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Objective: A family history of Alzheimer’s disease (AD) increases the risk of developing AD and can
influence the accumulation of well-established AD biomarkers. There is some evidence that family
history can influence episodic memory performance even in cognitively normal individuals. We at-
tempted to replicate the effect of family history on episodic memory and used a specific computational
model of binary decision making (the diffusion model) to understand precisely how family history
influences cognition. Finally, we assessed the sensitivity of model parameters to family history control-
ling for standard neuropsychological test performance. Method: Across 2 experiments, cognitively
healthy participants from the Adult Children Study completed an episodic recognition test consisting of
high- and low-frequency words. The diffusion model was applied to decompose accuracy and reaction
time (RT) into latent parameters which were analyzed as a function of family history. Results: In both
experiments, individuals with a family history of AD exhibited lower recognition accuracy and this
occurred in the absence of an apolipoprotein E (APOE) ε4 allele. The diffusion model revealed this
difference was due to changes in the quality of information accumulation (the drift rate) and not
differences in response caution or other model parameters. This difference remained after controlling for
several standard neuropsychological tests. Conclusions: These results confirm that the presence of a
family history of AD confers a subtle cognitive deficit in episodic memory as reflected by decreased
drift rate that cannot be attributed to APOE. This measure may serve as a novel cognitive marker
of preclinical AD.
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There is a growing body of evidence indicating that Alzheimer’s
disease (AD) pathology can accumulate decades before the onset
of clinically detectable symptoms (Bateman et al., 2012; Price &
Morris, 1999; Price et al., 2009). Therefore, it is critical to char-
acterize this preclinical phase of the disease to understand an

individual’s risk of developing dementia and to monitor behavioral
profiles that may be targets for treatments as they become avail-
able. For these reasons, substantial research effort has been de-
voted to identifying biological and cognitive markers that herald
the onset of symptomatic AD.

One approach to characterizing preclinical AD is to examine the
profile of biomarkers in individuals who have a genetic predispo-
sition to developing the disease. The primary genetic risk factor for
AD is the presence of the apolipoprotein E (APOE) ε4 allele
(Saunders et al., 1993). Individuals who possess this allele exhibit
abnormal biomarker levels compared with ε4 negative participants
(Morris et al., 2010; Storandt, Head, Fagan, Holtzman, & Morris,
2012) and also show slight deficits on tests of executive function-
ing and episodic memory performance as shown by several meta-
analyses (Small, Rosnick, Fratiglioni, & Backman, 2004; Wisdom,
Callahan, & Hawkins, 2011). In addition to APOE, other genetic
factors contributing to AD risk have been identified (Bertram et
al., 2007; Hollingworth et al., 2011; Naj et al., 2011). Such factors
can be examined by testing individuals who have a family history
for AD. Indeed, having at least one first degree relative with AD
substantially increases an individual’s risk of also developing the
disease (Donix, Small, & Bookheimer, 2012; Huang, Qiu, von
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Strauss, Winblad, & Fratiglioni, 2004; Jayadev et al., 2008; Mar-
tinez et al., 1998).

It is important to note that factors associated with family history
(hereafter called the “family history effect”) have been shown to
affect many of the neurobiological indicators of AD pathology
even in cognitively healthy individuals. These indicators include
changes in hippocampal structure (Donix et al., 2010), gray matter
volume (Honea, Swerdlow, Vidoni, Goodwin, & Burns, 2010),
white matter integrity (Bendlin et al., 2010; Xiong et al., 2011),
glucose metabolism (Mosconi et al., 2007), functional neural ac-
tivation during cognitive tasks (Johnson et al., 2006; Xu et al.,
2009), resting state functional connectivity (Wang et al., 2012),
and amyloid burden (Mosconi et al., 2010; Xiong et al., 2011).

Despite the relatively widespread effects of family history on
well-established biomarkers of AD, sensitive cognitive markers
have been more difficult to identify above and beyond the presence
of an APOE4 allele. When such effects are found, they tend to be
particularly subtle. For example, in one comprehensive study,
Xiong et al. (2011) examined the effect of family history on
measures of attention, memory, language, and processing speed
and generally found no differences with the exception of memory
for consonant trigrams. However, an earlier age of parental onset
of AD symptoms was correlated with greater global switch cost in
a consonant-vowel/odd-even switching task and also with lower
performance on the Similarities subtest of the Wechsler Adult
Intelligence Scale (Wechsler, 1997). Similarly, La Rue et al.
(2008) showed that family history was associated with subtle
differences in serial recall curves such that individuals with a
family history of AD tended to recall more recently presented
words (i.e., exhibited a greater recency effect) compared with no
history controls, despite having recalled an equal number of items
overall. Other studies have found little evidence for family history
effects on baseline assessments of standard neuropsychological
measures (e.g., Donix et al., 2010; Hayden et al., 2009; Johnson et
al., 2006; Mosconi et al., 2007; Okonkwo et al., 2012). It should be
noted that one study has shown relatively widespread family
history differences on composite measures of processing speed,
memory and executive functioning after controlling for APOE
genotype (Donix et al., 2012). However, this study included a
relatively small number of participants (23 family history� and
APOE�; 19 family history� and APOE�) and hence needs
replication and extension.

Although a positive family history overlaps highly with the
presence of an APOE ε4 allele (Zintl, Schmitz, Hajak, & Klun-
emann, 2009), it is likely that the effect of family history is
multifaceted and possibly indexes non-APOE genetic factors, such
as cerebrovascular disease or diabetes, or even nongenetic risk
factors, such as socioeconomic status, family size, education, or
cognitive reserve (Borenstein, Copenhaver, & Mortimer, 2006;
Jarvik et al., 2008). Thus, it is important to determine whether
family history confers additional cognitive risk that is independent
of that due to APOE. Relatively few studies have examined the
joint influence of family history and APOE genotype on cognitive
outcomes, but those that do have generally found no interaction
between family history and APOE (Donix et al., 2012; Hayden et
al., 2009; La Rue et al., 2008) suggesting that family history
presents an independent cognitive risk factor that is not captured
by APOE. However, another study did find evidence for an inter-
action on an episodic memory measure (Debette et al., 2009), such

that the influence of family history was particularly magnified in
APOE carriers compared with noncarriers. A similar pattern was
found by Bendlin et al. (2010); however, no formal test of the
interaction was performed. Thus, it is important to carefully de-
lineate the cognitive deficits conferred by family history in other-
wise healthy individuals to identify cognitive systems that are
vulnerable to early pathology and use measures of those systems as
a diagnostic tool and a marker of the effectiveness of interventions.

