and .1) multiplied
by the probability correct for correct response distributions or the probability of error for error
response distributions (multiplied by a number proportional to the number of observations in
the condition). In a few cases, there were too few error RTs (less than five) to compute error
RT quantiles for high-frequency words for more than one or two subjects. In these cases, these
error RTs did not contribute to the fit; that is, no value of chi-square was computed for these
conditions for error responses. Summing over (observed [O] − expected [E])2/E for correct
and error responses for each type of word and nonword gives a single chi-square value to be
minimized:

χ2 = ∑(O − E)2 /E.
In research on fitting the diffusion model to data with the chi-square method (Ratcliff &
Tuerlinckx, 2002), it was found that parameter values could not be recovered accurately when
there were enough long or short outlier RTs in the data to seriously affect the quantile RTs. In
fitting the data reported here, we removed short outliers by trimming out responses shorter than
350 ms (e.g., Swensson, 1972), and we also removed very long outliers (longer than 2,000 ms).
Ratcliff and Tuerlinckx explicitly modeled remaining contaminants by assuming that the
contaminants in each experimental condition came from a uniform distribution that had
maximum and minimum values corresponding to the maximum and minimum RTs in the
condition. We performed the fits for the data here both with and without this assumption about
contaminants. We found little difference between the two sets of fits and report the fits without
the assumptions about contaminants.

The quality of fits of a model to data can sometimes be compromised by averaging. For
example, in most of the experiments presented here, there were large differences among
subjects in their overall accuracy values (e.g., 10%–15%). Pooling all of the data from all the
subjects together can provide a picture that is not representative of any subject. To check for
this problem, we computed the accuracy, mean RT, and .1 quantile values for each subject (in
each condition) and averaged these values across subjects. The resulting averages looked much
like the typical subject, providing reassurance that averaging over subjects as we did for the
fits reported here did not introduce biases. This replicated a finding from three earlier studies
(Ratcliff, Thapar, & McKoon, 2001, 2003; Thapar, Ratcliff, & McKoon, 2003) in which the
diffusion model was fit both to data pooled over all subjects and to individual subjects; there
were no systematic differences between parameter values in the two cases.

In fitting the model to the data from each experiment, all the parameters were held constant
across the conditions of the experiment except drift rate. The parameters held constant were
as follows: the starting point of the diffusion process (z), the across-trial variability in the
starting point (sz), the boundary separation (a), the nondecision time (Ter), the across-trial
variability in the nondecision time (st), and the across-trial variability in drift rate (η). Drift rate
(v) varied for words of the three different frequencies and for the two types of pseudowords.
Variability within a trial s is a scaling parameter (this means that the same fits could be obtained
with another value of s by rescaling the rest of the parameters), and its value was fixed at s = .
1 for consistency with other published fits of the diffusion model to data.

The best-fitting parameter values are shown in Table 6. The values of the boundary separation
and starting point parameters (a and z) were highly consistent across the experiments. The type
of nonword—pseudowords in Experiments 1, 3, 5, and 6 versus random letter strings in
Experiments 2 and 4—produced a small difference in Ter and in st: The values were smaller
with random letter strings. However, it was not clear whether this was a systematic or random
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effect; it was not obtained for Experiments 7, 8, and 9. The parameters for variability in drift
(η) and variability in starting point (sz) showed no systematic differences due to pseudowords
versus random letter strings (except that η and sz were a little higher for Experiments 2 and 4).

The only large and reliable effects on parameter values were the effects on drift rates of word
frequency and type of nonword. Not surprisingly, the drift rate was higher for high-frequency
words than for low-frequency words and was higher for low-frequency words than for very
low-frequency words; in addition, the drift rate for random letter strings had a larger negative
value than the drift rate for pseudowords.

Of the drift rate effects, the one that might be thought surprising in the context of some models
(e.g., G. O. Stone & Van Orden, 1993) was that drift rate alone captured almost all of the effect
on word RTs of the type of nonword. The differences in RTs among words of different
frequencies were larger with pseudowords than with random letter strings, and this was
accounted for by differences in drift rates: Differences among the drift rates were smaller with
pseudowords than with random letter strings. In particular, although the drift rates for high-
frequency words were about the same in all the experiments, the drift rates for the low- and
very low-frequency words were lower when the nonwords were pseudowords. This is clearly
observable in Table 6, where the drift rates for low- and very low-frequency words in
Experiments 1, 3, and 5 are always numerically smaller than their drift rates in Experiments 2
and 4.

Differences in drift rates also accounted for the shift in the leading edge of the RT distribution
for high-frequency words relative to lower frequency words. The leading edge of the high-
frequency word distribution was shifted about 40 ms shorter relative to the leading edges of
the low-frequency and very low-frequency word distributions when the nonwords were
pseudowords. The diffusion model accurately captured this with only differences in drift rate
as a function of word frequency (see Table 3). The diffusion model accommodated the shift in
leading edge for the reasons discussed in the introduction.

Table 3 shows fits of the model to the data for correct and error mean RTs, accuracy values,
and .1 quantile RTs for correct responses, along with standard errors in these quantities. Figure
3 is designed to show the model’s goodness of fit graphically for the data from Experiments 1
and 2. In the figure, the Xs are the experimental data and the +s are the predicted values from
the model with the best-fitting parameter values.

We calculated two different estimates of variability, one using a graphical Monte Carlo method
(Ratcliff & Tuerlinckx, 2002) to show variability in the model’s predictions and the other using
a bootstrap method to show variability in the data. For the graphical Monte Carlo method, for
each experiment, we first generated sets of simulated data, each set with the same number of
observations as for each subject in the experiment. We repeated this to produce the same
number of data sets as there were subjects. For each data set, quantile RTs and accuracy values
were calculated, and these were averaged over data sets (in the same way the experimental data
were averaged over subjects). This was repeated 100 times, and the dark gray dots in Figure 3
plot the quantile RTs and accuracy values for each of the 100 replications (see Ratcliff &
Tuerlinckx, 2002). Variability in accuracy values is represented by the scatter of the dots along
the x-axis and variability in the quantile values is represented by scatter along the y-axis.

The bootstrap method we used allows an estimate of the variability that would result if the
experiment were rerun with new subjects. We used two levels of random selection. First, for
each subject in the experiment, we sampled with replacement from the experimental data for
that subject to generate a new set of bootstrap data for the subject. Second, we sampled with
replacement from the subjects to produce a new set of subjects, and for each of these subjects,
we used the bootstrap data we had generated (as just described). The idea was to represent what
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would happen with a different random sample of subjects than those that actually participated
in the experiment (see Efron, 1982). For each of the simulated subjects, we calculated their
quantile RTs and accuracy values and averaged these across subjects in the same way as for
the experimental data. We repeated this 100 times, and the resulting values are plotted as the
light gray dots in Figure 3.

Figure 3 shows that, for Experiments 1 and 2, the two types of simulated data overlap each
other, which means that the model predictions vary in the same ways as would be expected
from the experimental data. Although only the results for Experiments 1 and 2 are displayed
in the figure, we did the same simulations for Experiments 3 through 6. Across all six
experiments, only 9 out of the 105 quantile RTs predicted from the model with the best-fitting
parameter values (the +s) are outside 2 SE confidence intervals for the bootstrap simulated data
(light gray dots), and only 24 out of 105 of the data points (the Xs) are outside 2 SE confidence
intervals for the Monte Carlo simulated predictions for the model (dark gray dots).

Table 3 provides values of mean RT and accuracy for the data, standard error values in each,
and the predicted values from the model with best-fitting parameter values. These standard
errors supplement the Monte Carlo and bootstrap studies. All except two differences between
the data and the predicted accuracy values were within .025, all except two differences between
the data and the predicted mean RTs were within 25 ms, and all except one difference between
the data and the predicted .1 quantile RTs were within 16 ms. Error RTs are more variable
because they are based on many fewer observations; all except one difference between the
predicted and data values were within 40 ms.

Discussion
In lexical decision, the discriminability of words from nonwords is reflected in both accuracy
and RT, and so a model must account for both dependent measures. A measure based on
accuracy alone, such as d’, ignores the other dependent variable, RT. Measures of RT alone
ignore trade-offs in accuracy that accompany changes in speed. The diffusion model provides
an integrated account of both speed and accuracy. The RT and accuracy data from Experiments
1 through 6 are translated by the model into drift rates, which are measures of discriminability
for the various experimental conditions.

The important result of the experiments is that variations in drift rate account for all the
observed effects of word frequency and type of nonword on RT and accuracy. Discrimination
of words from nonwords, measured by drift rate, is better for high- than lower frequency words,
and it is better when the nonwords are random letter strings than when they are pseudowords.
The interaction between these two variables is also a matter of discrimination: The difference
in discriminability between high- and lower frequency words is larger with pseudowords than
with random letter strings.

