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We propose modifications to the simple diffusion Monte Carlo algorithm that greatly reduce the 
time-step error. The improved algorithm has a time-step error smaller by a factor of 70 to 300 
in the energy of Be, Liz and Ne. For other observables the improvement is yet larger. The 
effective time step possible with the improved algorithm is typically a factor of a few hundred 
larger than the time step used in domain Green function Monte Carlo. We also present an 
optimized 109 parameter trial wave function for Be which, used in combination with our 
algorithm, yields an exceedingly accurate ground state energy. A simple solution to the 
population control bias in diffusion Monte Carlo is also discussed. 

I. INTRODUCTION 

Ground state energies of fermion systems such as at- 
oms and molecules can be computed within the fixed-node 
approximation’” by quantum Monte Carlo methods. 
These methods can also be employed to compute other 
quantities and apply to a wide variety of systems. Mostly 
two basic algorithms have been used: the Green function 
Monte Carlo method developed by Kalos and co- 
workers,6*7 and extended by Ceperley and co-workers,8Pg 
and the diffusion Monte Carlo method,2’3’10>11 also some- 
times referred to as the short-time approximation to Green 
function Monte Carlo. 

In its implementation the diffusion Monte Carlo 
method is simpler than Green function Monte Carlo,4P6P7 
but it suffers from a systematic bias, the so-called time-step 
error. That is, both Green function Monte Carlo and dif- 
fusion Monte Carlo calculations start from an optimized 
trial wave function for the ground state and improve upon 
variational Monte Carlo by a stochastic implementation of 
the power method, a standard algorithm for computing the 
dominant eigenvalue and eigenvector of an operator. In 
Green function Monte Carlo the ground state is obtained 
by iteratively acting on an initial wave function, i.e., the 
optimized trial wave function &, with an operator propor- 
tional to (Z + Ea) -I, where Z is the Hamiltonian and 
E. is a shift that renders the operator positive definite. In 
diffusion Monte Carlo one uses an operator proportional to 
e -T&“, defined in terms of a time step 7. In the previous 
expression and throughout the rest of this paper we use 
atomic units. 

In Green function Monte Carlo the stochastic multi- 
plication by (E + Eo) -I (see Ref. 4) is exact, but in the 
case of diffusion Monte Carlo an approximation to the 
operator emrX is used. This involves an expression for the 
coordinate space representation of the diffusion Monte 

Carlo operator which is correct only to some order of the 
time step r in the limit T -, 0. In practice, the calculations 
are therefore performed for several values of r and the 
results are extrapolated to give the r ---) 0 limit. These 
values of r have to be small enough to permit an accurate 
extrapolation, but configurations realized in successive it- 
erations of a Monte Carlo run become more correlated as 
r is reduced, which increases statistical errors for a run of 
a given number of iterations, i.e., a given amount of com- 
puter time. Hence, the values of r used in a practical com- 
putation represent a compromise between the systematic 
time-step error and the statistical error. 

Because of this trade-off, several attempts have been 
made to design quadratic algorithms, which have a time- 
step error in the energy of 8 (2)) rather than d (7) .i2-16 
However, in practice these algorithms are not second or- 
der, except possibly in the special case of nodeless two- 
electron wave functions,r6 because the local energy and the 
velocity which play an important role in the diffusion 
Monte Carlo algorithm are not uniformly well-behaved in 
configuration space; in particular they diverge at the nodes. 
In this paper we propose, instead, an algorithm with very 
small time-step errors to all orders in 7. For the range of 
time steps of interest the error is far smaller than that of 
the “quadratic“ algorithms, even in the case of nodeless 
wave functions. Although we have no a priori mathemati- 
cal reason to believe that our algorithm has strictly 
quadratic errors, they appear to be quadratic to within the 
statistical accuracy for the systems we have investigated. 
Some of the preliminary results of this work, obtained with 
an earlier version of the algorithm presented here, were 
reported previously.r7 

As mentioned, the Green function Monte Carlo 
method does not have a time-step error, but the effective 
time steps used in Green function Monte Carlo are consid- 
erably smaller than the ones commonly used in diffusion 
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Monte Carlo. Moreover, Green function Monte Carlo is 
more complex algorithmically than diffusion Monte Carlo. 
Consequently, Green function Monte Carlo is computa- 
tionally much more expensive, even if diffusion Monte 
Carlo requires calculations for a few different values of r 
for accurate 7 + 0 extrapolation. 

algorithm and in Appendix D we estimate how the errors 
in the simple diffusion Monte Carlo algorithm scale with 
the time step. 

II. REVIEW OF DIFFUSION MONTE CARLO 

It should be noted that the approach discussed in this 
paper, apart from having a time-step bias, is approximate 
in principle even in the 7 -+ 0 limit because it uses the 
fixed-node approximation to yield antisymmetric wave 
functions, as required by the fermionic nature of electrons. 
For completeness we mention that there are algorithms 
that yield the exact ground state without making the fixed- 
node approximation.g1’8”g However, the statistical accu- 
racy one can obtain with these algorithms is limited. 

The layout of this paper is as follows. In Section II A 
we review the basics of diffusion Monte Carlo and intro- 
duce what we call the simple algorithm. This algorithm is 
typical of one class of algorithms used in the literature2’20’21 
and will serve to provide a benchmark to evaluate the per- 
formance of the improved algorithm, introduced in Sec- 
tions III A and III C. Those sections contain a systematic 
discussion of two types of contributions to the time-step 
error. These are, firstly, the failure of the simple algorithm 
to sample the exact probability distribution (the square of 
the ground state wave function) even in the ideal limit in 
which the trial function is the exact ground state wave 
function. In other words, this algorithm can, for suffi- 
ciently large time steps, yield a distribution and expecta- 
tion values that are even inferior to those obtained from 
variational Monte Carlo. The solution to this problem is 
the inclusion of an accept/reject step as was proposed by 
Reynolds et aZ.3 This is discussed in Section III A. 

We shall consider systems with IZ electrons, the spatial 

A. The simple algorithm 

coordinates of which are given by a 3ri-dimensional vector 
R. It will be convenient to introduce vectors specifying 
coordinates of one electron only. For example, we write 
R = (q,..., r,) , where ri is a three-dimensional vector spec- 
ifying the coordinates of electron number i. More gener- 
ally, we shall use upper case symbols to denote n-electron 
vectors and lower case symbols for the corresponding sin- 
gle electron vectors. 

A transformed version of the Schriidinger equation in 
imaginary time serves as the starting point of the diffusion 
Monte Carlo method to compute ground state properties of 
fermion systems within the fixed-node approximation. In 
principle, the discussion below is applicable also to excited 
states, except for a minor complication due to the existence 
of inequivalent nodal pockets for excited state wave func- 
tions. Here we will limit ourselves to ground states. 