Although the exact nature of how family history and APOE
interact to influence cognition has not been firmly established,
according to recent estimates, 60% of individuals who develop
sporadic AD do not carry an APOE4 allele (http://www.nia.nih
.gov/sites/default/files/alzheimers_disease_genetics_fact_sheet_0
.pdf). Thus, it is critical to isolate the cognitive effect of the risk
factors that are indexed by family history, that are independent
of the contaminating, albeit subtle, influence of APOE (e.g.,
Wisdom et al., 2011). Therefore, in the present study, we have
chosen to examine individuals who do not carry the APOE4
allele to isolate the unique influence of family history on
cognitive measures.

Although accuracy measures have shown sensitivity to AD
pathology (Aschenbrenner et al., 2015; Duchek et al., 2013; Ro-
drigue et al., 2012; Sperling et al., 2013), such performance vari-
ables capture only the final outcome of a cascade of cognitive
processes and hence do not characterize the underlying processes
that occur before a response is executed. Measures of reaction time
(RT) can provide additional insight into the ongoing process that
ultimately leads to a correct or incorrect behavioral response. For
example, aspects of the RT distribution are particularly sensitive to
early-stage AD (Duchek et al., 2009, 2013; Tse, Balota, Yap,
Duchek, & McCabe, 2010) and they can predict later conversion to
symptomatic AD above and beyond standard neuropsychological
tests (Balota et al., 2010). Specifically, RT distributions are posi-
tively skewed and measures relating to the variability of the
slowest RTs show the most robust changes due to preclinical AD,
at least in standard measures of attentional control. Possibly, a
measure that combines all aspects of performance, including ac-
curacy and the shape of the RT distribution, will be particularly
sensitive to preclinical AD risk as indexed by family history.

Sequential sampling models combine accuracy and RT infor-
mation from binary decision tasks. The most well-known instan-
tiation of such models is Ratcliff’s (1978) diffusion model. The
diffusion model captures the proportion correct as well as the
shape of RT distributions for correct and erroneous responses
using four primary latent parameters (see Figure 1). As shown, the
model assumes the noisy accumulation of evidence toward a given
response boundary. In the context of an episodic recognition task
for example, the boundaries would correspond to “old” and “new”

Figure 1. Major parameters of the Ratcliff diffusion model.
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responses. The average rate of evidence accumulation is the drift
rate and this reflects the quality of evidence that is extracted from
the stimulus and accumulated across time. A higher drift rate will
result in better accuracy as well as in faster and less variable RTs.
Another primary parameter of the model is the boundary separa-
tion, which reflects response caution or the amount of evidence an
individual requires before outputting a response. Wider boundaries
correspond with slower RTs and higher accuracy. Other parame-
ters include the starting point, which indicates bias toward one
response over the other, and nondecision time, which captures
peripheral processes such as motor execution. The fit of the model
to experimental data can be improved by allowing for across trial
variability in these parameters. For example, the drift may not be
exactly identical across trials due to various factors such as fluc-
tuations in attention over time. Thus, drift rate is assumed to be
normally distributed with a variability parameter (�) and both start
point and nondecision time are drawn from a uniform distribution
with a width of sz and st0, respectively.

A key benefit of the diffusion model is its ability to provide
insight into underlying cognitive processes that cannot be identi-
fied from accuracy or RT data alone. The psychological interpret-
ability of these latent parameters has been well established (Voss,
Rothermund, & Voss, 2004). For example, when accuracy is
emphasized in the task instructions, boundaries are correspond-
ingly set to be wider (i.e., participants are more cautious), precisely
as one would expect. Furthermore, the drift rate parameter has
been strongly linked to individual difference measures including
IQ (Ratcliff, Thapar, & McKoon, 2010) and working memory
capacity (Schmiedek, Oberauer, Wilhelm, Sü�, & Wittmann,
2007), suggesting this parameter might index general cognitive
control mechanisms. In addition, the drift rate is strongly related to
the slow tail of the RT distribution, which has been shown to be
particularly sensitive to early-stage AD in previous studies
(Duchek et al., 2013; Tse et al., 2010). It is important to note that
the diffusion model can provide insight into group differences on
cognitive tasks without the confounding effects of differences in
scale or overall response speed (Faust, Balota, Spieler, & Ferraro,
1999).

The relationship among the model parameters makes it clear that
an examination of simple mean RTs or accuracy measures alone
only provides the first step in understanding the underlying cog-
nitive mechanisms. Indeed, a number of different configurations of
model parameters could result in virtually identical performance at
the level of either mean RT or overall accuracy (Voss, Nagler, &
Lerche, 2013). Furthermore, there is the potential for group effects
to manifest in “opposite” directions on different parameters and,
thus, cancel differences in mean performance. For example, the
deleterious effects of family history might manifest as a decreased
drift rate (increasing RTs and lowering accuracy), but given that
individuals are aware of their family history status they may
become more cautious and increase their boundary separation
(increasing both RTs and accuracy). Such a pattern would diminish
the power to detect group differences when only accuracy is
examined. This is precisely why it is important to have a process-
ing model for a given task, which the diffusion model provides.

The diffusion model has already been applied to examine the
influence of healthy aging on a number of basic tasks including
brightness discrimination, lexical decision and episodic recogni-
tion (Ratcliff, Thapar, & McKoon, 2004, 2010, 2011; Spaniol,

Madden, & Voss, 2006). The general pattern from these studies
suggests that aging primarily influences boundary separation and
nondecision time but not the drift rate. Critically, White, Ratcliff,
Vasey, and McKoon (2010) demonstrated that the drift rate pa-
rameter was more sensitive to group differences due to clinical
disorders than either accuracy or RT alone. This supports the use
of the diffusion model as an early detection tool in clinical settings.
No study has yet explored the utility of the diffusion model in
discriminating individuals at varying risk for developing AD.