Figure 4 (top panel) shows how discriminability can be represented in a two-dimensional
signal-detection framework. Two is the smallest number of dimensions that can adequately
accommodate the relative drift rates for the various classes of stimuli. Distances among the
classes of stimuli in the space represent differences in their wordness values. How the values
from the figure enter into the diffusion decision process can be understood as follows: Suppose
that the decision process has multiple sources of information feeding into it from the lexicon,
including semantic information, phonological information, orthographic information, and
other kinds of lexical information. With random letter strings as the nonwords in an experiment,
all of these sources of information are valid indicators of whether a stimulus is a word. In effect,
if a string of letters looks like a word, if its phonemes are wordlike, and if it has meaning, these
sources of evidence combine to produce a high value of wordness and hence a high drift rate
toward the “word” decision boundary. But with pseudowords in the experiment instead of
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random letter strings, some of the sources of information, especially orthographic information,
are less reliable and so are not used (or they are weighted much less) in determining drift rate.
For lack of better insight into what the two dimensions might unambiguously represent, we
label them lexical strength and orthographic wordlikeness. Two-dimensional representation
suggestions like the one proposed here have been made previously, for example, by G. O.
Stone and Van Orden (1993).

The two-dimensional representation can be embedded for illustrative purposes in a two-
dimensional signal-detection framework (e.g., Ashby, 2000). In the top panel of Figure 4,
pseudowords (PWs) are considerably lower than words on the lexical strength dimension but
only a little lower on the orthographic dimension. Random letter strings (RL) are considerably
lower on both dimensions than words and pseudowords. High-frequency words are higher on
the lexical strength dimension than low-frequency words, which are higher than very low-
frequency words. Differences in drift rates between the different item types are given by
distances between them in the two-dimensional space. When the nonwords are random letter
strings, both dimensions figure into a determination of the distances. The distance between
words and nonwords is represented by x in the figure and the distance among the high-, low-,
and very low-frequency words is represented by u, where u is determined by projecting the
differences among the high-, low-, and very low-frequency words onto the diagonal (as shown
by the dashed lines in the figure). When the nonwords are pseudowords, the orthographic
dimension is not reliable and so distances are computed on the lexical strength dimension alone.
The distance between words and nonwords is represented by y, and the distance among the
three types of words is represented by v. The relative distances determine the relative values
of the drift rates that enter the diffusion model, as shown in the bottom panel of Figure 4.

Experiment 7
In Experiments 1 through 6, each experiment included only one type of nonword. Experiment
7 included both types. According to the hypotheses about the lexical decision process just
outlined, with pseudowords in an experiment, orthographic “wordlikeness” information should
be less reliable in making a decision than it is in an experiment with random letter strings as
nonwords. In other words, the data should look much like the data from Experiments 1, 3, 5,
and 6. Responses to high-frequency words should be faster than responses to lower frequency
words, and this advantage should show up in both mean RTs and as a shift in the leading edge
of the high-frequency RT distribution relative to the distributions for low- and very low-
frequency words. Also, correct RTs to random letter strings should be considerably shorter
than correct RTs to low-frequency and very low-frequency words because difficult negative
items have been introduced into the experiment (e.g., Ratcliff, 1985; Ratcliff & Hacker,
1981).

Method
Subjects—Fifteen Northwestern University students participated in this experiment for credit
in an introductory psychology class.

Materials—New pools of words were used in this experiment (these were developed to
examine neighborhood effects, which are not reported here): 558 high-frequency words, with
frequencies of 100 or more per million (M = 249, SD = 623.30; number of letters, M = 5.76,
SD = 1.58); 501 low-frequency words, with frequencies of 3 to 6 per million (M = 4.3, SD = .
76; number of letters, M = 6.11, SD = 1.76); and 381 very low-frequency words, with
frequencies of 1 per million (number of letters, M = 5.46, SD = 1.60; Kučera & Francis,
1967).
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Procedure—The lexical decision procedure was the same as in Experiments 1 to 6. There
were 15 blocks of 100 trials, each block consisting of 18 high-frequency words, 18 low-
frequency words, 14 very low-frequency words, 25 pseudowords, and 25 random letter strings,
all ranging in length from 4 to 9 letters.

Results
Responses shorter than 350 ms and longer than 2,000 ms were eliminated from the analyses
(about 0.5% of the responses). Table 7 shows a summary of the results.

As expected, for correct responses, responses to high-frequency words were shorter, by 60 ms,
than responses to low-frequency words and shorter by 115 ms than responses to very low-
frequency words, F(2, 28) = 65.05, MSE = 671.83. Responses to high-frequency words were
also more accurate by .04 than responses to low-frequency words and were more accurate than
responses to very low-frequency words by .14, F(2, 28) = 91.76, MSE = .00088.

For correct responses for nonwords, responses to random letter strings were more accurate by .
10, F(1, 14) = 63.24, MSE = .00012; and their mean correct RT was 150 ms shorter than
responses to pseudowords, F(1, 14) = 161.21, MSE = 1246.43.

The pattern of RTs for error responses to word stimuli relative to correct RTs fell in about the
middle of the results from the earlier experiments in which the nonwords were pseudowords
(Experiments 1, 3, 5, and 6). For high-frequency words, errors were faster than correct
responses, whereas for low- and very low-frequency words, errors were slower than correct
responses. Error responses to nonwords were faster than correct responses.

Table 8 displays the RT distributions for correct responses. Just as in Experiments 1, 3, 5, and
6, which also used pseudowords, the .1 quantile RT (the leading edge of the RT distribution)
for high-frequency words began to rise above zero earlier (20 ms and 34 ms earlier,
respectively) than the .1 quantile of the RT distributions for the low- and very low-frequency
words, F(2, 28) = 34.03, MSE = 133.70. In the earlier experiments with pseudowords, the
average difference in the .1 quantile between the distributions for high- and very low-frequency
words was larger, about 45 ms, and in the earlier experiments with random letter strings, there
was a smaller difference (e.g., 13 ms in Experiment 2). Here, with both pseudowords and
random letter strings in the same experiment, the high frequency/very low-frequency .1
quantile difference was intermediate in value. There was also a 59-ms difference in the .1
quantile for correct responses to pseudowords versus random letter strings, F(1, 14) = 89.86,
MSE = 281.41.

Fits of the Diffusion Model
The diffusion model was fit to the data from Experiment 7 using the same method as for the
previous experiments, and the results were consistent with those experiments (see Table 7).
The differences among the experimental conditions were all well-captured by variations in
drift rate. The drift rates for words increased as a function of word frequency, and the drift rate
for random letter strings had a larger absolute value than the drift rate for pseudowords. The
fits were good, with the predicted mean RT for correct responses within 15 ms of the observed
mean RT in all except two conditions (very low-frequency words and pseudowords, which
missed by 25 and 26 ms, respectively, both less than 2 SEs). The predicted accuracy values
were all within 3% of the data. Fits for error RTs were not as good, although all were within
2 SEs of the data.

The diffusion model fit the .1 quantile reaction times to within 7 ms for each stimulus type
except pseudowords, which missed by 15 ms, which was not a significant difference (the width
of the confidence interval was greater than 30 ms; for typical spreads in Experiments 1 and 2,
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see Figure 3). The difference in the .1 quantile between the two types of nonwords was fit with
a large difference in drift rate between random letter strings and pseudowords (.237) just as
for high-frequency versus lower frequency words in Experiments 1, 3, 5, and 6 (Table 3).

In Experiment 7, the values of the drift rates for word stimuli were a little larger than in the
earlier experiments with pseudowords (Experiments 1, 3, 5, and 6; see Table 6) but smaller
than those for Experiment 2, which used random letter strings. This finding indicated that
mixing random letter strings with pseudowords made the decision process only a little less
difficult compared with when all the nonwords were pseudowords. The other parameters for
the fits of the diffusion model were within the ranges of the values for Experiments 1 through
6 (see Table 6).

Experiments 8 and 9
In lexical decision, responses to repeated words are faster than responses to first presentations
of the words. Repetition has a larger effect on low-frequency words than on high-frequency
words, so it reduces the difference in mean RT between them (Balota & Spieler, 1999; Duchek
& Neely, 1989; Forster & Davis, 1984; Scarborough, Gerard, & Cortese, 1979). To provide
more data against which to test the diffusion model, we collected repetition data—in
Experiment 8, in the context of pronounceable nonwords, and in Experiment 9, in the context
of random letter strings.

Method
Twenty-one Northwestern undergraduates participated in Experiment 8 and 21 in Experiment
9 for credit in an introductory psychology course. Items were selected from the same pools of
words and nonwords as in Experiments 1 through 6, and the same lexical decision procedure
was used. There were 20 blocks, each with 14 high-, 14 low-, and 14 very low-frequency words
and 42 nonwords. Each stimulus was presented twice. The repetitions were in adjacent blocks
so the lag between presentations had a mean of 84 items.

Results
Responses longer than 2,000 ms and shorter than 350 ms were eliminated from the analyses
(less than .5% of the responses in both experiments). The results are shown in Table 9.

In Experiment 8 (with pseudowords as the nonwords), for words presented for the first time,
accuracy was reduced as a function of word frequency by .10 from high- to low-frequency
words and by .11 from low-frequency to very low-frequency words. For the second
presentations of words, these differences were reduced to .04 and .05. Averaged over word
frequency, correct responses to words were about .06 more accurate with repetition. The main
effects of frequency and repetition were both significant, F(2, 40) = 105.61, and F(1, 20) =
158.15, as was their interaction, F(2, 40) = 47.22, MSE = .00070.