Given a guiding function $o(R) one can introduce a 
distribution f(R,t) = &(R)$(R,t) which, if $(R,t) sat- 
isfies the SchrGdinger equation, can be shown to be a so- 
lution of the equation273 

@G(R) (~-&)1CI,(R>-‘f(R,t) 

=-z l V2fUW +V - WWfUW 1 --S(R)fUW 

A problem caused by the introduction of the accept/ 
reject step is that it can give rise to unphysical persistent 
configurations, a phenomenon discussed in Section III B. 
This problem can be alleviated by addressing the second 
source of large time-step errors, viz. Monte Carlo instabil- 
ities resulting from nonanalyticity of the velocity and the 
local energy in the transformed Schriidinger equation gov- 
erning the diffusion Monte Carlo process. The related im- 
provements of the algorithm are discussed in Section III C. 
Section II B contains a discussion of more technical aspects 
of the diffusion Monte Carlo algorithm, such as the esti- 
mators employed and systeniatib errors due to population 
control, which is an essential p&-t of the algorithm. 

af (RA =- 
at * (1) 

Here the velocity V-we deviate from the usage of referring 
to V as the (quantum) force-is given by 

V$G(R) (~w-~~J~G(R) 
V(R) = (v~,...,v,) =-= 

$G(R) - +G(R) 
(2) 

and the coefficient of the branching term is 

S(R) =&-EL(R), 

which is defined in terms of the local energy 

(3) 

In Section IV A we cobpar the time-step errors of the 
simple and improved algorithms, for the energy, kinetic 
energy and moments of the charge distribution of Be, 
Li2, and Ne, using simple trial wave functions. These time- 
step errors are compared to those in the literature in Sec- 
tion IV B. In Section IV C we present the time-step error 
in the energy of Be using a good wave function. 

EL(R)= 
%$GW> V2&(R) 

$G(R) =- 2$bG(R) 
+7’-“(R), (4) 

where Y’(R) is the potential energy. ET is a shift in energy 
such that Eo-E TzO, where Eo is the ground state energy. 
In the special case ?,& = 1 the velocity vanishes and the 
local energy equals the potential energy, so that Eq. ( 1) 
reduces to the standard Schrijdinger equation in imaginary 
time. 

Finally, in Appendix A we present a summary of the 
algorithm and in Appendix B we present the form of the 
trial wave functions and their parameters. These two ap- 
pendices are provided in order to encourage others to pro- 
gram and test the algorithm for themselves. In Appendix C 
we present an alternative to the generalized Metropolis 

The modified Schriidinger equation ( 1) is equivalent 
to the standard one only for wave functions that vanish at 
the nodes of $a( R). Thus a fermionic state may be treated 
by prescribing a nodal surface on which the Green function 
and *G(R) vanish. This surface divides space into positive 
and negative regions that obey exchange antisymmetry. As 
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is usual, I/&(R) is chosen to be some optimized antisym- 
metric trial wave function q+(R) within the nodal pocket 
under consideration, and we will not distinguish between 
$-JR> and h(R) in the rest of this paper. 

For long times the distribution f(R,t) approaches 
&(R)$,( R) up to a normalization constant, where, in 
each nodal region, Ilr,(R) is the ground state eigenfunction 
consistent with the boundary condition that it vanish at the 
nodes of ?(ET( R) . This implies that the long-time limit is the 
true fermion ground state if and only if the nodes of $r 
happen to be the exact nodes of the ground state wave 
function. In general there is no procedure for choosing a 
h(R) that has the exact nodes. The Jxed-node energy 
obtained by extrapolation to T=O is an upper bound to the 
exact fermion ground state energy. 

An integral equation equivalent to Eq. ( 1) is 

f(R',t+~)=e'fi('+~) ~&WWfW), (5) 

where 5 is the Green function for the case ET = 0. The 
power method consists of iterating this equation and this is 
done in an average sense as described below. The energy 
shift ET(t + T) plays the role of an arbitrary time- 
dependent normalization constant,22 chosen in such a way 
that the electron density f remains finite and nonvanishing 
in the limit t+ CO. Note that by convention; ET on the right 
and the electron distribution f on the left-hand side of Eq. 
(5) depend on the same parameter, t+r. In the Monte 
Carlo iteration of Eq. (5) ET( t + 7) depends on the spe- 
cific random realization of f(R,t) but not that of 

f(R',t + ~1. 
The three terms on the left-hand side of Eq. ( 1) de- 

scribe diffusion, drift and growth or decay. An approxi- 
mate Green function, with an error of B (?) for small r, is 
given by the product of the individual diffusion, drift and 
growth/decay Green functions, 

1 
G(R’,R,T) = (2,&n/2 

s 
&ne- [ (R’-R”)‘/~T] 

xS(R"-R-V(R)T) 

Xe-('")[E~(R')+E~(R)17.+8(72). (6) 

To compute the ground state energy and other expec- 
tation values, the n-electron distribution f(R,t) is repre- 
sented in diffusion Monte Carlo by an average over a time 
series of generations of walkers each of which consists of a 
fluctuating number of N walkers. To be precise, a walker is 
a pair (R,,w,), o= l,...,N, with R, a 3n-dimensional elec- 
tron configuration with statistical weight w,.~~ At time t, 
the walkers represent a random realization of the 
n-electron distribution, viz. 

f(W) = il w&R-W. (7) 

Each walker executes a branching random walk con- 
structed so as to satisfy on average the power method it- 
eration relation, Eq. (5), where the average is over all 
realizations of walkers at time t+T given a fixed, yet arbi- 

trary realization of walkers at time t. This means that we 
are iterating Eq. (5) with f(R,t) on the right-hand side of 
the form of Eq. (7). The exact equation does not conserve 
this form, but its stochastic implementation does. 

In the first step, a given walker (R,w) drifts to R" 
= R + V( R)T, according to the 6 function in Eq. (6). 
Then in the second step, the walker diffuses to R', where 
R’ is sampled from the diffusion Green function 
(2%-r) - 3”‘2exp{ - (R’ - R”) 2/27}. Finally, the third step, 
resulting from the growth/decay (or branching) term of 
Eq. ( 1 >, is to multiply the weight of the walker by the 
remaining exponential factors in Eqs. (5) and (6), i.e., w is 
replaced by whw, with 

Aw=exp{$[S(R’,t+r) +S(RJ+T)]}. (8) 

Note that the position dependence in this expression comes 
from the local energy EL, and the time dependence from 
the trial energy Ep We shall usually suppress explicit ref- 
erence to the time dependence. 

For reasons of efficiency, walkers with big statistical 
weights are duplicated, while walkers with low weights are 
combined pairwise. That is, in the duplication an old 
walker is replaced by two identical new walkers, each with 
weight equal to half of the old weight. In combining two 
walkers (Ral,wnl) and (Ra2,w%) they are replaced by one 

walker (R,,w,) with weight w, = We, + waZ and configura- 

tion R, = Rai sampled with probability w,,/w~ (i= 1 or 

i=2). We note that in both cases the total weight is kept 
constant,23 while the more frequently used alternative ap- 
proach4P5 of creating int (w, + g) walkers of unit weight, 
where -6 is a random number uniformly distributed on 
[O,l], leads to an unnecessary random fluctuation of the 
total weight of the walkers or equivalently the number of 
walkers. 

For the time being we shall assume that the equilib- 
rium distribution of the Monte Carlo process as described 
above is @r(R)&(R). This is only approximately correct, 
because of population control exercised by having a time 
dependent ET( t+T) in Eq. (5)) as discussed in more detail 
in Section II B. 