The relative sensitivity of diffusion model parameters to pre-
clinical AD processes will likely depend on the particular task that
is administered and we focus here on episodic recognition perfor-
mance for two reasons. First, deficits in episodic memory perfor-
mance are often considered the hallmark cognitive characteristic of
AD (Albert, Moss, Tanzi, & Jones, 2001; Bäckman, Small, &
Fratiglioni, 2001; Hodges, 2000), which is not surprising given
that episodic retrieval depends on brain regions that are particu-
larly vulnerable to the AD pathologic processes (e.g., Braak &
Braak, 1991; Buckner et al., 2005). Second, as already mentioned,
the diffusion model has been applied to recognition performance in
healthy older adults and therefore we already have a good under-
standing of how model parameters should change with normal
aging in this task. Specifically, Ratcliff et al. (2004) presented
younger and older adults with high- and low-frequency items and
found that (a) boundary separation and nondecision time increased
with age, (b) drift rates tended to be higher for low-frequency
words and nonstudied items, and (c) drift rates did not change
significantly with age.

With this in mind, there were two primary goals of the present
study. First, because the effects of family history on cognition have
been sporadic in the literature, we were first interested in exam-
ining a relatively demanding episodic recognition test in demon-
strating sensitivity to family history in cognitively healthy con-
trols, without the potential confounding influence of an APOE4
allele, especially because the relative frequency of ε4 positive but
family history negative individuals is relatively rare. Second, we
evaluated the utility of applying the diffusion model to episodic
recognition performance in characterizing the specific cognitive
mechanisms that are affected in preclinical AD as defined by
family history. Given its relationship to accuracy and the shape of
the RT distribution, we expected the drift rate parameter of the
diffusion model would show the most robust differences due to
family history. However, it is possible that group differences may
emerge for other model parameters as well, particularly the bound-
ary separation. Although not of primary interest, we examined the
sensitivity of the diffusion model parameters to family history after
controlling for general neuropsychological test performance.
These analyses will provide a greater understanding of the cogni-
tive mechanisms that are changing in preclinical AD within a
well-defined model of episodic recognition performance.

In pursuit of these goals, participants studied a list of high- and
low-frequency words and were given a yes/no recognition test.
Low-frequency words have been shown to produce higher recog-
nition performance than higher frequency words (Glanzer & Ad-
ams, 1985). We chose to manipulate word frequency because of its
known effect on the drift rate (Ratcliff et al., 2004) to insure we
replicate these effects with the diffusion parameters, and because
there is some evidence that very mild AD individuals have lower
hit rates particularly for low-frequency words (Balota, Burgess,
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Cortese, & Adams, 2002). Hence, it is possible that low-frequency
words would be differentially sensitive to family history effects.

Experiment 1

Method

Participants. A total of 80 individuals with known family
history were recruited through the Charles F. and Joanne Knight
Alzheimer’s disease Research Center as part of the Adult Children
Study (ACS). This cohort represents a group of predominantly
cognitively healthy adults who are stratified based on presence of
a family history for AD. A positive family history (family his-
tory�) was defined as having at least one biological parent who
developed symptomatic AD prior to 80 years of age whereas a
negative family history (family history�) was defined as having
both parents live to age 70 with no symptoms of AD. If an
individual’s parents showed signs of AD after age 70, his or her
status was subsequently changed to family history positive. Paren-
tal AD was verified either by the parent being examined as part of
other ongoing longitudinal studies on AD at Washington Univer-
sity or by examination of medical records.

All participants were screened for dementia by highly trained
physicians using the Clinical Dementia Rating Scale (CDR: Mor-
ris, 1993). We were interested in cognitively healthy individuals
and, thus, only participants who were given a CDR score of 0
indicating no symptoms of AD were included in the present study.
The CDR is based largely on informant report of intraindividual
change in ability to carry out daily activities. This informant based
approach has been demonstrated to be highly sensitive in discrim-
inating nondemented individuals from even the earliest symptom-
atic stage of AD (Carr, Gray, Baty, & Morris, 2000; Galvin et al.,
2005). The diagnostic acumen of clinicians using the CDR has
been well-validated by the presence of AD neuropathology at
autopsy in 93% of the cases, including those in the earliest CDR
0.5 stage (Berg et al., 1998).

A comprehensive battery of neuropsychological tests was also
administered by an examiner who was blind to the participant’s
CDR rating. Depending on the age of the participant at entry into
the study, one of two neuropsychological test batteries was admin-
istered and tests that were administered in common included the
Mini Mental State Examination (MMSE: Folstein, Folstein, &
McHugh, 1975), a test of working memory using the Letter Num-
ber Sequencing subtest of the Wechsler Adult Intelligence Scale
(Wechsler, 1997), an episodic memory test using the Selective
Reminding Test (Grober, Buschke, Crystal, Bang, & Dresner,
1988), a test of semantic retrieval using Animals Naming (Good-
glass & Kaplan, 1983), and a test of visual-perceptual motor
performance using Trail Making A (Armitage, 1946). Tests of
associate learning and delayed recall were also administered but
the particular test varied slightly across batteries. For associate
learning, participants were given either the associate learning
subtest of the Wechsler Memory Scale (Wechsler & Stone, 1973)
or the Verbal Paired Associates test of the Wechsler Memory
Scale—III (Wechsler, 1997). For the delayed recall test, either the
Logical Memory Delayed recall from the Wechsler Memory
Scale—Revised (Wechsler, 1987) or Logical Memory Delayed
recall from the Wechsler Memory Scale—III (Wechsler, 1997)
was used. The raw scores on each of the versions of the two tasks
were standardized to allow for comparison across the batteries. It
is important to note that these tests have previously been shown to
discriminate healthy controls from mild and very mild dementia
(Morris et al., 1991; Storandt & Hill, 1989). A measure of exec-
utive function using Trail Making B (Armitage, 1946) was also
available and standardized across batteries in the same manner as
the memory tests.