For words presented for the first time, mean correct RT was increased by 74 ms from high- to
low-frequency words and by 37 ms from low- to very low-frequency words. For the second
presentations of words, these differences were reduced to 46 ms and 28 ms. Averaged over
word frequency, correct RTs to words were about 46 ms shorter with repetition. The main
effects of frequency and repetition were both significant, F(2, 40) = 119.34, and F(1, 20) =
80.56, as was their interaction, F(2, 40) = 11.06, MSE = 340.20.

With repetition, correct responses to nonwords slowed by a nonsignificant 3 ms, F(1, 20) =
3.29, MSE = 80.27. Repetition significantly increased accuracy but also by a small amount, .
02, F(1, 20) = 26.74, MSE = .00014.

Ratcliff et al. Page 16

Psychol Rev. Author manuscript; available in PMC 2006 March 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mean RT for error responses to the first presentations of high-frequency words was 607 ms,
but there were too few error responses for the second presentations to compute a mean (6
subjects had no errors, and 4 had only 1). For low- and very low-frequency words, error RTs
were shorter than correct RTs on the first presentations and longer on the second presentations.
Error RTs were longer than correct RTs on both the first and second presentations for
pseudowords.

For words presented for the first time, the leading edges of the RT distributions shifted as a
function of word frequency, much as in the earlier experiments: The .1 quantile was 40 ms
shorter for high- than low-frequency words and 48 ms shorter for high- than very low-frequency
words. The leading edge differences were reduced on the second presentation, to 25 ms and
41 ms, respectively. The main effects of frequency and repetition were both significant, F(2,
40) = 96.57, and F(1, 20) = 145.24, as was their interaction, F(2, 40) = 4.31, MSE = 145.28.

In Experiment 9 (with random letter strings as the nonwords), for words presented for the first
time, accuracy was reduced as a function of word frequency by .02 from high- to low-frequency
words and by .03 from low-frequency to very low-frequency words. For the second
presentation of words, these differences were reduced to .01 and .01. Averaged over word
frequency, with repetition, correct responses to words became about .01 more accurate. The
main effects of frequency and repetition were both significant, F(2, 40) = 37.50, and F(2, 40)
= 4.47, as was their interaction, F(2, 40) = 2.64, MSE = .00036.

For words presented for the first time, mean correct RT was increased by 23 ms from high- to
low-frequency words and by 28 ms from low-frequency to very low-frequency words. For the
second presentations of words, these differences were reduced to 10 ms and 13 ms. Averaged
over word frequency, correct responses to words were about 20 ms shorter on the second
presentation. The main effects of frequency, repetition, and their interaction were significant,
F(2, 40) = 51.41, F(1, 20) = 74.05, and F(2, 40) = 11.1, MSE = 186.40. Repetition affected
neither RT for nonwords, F(1, 20) = .14, MSE = 69.84, nor accuracy for nonwords, F(1, 20) =
1.59, MSE = .00015.

Error responses for both words and nonwords were faster than correct responses in all
conditions, with RTs from 18 ms to 55 ms shorter, and changed little as a function of repetition.
However, accuracy in this experiment was above 93% correct in all conditions, and so there
were few responses contributing to the error RT means.

There were small, but significant, effects on the leading edges of the RT distributions as a
function of word frequency, F(2, 40) = 28.26, and repetition, F(1, 20) = 17.70. The interaction
between the two was not significant, F(2, 40) = 0.85, MSE = 154.03. The difference in the .1
quantile RTs between high- and low-frequency words was 16 ms, and between high- and very
low-frequency words it was 17 ms. Table 8 shows the response time quantiles for the data and
the fits of the model.

As in Experiments 1 to 6, the effects of word frequency were larger in Experiment 8, with
pseudowords, than in Experiment 9, with random letter strings. Repetition interacted with word
frequency and the type of nonword; the effect of repetition produced a larger decrease in RT
and a larger increase in accuracy in Experiment 8 than in Experiment 9.

Fits of the Diffusion Model
The diffusion model was fit to the data from Experiments 8 and 9 using the same method as
in the previous experiments, and the results, fits, and parameter values are shown in Tables 9
and 10. The differences among the experimental conditions were all reasonably well-captured
by variations in drift rate. Drift rates for words increased as a function of word frequency and
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as a function of repetition (except for high-frequency words in Experiment 9, which changed
little as a function of repetition). Drift rates for nonwords did not change as a function of
repetition and had a smaller absolute value for Experiment 8 (pseudowords) than for
Experiment 9 (random letter strings). The other parameters of the model were within the ranges
of those from Experiments 1 through 7.

Predicted correct RTs matched the experimental data within 20 ms, and accuracy values
matched the data within .04. Predictions for error RTs sometimes missed by as much as 40 ms,
but some of the error RTs for which theory and data missed were based on less than five
observations for some of the subjects. For the second presentations for high-frequency words
in Experiment 8, 6 subjects had no error responses (and hence no experimental value is
reported). The largest miss between the predicted and experimental .1 quantile RTs was 17 ms
(only 2 out of 17 were outside the 95% confidence intervals). We performed the same analyses
as in Figure 3 with confidence intervals from model simulations and from bootstrap
computations from the experimental data. For the Monte Carlo simulations from the model,
the data points significantly missed the predictions in 15 out of 105 correct responses for
Experiments 7, 8, and 9. For the bootstrap confidence intervals from the experimental data, 7
out of 105 predictions missed.

Error RT Distributions
Error RTs are much more variable than correct RTs because the number of observations is
smaller. For example, if accuracy is .9, there is only a little more than one tenth the number of
observations for errors as correct responses. As a consequence, standard errors on mean error
RTs (presented in earlier tables) were between two and five times larger than standard errors
for correct RTs. If we displayed the error RT quantiles as in Figure 3, the standard error bars
would be much greater for errors and adjacent Monte Carlo or bootstrap quantiles would
overlap each other. Table 11 gives the experimental and predicted error RT distributions for
the more reliable of the error RT distributions, those conditions in which the number of
observations for each subject was greater than six so that five quantiles could be computed.
Most of the .1 quantile RTs predicted by the model for errors were within 15 ms of the empirical
ones, but 5 out of 23 missed by more than 15 ms. However, generally, the diffusion model
captured the shapes of the error RT distributions adequately as well as the mean error RTs
presented in the earlier tables.

General Discussion
The Diffusion Model

The diffusion model has enjoyed considerable success across a range of cognitive paradigms,
and here we have shown it to be successful with the lexical decision task. The model did a
good job of fitting the data from all nine experiments.

Not only did the model fit the mean RTs for correct responses, it also fit accuracy rates, mean
RTs for error responses, the relative speeds of correct and error responses, and the shapes of
the RT distributions and their leading edges. Too often, error responses have been ignored in
the development of models for the lexical decision task, so the application of a model to error
responses is relatively novel in this domain (but see Grainger & Jacobs, 1996). It is unlikely
that a model could be developed to fit only RTs for correct responses and then, serendipitously,
turn out to be able to fit RT distributions and error RTs. Models must be developed to address
all of the data simultaneously.

The parameters of the diffusion model correspond to components of processing. When the
model fits the data well, as it does for the experiments presented here, the parameter values
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that provide the best fits to the data can be interpreted in terms of task variables, showing how
the variables affect various processing components. Overall, we found that the effects of word
frequency, type of nonword, and repetition on correct and error RTs and accuracy were all
handled by drift rate. Only drift rates, not any of the other parameters, were systematically
affected across conditions and experiments. As would be expected, drift rate increased with
word frequency and with repetition, and drift rate had a larger negative value for random letter
strings than for pseudowords.

In the data, the leading edge of the RT distribution (measured by the .1 quantile RT) for words
was shifted for high-frequency words relative to very low-frequency words over the
experiments by about 13 ms when the nonwords were random letter strings and about 45 ms
when the nonwords were pseudowords. In the model, the leading edge shift comes about
through an interaction between variability in the nondecision component of RT and differences
in drift rates between the high-frequency and lower frequency words. With a large drift rate,
the leading edge depends only on the shortest values of the nondecision component of RT,
whereas with smaller drift rates, it depends on all the values in the distribution.

Drift rates for words were larger when the nonwords in an experiment were random letter
strings than when they were pseudowords. We explain this by assuming that the decision
process can make use of multiple sources of information, such as orthographic, phonemic, and
semantic information, as sketched in Figure 4. To decide whether a test string is a word, the
sources of information are combined to provide a single quantity, the degree of wordness,
which maps into drift rate in the diffusion model. With random letter strings, orthographic
information, phonemic information, semantic information, and so on are all valid indicators of
whether a stimulus is a word and so contribute to the value of wordness, whereas with
pseudowords, the usefulness of orthographic wordlikeness information is considerably reduced
(see Figure 4).

The values of the parameters of the diffusion model other than drift rate varied little across all
the experiments. This finding indicates that the components of processing represented by
boundary positions, starting point, across-trial and within-trial variability in drift rate, and the
nondecision component of RT and its variability all were not systematically affected by type
of nonword, the proportions of high- versus low-frequency words, or whether items were
repeated or not.