This simple diffusion Monte Carlo algorithm is not 
viable for a wave function with nodes for the following two 
reasons. Firstly, in the vicinity of the nodes the local en- 
ergy of the trial function $r diverges inversely proportional 
to the distance to the nodal surface. For nonzero r, there is 
a nonzero density of walkers at the nodes. Since the nodal 
surface for a system with 12 electrons is 3n - 1 dimensional, 
the variance of the local energy diverges for any finite 7. In 
fact, the expectation value of the local energy also diverges, 
but only logarithmically. Secondly, the velocity of the elec- 
trons at the nodes diverges inversely as the distance to the 
nodal surface. The walkers that are close to a node at one 
time step, drift at the next time step to a distance inversely 
proportional to the distance from the node. This results in 
a charge distribution with a component that falls off as the 
inverse square of distance from the atom or molecule 
whereas in reality the decay is exponential. These two 
problems are commonly remedied by introducing cut-offs 
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in the values of the local energy and the velocity.1532* For 
example, DePasquale, Rothstein, and Vrbik” use the cut- 
offs 

2 
EL(R) +Ev,+ 

-I= 
w&WR> ---Eva3 

7 

for IE,(R)-E,,j >? 
6’ 

(9) 

Vi(R) *i sgn{ Vi(R)) for 1 Vi(R) 1 > l/r, (10) 

where EVu is the variational energy associated with +.r. and 
where Vi is component i of the velocity (see Ref. 24). Since 
the cut-offs have no effect in the r + 0 limit, the results 
extrapolated to 7 = 0 are correct. 

We will refer to this algorithm as the simple d@sion 
Monte Carlo algorithm% and will contrast it with the im- 
proved d@usion Monte Carlo algorithm discussed below. 
There is one more feature of the simple algorithm that 
should be mentioned. For flnite r a walker can cross a node 
and move into a region where $.r is negative. If this hap- 
pens the walker is killed. This is the source of large time- 
step errors, especially in the growth estimator of the energy, 
as discussed later. 

B. Expectation values 

In this section we define the mixed and the growth 
estimators of the energy. We show that the distribution of 
walkers suffers from a population control bias and we 
present a method for projecting away this bias without 
having to perform calculations for more than one popula- 
tion size.23*25 

The basic power method iteration relation, Eq. (5) has 
a normalization constant, which contains a running esti- 
mate of the ground state energy. In practice, one also has 
to include a term that insures that the total weight of all 
walkers remains approximately stationary by correcting 
for random drifts in the average. In actual calculations, 
time t is a discrete variable and it is convenient to introduce 
an integral valued variable t^ = t/r, but we do not intro- 
duce a different notation for functions oft and i. We choose 

Here E,,(i) is an estimate of the energy at time ;, which we 
have chosen it to be the current cumulative value of the 
mixed estimator [see Eq. (19)], but other choices are 
equally valid. This term serves to suppress an exponential 
population explosion (or implosion) as would occur for a 
constant ET > E, (or ET < EO). The second term redresses 
fluctuations and attempts to reset some g generations later 
the total weight of the population, W;, to a target, W,. In 
the calculations reported in this paper we set g=l/r, 
which is of the order of the correlation time of eBTX. 

Even though each generation of walkers on the average 
evolves by construction from the previous one according to 

Eq. _(5), the feedback of the number of walkers into 
ET(t) produces a systematic bias, the population control 
bias. To understand that the equilibrium distribution of the 
stochastic process is only approximately equal to the 
ground state distribution $&c, consider the branching 
term in Eq. ( 1) with ET = Em If a fluctuation increases the 
fraction of walkers in a region where EL(R) - E0 < 0 the 
population size increases. The second term in Eq. ( 11) 
moderates this trend, decreasing the equilibrium distribu- 
tion relative to t,bT(R)+,-JR). In other words, the diffusion 
Monte Carlo equilibrium distribution f(R) is too small for 
low EL(R). Similarly, f(R) is too large in regions of high 
EL(R). Both effects increase the time average of the en- 
ergy. This reasoning suggests that the expectation value of 
the energy will be biased by an amount pcoportional to the 
covariance of the fluctuations in exp ( ET ( t) 7) and the fluc- 
tuations in the average energy of a generation of walkers. 
Since the former fluctuation is also proportional to the 
fluctuations in the average energy of a generation of walk- 
ers and since both have fluctuations proportional to 

l/ $&, we expect a bias linear in l/W,, i.e., proportional 
to the inverse of the average population size. In order to 
reduce the covariance, it is desirable to make g, in Eq. 
( 11)) greater than the auto correlation time of the local 
energy. However, a large value of g results in large fluctu- 
ation in the population size, so there is a trade-off. It is 
possible to eliminate the population control error by per- 
forming calculations for different population sizes W, and 
extrapolating to infinite W,. However, a better method ex- 
ists23*25 for determining the population control error, one 
that does not require calculations for different sized popu- 
lations, as we discuss next.- 

Repeated operation by G on an arbitrary distribution f 
results in an equilibrium distribution proportional to 
1,6r (R) $e (R) . However, in order to maintain an approxi- 
mately constant population of walkers, the operator used 
in the Monte Carlo process is G multiplied by a time- 
dependent renormalization factor eTq(‘). In order to re- 
cover a distribution proportional to &(R)&,(R) it is nec- 
essary to undo the effect of the time-dependent 
normalization factors. This is done by a reweighting of the 
averages. A complete undoing of the normalization would 
involve products of an ever-increasing number of factors 
which would introduce fluctuations of ever-increasing 
magnitude. Fortunately, the number of factors used for 
reweighting can be kept rather small in practice. The num- 
ber required to reduce the population-control error to a 
given value is proportional to the autocorrelation time (in 
units of 7) of the energy, with a proportionality constant 
that decreases with increasing population size and in- 
creases with increasing rms fluctuation of the local energy. 
From a more formal point of view, the ditTusion Monte 
Carlo process has been constructed so that 

e-T~(“If(t^))=Z;If(t^-l)), (12) 

where the bar on the left indicates_an average in which the 
distribution corresponding to 1 f( t - 1)) is kept $xed in 
a state of the form given in Eq. (7). That is, if I f( t- 1) ) 
is any sum of b-functions in configuration space, then the 
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sum of &functions resulting from one step of the algorithm 
has expectation value GI f( t^ - 1) )/e+%ct). By iteration 
one obtains 

nc;,r,, ~=c=$f(;-Tp)), 

where 

(13) 

m=O 

with II = l,J(O,T,) = 1, where Fi, = min(i,T,). 
(Note that Tp = Tp except at the start of the equilibration 
Monte Carlo moves.) In practice, in order to avoid 
overflow/underflow errors on the computer, most of the 
c+stant part of e-T%(t) is absorbed into the definition of 
G, so that the remaining part in Eq. ( 14) fluctuates about 
a value close to one. 

It follows from Eq. ( 13) that one can extract the fol- 
lowing estimator of the equilibrium distribution +&, of 
the transformed Schriidinger, Eq. ( 1 ), from a Monte Carlo 
run with realizations of the electron distribution f( R,;) as 
defined in Eq. (7): 

1 T 
~TUW,MR) z=?; gl W&,V(Rt”. (15) 

In principle, this estimator is unbiased only for infinite 
Tp but, its variance increases with increasing Tp’ The en- 
ergy autocorrelation time sets the scale for the values of 
Tp required to project out the population control bias. In 
practice, for systems we studied, this time is small enough 
that the increase in the variance is negligible. Almost all 
the calculations presented in the literature have been per- 
formed omitting the factor II (t, Tp) above. This is justified 
in most cases, since the population control errors tend to be 
smaller than the statistical errors for sufficiently large sized 
populations. However, there is the risk that this may not be 
true at times, especially when highly accurate results are 
required. The above expression and the explicit estimators 
given below allow one to estimate the bias due to popula- 
tion control and correct for it at virtually no computational 
cost without performing several runs with increasing num- 
bers of walkers. 