The demographic variables and neuropsychological test scores
on these participants are presented in the left panel of Table 1. As
can be seen, the groups are quite similar and no reliable group
differences emerged on any of the measures. It is important to note
that the MMSE scores were very high (mean �29) which coupled

Table 1
Demographics of Participants for Experiment 1 and Experiment 2

Variable/test

Experiment 1 Experiment 2

Family history Family history

Negative (N � 47) Positive (N � 33) Negative (N � 44) Positive (N � 39)

M SD M SD M SD M SD

Age 66 6.6 64 8.5 65 8.4 64 7.6
Education 16.4 2.6 16.3 2.4 15.9 2.7 15.7 2.4
MMSE 29.3 1.1 29.2 1.1 29.2 1.0 29.6 1.8
Animal Naming 24 6.2 22 5.1 23 6.1 22 4.9
Trails A 29 8.9 28 6.1 27 9.2 28 7.5
Trails B 0.14 0.78 0.10 0.85 0.11 0.85 �.10 0.89
Letter Number 12 2.6 12 3.2 11 2.9 11 3.1
Selective Reminding 33 6.2 31 5.6 33 6.0 33 6.5
Associate Learning 0.38 0.95 0.28 0.91 0.34 0.97 0.22 0.94
Logical Memory Delayed 0.11 0.86 �0.5 0.73 0.30 0.78 �.04 0.81

Note. The range of possible scores for each test is as follows: Animal Naming � 0 and above; Trail Making A � 0–180 s; Letter Number Sequencing �
0–21; Selective Reminding � 0–48. For all tests, a higher score indicates better performance with the exception of Trail Making A, for which a higher
score indicates worse performance. The associate learning, logical memory delayed, and Trail Making B scores are z scored composites formed from two
versions of each task. The tasks were standardized to the mean and standard deviation of cohort’s first time completing each task. Higher scores indicate
better performance. MMSE � Mini Mental State Examination.
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with the statistically equivalent performance on the neuropsycho-
logical battery as well as the CDR 0 rating indicates these groups
were cognitively healthy.

APOE genotyping. APOE genotyping was performed using
Taqman assays (Applied Biosystems, Foster City, CA) for both
rs429358 (ABI#C_3084793_20) and rs7412 (ABI#C_904973_10).
Because the present study focuses on family history, independent
of APOE4 allele, all participants were negative for the ε4 allele
(ε22 � 1, ε23 � 14, ε33 � 65).

Recognition task. A total of 192 items were selected for the
recognition task. We used the HAL frequency (Balota et al., 2007;
Lund & Burgess, 1996) norms to designate 96 items as high
frequency (mean log HAL � 10.4), and 96 as low-frequency
(mean log HAL � 6.5). High- and low-frequency words were
matched with respect to overall word length. The items were then
split into two lists, study items and lure items, with equal numbers
of high- and low-frequency items represented in each list. Partic-
ipants were instructed that they would see a series of words appear
on the computer screen one at a time. They were asked to remem-
ber each item for a later memory test. The order of presentation of
the items was randomly determined for each participant. During
each study trial, the target word appeared in the center of the
screen and participants read the stimulus aloud into a microphone.
After detecting a voice onset, the computer initiated a 2-s stimulus
duration after which the next item was immediately presented.

After all study items were presented, the test phase began
immediately. Participants were instructed that words would again
appear, one at a time, in the center of the screen. They were to
determine if the item was “old” (i.e., presented on the study list) or
“new” (not presented on the study list) as quickly and as accurately
as possible. Old items were indicated by pressing the P key on the
computer keyboard and new items with the Q key. After each
response, the item was removed from the screen and a 1,250-ms
interval was initiated before the presentation of the next item.
Participants were not given feedback regarding performance and
order of presentation of items was randomly determined for each
individual.

Statistical analysis. We quantified recognition accuracy by
calculating signal detection for high- and low-frequency items.
Group differences in accuracy were analyzed using a 2 (family
history) � 2 (word frequency) mixed-effects analysis of variance
(ANOVA) and differences in RT with a 2 (family history) � 2
(word frequency) � 2 (type: old or new items) mixed-effects
ANOVA. Diffusion model parameters were analyzed using either
a 2 (family history) � 2 (frequency) �2 (type) ANOVA for drift
rate or simple one-way ANOVAs for the remaining model param-
eters (boundary, nondecision time, starting point). Generalized eta
squared (�G

2 ) is reported as a measure of effect size for the F tests.

Results

In order to ensure that the analyses were not unduly influenced
by extreme scores, before any inferential analyses were conducted,
we removed any RT that was faster than 300 ms or slower than
8,000 ms because these trials were likely fast guesses or attentional
lapses, respectively. Any RT that was greater than 3 standard
deviations away from the participant level mean was also removed.
This trimming procedure removed 2% of the total number of trials.

Accuracy analyses. The means for each group and condition
are presented in Table 2. As expected, recognition accuracy was
significantly higher for low-frequency words than high-frequency
words, F(1, 78) � 90.47, p 	 .001, �G

2 � .17. More important,
there was a significant main effect of group, F(1, 78) � 4.25, p �
.04, �G

2 � .043, indicating lower accuracy for family history�
participants. The interaction between frequency and family history
was reliable but quite small, F(1, 78) � 4.84, p � .03, �G

2 � .01,
indicating a larger effect of family history for low-frequency items
as expected based on Balota et al. (2002).

RT analyses. The mean RTs for high- and low-frequency hits
and correct rejections are presented in Table 3. Both the main
effects of word frequency, F(1, 78) � 42.8, p 	 .001, �G

2 � .012,
and word type, F(1, 78) � 10.14, p � .002, �G

2 � .03 were reliable,
indicating faster responses to low-frequency items and to old
items. However, there were few differences in the overall re-
sponses latencies as a function of family history. Specifically, the
main effect of family history was not significant, F(1, 78) 	 1, p �
.97, �G

2 � 0, and none of the higher order interactions reached
statistical significance.

The standard analyses were straightforward and quite in line
with our expectations. Low-frequency items were responded to
more quickly and accurately than high-frequency items. More
important for the present work, our analyses revealed a significant
effect of family history on recognition accuracy. However, as
mentioned, the examination of accuracy and RTs alone do not
provide a complete understanding of underlying cognitive mech-
anisms. The key strength of the diffusion model is to combine
accuracy and RT information into latent parameters that reflect
underlying cognitive processes. We now turn to a discussion of
these analyses.