A general issue that arises is whether the parameter values of the fits we report are unique. One
question concerns drift rates: In the fits we present, the effects of all the experimental variables
are accommodated in drift rate, not in any of the other parameters. The question is whether the
model could still fit well if the effects of the experimental variables were all taken up by other
parameters of the model. To address this question, we refit the data from Experiment 2 (random
letter strings) with drift rates fixed at the values derived from Experiment 1 (pseudowords).
The result was that the RT values were well predicted, but the accuracy values missed by .05
for nonwords, by less than .01 for high-frequency words, by .06 for low-frequency words, and
by .16 for very low-frequency words. Except for high-frequency words, these misses are
unacceptably large.

Another way to test whether changes in drift rate are all that is needed to account for the data
is to hold all the other parameters exactly constant across the experiments. If drift rate can
account for the effects of all the independent variables, then the model should still fit well. For
this test, the model was refit to the data from Experiment 2 with all the parameters except drift
rate fixed at their values from Experiment 1. The result was that drift rates differed significantly
between the two experiments, in about the same way as for the fits presented above (shown in
Table 6). The fits were reasonably good; the main systematic miss was in the .1 quantile RT,
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where the model consistently overpredicted the data by about 20 ms. The fact that the fits were
reasonably good reflects the fact that parameter values other than drift rate do not need to be
systematically different between the two experiments. The original fits that we reported are
better mainly because of a 28-ms difference in the Ter parameter between the two experiments,
a difference that could reflect individual differences between the two groups of subjects (cf.
Ratcliff et al., 2001).

The questions just addressed are part of the general issue of model flexibility. To address this
issue, Ratcliff (2002) generated a number of plausible but fake data sets and attempted to fit
the diffusion model to them. If it were true that the diffusion model is flexible enough to fit
any pattern of data, then the model should have provided good fits for the fake patterns, but it
could not do so, showing that it is extremely constrained by real data.

Another set of issues concerns variability in the parameter values of the model. First, although
parameter values certainly vary across subjects, Ratcliff et al. (2001) and Thapar et al.
(2003) showed that they are not biased but instead appear to be symmetrically distributed
around their means. Second, the variability in the parameter values that is due to sampling
variability from the data is not large, nor is it biased (Ratcliff & Tuerlinckx, 2002). To put it
another way, given a set of parameter values for the model, random samples of data generated
from the model will produce variable RTs and accuracy values. When the model is fit to these
data, the resulting parameter values are slightly different from the parameters used to generate
the simulated data, but the deviations are small and unbiased. This means that when the model
is applied to the data from an experiment, it is possible that slightly different parameter values
would also produce adequate fits, but the differences would not be large enough to change any
conclusions.

In summary, the diffusion model is able to account for all facets of the experimental data
presented here, including correct and error RT distributions and accuracy. The parameter values
are consistent across the experiments, and they are similar to those reported with other
experimental paradigms. The drift rates obtained from the fits are interpretable in terms of a
two-dimensional signal-detection framework. We now turn to models of lexical access to
explore how they relate to the diffusion model framework.

Lexical Decision
The diffusion model analysis offers a new and simple view of the effects of independent
variables on processing in the lexical decision task. Other models have used the effects of type
of nonword, word frequency, or repetition to support hypotheses about different lexicons or
different processing pathways for different stimulus types. From the diffusion model point of
view, the effects of these variables are simply to alter the amount and kind of information
contributing to the degree of wordness that drives the decision process and nothing more. The
lexical system that feeds information to the decision process may have many facets, but once
information is output from the system, it can be considered unidimensional (see Balota &
Chumbley, 1984; Seidenberg & McClelland, 1989; and G. O. Stone & Van Orden, 1993, for
similar views of the role of lexical access versus decision processes, though their models are
considerably different from ours).

In comparison to previous models, the diffusion model forces consideration of all aspects of
the experimental data. Below we discuss how some other models fail to deal with the full range
of data. We attempt to show for each model what could be changed to allow its output to feed
into a diffusion decision process in such a way as to appropriately explain the data. This exercise
helps to illustrate exactly what our modeling does and does not contribute to an explanation of
lexical decision. The model can account for the data, and it can provide an explanation of the
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decision process, but it does not provide insights into lexical representations or how they are
accessed.

It is important to note in the discussion below that, even if a lexical model appears to produce
the qualitatively correct behavior of some quantity of how wordlike a stimulus is, there is no
guarantee that the combination of the lexical model and the diffusion decision model will work.
What would be needed to see if the combination works is a quantitative examination of whether
the values of wordness produced by the lexical model map into drift appropriately (cf. criticism
of Seidenberg & McClelland’s [1989] model by Besner, Twilley, McCann, & Seergobin
[1990]). Thus, the following discussion suggests only possible beginning points for research.

Although many models have been developed to account for performance in the lexical decision
task, we can find none that has been successfully quantitatively fit to all aspects of the
experimental data. This means that we cannot be sure that the models can account for the data
they have been used to explain. This failing is exacerbated by the fact that only one of the
models (Grainger & Jacobs, 1996) attempts to deal with all of the dependent variables in the
data, namely, correct and error RT distributions and accuracy. For some of the other models,
if they did make predictions about all the aspects of the data, it is likely that they would be
wrong, and for others of the models, completely new assumptions would be needed.

Serial Search Models
Rubenstein, Lewis, and Rubenstein’s (1971) model assumes that words are ordered in the
lexicon by frequency and that search starts with high-frequency words and proceeds to low-
frequency words. In Forster’s (1976) model, the orthographic representations of words are
ordered in a peripheral access file that provides the address of a lexical entry in a master file.
The orthographic representations are organized in bins based on the similarity of their first few
letters, and within a bin, the words are ordered by frequency. Searches begin with the highest
frequency words in a bin. For both of these models, RTs are predicted to be shorter for high-
than lower frequency words. For Rubenstein et al.’s model, nonword responses are produced
when the serial search terminates, and in Forster’s model, nonword responses are produced
when the search of a bin has produced no matching string. The models are mute as to how
errors occur.

A major problem with serial search models is that they cannot accommodate a finding of correct
nonword responses faster than correct word responses, because nonword responses can be
made only after the serial search is terminated. For the same reason, serial search models cannot
account for errors being faster than correct responses. Hence, serial search models would have
to be changed substantially to accommodate the data presented here. The serial access
assumption could be turned into a parallel access assumption about the relative availability of
information from the various peripheral access files, and with such a move, much of the lexical
structure could be retained. But this would be such a radical change that it is not clear whether
the result could still be called the same model, and it is not clear whether it could quantitatively
fit the data.

Logogen and Parallel Search Models
One of the earliest and most influential models of the parallel search class is the logogen model
(Morton, 1969, 1979). According to this model, lexical entries are represented as logogens—
an auditory input logogen, a visual input logogen, and an output logogen. When a string of
letters is input visually to the system, all the logogens that contain a feature that is in the stimulus
letter string are incremented in parallel. Word identification occurs when evidence from the
input reaches a threshold amount in a word’s logogen. The threshold level for identification is
a function of frequency: Less information is needed to identify a high-frequency word than a
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low-frequency word. The model was developed mainly to explain data from paradigms in
which a word must be identified for production, that is, naming tasks. It was not developed to
explain the binary, word–nonword responses required by the lexical decision task. Mechanisms
to produce nonword responses were added later as extensions to the model.

The logogen model is similar to random walk and diffusion models (see Ratcliff & McKoon,
1997) in that both kinds of models assume evidence accumulates over time toward response
criteria (thresholds in the case of the logogen model). Perhaps the key difference between the
logogen and diffusion models is that, because the logogen model was mainly concerned with
word production tasks and not the binary lexical decision task, it uses the thresholds of
individual logogens to implement the effects of word frequency (e.g., Ratcliff & McKoon,
1997). In contrast, the diffusion model is concerned with lexical decision, and the effects of
word frequency are implemented in drift rates. The reason is that, for lexical decision, the
specific word represented by a stimulus does not need to be identified; the only information
needed is how wordlike the stimulus is. So it is assumed that evidence is accumulated on the
basis of the degree of wordness, evaluated against two response criteria. The criteria are the
same for all stimuli, and they cannot be altered as a function of the frequency of the stimulus
(because this would require first identifying the frequency of the stimulus, which would make
the decision process superfluous). The assumption that only drift rates are affected by word
frequency is supported by the fact that the model fits the experimental data well with this
assumption.

Coltheart, Davelaar, Jonasson, and Besner (1977) extended the logogen model to produce
nonword responses in lexical decision by assuming a time deadline for negative responses,
with a nonword response being produced when processing takes longer than the deadline. The
deadline is adjusted as a function of the total activation in the logogen system. When the
nonwords are random letter strings and a nonword is presented, the total activation summed
over logogens is low, so a short deadline is set and RTs for nonwords are fast. Errors arise from
variability in the flow of information to the logogen system. At a qualitative level, Coltheart
et al.’s extension of the logogen model correctly predicts the effects of word frequency and
type of nonword on mean RTs for correct responses to words and nonwords. However, it is
unclear whether it could make accurate quantitative predictions for accuracy values, for error
RTs, or for the shapes or leading edges of RT distributions.