Expression ( 15) is of practical use only upon integra- 
tion over R, i.e., for the computation of expectation values 
of observables. For example, one can estimate mixed ex- 
pectation values of the form 

(~Tl-oll~o)_lalR~T(Rj,O1(R)~o(R) 

(@TIqO) J~ICI,(R)lCoW ' 
(16) 

where & is an arbitrary operator diagonal in the position 
representation. Substitution of Eq. ( 15) and Eq. (7) yields 

where W( ;) denotes the total weight of all N( ;) walkers of 
generation i We note that if & commutes with X 

A. The limit of perfect importance sampling 

In the limit of perfect importance sampling, that is if 
$r( R) = +e( R), the energy shift ET can be chosen such 
that the branching term in Eq. ( 1) vanishes identically for 
all R. It is interesting to note that, in that case, the energy 
estimators have zero variance, but the important observa- 

(18) tion is that the branching term can be considered small for 
good wave functions. Yet, the simple diffusion Monte 

i.e., the mixed expectation value equals the true quantum 
mechanical expectation value. For other operators, if rea- 
sonably accurate trial functions are used, the mixed expec- 
tation value closely approximates the true expectation 
value and is likely to have a comparable time-step bias, 
which is all that counts for the purpose of this paper. 

We have used two different estimators for the ground 
state energy E. and a single one for the expectation values 
of other operators4 The mixed estimator estimator for E. is 
an immediate application of Eq. (17) with ~9’=~&./~.r. 
It is defined as 

Another useful estimator is the growth estimator, which 
reads 

E,,E,(T,T,)=-flog 
cL,Wt^+ VP+ 1) W(t^+ 1) 

v 
(20) 
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In this expression the argument of the logarithm is an 

estimator of (4TIGt7) I~Ob)/(~Tl$oo). 

It should be noted that the statistical error of the 
growth estimator calculated with the above method is no 
larger than that of the mixed estimator, as will be apparent 
from the results. An alternative method,415 mentioned 
above, is to construct int (w, + g) unit-weight walkers from 
each of the original walkers labeled by a. This operation 
does not conserve the total weight of all walkers and hence 
if the integral weights obtained after this operation are 
used in the numerator of Eq. (20), additional large fluc- 
tuations are introduced in the growth estimator, which are 
not present in the mixed estimator. These unnecessary fluc- 
tuations can be avoided by simply choosing W( t^ + 1) in 
the numerator of Eq. (20) to be the sum of weights prior 
to performing this operation. 

The method described in this section for evaluating the 
population control error can be extended to computations 
on parallel computers to yield unbiased expectation values 
while at the same time performing load-balanced compu- 
tations. 

III. IMPROVED DIFFUSION MONTE CARLO 
ALGORITHM 

J. Chem. Phys., Vol. 99, No. 4, 15 August 1993 

Downloaded 30 Oct 2007 to 131.128.120.114. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2870 Umrigar, Nightingale, and Runge: Diffusion Monte Carlo algorithm 

Carlo algorithm discussed in Section II A yields an equi- 
librium distribution of walkers with a time-step error even 
in the ideal limit. If for the moment we ignore the branch- 
ing term in Eq. ( 1) , then we have the equation 

-; V2f+V - (Vf) = -g. - (21) 

This equation has the steady-state solution f = 1 r/r 1 2 for 
any rk. In the limit of perfect importance sampling this is 
the desired distribution, but for any finite time step r it is 
not the equilibrium distribution of the drift-diffusion Green 
function, i.e., the Green function in Eq. (6) without the 
branching factor. Following Reynolds et al.,3 we can sam- 
ple ] $r[ 2 with no time-step error by using a general- 
ized2&*’ Metropolis algorithm.29 The approximate drift- 
diffusion Green function is used to propose moves, which 
are then accepted with probability 

p=min 
I$TW) 12h,~~,d 
I&(R) I*G(R’,R,T)‘~ (22) 

as prescribed by the detailed balance condition. 
Within the fixed-node approximation, the number of 

walkers that move across nodal surfaces of the trial wave 
function vanishes as r + 0. The fixed-node method can be 
implemented with the requirement that G( R’,R,T) vanish 
if R’ and R are in different nodal pockets for all r. Yet, for 
any finite r, moves across the nodes will be proposed be- 
cause of the nature of the approximation of the Green 
function. Hence we always reject moves that attempt to 
cross nodes, even though it is possible to satisfy the de- 
tailed balance condition without so doing. 

It is worth noting that the common practice of killing 
walkers that stray across nodes’-3,5P3G32 results in a large 
time-step error, particularly in the growth estimator. In the 
& = r/&, limit, the true Green function is normalized to one, 
i.e., J~R’G(R’,R,T) = 1. On the other hand, if walkers 
that cross nodes are killed then the approximate 
G(R’,R,T) has a normalization smaller than one, and con- 
sequently the growth estimator, which is directly related to 
the norm, fails to satisfy a zero-variance principle. Even 
some algorithms that contain an accept/reject step kill 
walkers that cross nodes.3P5P31 In this case they fail to sam- 
ple I es I * in the ideal @r = &, limit since detailed balance is 
violated. Unlike the improved algorithm, the simple one 
has a growth estimator for the energy which always has 
nonzero variance, since the algorithm fails to conserve 
probability even in the 4-r = $,J limit. 

It is shown in Appendix D that killing walkers that 
cross nodes results in a 6 dependence of the growth esti- 
mator. This makes accurate extrapolation to T=O exceed- 

ingly difficult since ,,& has infinite slope. 
If we stopped here we would have an exact and effi- 

cient variational Monte Carlo algorithm to sample from 
1 $r I 2. Now, we reintroduce the branching term to convert 
the steady-state distribution from I $r I 2 to 2(&-,. This is 
accomplished by reweighting the walkers with the branch- 
ing factor [see Eq. (6)] 

Aw 

exp{i[S(R’) +S( R) ]r& for an accepted move, 
= 

-pi exp[S(R)rJ for a rejected move, (23) 

where S is defined in Eq. (3). Following Reynolds et al.,3 
an effective time step reff was introduced to account for the 
changed rate of diffusion. We set 

(PM2) 
~eff’~ qjfy 3 (24) 

where the angular brackets denote the average over all 
attempted moves, and AR are the displacements resulting 
from diffusion. This equals (hR2),,,t,d/(hR2) but has 
somewhat smaller fluctuations. 

An alternative to expression (23) is obtained by re- 
placing the two reweighting factors by a single, average 
expression, where the average is over accepting and reject- 
ing the proposed move with the appropriate weights. Sub- 
sequent reweighting factors contribute multiplicatively and 
thus it is natural to use the expression obtained by averag- 
ing the exponent, which of course gives the same result as 
averaging the exponential for r + 0. This yields the re- 
weighting factor 

Aw=exp 
Ii 

$‘(R’) +S(R)) +qS(R) 7,~ 
I I 

for all moves. (25) 

In our-computations this expression was found to yield 
somewhat smaller fluctuations and time-step error than 
expression (23 ) . 

An analogous modification is made in the computation 
of mixed estimators. Equation ( 17) is modified to read 

(&ldl&J CLrrc;,r,)~“ci, ,I-+J,(~^) (qdCR,(t^- ~))+PJ@YR’,C~>>, 
(+Tih) = ~~~ ~~ m&L,n(t,T,)W(i) 

, (26) 
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where R’,(F) is the proposed move at time t^ which has 
probability p of being accepted. This is motivated by the 
fact that in a va$ational Monte Carlo calculation [i.e., all 
weights and II(t,T,) set to one], the above expression 
yields the same expectation values as Eq. (17), but with a 
somewhat smaller variance. 