Diffusion model analyses. Diffusion model estimates for the
individual participant raw data were obtained using the fast-dm
program developed by Voss and Voss (2007). This program re-
covers the optimal model parameters by minimizing the maximum
distance between the empirical cumulative distribution function
(CDF) and the CDF predicted by the model. There are other
methods of recovering model parameters. It is important to note
that in a simulation study, Ratcliff and Childers (2015) showed that
even with 40 trials per condition, the parameters recovered by
fast-dm correlated 
.6 with the parameters that were used to
simulate the data. These correlations were similar to or better than
other publically available fitting methods. The upper response
boundary was designated as “old” responses and the lower bound-
ary was designated as “new” responses. All parameters, including
across trial variability in the parameters (nondecision time, drift
rate and start point), were constrained to be constant across the

Table 2
Recognition Accuracy (Means and Standard Deviations) as a
Function of Family History in Experiment 1

Family history

HF d= LF d=

M SD M SD

Negative 2.05 0.66 2.75 0.69
Positive 1.91 0.60 2.35 0.51

Note. HF � high frequency; LF � low frequency.
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experimental manipulations (e.g., word frequency) with the excep-
tion of the drift rate.

Inferences that are drawn from a diffusion model analysis de-
pend critically on how well the parameters recovered by the model
accurately capture the empirical data. Following Ratcliff et al.
(2004), we assessed model fit by calculating the empirical .1, .3, .5,
.7, and .9 quantiles for correct responses and determining how
closely they match the same quantiles predicted by the model.
Figure 2 illustrates the model fit separately for the family history
negative participants (see left column) and the family history
positive participants (see right column) for each of the conditions.
The markers and standard error bars represent the empirical quan-
tile averaged across all participants in that group. The line repre-
sents the quantile that is predicted by the model parameters. As
shown in the Figure, overall the model did an excellent job of
capturing the observed data with only some misfit in the .9
quantile, which also tends to be the most variable. The model
predicted and observed accuracy is also listed within each graph.
It is important to note that there does not appear to be systematic
differences in model fit across the two groups.

Table 4 displays the resulting, best fitting diffusion model
parameters as a function of family history and frequency, sepa-
rately for each type of item (e.g., old vs. new). For drift rate, there
was a significant main effect of frequency, F(1, 78) � 82.54, p 	
.001, �G

2 � .08, and a main effect of type, F(1, 78) � 66.83, p 	
.001, �G

2 � .26, which together indicates drift rates were greater for
low-frequency items as well as for new items. More important,
there was a significant main effect of family history, F(1, 78) �
6.5, p � .01, �G

2 � .03, indicating a lower drift rate for the family
history� participants than family history� participants. There was
a single higher order interaction between word type and word
frequency, F(1, 78) � 15.97, p 	 .001,�G

2 � .02, indicating a
larger frequency effect for old items.

Finally, simple univariate ANOVAs on the remaining model
parameters indicated no reliable effect of family history on bound-
ary, F(1, 78) 	 1, p � .98, �G

2 � 0, on starting point, F(1, 78) �
1.49, p � .23, �G

2 � .02, or on nondecision time, F(1, 78) 	 1, p �
.88, �G

2 � 0. These findings suggest group differences in recogni-
tion accuracy were isolated entirely to changes in the drift rate
parameter.

We also tested for group differences in the variability parame-
ters of the model. There was no effect of family history either on
drift rate variability, F(1, 78) 	 1, p � .712, �G

2 � 0, nor on
nondecision time variability, F(1, 78) 	 1, p � .374, �G

2 � .01.
There was, however, a reliable difference on starting point vari-
ability, F(1, 78) � 8.05, p � .006, �G

2 � .09.
Sensitivity of drift rate to family history. Although the

diffusion model is important in that it provides information about

the mechanisms underlying the family history effect, we were also
interested to see if the estimates from the model provide any
increased sensitivity compared with standard neuropsychological
measures. To address this question, we conducted a stepwise
logistic regression predicting family history status. In the first step
of the analysis we entered performance on one of the neuropsy-
chological tests (i.e., Selective Reminding, associate learning, de-
layed recall, Trails A and B, or Letter Number Sequencing). In
Step 2 of the analysis we entered the average drift rate from the
recognition test. We report the odds ratio as a measure of effect
size.

After controlling for selective reminding performance, the drift
rate significantly predicted family history status (� � �.81, p �
.036, odds ratio � 2.24). Similarly, drift rate was significant after
controlling for associate learning (� � �.90, p � .026, odds
ratio � 2.45) and also delayed recall (� � �.87, p � .022, odds
ratio � 2.38). In contrast, after controlling drift rate, none of the
memory tests were significant predictors (selective reminding:
� � �.03, p � .47, odds ratio � 1.03; associate learning: � � .09,
p � .76, odds ratio � 1.09; delayed recall: � � �.09, p � .767,
odds ratio � 1.09). Thus, there does appear to be unique informa-
tion provided by the drift rate parameter that is not captured by
episodic memory ability indexed by the standard neuropsycholog-
ical tests we had available on this cohort. In addition, the effect of
the drift rate remained significant above and beyond all the re-
maining neuropsychological tests on this cohort, including Letter
Number Sequencing and Trails A and B (ps 	 .05).

Discussion

We replicated the finding that the effect of word frequency can
be accommodated entirely by changes in the drift rate (Ratcliff et
al., 2004). More important, the results yielded a clear effect of
family history on accuracy and when the diffusion model was
applied to the full set of data, the family history effect was
captured entirely by differences in the drift rate parameter. Indeed,
the other model parameters were quite similar across groups.
These differences appear to reflect a relatively pure effect of
family history, as all participants were APOE negative.

The drift rate parameter has strong relationships with overall
cognitive ability as well as task difficulty (e.g., the frequency
effect). These analyses indicated that not only can the influence of
family history be detected on a sensitive cognitive measure but that
it also can be isolated to a specific component of cognitive pro-
cessing. Before discussing these results further, we now present an
analysis of a second recognition experiment from a partially over-
lapping cohort to assess whether this finding can be generalized to
another episodic recognition task that was administered under
quite different conditions. The second experiment also serves as a
stringent test that the diffusion model can adequately describe task
performance across multiple experimental conditions.