Perhaps the most problematic aspect of the data for Coltheart et al.’s (1977) model is the fact
that error responses are sometimes faster than correct responses. When a high-frequency word
is presented, the total activation in the logogens should be high, and so the response deadline
should be long and nonword error responses should be slow. Also, the RT distribution for
nonword responses should be the same as the distribution of deadline times, which in turn is
a function of the total activation in the system. The deadline times are usually assumed to be
normally distributed; so the distributions of nonword RTs should be normal (cf. Grainger &
Jacobs, 1996). However, empirical RT distributions are never normally distributed.

Gordon’s Parallel Resonance Model
Gordon’s (1983) resonance model shares with the logogen model the assumption that the
internal representations of all words are activated when a string of letters is presented to the
system (see also Ratcliff, 1978). In Gordon’s model, presentation of a letter string causes the
internal representations of the words to resonate as a function of the degree to which they match
the test string. The strength of the resonance drives the rate of accumulation of evidence in a
single boundary decision process.

For lexical decision, the strength of resonance is largely determined by the frequency of the
test word. The model can correctly predict word frequency effects on mean RT for correct
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responses for words. But there is no mechanism to produce error responses or nonword
responses; Gordon’s experiment was a go/no-go task in which nonword responses were not
made. Also the model was never explicitly fit to experimental data, and so it was never
determined whether it could produce RT distributions that quantitatively match empirical ones.

Gordon’s resonance model could be made compatible with the diffusion model: A criterion
could be placed on the amount of resonance such that if the amount was above the criterion,
the drift rate in a diffusion process would be positive, and if it was less than the criterion, the
drift rate would be negative (cf. a drift criterion, Ratcliff, 1985; Ratcliff et al., 1999). The drift
rates would determine response times and accuracy values just as described for the data from
the experiments reported here.

Multiple Read-Out Model
In the multiple read-out model (Grainger & Jacobs, 1996), word identification for visually
presented strings of letters is accomplished via an orthographic lexicon structured as a localist
connectionist network derived from McClelland and Rumelhart’s (1981) interactive activation
model. Words are represented as collections of the orthographic features contained in their
letters. When a string of letters is input to the system, the representations of all words
orthographically similar to the input are activated. Lateral inhibition among words that share
features causes them to inhibit each other so the strongest beats down its competitors.

A word decision is based on two sources of information: global activity, the summed activation
of all the words in the lexicon, and local activity, the activation values of individual words. A
word response is made if either exceeds criterial values. The criterial values are variable across
trials, and the mean of the global activity criterion is adjustable by strategy or experimental
context. Nonword responses are based on a time deadline that is variable across trials with its
mean adjustable in the same way as the global activity criterion. If global activity is small, the
deadline is set short and nonword responses are fast. Errors occur because of variability in the
criteria across trials.

Because high-frequency words produce more global and more local activation, the model
predicts the correct qualitative effects of word frequency on response probabilities and mean
RTs for word responses. However, it is not clear whether correct predictions could be produced
for the shapes of RT distributions and the differences in their leading edges as a function of
word frequency. The model cannot make correct predictions about RT distributions for
nonwords because the deadline time is assumed to be normally distributed across trials (see
data and simulations reported by Grainger & Jacobs, 1996).

It is possible for the multiple read-out model to produce errors to words that are faster than
correct responses but only under unusual circumstances that do not match experimental data.
If the distribution of deadlines is made extremely wide (i.e., large standard deviation) and the
mean of the deadline distribution is relatively high (longer than the .9 quantile RT for correct
responses), then errors can be faster than correct responses. However, this situation results in
the leading edge of the RT distribution for errors being very short relative to correct responses.
We simulated this situation and obtained error responses that were 30 ms shorter than correct
RTs, but the .1 quantile RT for errors was 100 ms shorter than that for correct responses. In
the experimental data, the .1 quantile RTs for correct and error responses are much closer
together (within 10 ms).

A prediction of the multiple read-out model is that as word frequency increases, global
activation increases and so the deadline for nonword responses increases. In another simulation,
we decreased the mean of the distribution of word RTs and increased the deadline distribution
mean to mimic the effect of increased activation. This slowed error responses, making them
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slower than correct responses, unlike the data in which error responses speed up as correct
responses speed up.

The results of the simulations show that it is likely to be impossible to get the deadline model
to produce (a) shorter RTs for error responses than correct responses while at the same time
producing the correct behavior of .1 quantile RTs, (b) a decrease in error RTs as word frequency
and accuracy increase and correct RT decreases, and (c) RT distributions for correct responses
to nonwords that are just as skewed as correct word RT distributions.

The multiple read-out model also has a meta-level problem in the assumption that the deadline
criterion is adjusted within a trial on the basis of global activation (a problem that also applies
to Coltheart et al.’s [1977] model). The output of the interactive activation part of the model
is deterministic, which is why early global activation can be used to set the deadline. The
question is why the system does not base its decision on this early information. Why wait to
have the decision depend on a noisy criterion when there is accurate information available in
the first few milliseconds of processing? If the model were altered so that the information
output from interactive activation was noisy (i.e., not deterministic) and so could not be used
to make an accurate early decision, then neither could it give information accurate enough for
deadline setting. Thus, the model would be unable to produce fast negative responses,
especially when the nonwords were random letter strings.

The multiple read-out model could be made consistent with data by assuming that information
from interactive activation enters a noisy diffusion decision process. Variability in the decision
process would have to be assumed, but there could also be variability in the activation process.
However, there is no guarantee (without a comprehensive study) that an integration of
interactive activation and the diffusion model could provide adequate quantitative fits to data.

Activation–Verification Model
The activation–verification model (Paap & Johansen, 1994; Paap, McDonald, Schvaneveldt,
& Noel, 1987; Paap, Newsome, McDonald, & Schvaneveldt, 1982) is a two-phase model.
When a string of letters is input to the system, letter and then word representations are activated,
with the amount of activation based on confusion matrices among letters. If the activation value
of a word passes a criterial value, it is considered in the second, serial search, phase. In the
serial search, words are considered one at a time in decreasing order of their frequency. If the
match between the input letter string and a word reaches some criterial value, a “word” response
is generated. If the match exceeds the criterion for none of the words, a “nonword” response
is generated. Errors come from nonwords activating words that then pass the criterion in the
serial search (false alarms) or cases in which all the candidate words activated by a word fall
below the criterion used in the serial search (misses). Variability in processing comes about
from item differences. The same item on each trial will produce the same activation value and
the same candidate list of words for the serial search, but different items from the same word
class will produce different activation values and different lists of candidate words on different
trials. (There is a second possible decision process in which a decision is based on letter
representations alone, but this has not been implemented and so we do not consider it here.)

The serial search based on frequency gives the model word frequency effects on mean RTs,
but it shares the problems described earlier for serial search models; for example, it has no
mechanism to account for errors faster than correct responses.

The activation–verification model uses confusability matrices between letters (data from
subjects’ performance in letter identification) to generate activation values, and so it can make
predictions about individual test items. If the activation values were used to directly determine
drift rate in a diffusion process (deleting the serial search phase of the model), then it is possible
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that the composite model could produce correct qualitative predictions for the dependent
variables. However, some elaboration of the model would be needed to deal with the effects
of type of nonword.

Dual Dictionary Model
The dual dictionary model (Glanzer & Ehrenreich, 1979) explains word frequency effects by
assuming two lexicons: One is a fast access lexicon that contains only high-frequency words
and yields short RTs, and the second is a slower access lexicon that contains all words. A
nonword response can be generated only after failure to find a match in either lexicon. No
specific proposals have been made about how errors arise.

The data from Experiments 5 and 6 provide particular problems for the model. In Experiment
5, there was a large proportion of high-frequency words, whereas in Experiment 6, there was
a large proportion of very low-frequency words. A large proportion of very low-frequency
words should cause the system to search the all-words lexicon on all trials, and so there should
be no advantage to high-frequency words. However, high-frequency words were significantly
faster than very low-frequency words in both experiments, by amounts that were not too
different.

Information Pathways and Strategic Control Frameworks
G. O. Stone and Van Orden (1993) examined two frameworks for explaining performance in
the lexical decision task. The first suggests that the lexical processing system is made up of
several independent modules, each of which deals with a different kind of information (e.g.,
phonological or orthographic), and the system can select, for any given task, which modules
(or “information pathways”) give productive output. In the lexical decision task, different
modules could be selected for distinguishing words from random letter strings than for
distinguishing words from pseudowords.

The second framework proposes a fixed processing system, and parameters are adjusted by
strategic control for different tasks and different contexts within tasks, such as the use of
random letter strings versus pseudowords. The decision process Stone and Van Orden
considered was a random walk, and they examined the effects on RTs and accuracy values of
altering the rate of accumulation of evidence and the response criteria settings. The diffusion
model presented here can be viewed as an instantiation of this framework. The only required
addition would be the use of either the two-dimensional signal-detection representation
presented in Figure 4 or something that served the same purpose. This would provide
differences in drift rate as a function of type of nonword. A combination of the pathways and
random walk/diffusion models should be capable of dealing with all the aspects of the data for
the experiments presented here, but as we have noted in discussing other models, quantitative
fits to data would be necessary for complete evaluation.