A requirement to maintain a correct algorithm is that 
the ratio r&r --* 1 for r 4 0. This is fulfilled since the 
acceptance defined in Eq. (22) approaches 1 in this limit. 
A stronger requirement is that inclusion of the accept/ 
reject step does not alter the first two moments of the 
effective Green function to leading order in 7. This condi- 
tion is met since the acceptancep, defined in Eq. (22) can 
be shown, by Taylor expansion, to be 1 + 8(r). Hence, 
reff can be expanded as r,r = r( 1 + cl7 + c2rs’* + . * * ). In 
principle, there always exists a cctrue” value of reff in the 
range between 0 and r that yields the true r -+ 0 extrapo- 

lated value of the fixed-node energy. Empirically we find 
that the time-step error in the energy is nearly quadratic. 
Since the order of the error in the energy is one lower than 

in the Green function, this implies that the procedure out- 
lined above for determining reff gets values of cl and c2 that 
are very close to the “true” values. 

An estimate of 7,~ is readily obtained iteratively from 

sets of equilibration runs. During the initial run, reff is set 
equal to 7. For the next runs, the value of reff is obtained 
from the values of reff computed with Eq. (24) during the 
previous equilibration run. In practice, this procedure con- 
verges in two iterations, which typically consume less than 
2% of the total computation time. Since the statistical er- 
rors in rcff affect the results obtained, the number of Monte 
Carlo steps performed during the equilibration phase needs 
to be sufficiently large that this is not a major component of 
the overall statistical error. 

The value of reff is a measure of the rate at which the 
Monte Carlo process generates uncorrelated configura- 
tions, and thus a measure of the efficiency of the compu- 
tation. Since the acceptance probability decreases when r 
increases, reff has a maximum as a function of r. However, 
since the time-step error increases with r, the largest values 
of r that we have used were always smaller than this “op- 
timum.” 

Algorithms that do not exactly simulate the equilib- 
rium distribution of the drift-diffusion equation without 
the branching term, can for sufficiently large r have time- 
step errors that make the energy estimates higher than the 
variational energy. On the other hand, if the drift-diffusion 
terms are treated exactly by including an accept/reject 
step, the energy can be expected to lie below the variational 
energy, since the branching term enhances the weights of 
the low-energy walkers relative to that of the high-energy 
walkers. 

As mentioned above, the notion of including an 
accept/reject step was first introduced by Reynolds et al3 
Their algorithm differs from ours in that an accept/reject 
step is performed on each individual electron move sepa- 
rately rather than on the full n-electron move. We will see 
that the approximate Green function of Eq. ( 1) is a poor 
approximation to the true Green function near nuclei. 

Consequently, moves of electrons close to nuclei are much 
more likely to be rejected than moves of electrons far from 
nuclei, whereas in our algorithm all the electrons either 
move or do not move. Furthermore, their value of reff fluc- 
tuates and is different for each walker, whereas ours is a 
constant for all walkers and all times. 

B. Persistent configurations 

As mentioned above, the accept/reject step has the 
desirable feature of yielding the exact electron distribution 
in the limit that the trial function is the exact ground state. 
However, in practice the trial function is less than perfect 
and as a consequence the accept/reject procedure can lead 
to the occurrence of persistent configurations, as we will 
now discuss. We are unaware of any analysis in the liter- 
ature of this pathology of the algorithm although persistent 
configurations (or trapped walkers) have been observed by 
others.33,34 

For a given configuration R, consider the quantity 
P = (qAw), where q and Aw are the rejection probability 
and the branching factor given by Eqs. (22) and (25 ) . The 
average in the definition of P is over all possible moves for 
the configuration R under consideration. If the local en- 
ergy at R is relatively low and reff is sufficiently large, P 
may be in excess of one. In that case, the weight of the 
walker at R, or more precisely, the total weight of all walk- 
ers in that configuration will increase with time, except for 
fluctuations, until the time-dependent trial energy ET ad- 
justs downward to stabilize the total population. This pop- 
ulation contains on average a certain number of copies of 
the persistent configuration. Since persistent configurations 
must necessarily have an energy that is lower than the true 
fixed-node energy, this results in a negatively biased energy 
estimate. The persistent configuration may disappear be- 
cause of to fluctuations, but the more likely occurence is 
that it is replaced by another configuration that is even 
more strongly persistent, i.e., one that has an even larger 
value of P = (qAw). This process produces a cascade of 
configurations of ever decreasing energies. Both sorts of 
occurrences are demonstrated in Fig. 1. Persistent config- 
urations are most likely to occur near nodes or near nuclei. 
Improvements to the approximate Green function in these 
regions, as discussed in the next section, help to reduce 
greatly the probability of encountering persistent configu- 
rations to the point that they were never encountered in the 
longest runs we performed. We note that Fig. 1 was pro- 
duced by choosing a value of r=O. 1 H- ‘, which is half the 
largest time step that we will use in Section IV in the 
calculations performed with the final version of the im- 
proved algorithm. On the other hand, in runs without these 
modifications, we have observed persistency even for 
r=O.O25 H-’ though much less frequently than for r= 
0.1 H-t. Hence if one employs an algorithm that includes 
the accept/reject step, but does not include the other mod- 
ifications that we will describe, then it is necessary to use 
relatively very small time steps to avoid persistency. It 
should be noted that in the algorithm of Ref. 3, the accept/ 
reject step is performed on individual electrons rather than 
on configurations. Hence, that algorithm runs the risk of 
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BIG. 1. Illustration of the persistent configuration catastrophe. The dot- 
ted horizontal line is the true fixed-node energy for the simple Be wave 
function extrapolated to T=O. 

having persistent electrons rather than persistent configu- 
rations. Since the acceptance for electrons that are close to 
a nucleus is small, they are particularly likely to be persis- 
tent. Hence, that algorithm also suffers from this pathol- 
ogy, but in a less severe form. In practice various authors15 
have made the occurrence of persistent configurations very 
unlikely by using a sufficiently small time-step, that the 
average acceptance is close to one (typically 0.99). 

Despite the fact that the modifications described in the 
next section eliminated persistent configurations for the 
systems we studied, it is clearly desirable to have an algo- 
rithm that cannot display this pathology even in principle. 
We tested three different methods for doing this which we 
describe next. 

The first method we tried was to force walkers to move 
at each step by eliminating the accept/reject step while 
maintaining an algorithm that samples 1 $c (R) I * exactly in 
the limit that @r(R) = &(R). It is~shown in Appendix C 
that it is possible to sample I @r(R) I 2 exactly by replacing 
the accept/reject step by an additional reweighting 

Aw= I +T(R') 12~(R,Rr,r) 

- I $T(R) 1 2G(R',R,r) * 
(27) 

The usual reweighting by Aw of Eq. (25) then converts an 
exact sampling of 1 $rI * to an approximate sampling of 
$r$r, as before. This method was discarded because it leads 
to statistical errors that are a few times larger. 

The second method was to replace reff in Eq. (23) by r 
for an accepted move and by zero for a rejected move. This 
ensures that Aw never exceeds unity for rejected moves, 
hence eliminating the possibility of persistent configura- 
tions. Further, this has the advantage that it is not neces- 
sary to determine res. However, this method led to a time- 
step error that was about a factor of two larger in the case 
of Be. 

The final solution that we adopted was to monitor the 
age a’ of each walker, defined as the number of generations 
for which the walker had persisted at the same position. 

TABLE I. Behavior of the local energy EL and velocity u as a function of 
the distance RI of an electron to the nearest singularity. The behavior of 
various quantities is shown for an electron approach&g a node or another 
particle, either a nucleus or an electron. The singularity in the local 
energy‘at’particle overlap is only present for a & that fails to satisfy the 
cusp conditions. 