Experiment 2

Method

Participants. A total of 83 individuals, recruited from the
same population as in Experiment 1, participated in Experiment 2.
Forty-eight of these participants were included in analyses of

Table 3
Response Latency in Milliseconds (Means and Standard
Deviations) as a Function of Family History in Experiment 1

Family history

HF hits LF hits HF CRs LF CRs

M SD M SD M SD M SD

Negative 1,052 326 978 266 1,182 387 1,140 392
Positive 1,111 310 1,006 204 1,140 236 1,087 183

Note. HF � high frequency; LF � low frequency; CR � correct rejection.
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Figure 2. Empirical and model predicted quantiles and accuracy for Experiment 1. The line represents the
quantiles predicted by the diffusion model and the points and error bars represent those quantiles calculated from
the data. HF � high frequency; LF � low frequency.
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Experiment 1; however, the experimental differences between the
two tasks as well as the 35 unique participants in this cohort
allowed us to make inferences about the stability of the findings
from Experiment 1. Furthermore, the two experiments were sep-
arated by an average of 3 months. The demographic variables
available on this sample are presented in the right panel of Table
1. All participants were rated as CDR 0 and there were no signif-
icant family history effects for any of the neuropsychological tests.

We removed one participant from all analyses due to an ex-
tremely low accuracy in both conditions of the recognition task
(d= � .23 for high-frequency items and �.02 for low-frequency
items). Because this individual did not have dementia (all partic-
ipants were rated as CDR 0), the negative d= in particular suggests
this person either was not trying or did not understand the task
instructions.

Procedure. In contrast to Experiment 1, the study and test
phases of this experiment were separated by approximately a one
hour delay, and the study phase was conducted under incidental
encoding conditions. Specifically, participants completed an ani-
macy judgment task (e.g., is this object living or nonliving), within
an fMRI scanner. The task included 96 high (mean log HAL
frequency � 9.29) and 96 low (mean log HAL � 6.61) frequency
items which were evenly split between animate and inanimate
objects. Participants were instructed to make their animacy judg-
ment as quickly and as accurately as possible. These words were
later tested in an episodic recognition task presented after the
completion of the fMRI scan, hence the relatively long one hour
delay. Participants were not informed about the later surprise
memory test.

During the test phase of the recognition task, participants re-
ceived 384 test items for a yes/no recognition test. There were 48
items within each cell of word frequency, animacy, and old/new
status. The following events occurred on each trial: (a) a fixation
cross and the target word appeared simultaneously; (b) participants

indicated whether they studied this item in the animacy task or not
by pressing the “1” key to indicate an “old” item or the “2” key to
indicate a “new” item; (c) participants rated the confidence of their
response on scale from 1 (low confidence) to 5 (high confidence).
There was no emphasis on speed in this task and participants
proceeded to make judgments at their own pace.

Results

Accuracy analyses. Recognition accuracy was quantified us-
ing d= as before. In order to maximize the similarity to Experiment
1, we collapsed across the animacy dimension when conducting
these analyses. The means for each group and condition are dis-
played in Table 5. The main effect of word frequency was signif-
icant, F(1, 81) � 105.76, p 	 .001, �G

2 � .10, indicating higher
discrimination for the low-frequency items. The main effect of
family history was not reliable, F(1, 81) � 3.14, p � .08, �G

2 � .03,
although means were higher for the family history negative group.
The interaction between frequency and group was not reliable,
F(1, 81) 	 1, p � .83, �G

2 � 0.
RT analyses. The mean RTs for each condition are presented

in Table 6. As before, the main effect of word frequency was
significant, F(1, 81) � 14.28, p 	 .001, �G

2 � .003, indicating
faster responses to low-frequency words. The main effect of word
type was also significant, F(1, 81) � 67.33, p 	 .001, �G

2 � .10,
indicating faster responses to old items. The main effect of group
was again not significant, F(1, 81) � 3.31, p � .07, �G

2 � .03,
however for the means the family history� group were overall
faster than the family history� group. None of the higher order
interactions reached statistical significance.

Diffusion model analyses. The model again described the
data fairly well. The empirically derived and model-predicted
quantiles and accuracy are displayed in Figure 3. The degree of fit
is quite remarkable given that participants were not placed under
explicit speeded instructions and the diffusion model was designed
as a model of speeded decision making. Of course, it should be
emphasized that the primary goal of this second experiment was to
determine whether the same effects from Experiment 1 would
generalize to an experiment that included a number of procedural
changes, and any degree of model misfit would only serve to add
noise to our parameter estimates and make any such generalization
less likely.

The best fitting model parameters from this analysis are dis-
played in Table 7. The top portion of this table displays the average
drift rates for each condition. The main effect of word frequency
was again significant, F(1, 81) � 84.08, p 	 .001, �G

2 � .05, as
was the main effect of type, F(1, 81) � 13.75, p 	 .001, �G

2 � .08,
indicating the drift rate was higher for low-frequency items and for

Table 5
Recognition Accuracy (Means and Standard Deviations) for
Experiment 2

Family history

HF d= LF d=

M SD M SD

Negative 1.39 0.51 1.73 0.54
Positive 1.18 0.50 1.54 0.57

Note. HF � high frequency; LF � low frequency.

Table 4
Diffusion Model Parameters Means (Standard Deviations) for
Experiment 1

Family history

Drift rates

HF old LF old HF new LF new

Negative 0.92 (1.35) 1.92 (1.38) 2.35 (1.13) 2.64 (1.11)
Positive 0.22 (0.89) 1.26 (1.03) 2.18 (0.81) 2.52 (1.06)

Boundary, nondecision, and bias

Boundary Nondecision Bias

Negative 1.80 (0.62) 0.63 (0.10) 0.64 (0.10)
Positive 1.79 (0.47) 0.63 (0.09) 0.61 (0.11)

Variability parameters

Drift date Nondecision Start point

Negative .91 (.38) .17 (.11) .16 (.14)
Positive .88 (.38) .15 (.10) .27 (.19)

Note. Bias was calculated as the start point divided by the boundary
separation. A value above 0.5 indicates a bias toward the top boundary (an
old response in the current experiment), and within trial variability was set
to 1. HF � high frequency; LF � low frequency.
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new items. More important, as in Experiment 1, the ANOVA
revealed a reliable main effect of family history, F(1, 81) � 5.53,
p � .02, �G

2 � .03, indicating higher drift rates for family history�
participants. The only higher order interaction that was significant
was type by frequency, F(1, 81) � 5.20, p � .03, �G

2 � .003, which
indicated a slightly larger frequency effect for old items.