The Dual Route Cascaded (DRC) Model
Coltheart, Rastle, Perry, Langdon, and Ziegler (2001) proposed the DRC model as an updated
version of Coltheart et al.’s (1977) model. The model implements word recognition processes
with two routes between letter inputs and an output phonemic system (see also Coltheart,
Curtis, Atkins, & Haller, 1993; Morton, 1979), one a direct grapheme to phoneme route and
the other through orthographic and phonemic lexicons. The second route includes letter units,
orthographic units, phonological units, and phonemic units, structured as a local connectionist
network. The DRC model has been applied to a much wider domain than lexical decision,
including word naming and the effects of various cognitive impairments on naming
performance. The application to lexical decision is identical to Grainger and Jacobs’s (1996)
model. Activation levels for individual words and a value of global activation are computed
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from the orthographic output layer, with separate response criteria. Nonword responses are
produced from a time deadline, and errors occur because of variability in the criteria across
trials.

The computational framework of this model, excluding the decision mechanism, could be
consistent with the diffusion model in the same way as Grainger and Jacobs’s (1996) model.
Degrees of wordness would be computed for words and nonwords, and wordness values would
enter the diffusion decision process as drift rate. As in the two-dimensional representation
scheme in Figure 4, wordness values for words would have to be reduced when the nonwords
were random letter strings as opposed to when the nonwords were pseudowords. Note that as
for all the earlier combinations of lexical models with the diffusion model, there is no guarantee
that the combination of this model and the diffusion model would produce the correct
quantitative behavior.

Distributed Connectionist Models
Seidenberg and McClelland’s (1989) system is made up of an input layer of orthographic nodes,
a hidden layer of nodes, and an output layer of phonological nodes. During word learning, for
each word input to the system, a pattern of activation is entered into the input nodes. Activation
flows from the input orthographic nodes through the hidden nodes to the phonological nodes
and back to the orthographic nodes. The output activation patterns at the orthographic and
phonological layers are compared with “teacher” target patterns (one for the orthographic
representation and one for the phonological representation), and the differences between them
are used to adjust the weights of the connections among all the nodes using the back-
propagation algorithm. High-frequency words are presented to the system more frequently
during training and so are better learned. During test trials, activation from an input string of
letters flows from the orthographic units to the phonological units and back to the orthographic
units. The degree of match between the input and the internally generated output drives the
decision process. If the match value is above a criterion, a “word” response is produced, and
if not, a “nonword” response is produced. To account for the effects of type of nonword,
Seidenberg and McClelland (1989) proposed that when the nonwords are pseudowords,
phonological as well as orthographic output is assessed, but this was not implemented (see the
critique by Besner et al., 1990, and the reply by Seidenberg & McClelland, 1990). Error
responses come from high-match values when nonwords are presented and low-match values
when a word is presented. The model does not have an explicit mechanism to produce RTs,
although Seidenberg and McClelland (1989) suggested that degree of match might map onto
rate of accumulation of evidence in a manner similar to Ratcliff’s (1978) diffusion model. With
such an output process, correct and error responses and their distributions could be predicted.

Plaut (1997) recently updated this approach by adding a layer of semantic nodes to the layers
of orthographic and phonological nodes. He proposed that a measure of semantic stress based
only on activity in the semantic nodes could be used as the basis for lexical decisions, with the
value of semantic stress driving a stochastic decision process that provides accuracy and
reaction time measures. However, the use of the semantic nodes alone to provide a value of
drift rate would not produce the drop in drift rate for low- and very low-frequency words when
pseudowords are used instead of random letter strings. If drift rate could also be partly
determined by outputs from the orthographic or phonological layers, and the relative
importance of semantic versus orthographic or phonological output could be adjusted, then the
model could be qualitatively consistent with the effects of type of nonword. But as with all the
other models discussed, the resulting model would have to be fit to data to determine whether
it can produce correct quantitative predictions.
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Familiarity–Recheck Model
Balota and Chumbley (1984, 1990) have argued that word frequency effects are a by-product
of the decision process in the lexical decision task and not a consequence of the way the mental
lexicon is organized or accessed. They proposed a model inspired by signal-detection theory
in which the familiarity values of words and nonwords are distributed normally, with higher
frequency words having higher familiarity than lower frequency words. The two distributions
are assumed to be separated but overlapping. For the decision process, two criteria are set on
the familiarity dimension. If the familiarity value of a string of letters is above the upper
criterion, a positive response is initiated, and if it is below the lower criterion, a negative
response is initiated. If the familiarity value is between the two criteria, an extra, slow
rechecking process is needed. Errors could arise from three sources: word familiarity below
the lower criterion or nonword familiarity above the upper criterion; failure in the rechecking
process; or guesses, which occur after a time deadline on the rechecking process. Word
frequency effects are explained as shifts in the familiarity distributions. High-frequency words
have a higher mean familiarity value and so they are more likely to exceed the upper criterion,
which gives them faster RTs. This model was not tested quantitatively, and additional
assumptions would have to be added to do so. Mainly, the model served as a vehicle with which
to argue that qualitative explanations of lexical decision data do not have to depend on lexical
structure or lexical access processes.

Recently, Balota and Spieler (1999; see also Andrews & Heathcote, 2001) examined RT
distributions in the lexical decision task and attempted to account for their behaviors as a
function of repetition and frequency with several two-stage models. The simple versions of the
models were shown to be inadequate. For example, in one model, the time required for the
familiarity stage was assumed to have a Gaussian distribution and the time required for the
rechecking stage was assumed exponential, giving a combined RT distribution of the
convolution of the Gaussian and exponential distributions. The model Balota and Spieler
supported was a hybrid model in which familiarity values are assumed to be normally
distributed. Words of different frequencies come from different familiarity distributions, with
the means of the distributions shifted as a function of frequency. If the familiarity of a word is
larger than the upper criterion, RT for that word is obtained from a normal distribution, with
its mean a function of word frequency. If the familiarity value is below the lower criterion, RT
is randomly selected from normal distribution (for nonword responses). If familiarity is
between the upper and lower criteria, RT is sampled from an ex-Gaussian distribution, the
same ex-Gaussian regardless of word frequency. With this model, Balota and Spieler were able
to account for the shapes of RT distributions for correct responses to words and nonwords as
a function of word frequency and repetition.

Balota and Spieler (1999) noted that the model did not provide an account of error rates or
error RTs, and they discussed possible alternatives to it. Their general conclusion was that any
model of the lexical decision task should address RT distributions. The diffusion model does
that, with a more integrated approach than their hybrid model.

Conclusion
Application of the diffusion model to the data from Experiments 1 through 9 produces a simple,
perhaps even boring, picture: Performance in the lexical decision task is a matching process
in which noisy evidence is accumulated over time, with the quality of the evidence for a string
of letters derived from a two-dimensional representation of how wordlike the string is. In this
framework, the lexical decision task does not provide a window into the complexities of lexical
processing. Models of lexical processing make contact with the diffusion model by producing
outputs that can be interpreted in terms of a two-dimensional representation. The interpretation

Ratcliff et al. Page 27

Psychol Rev. Author manuscript; available in PMC 2006 March 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of data offered by the diffusion model is much simpler and much less mysterious than has been
the case with many alternative theoretical accounts of processing.

The data presented in this article are similar to data reported in a number of articles on lexical
decision. The data served as a base for testing the diffusion model, and the model provides
good quantitative fits for all aspects of the data. Drift rates measure the degree to which a
stimulus is wordlike—its wordness. With a simple two-dimensional signal-detection model,
it is possible to qualitatively describe the relative wordness values for various types of words
and nonwords and how those values are affected by whether the nonwords in an experiment
are pseudowords or random letter strings. One aim for future research is to determine whether
any current word recognition models can produce the right numerical values of degree of
wordness to map into drift rates such that all the aspects of the data can be accommodated.

Coltheart et al. (2001) listed experimental results that they considered to be benchmark
phenomena that any model of lexical decision must explain; all of them concerned the effects
of experimental variables on mean RT for correct responses to words and nonwords. The only
variables on the list that we have not addressed are those involving the size and makeup of a
word’s lexical neighborhoods. We expect that neighborhood variables, like word frequency
and type of nonword, have their effects on drift rate. More important, we add to Coltheart et
al.’s list the full range of the dependent variables in the lexical decision task: accuracy values,
RT distributions, and the relative speeds of correct and error responses.

One of the major problems with models of the lexical decision task has been that none of them
has been quantitatively fit to the full range of data. The nearest that any of the models has come
is to provide simulations of patterns of results that qualitatively match some aspects of data
(e.g., Grainger & Jacobs, 1996). Thus, we cannot be sure that any of the models are actually
capable of accounting for even those aspects of the data that they have attempted to explain.
And even if the predictions of the models for some aspects of the data are correct, predictions
for RT distributions, accuracy, and error RTs likely would not match the data.