Region Local energy Velocity 

NC&S EL-*$ for 40, 
1 

EL=Eo for #o 

1 
U-- 

Rl 

Electron/ 

nucleus/electron 

1 
EL-; for some & u has a discontinuity 

l$,=E, for tie for both h and q. 
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The acceptance probability of walkers with age greater 
than 50~was multiplied by the exponentially growing factor 

l.la’-50. Of course, this solution to the persistency prob- 
lem strictly speaking violates detailed balance but since it is 
never exercised in the r = 0 limit, it leaves the limit un- 
changed. Since the oldest walker that we ever encountered, 
in the algorithm that incorporates the modi8cations de- 
scribed in the next section, had a’ =21 for Be and Liz and 
a’ =40 for Ne, in runs with as many as 8 X lo7 Monte 
Carlo steps, this solution to the persistent configuration 
problem was in fact never exercised in obtaining the results 
presented in this paper. It is presented here merely as an 
algorithm that cannot even in principle exhibit persistency, 
even for trial wave functions that are much inferior to 
those used here. 

C. Singularities 

The number of iterations of Eq. (5) required for the 
power method to converge to the ground state grows in- 
versely with the time step r. Thus, the statement made 
above, viz. that the Green function of Eq. (6) is in error 
only to 8(g), would seem to imply that the errors in the 
electron distribution and the averages calculated from the 
short-time Green function are of B (7). However, the pres- 
ence of nonanalyticities in the local energy and the velocity 
may invalidate this argument: the short-time Green func- 
tion lacks uniform convergence in r over 3n-dimensional 
configuration space. We have modified the Green function 
of Eq. (6) to take into account these singularities in a 
simple and approximate way, such that the Green function 
reduces to the original form of Eq. (6) far from the nonan- 
alyticities. 

More specifically, for a generic approximate trial wave 
function, the local energy diverges at nodes and at 
electron-nucleus and electron4ectron overlaps. Both for 
approximate and exact wave functions, the velocity di- 
verges at the nodes and has a discontinuity at the nucleus. 
The remaining improvements of the simple algorithm focus 
on these regions of the n-electron configuration space, since 
they make large contributions to the time-step error. In 
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particular, we shall systematically address the singularities 
summarized in Table I. 

The local energy diverges at particle overlaps unless 
tjr satisfies the cusp conditions.35 Failure to impose in par- 
ticular the electron-nucleus cusp condition significantly in- 
creases the time-step error. More specifically, if the wave 
function $r fails to satisfy the electron-nucleus cusp con- 
dition, the local energy diverges to + CO as an electron 
approaches the nucleus if the magnitude of the cusp is too 
large and to - 00 in the opposite case. In addition, the 
electron distribution of the simple algorithm has a consid- 
erable time-step error at the nucleus since the discontinuity 
in the velocity at the nucleus can cause the electrons to 
overshoot it, resulting in a reduced density of electrons at 
the nucleus as r is increased. The combined effect is a very 
large total time-step dependence. We note that this error 
can be either positive or negative, depending on whether 
the magnitude of the cusp is too small or too large, respec- 
tively. 

In practice, imposing the cusp conditions on the trial 
wave functions for atoms is straightforward since all orbit- 
als are centered at the same nucleus. For molecules it is 
necessary to consider the contributions to the value of an 
orbital at a nucleus coming from basis functions centered 
at other nuclei. The electron-nucleus cusp condition for 
molecules is imposed iteratively during the optimization of 
the trial wave function. When complicated forms of the 
correlation functions are used, it is sometimes advanta- 
geous to use a penalty function to impose the cusp condi- 
tions as part of the trial function optimization.36’37 

Next we address the divergence at the nodes. The 
diffusion term is relatively small near the nodes, and thus 
we may approximate the modified Schrijdinger equation, 

Es. (l),by 

aif (RJ) 
v.CV(R)f(R,t)3+CE,(R)--E,lf(R,t)=-- 

(28) 

The corresponding exact drift-branching Green function is 
given by 

Go(R”,R,~) =S(R”-R(T))$(~): (29) 

where R(t) is the solution to the differential equation 
dFUdt = V, satisfying the boundary condition R(0) 
= R, and 

g(R)=; ; 
s 

[G--E,CR(t)3ldt. (30) 

This can be verified by using the expression R( r + 87) 
z R(r) + V{R( 7)3&r and expanding to linear order in 
6r the expression 

~(R,T+ST) = 
s 

Go(R,R’&)f(R’,,i->dR’, (31) 

to show that f satisfies Eq. (28). 
Our goal is to find approximations for R(t) and 3 in 

Rq. (29). These approximations should be accurate, but 
simple enough to be expressed in terms of the wave func- 
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tion and its gradient, or more generally in terms of quan- 
tities that are already being computed to execute the simple 
diffusion Monte Carlo algorithm. 

First consider R(t). The expression R(t) =: R 
+ V(R) t, as used in Eq. (6)) derives from the approxima- 
tion that V(R) = Vt,bT(R)/&(R) is constant over the 
integration path. However, V diverges in the vicinity of the 
nodes of the trial function, and under those circumstances 
it is more accurate to assume that V& rather than V is 
constant. To be precise, within the linear approxim?tion of 
the wave function, the velocity is given by VA=: RI /RI , 
where RI is the distance to the node and RI is a unit 
vector orthogonal to the nodal surface pointing from the 
nodal surface to R. Integration of the equation of motion 
gives 

R, (t) --R, (0) = d--RI (0) = F(t)t, (32) 

by definition of v. In other words, in Eq. (6) expression 
R + V(R)7 is replaced by R + v(R)7 with 

v= 
-l+&Xv 

PT 
(33) 

with V evaluated at R = R (0). V reduces to V for small 

V2,r but the magnitude of the drift, Vr, is limited to fi for 
large V2,r. 

One can make an assumption intermediate between 
V = V&/& and V& being constant by introducing a 
parameter a, approximately in the range 0 to 1, and define 

V= 
-1+ J1+2aV% 

a V2r 
V. 

With this choice, the small V2~ limit of the drift is un- 
changed at Vr, but the large V% limit is J27/Q. 

In our actual calculations a more complicated form 
was used for the curve traced out by the drifting n-electron 
configuration. Velocities are large near a node but this is 
also true near a nucleus. The velocity goes to infinity near 
a node and it is typically as large as 2 near a nucleus. The 
constant a was made position dependent in a way that 
roughly distinguishes largeness of V in the proximity of a 
node and in proximity of a nucleus: a should be close to 1 
near a node and close to 0 near a nucleus. For this purpose, 
first of all the drift of the whole n-electron configuration is 
broken up into contributions of individually drifting elec- 
trons. In terms of single electron coordinates we have 

v’= (35) 

Secondly, the cross-over parameter a introduced in Eq. 
(34) is made dependent on position as indicated above 

1 n Z22 
a(r) =$l+d-z) +lo~4+z22~ , (36) 

where z^ is a unit vector from the nearest nucleus to the 
electron, which is at distance z, while v^ is a unit vector in 
the direction of the single electron velocity (see Fig. 2 >; 
only the order of magnitude of the various constants in this 
expression has physical significance. The motivation for 
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FIG. 2. An electron initially at r starts to drift in the direction 7 and at 
sufficiently long times comes to rest at the position of the nearest nucleus 

r,,,. Also shown is the cylindrical coordinate system with unit vectors i 
and .?, both of which are coplanar with v. 

these two terms is that the first term is close to one if the 
velocity of the electron is directed away from the nearest 
nucleus, which is an indication of the proximity of a node. 
The second term ensures that the value of a is never very 
small when the electron is not close to any nucleus, thereby 
limiting the magnitude of the drift far from nuclei to rea- 
sonable values. Note that for nonzero r, Eqs. (34) and 
(35) give slightly different results even for constant a. 