Finally, no group differences emerged in the remaining model
parameters including boundary, F(1, 81) � 3.30, p � .07, �G

2 �
.04; nondecision time, F(1, 81) 	 1, p � .79, �G

2 � .001; or start
point, F(1, 81) 	 1, p � .44, �G

2 � 0. Furthermore, there were no
group effects on variability including drift rate, F(1, 81) 	 1, p �
.422, �G

2 � .01; nondecision time, F(1, 81) 	 1, p � .464, �G
2 �

0; and starting point, F(1, 81) 	 1, p � .562, �G
2 � 0.

Sensitivity to family history. We again conducted logistic
regression analyses to determine whether our drift rate measure
would predict family history status above and beyond general
episodic memory performance as indexed by the additional mea-
sures available on these participants. As in Experiment 1, the drift
rate was significant after controlling for SRT (� � �1.83, p �
.028, odds ratio � 6.25) and associate learning (� � �2.21, p �
.018, odds ratio � 9.09). The effect of drift rate was smaller after
controlling for delayed recall (� � �1.66, p � .055, odds ratio �
5.3). It is important to note that none of these tests significantly
predicted group membership after accounting for drift rate (ps �
.36). Again, as in Experiment 1, the drift rate significantly pre-
dicted family history status above and beyond all additional neu-
ropsychological tests (ps 	 .05).

General Discussion

Family history is a well-documented risk factor for the devel-
opment of AD and has been shown to modulate the accumulation
of AD biomarkers even in cognitively healthy individuals (e.g.,
Xiong et al., 2011). However, the influence of family history on
preclinical cognitive outcomes is less clear, with many studies
finding either no differences (Donix et al., 2010; Hayden et al.,
2009; Johnson et al., 2006; Mosconi et al., 2007) or differences on
particularly subtle cognitive measures (La Rue et al., 2008; Xiong
et al., 2011). Even when group differences are detected, their
relationship to underlying cognitive processes typically cannot be
definitively established. For example, is a lower accuracy score
due to a deficit in information processing or a bias toward output-
ting a particular response? Similarly, a slower average RT could be
indicative of a slower rate of information processing (i.e., a de-
creased drift rate) or an increase in caution in responding (i.e.,
wider boundaries). The present study was designed to assess what
specific mechanisms may underlie the observed performance dif-

ferences as a function of family history, independent of the influ-
ence of APOE.

Across two episodic recognition tasks, we showed that group
differences in episodic recognition were isolated specifically to the
drift rate parameter. This is in contrast to cognitively healthy aging
in which the dominant pattern is typically that older adults’ exhibit
increased response caution and nondecision time and yet their drift
rates remain quite similar to younger adult controls (Ratcliff et al.,
2004). This suggests that the declines in the drift rate observed
here might be a unique signature of preclinical AD. Indeed, nu-
merous studies have already linked drift rate to underlying cogni-
tive abilities such as working memory capacity and general IQ
(Schmiedek et al., 2007), suggesting that family history� individ-
uals indeed have subtle but detectable cognitive deficits relative to
family history� controls. The effect size of this group difference
was small, which was expected given that our participants were all
cognitively healthy. The fact that a group difference in drift rate
was statistically reliable across both experiments, which incorpo-
rated different designs, speaks to the robustness of this effect.

It is important to elucidate the mechanistic changes attributable
to family history for two reasons. First, it is assumed that accu-
mulating AD pathology causes a specific cognitive deficit, indexed
by a change in the drift rate, which results in worse performance
on cognitive tasks. However, it is possible that group differences
may result from other processes such as increased response cau-
tion. As noted above, this is the general pattern underlying per-
formance differences across young and older adults. These distinc-
tions are critical not only for the establishment of AD risk, but also
for evaluation of which cognitive assessments may be most sen-
sitive to intervention. For example, if the effect of a particular drug
is to clear amyloid from the brain, and presumably to increase drift
rate, one may fail to observe effects on cognitive outcomes if the
root cause of the initial deficit lies elsewhere in the cognitive
system (e.g., decreased cautiousness in responding). Alternatively,
it possible that gains from the administration of treatment can be
offset by unexpected changes in other process components (model
parameters) such as an increase in drift rate (leading to an increase
in accuracy) accompanied by a decrease in caution (leading to a
decrease in accuracy) with both changes lowering RT. The impor-
tant point is that the diffusion model has the capability to discrim-
inate among these possibilities.

Furthermore, diffusion model parameters appear to tap distinct
neural mechanisms as they have been shown to rely on different
neural substrates. For example, although findings tend to vary
slightly from study to study, a recent review by Mulder, Van
Maanen, and Forstmann (2014) suggests that the drift rate may rely
on frontal-parietal regions including the dorsolateral prefrontal
cortex, inferior frontal gyrus, anterior cingulate cortex and intra-
parietal sulcus. In contrast, boundary separation relies more on
presupplementary motor areas in addition to anterior cingulate
cortex.

These dissociations between model parameters and underlying
brain regions afford the possibility that different model parameters
might show differential sensitivity to functional connectivity or
neural activation in brain regions that are preferentially affected by
early-stage AD processes. Recent work has identified several
frontal-parietal regions that over activate during a task and this
over activation is correlated with levels of AD pathology. For
example, Gordon et al. (2015) recently reported functional activity

Table 6
Response Latencies (in Milliseconds), (Means and Standard
Deviations) for Experiment 2

Family history

HF hits LF hits HF CRs LF CRs

M SD M SD M SD M SD

Negative 1,964 490 1,930 502 2,303 610 2,247 582
Positive 2,131 612 2,078 636 2,609 724 2,504 633

Note. HF � high frequency; LF � low frequency; CR � correct rejection.
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Figure 3. Empirical and model predicted quantiles and accuracy for Experiment 2. The line represents the
quantiles predicted by the diffusion model and the points and error bars represent those quantiles calculated from
the data. HF � high frequency; LF � low frequency.
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in the dorsolateral prefrontal cortex, anterior cingulate and lateral
parietal regions during an animacy encoding task was positively
correlated with tau pathology in the cerebrospinal fluid. Mormino
et al. (2012) showed that individuals with relatively high amyloid
burden measured with PET-PIB exhibited greater task related
activation across a set of brain regions that included the inferior
frontal gyrus, a region that has been shown to correlate with drift
rate (Mulder et al. 2014).