In summary, application of the diffusion model to lexical decision data shows that the major
effects of word frequency, type of nonword, and repetition are all captured by a single
component of processing: drift rate. The consequence is that RT data, which early in the
development of models of lexical access appeared to provide information about lexical
structure, do not provide such information after all. All that RT data, in conjunction with the
other aspects of the data, provide is a single value of the degree of match of a stimulus to the
lexicon, with experimental variables changing the degree of match value. From the perspective
of modeling the lexicon, this means that we can focus on models that simply hand the decision
process a single value of goodness of match and not on models that base complicated decision
processes on various streams of information in competition with each other or models that
search different parts of the lexicon, unless these models can ultimately provide a single value
of goodness of match.
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Figure 1.
The relationship between data, the diffusion model fits, drift rates, and models of word
identification. The diffusion model fits the data and provides values of drift rate that represent
how wordlike the stimulus is. The word identification models need to produce values of drift
rate to provide a complete description of the data. A complete model would represent lexical
processing, which would produce drift rates to feed into the diffusion model to produce
predicted values of the dependent measures. RT distribs. = response time distributions.
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Figure 2.
An illustration of the diffusion model. A: Two sample paths that illustrate the variability in
information accumulation from trial to trial. B: Illustration of how distribution shape changes
as drift rates decrease. If the fastest and slowest processes are both slowed by x, the fastest
responses are slowed a little (leading edge of the distribution) and the slowest responses are
slowed a lot (tail). C: Effect of averaging response times (RTs) for two drift rates, v1 and v 2,
when the starting point is midway between the two boundaries. Error responses are slower than
correct responses because more slow responses are averaged with fewer fast responses. D:
Effect of averaging RTs for two values of starting points, a/2 − sz and a/2 + sz. Error responses
are faster than correct responses because more fast errors are averaged with fewer slow errors.
a = boundary separation; z = starting point; sz = range of distribution of starting point; Pr =
probability.
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Figure 3.
Empirical and predicted .1, .3, .5, .7, and .9 quantiles for the response time (RT) distributions
in Experiments 1 and 2. The ×s are quantile RTs plotted against accuracy values calculated
from the data. The +s are the predicted values from the model with the best-fitting parameter
values. The dark gray dots show variability from Monte Carlo simulations based on the model,
and the light gray dots show variability from bootstrap simulations from the data. The light
gray dots also represent variability that would be expected if the experiment was replicated
with new subjects.
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Figure 4.
Top: An illustrative two-dimensional signal-detection view of distances between the different
kinds of stimuli in the experiments. HF = high-frequency words, LF = low-frequency words,
VLF = very low-frequency words, PW = pseudowords, and RL = random letter strings. When
the negative items are random letter strings, the distance between LF and negative items is x
and is greater than y, the distance between LF and negative items when the negative items are
pseudowords. Bottom: An illustration of how distances in the two-dimensional signal-detection
space would map into drift rate in the diffusion model, the left panel with pseudowords and
the right panel with random letter strings. In contrast, the distance between HF and VLF is
larger when the negative items are pseudowords (distance v) than when they are random letter
strings (distance u).
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Table 1
Parameters of the Diffusion Model

Parameter Description

a Boundary separation
z Starting point
sz Variability in starting point across trials (range of a uniform distribution)
Ter Nondecision component of response time (e.g., encoding, response output)
st Variability in nondecision component of response time across trials (range of a uniform distribution)
v Drift rate (one for each experimental condition)
η Variability in drift rate across trials (standard deviation of a normal distribution)
s Variability in drift within each trial (standard deviation), a scaling parameter
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Table 2
Numbers of Words in the Stimulus Pools per Number of Letters and Type of Stimulus

Number of letters

Type of stimulus 4 5 6 7 8 9 10 Total

High-frequency 228 190 142 115 66 43 15 800
Low-frequency 81 125 185 172 135 93 6 800
Very low-frequency 144 106 97 173 144 46 31 741
Random letter strings 226 210 212 230 172 91 26 1,167

Psychol Rev. Author manuscript; available in PMC 2006 March 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ratcliff et al. Page 38

Table 3
Results From Experiments 1–6 as a Function of Stimulus Type

Error mean RT (ms) Correct mean RT (ms) Probability correct Correct RT at .1
quantile (ms)

Type of stimulus Data SE Model Data SE Model Data SE Model Data Model

Experiment 1: HF, LF, and VLF words and pseudowords
Pseudowords 698 24 668 661 14 650 .928 .

011
.889 492 484

High-frequency 636 72 593 571 9 570 .971 .
008

.984 453 458

Low-frequency 682 25 674 639 9 642 .910 .
021

.900 487 479

Very low-frequency 686 24 711 679 12 683 .804 .
023

.785 497 489

Experiment 2: HF, LF, and VLF words and random letter strings
Random letter strings 591 39 606 575 15 582 .956 .

010
.957 432 432

High-frequency 497 10 514 549 12 556 .968 .
006

.973 433 434

Low-frequency 590 48 566 589 14 591 .951 .
010

.943 446 443

Very low-frequency 625 37 599 609 16 614 .931 .
011

.915 451 448

Experiment 3: HF and LF words and pseudowords
Pseudowords 623 21 602 653 18 631 .928 .

008
.910 488 468

High-frequency 553 23 554 582 15 587 .972 .
008

.963 447 457

Low-frequency 647 22 653 657 16 675 .845 .
020

.821 487 476

Experiment 4: HF and LF words and random letter strings
Random letter strings 555 13 557 563 18 552 .962 .

005
.957 422 423

High-frequency 519 17 512 557 15 550 .962 .
006

.957 429 430

Low-frequency 546 20 575 595 16 597 .945 .
006

.928 443 439

Experiment 5: HF, LF, and VLF words and pseudowords (high proportion of HF words)
Pseudowords 713 29 691 714 20 713 .940 .

009
.914 513 498

High-frequency 595 31 575 618 20 606 .967 .
003

.987 466 470

Low-frequency 715 31 702 707 23 724 .895 .
011

.902 507 598

Very low-frequency 741 25 776 768 27 788 .782 .
018

.785 518 509

Experiment 6: HF and VLF words and pseudowords (high proportion of VLF words)
Pseudowords 775 51 750 744 27 770 .912 .

025
.910 549 544

High-frequency 575 34 565 649 22 616 .961 .
010

.955 499 501

Very low-frequency 770 44 739 749 29 761 .831 .
030

.835 548 534

Note. RT = response time; HF = high-frequency; LF = low-frequency; VLF = very low-frequency.
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Table 4
Fast and Slow Subjects’ Mean RTs for Experiments 1, 3, and 5

Fast subjects Slow subjects

Type of stimulus Probability correct Correct RT (ms) Error RT (ms) Probability correct Correct RT (ms) Error RT (ms)

Pseudowords .925 614 601 .937 728 748
High-frequency .949 543 505 .972 628 623
Low-frequency .841 614 594 .912 711 753

Note. RT = response time.
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Table 5
RT Distributions for Correct Responses, Experiments 1–6

Data (quantile RTs; ms) Model (quantile RTs; ms)

Type of stimulus .1 .3 .5 .7 .9 .1 .3 .5 .7 .9

Experiment 1: HF, LF, and VLF words and pseudowords
Pseudowords 492 556 613 691 884 484 550 608 690 869
High-frequency 453 501 542 591 710 458 512 554 602 701
Low-frequency 487 547 597 670 841 479 544 601 681 858
Very low-frequency 497 565 632 717 912 489 561 629 729 950

Experiment 2: HF, LF, and VLF words and random letter strings
Random letter strings 432 489 536 597 745 432 489 538 604 749
High-frequency 433 482 526 575 684 434 486 528 580 683
Low-frequency 446 502 552 616 762 443 501 551 618 761
Very low-frequency 451 511 566 640 817 448 510 566 642 811

Experiment 3: HF and LF words and pseudowords
Pseudowords 488 557 612 691 865 468 536 596 677 844
High-frequency 447 505 550 608 746 457 518 567 627 746
Low-frequency 487 557 618 700 875 476 552 624 727 946

Experiment 4: HF and LF words and random letter strings
Random letter strings 422 475 523 585 737 423 474 521 585 721
High-frequency 429 481 523 577 724 430 480 525 584 705
Low-frequency 443 502 551 617 790 439 498 556 635 809

Experiment 5: HF, LF, and VLF words and pseudowords (high proportion of HF words)
Pseudowords 513 588 658 752 987 498 580 655 760 984
High-frequency 466 521 571 636 812 470 535 586 646 766
Low-frequency 507 583 651 745 972 498 581 659 769 1,006
Very low-frequency 518 613 699 826 1,087 509 602 698 839 1,143

Experiment 6: HF and VLF words and pseudowords (high proportion of VLF words)
Pseudowords 549 631 708 813 1,076 544 622 695 797 1,026
High-frequency 499 561 609 690 876 501 562 610 669 799
Very low-frequency 548 629 714 828 1,099 534 616 697 820 1,102

Note. RT = response time; HF = high-frequency; LF = low-frequency; VLF = very low-frequency.
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Table 6
Diffusion Model Best-Fitting Parameters for Experiments 1–7

Experiment a Ter η Sz vr vp vh vl vv st z

1 0.110 0.435 0.070 0.004 −0.213 0.396 0.216 0.128 0.159 0.056
2 0.125 0.407 0.123 0.076 −0.358 0.477 0.368 0.312 0.133 0.066
3 0.112 0.433 0.014 0.054 −0.235 0.337 0.151 0.164 0.056
4 0.120 0.394 0.101 0.072 −0.350 0.392 0.274 0.110 0.063
5 0.127 0.438 0.035 0.046 −0.198 0.368 0.183 0.104 0.179 0.063
6 0.130 0.466 0.081 0.004 −0.215 0.360 0.138 0.171 0.060
7 0.131 0.402 0.086 0.025 −0.401 −0.164 0.390 0.255 0.158 0.146 0.063