It is illuminating to compare Eq. (35) with the result 
for the average drift obtained from the exact Green func- 
tion for the modified Schrodinger equation for a particle in 
one dimension in the immediate vicinity of a node in the 
guiding function 

ia2f acfm af 
-zg+ax=-- at* (37) 

The substitution f = $x yields the Schrodinger equation 
in imaginary time for a free particle subject to the bound- 
ary condition that 4 have a node at x=0. The Green func- 
tion of the latter is found with the method of images. The 
result can then be transformed back to give the Green 
function of Rq. (37): 

” 

(38) 

This yields a large r limit of the average drift of ,/%&, 
corresponding to a=?r/4 in Eq. (35). We note that, in 
agreement with the exact Green function of Eq. (37)) our 
improved Green function goes to zero quadratically at the 
nodes (because of the accept/reject step) whereas the sim- 
ple Green function goes to a nonzero constant. In principle 
one could modify the algorithm so as to sample from the 
Green function given in Eq. (38) for the direction perpen- 
dicular to a nearby nodal plane, but we have not found that 
necessary. 

Next we deal with the divergence of the local energy at 
the nodes. The expression for R’ (t) found above with v 
given in Eq. (33) can be used to obtain an approximate 
expression for S(R) as given in Eq. (30). With the ap- 
proximation EL(RI ) z E,, + (B/R,. ), where Eest is the 

-i~~eXt estimate of the energy, integration over the path 
yields 

I 
v(R) 

g(R)= (ET-E&+[E~~--EL(R) IV(R) 3 
1 

(39) 

where all position dependent quantities on the right are 
evaluated at ,R. It should be noted that Eq. (39) was de- 
rived assuming a single constant a, while in practice v2 is 
Cillcl~Li~tl by st%nming the squared single electron veloci- 
I ic\ I’, eacl I of which has a different value-of a. For small r 

.-this expression (39) ‘differs appreciably from the original 
expression, Eq. (3)) only in the vicinity of a node. Thus we 
always use the branching factor, Eq. (25), with this new 
definition of S. It should be noted that whereas the S of Rq. 
(3) can diverge at nodes, the new S does not, since both 
EL and V diverge as the inverse of the distance to the node 
but v does not. 

Finally, we deal with inaccuracies of the short-time 
Green function near the nucleus. The velocity of an elec- 
tron close to a nucleus is always directed approximately 
toward the nucleus. That is, the velocity has a discontinu- 
ity and the true Green function has a cusp at the nucleus. 
The short-time Green function is inaccurate first of all be- 
cause the drift term can cause an electron to overshoot the 
nucleus. Secondly, the gaussian cannot reproduce the cusp, 
although for sufficiently small r it can approximate one. 
Hence, the distribution of electrons in the vicinity of the 
nucleus depends strongly on r and produces a large time- 
step error. If the drift is done before the diffusion, as is 
commonly the case, then the electron density close to the 
nuclei is diminished as r is increased. Similar arguments 
apply to electron-electron overlap, but the effect on the 
time-step error is negligible because the electrons do not 
experience the discontinuity in the velocity since the veloc- 
ity moves the electrons apart and because the probability of 
a close encounter is small. Clearly, the goal is to modify the 
diffusion Monte Carlo walk such that the distribution of 
electrons changes very little from the exact distribution as 
r is increased. 

The discontinuity in the velocity at the nucleus can be 
dealt with by working in cylindrical polar coordinates 
(z,p,$), rather than Cartesian coordinates, with z = r 
- r,, centered on the nearest nucleus (see Fig. 2). The 
velocity V is resolved into a z^ component i& in the direction 
of thz nearest nucleus and a p component FP, i.e., f 
= i@ + iY$. If z is the initial distance to the nearest nu- 
cleus, then the final z^ component of the distance after drift; 
ing, z”, is chosen as max(z + Q+,O) . The drift in the p 
direction is chosen as p” = 2U707z”/(z + z”). For increas- 
ing time the electron traces a curved path that ends at the 
nucleus as illustrated in Fig. 2. Thus, the electron is pre- 
vented from overshooting the nucleus. 

The true Green function has a cusp at the nucleus. The 
approximate Green function used in the Monte Carlo pro- 
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cess is smooth at the nucleus if the drift is done before the 
diffusion. On the other hand, if the order of the drift and 
diffusion were reversed, and the electrons are prevented 
from overshooting the nucleus, then the approximate 
Green function has a 6 function at the nucleus, which is 
not the right behavior either. In order to have a more 
accurate Green function in the vicinity of the nucleus we 
use a form with one-particle factors that interpolate be- 
tween the short-time Gaussian diffusion kernel and the hy- 
drogenic ground state wave function to which for long 
times they would evolve in the absence of other electrons 
or nuclei. The crossover between the two behaviors is ex- 
pected to occur on a time scale such that the electron 
would move beyond the nucleus by pure diffusion with 
appreciable probability. Hence, we sample from a Gaussian 
(2TT) -3/2e-r’2/2r with probability p, and from an exponen- 

tial ( c3/z-) .zz-~Y with probability g= 1-E The Gaussian 
is always centered at the position of the electron after it has 
drifted, whereas the exponential is always centered at the 
nearest nucleus prior to drifting. Note that if z+ Err<0 
then both the Gaussian and the exponential are centered at 
the same point. The value of Fis chosen to equal the prob- 
ability that the electron diffuses across a plane through the 
nearest nucleus, perpendicular to the line from the electron 
to the nucleus, i.e., 

(4-o) 

z being the distance to the nearest nucleus prior to drifting. 
The inverse length g in the exponent is chosen to be 

dm. For small r, f= l/ fi, i.e., the second moment 
of the exponential equals that of the Gaussian. In this way, 
we maintain a Green function correct to B (7). On the 
other hand, for large r, g=Z, so that the Green function 
has the correct cusp 

a@ R',R,T)/dr' 

G(R',R,T) 
= -2z, 

r’=o 

where r’ is the distance of any one of the electrons to a 
nucleus. 

In summary, in this section we have proposed several 
simple modifications to the Green function that take into 
account its nonanalyticities. These improvements, not only 
reduce the time-step errors but also increase the acceptance 
probability because if the true importance-sampled Green 
function G(R',R,T) were used to generate moves, then all 
proposed moves would be accepted. This follows from the 
fact that the Green function of the original Schrodinger 
equation, prior to the importance-sampling transformation 
of Eq. ( 1 ), is symmetric in its arguments and the definition 
of the importance sampled Green function in terms of the 
original Green function. So, the improvements in the 
Green function not only reduce the time-step error but also 
enhance the acceptance and consequently the efficiency of 
the algorithm and reduce greatly the chance of encounter- 
ing persistent configurations. Furthermore, if the accept/ 
reject were done for each electron, as in the algorithm of 
Reynolds et al3 then these improvements to G(R',R,r) 
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would have served to make the acceptance probability 
larger and more uniform for all the electrons, whereas the 
algorithm of Ref. 3 has a considerably lower acceptance for 
electrons close to a nucleus, than for electrons far from the 
nuclei. 