It is possible that these patterns of over activation reflect com-
pensatory mechanisms in response to AD pathology elsewhere in
the brain. Specifically, regions associated with the default mode
network (DMN) have shown disruption due to high levels of
amyloid pathology (Hedden et al., 2009; Sperling et al., 2009).
Interestingly, internetwork correlations between the DMN and an
attentional network that includes parietal regions identified above
become smaller with increasing dementia severity (Brier et al.,
2012). We believe that the present results support the contention
that decision mechanisms captured by the diffusion model rely on
a constellation of brain regions, many of which are impacted by
increasing AD pathology that may not be captured by other be-
havioral outcomes such as accuracy. The complete delineation of
cognitive processes represented by diffusion model parameters and
underlying brain regions and pathology remain an important target
for further research.

Second, this work is important from a measurement perspective
in that different parameters may produce opposing effects at the
level of average RT or total accuracy which would hinder the
ability to detect overall group differences. For example, it is
possible the family history� group could offset their deficit in drift
rate by increasing their boundaries which could eliminate the
observed accuracy differences. Our analyses indicated that this
was not the case. It is important to note that the diffusion model
provides sensitivity to group or condition differences even when
accuracy is very high. Ratcliff (2014) recently compared accuracy

measures against drift rate to standard manipulations of difficulty
across 11 basic perceptual tasks. The change in each measure as a
function of increasing difficulty was often similar between (z
transformed) accuracy and drift rate except when accuracy was
very high. This was important in our data from Experiment 2, in
which the group means in d= and response latencies did not differ,
but joint consideration of RTs via the drift rate did produce a
reliable difference.

Furthermore, the group differences in drift rate were not attrib-
utable to episodic memory assessed with standard neuropsycho-
logical tests including Selective Reminding Task, associate learn-
ing task or delayed recall tasks. In addition, the drift rate was
significant after controlling for performance on the non-episodic
memory based tasks that were available. This suggests these model
parameters may have particular sensitivity to preclinical AD that is
not detected by more standard tests. It is important to note that the
memory tests examined here (associate learning and delayed re-
call) have demonstrated sensitivity to even very mild AD (e.g.,
Morris et al., 1991; Storandt & Hill, 1989); however, future work
should also consider examining other measures of episodic mem-
ory performance.

We have referred to our group differences as the “effect” of
family history. It is important to note that in the present study we
are actually measuring the influence of various risk factors that are
associated with a family history of AD. It is also important to note
that the effects we have detected in the present study occurred in
APOE negative individuals which raises the question of what risk
factors family history is indexing. It is possible, and indeed likely,
that family history is multifaceted and its effects could potentially
arise from multiple mechanisms. In pursuit of this issue, we
examined whether differences in other demographic variables that
we had available might explain the behavioral differences that we
observed. However, we found no group differences in levels of
socioeconomic status, education, adverse cardiovascular events
(e.g., heart attack), cerebrovascular events (e.g., stroke), or mea-
sures of personality from the NEO Five-Factor Inventory (Costa &
McCrae, 1992).

It is also important to note that we also detected a difference in
simple d= as a function of family history in Experiment 1. Thus, it
is not necessarily the case that drift rate is providing unique
information above and beyond signal detection in terms of group
discriminability. Of course, signal detection models do not take
into account response latency in helping to constrain our under-
standing of the nature of underlying cognitive mechanisms. Com-
putational models, such as the diffusion model, are able to take
into account all aspects of performance in order to isolate behav-
ioral differences to specific components of cognitive processing.
This is critical for further understanding the nature of cognitive
deficits as a function of preclinical AD and AD risk.

It is interesting to consider the cross-experiment findings in the
current study. Specifically, although there was some overlap in
participants between the two studies, the same effects in drift rate
were found across the two experiments, which were conducted on
average 3 months apart, within a very different testing environ-
ment and with clear procedural differences. It is particularly in-
triguing that the results of Experiment 2 match those of Experi-
ment 1 even without as much emphasis on speeded responses. This
provides a very stringent test of whether the diffusion model can

Table 7
Diffusion Model Parameters Means (Standard Deviations) for
Experiment 2

Family history

Drift rates

HF old LF old HF new LF new

Negative 0.47 (0.54) 0.79 (0.46) 0.84 (0.50) 1.02 (0.53)
Positive 0.36 (0.37) 0.60 (0.47) 0.68 (0.50) 0.83 (0.51)

Boundary, nondecision, and bias

Boundary Nondecision Bias

Negative 2.78 (0.61) .93 (0.24) .61 (0.09)
Positive 3.01 (0.56) .95 (0.35) .63 (0.10)

Variability parameters

Drift rate Nondecision Start point

Negative .68 (.20) .33 (.30) .25 (.17)
Positive .64 (.24) .28 (.29) .27 (.16)

Note. Bias was calculated as the start point divided by the boundary
separation. A value above 0.5 indicates a bias toward the top boundary (an
old response in the current experiment), and within trial variability was set
to 1.
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capture episodic memory performance across quite different test-
ing environments.

Our study has several limitations. First, although it is important
that we established our effects are not confounded with APOE
because all participants were negative for the ε4 allele, it is
possible the current results will vary with genotype. Because of the
small sample of ε4 positive, family history negative individuals,
this would demand a much larger sample of participants to statis-
tically address this issue. Second, our results are limited to a single
task, namely episodic recognition. We are unable to determine
whether these effects generalize to other binary decision tasks or
are isolated specifically to episodic memory. Furthermore, the
ACS cohort is a convenience sample and, thus, there could be
subtle self-selection effects that might influence generalizability to
a larger population of individuals with a family history for AD.
Finally, this study was cross-sectional in nature and it will be
important to demonstrate changes in a longitudinal study and
provide links to underlying changes in the brain. Thus, the results
presented herein represent a first step in a larger research program
delineating the sensitivity of these novel measures of AD risk.

Conclusions

Taken together, our results add to the body of research impli-
cating a role for family history as a risk factor for AD. It is
important to note that our analyses extend this work by indicating
subtle cognitive effects of family history are isolated to the drift
rate, implicating a role of deficient information processing in these
participants. These effects were found in the absence of APOE4
and were not attributable to general episodic memory performance
indexed by several standard neuropsychological tests. This high-
lights the utility of sensitive cognitive indicators of preclinical AD
and computational models of performance to better understand the
mechanisms that are affected early in the disease course. These
mechanisms may ultimately serve as more sensitive cognitive
markers of AD risk or for the evaluation of treatment outcomes
than overall accuracy or RT alone.
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