Note. a = boundary separation; Ter = nondecision component of response time (RT); η = standard deviation in drift rate across trials; sz = range of
distribution of starting point; vr = drift rate for random letter strings; vp = drift rate for pseudowords; vh = drift rate for high-frequency words; vl = drift
rate for low-frequency words; vv = drift rate for very low-frequency words; st = range of distribution in the nondecision component of RT; z = starting
point.
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Table 7
Summary of Results and Fits of the Diffusion Model for Experiment 7

Error mean RT (ms) Correct mean RT (ms) Probability correct Correct RT at .1
quantile (ms)

Type of stimulus Data SE Model Data SE Model Data SE Model Data Model

Random letter strings 568 12 546 579 13 576 .970 .
008

.987 443 450

Pseudowords 708 29 754 743 19 716 .867 .
015

.841 501 486

High-frequency — — 621 575 13 571 .980 .
007

.989 443 444

Low-frequency 673 24 715 635 16 641 .940 .
007

.946 467 462

Very low-frequency 798 30 777 680 22 705 .838 .
012

.851 477 477

Note. Dashes indicate that there were no observations for many of the subjects. RT = response time.
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Table 8
RT Distributions for Correct Responses for Experiments 7–9

Data (quantile RTs; ms) Model (quantile RTs; ms)

Type of stimulus .1 .3 .5 .7 .9 .1 .3 .5 .7 .9

Experiment 7: HF, LF, and VLF words, random letter strings, and pseudowords
Random letter strings 443 495 542 600 746 450 506 550 607 725
Pseudowords 501 592 680 798 1,061 486 565 646 765 1,033
High-frequency 443 497 537 593 730 444 499 544 599 720
Low-frequency 467 530 586 659 857 462 528 588 675 874
Very low-frequency 477 550 619 718 961 477 553 632 752 1,023

Experiment 8: HF, LF, and VLF words and pseudowords (1 and 2 presentations)
Pseudowords (1) 506 574 632 716 940 495 560 620 705 894
Pseudowords (2) 509 577 636 721 942 496 563 625 714 912
High-frequency (1) 472 525 570 635 779 479 535 581 641 769
Low-frequency (1) 512 580 639 725 913 498 566 631 726 936
Very low-
frequency (1)

520 609 677 772 984 506 580 657 770 1,020

High-frequency (2) 462 509 552 602 736 474 527 569 621 729
Low-frequency (2) 487 543 591 653 840 488 550 603 678 843
Very low-
frequency (2)

503 565 616 694 890 496 563 626 717 919

Experiment 9: HF, LF, and VLF words and random letter strings (1 and 2 presentations)
Random letter strings
(1)

417 470 517 577 730 417 470 517 582 727

Random letter strings
(2)

418 472 516 577 721 417 470 517 582 727

High-frequency (1) 415 465 506 564 688 420 470 512 567 684
Low-frequency (1) 431 487 533 593 735 425 479 528 593 737
Very low-
frequency (1)

432 491 548 622 802 430 488 543 620 790

High-frequency (2) 412 464 507 554 676 419 468 509 562 674
Low-frequency (2) 421 471 516 570 696 423 475 521 581 712
Very low-
frequency (2)

426 482 526 582 724 424 476 523 585 719

Note. RT = response time; HF = high-frequency; LF = low-frequency; VLF = very low-frequency. (1) = 1 presentation; (2) = 2 presentations.
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Table 9
Summary of Results and Fits of the Diffusion Model for Experiments 8 and 9

Error mean RT (ms) Correct mean RT (ms) Probability correct Correct RT at .1
quantile (ms)

Type of stimulus Data SE Model Data SE Model Data SE Model Data Model

Experiment 8: HF, LF, and VLF words and pseudowords (1 and 2 presentations)
Pseudowords (1) 729 34 684 683 13 666 .940 .

009
.902 506 494

Pseudowords (2) 726 38 692 686 13 674 .921 .
011

.887 509 496

High-
frequency (1)

607 31 625 610 16 608 .966 .
005

.970 472 479

High-
frequency (2)

— — 602 586 16 590 .971 .
007

.982 462 474

Low-
frequency (1)

668 33 708 684 17 683 .865 .
017

.865 512 498

Low-
frequency (2)

669 39 664 632 17 642 .928 .
012

.937 487 488

Very low-
frequency (1)

707 34 741 721 19 720 .751 .
021

.752 520 506

Very low-
frequency (2)

725 33 700 660 19 676 .876 .
017

.881 503 496

Experiment 9: HF, LF, and VLF words and random letter strings (1 and 2 presentations)
Random letter
strings (1)

537 16 554 556 12 558 .953 .
006

.949 417 418

Random letter
strings (2)

534 20 555 554 11 559 .949 .
008

.949 418 418

High-
frequency (1)

523 24 508 541 12 545 .968 .
005

.961 415 420

High-
frequency (2)

489 16 504 535 12 541 .961 .
005

.965 412 419

Low-
frequency (1)

521 21 535 564 12 568 .947 .
007

.936 431 425

Low-
frequency (2)

490 17 523 545 11 557 .952 .
005

.948 421 423

Very low-
frequency (1)

556 19 563 592 13 590 .917 .
006

.901 432 430

Very low-
frequency (2)

523 16 526 558 13 561 .938 .
007

.945 426 424

Note. Dashes indicate that there were no observations for many of the subjects. RT = response time; HF = high-frequency; LF = low-frequency; VLF =
very low-frequency; (1) = 1 presentation; (2) = 2 presentations.
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Table 10
Diffusion Model Best-Fitting Parameters for Experiments 8 and 9

Experiment a Ter η sz vr vp vh vl vv st z

8, 1st presentation 0.115 0.441 0.066 0.024 −0.218 0.334 0.181 0.109 0.003 0.057
8, 2nd presentation 0.115 0.441 0.066 0.024 −0.203 0.384 0.260 0.195 0.003 0.057
9, 1st presentation 0.117 0.389 0.076 0.061 −0.320 0.394 0.325 0.267 0.122 0.058
9, 2nd presentation 0.117 0.389 0.076 0.061 −0.320 0.408 0.355 0.346 0.122 0.058

Note. a = boundary separation; Ter = nondecision component of response time (RT); η = standard deviation in drift rate across trials; sz = range of
distribution of starting point; vr = drift rate for random letter strings; vp = drift rate for pseudowords; vh = drift rate for high-frequency words; vt = drift
rate for low-frequency words; vv = drift rate for very low-frequency words; st = range of distribution in the nondecision component of RT; z = starting
point.
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Table 11
RT Distributions for Error Responses

Data (quantile RTs; ms) Model (quantile RTs; ms)

Type of stimulus .1 .3 .5 .7 .9 .1 .3 .5 .7 .9

Experiment 1: HF, LF, and VLF words and pseudowords
Pseudowords 467 548 629 747 1,008 485 555 619 712 917
Low-frequency 480 545 627 723 952 479 554 625 719 924
Very low-frequency 476 553 624 732 984 498 576 651 763 1,005

Experiment 3: HF and LF words and pseudowords
Pseudowords 444 517 585 701 891 450 514 566 640 803
High-frequency 429 465 526 570 731 437 492 536 587 697
Low-frequency 464 531 597 693 906 463 535 601 700 916

Experiment 4: HF and LF words and random letter strings
Random letter strings 406 436 481 534 661 416 464 510 583 764
High-frequency 394 432 481 588 766 401 443 478 531 672
Low-frequency 412 446 498 576 771 408 455 498 572 762

Experiment 5: HF, LF, and VLF words and pseudowords (high proportion of HF words)
Pseudowords 465 543 637 758 1,056 483 560 632 737 970
High-frequency 444 502 548 618 757 451 509 555 606 713
Low-frequency 476 560 635 762 1,020 486 565 640 751 997
Very low-frequency 483 577 675 790 1,104 503 594 692 839 1,162

Experiment 6: HF and VLF words and pseudowords (high proportion of VLF words)
High-frequency 499 551 600 670 856 539 614 682 778 989
Very low-frequency 565 675 777 913 1,204 571 670 775 929 1,263

Experiment 7: HF, LF, and VLF words, random letter strings, and pseudowords
Pseudowords 486 562 635 771 1,019 457 539 636 792 1,151
Low-frequency 445 527 588 709 972 457 531 612 738 1,037
Very low-frequency 510 629 734 870 1,162 478 572 681 849 1,221

Experiment 8: HF, LF, and VLF words and pseudowords (1 and 2 presentations)
Pseudowords (1) 492 564 649 776 1,064 495 563 629 726 943
High-frequency (1) 488 539 591 626 748 480 539 589 657 807
Low-frequency (1) 498 567 617 692 878 501 574 646 754 992
Very low-frequency 508 579 659 750 950 509 587 670 794 1,065
Pseudowords (2) 492 581 649 787 1,028 494 560 619 705 894

Note. RT = response time; HF = high-frequency; LF = low-frequency; VLF = very low-frequency. (1) = 1 presentation; (2) = 2 presentations.
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