IV. RESULTS 

In this section we present a numerical comparison of 
the simple and improved diffusion Monte Carlo algorithms 
described above. Results are presented for Be, Liz, and Ne, 
these being representative of a light atom, a molecule and 
a heavy atom. Ne is the heaviest atom that has been treated 
to date by diffusion Monte Carlo without the use of meth- 
ods that treat core electrons approximately. Hence, this 
constitutes a severe test of the method. We also present 
results both for a simple and a very good wave function for 
Be in order to study the behavior of the algorithm as the 
quality of the wave function is improved. We have applied 
the algorithm to other wave functions, not presented here, 
with equally satisfactory results. 

In employing a particular algorithm for a given atom 
or molecule a practical complication in making a compar- 
ative evaluation is that the time-step error depends 
strongly on the trial wave function. In the limit that the 
trial wave function approaches an eigenfunction the simple 
algorithm has time-step errors that vanish for the mixed 
estimator for the energy, but not for the growth estimator 
or the mixed estimators of quantities that do not commute 
with the Hamiltonian. (The nonvanishing of the error of 
the growth estimator is directly related to killing walkers 
that cross nodes.) On the other hand, the improved algo- 
rithm has vanishing time-step errors for all quantities. The 
simple algorithm has a vanishing variance for the mixed 
estimator of the energy in the $r + $. limit, but not for the 
growth estimator of the energy or the mixed estimators of 
operators that do not commute with X. The improved 
algorithm has vanishing variance for both estimators of the 
energy, but not for operators that do not commute with 
27 In view of the dependence on the trial wave functions, 
we have tested our algorithm first employing simple wave 
functions for Be, Liz, and Ne, consisting of a single con- 
figuration determinant multiplied by a simple Jastrow 
function. These wave functions are of quality roughly com- 
parable to many of the wave functions used in the litera- 
ture. Then, in one case, we repeated the computation with 
an accurate, two-configuration wave function, with a com- 
plicated Jastrow factor of the form described else- 
where,363g a wave function much more accurate than any 
used by other authors. The wave functions are described in 
detail in Appendix B. 

A. Simple wave function comparisons 

Figures 3, 4, and 5 are plots of the total energy as a 
function of the time step for simple Be, Ne, and Li, wave 
functions. The triangles and crosses are the results ob- 
tained with the simple diffusion Monte Carlo algorithm, 
and, respectively, display data for the mixed and growth 
estimators. The various curves are polynomial fits in inte- 

gral powers of ,,&. We have reason to believe (see Appen- 
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FIG. 3. Time-step dependence of the total energy of Be using a simple wave function. The triangles (crosses) are the energies from the mixed (growth) 
estimator in simple diffusion Monte Carlo and the dashed-dotted (dotted) line is a polynomial fit in powers of 7. The powers of-r included in the fit are 
shown in the legend. The squares/circles are the energies from the mixed (growth) estimator in the improved diffusion Monte Carlo algorithm and the 
solid (dashed) line is a fit. The two curves are almost indistinguishable. The error bars are plotted, but appear as horizontal ticks since the errors are 
small. 
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FIG. 4. Same as Fig. 3 but for a simple Liz wave function. 
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FIG. 5. Same as Fig. 3 but for a simple Ne wave function. 

dix D) that the term proportional to 6 is missing for the 
time-step dependence of the mixed estimator, in which fit 
this term was suppressed. The powers of r included in the 
fit are shown in the parentheses in the legends. The squares 
and circles, respectively, display data for the mixed and 
growth estimators obtained from the improved algorithm. 
The two estimators are in all cases sufficiently close that it 
is difficult to tell them apart. 

Table II shows the time-step errors for the two algo- 
rithms at 7=0.2 H-’ for Be and Liz and 7=0.015 H-’ for 
Ne. The last column shows that the improved algorithm 
has from 70 to 300 times smaller errors in the mixed esti- 
mator and from 70 to 1100 smaller errors in the growth 
estimator. The improvements are even greater at the 
smaller time steps. 

Figures 6 and 7 are the same as Figs. 3 and 4 but with 
an expanded energy scale to illustrate the functional form 
of time-step dependence of the improved algorithm. Al- 
though the mixed and growth estimators of the energy 
agree very well here, the agreement in our earlier version” 
of the improved algorithm was another 2-3 orders of mag- 
nitude better, in all cases. The deterioration in the agree- 
ment of the two estimators can be traced to our using Eqs. 
(25), (26), and (39) instead of Eqs. (23), (17), and (3) 
in the earlier version. We do not see a big benefit to having 
the two estimators agree to orders of magnitude better than 
the statistical errors, so we have elected to make these 
changes which slightly degrade the agreement of the two 
estimators, but reduce both the time-step errors and the 
statistical errors. 

We notice that although we have not designed the al- 

gorithm to have quadratic time-step errors, in practice the 
errors are quadratic to within the error bars. (The time- 
step error for Ne are sufficiently small that we cannot dis- 
cern a clear trend above the error bars; hence an expanded 
energy scale plot is not presented for Ne. ) This implies that 
the procedure used for determining reff is particularly ac- 
curate in determining the lowest two orders of correction 
to r as discussed in Section III A. 

The improvement in quantities other than the total 
energy is in many cases even more dramatic, as can be seen 
from Table II. For some quantities it is impossible to see 
any time-step error above the statistical noise, so we give 
upper bounds for the error and lower bounds for the fac- 
tors by which the time-step errors are reduced. The im- 
provements range from a factor of more than 80 to a factor 
of more than 1000 for the simple wave functions, with yet 
larger improvements for the good wave function. The ki- 
netic energy and negative moments of the charge distribu- 
tion have particularly large time-step errors in the simple 
algorithm because the electron distribution of the simple 
algorithm is significantly in error near the nucleus-a re- 
gion where these quantities diverge. 

To study the detailed dependence of the time-step er- 
rors we present as examples, in Figs. 8-10, the mixed es- 
timators of the kinetic energy Ekin and moments of the 
charge-distribution (3) and (r-l) for the simple Be wave 
function. We have included a r5’4 term in the fit of Ekin and 
(r-l) from the simple algorithm because it significantly 
improved the quality of the fit. Chini has presented an 
argument for why this term could occur because of the 
discontinuity in the velocity at the nucleus. We have not 
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TABLE II. Comparison of the time-step errors for various quantities computed by simple and improved diffusion Monte Carlo at 1-=0.2 H-’ for Be and 

Liz and 7=0.015 H-’ for Ne. Energies are in hartrees and lengths in Bohr radii. Statistical uncertainty in the last digit is given in parentheses. The last 
column gives the absolute value of the ratio of the simple diffusion Monte Carlo error to the improved diffusion Monte Carlo error. 

Wave function Observable 
Extrapolated 
value at T=O 

Error at largest r 

Simple DMC Improved DMC 

Error 
ratio 

Be 

Simple 

Be 

Good 

Lis 

Simple 

Ne 

Simple 

&ix 

Esr 

-Gh 

(J-9 

(r-7 

&nix 

Em 

E!& 

G-3 

0-l) 

ElTliX 

% 

&ill 

%iX 

Esr 
-Gill 

(3) 

(r-9 

- 14.6568(2) +0.268 -0.0038 71 

- 14.6568(2) +0.366 -0.0042 87 

14.708(4) - 15.53 +0.07 190 

3.956(4) +1.12 < 0.006 > 185 

2.1120(3) -1.08 +o.c043 250 

-14.66719(3) +0.052 -0.OcKl17 310 

- 14.66718(3) +0.146 -0.00013 1100 

14.674(3) - 15.85 <0.004 >4CQO 

4.020(3) + 1.10 < 0.005 > 220 

2.1076(2) -0.98 < o;OBO3 > 3300 

- 14.9890(2) +0.262 -0.0030 87 

- 14.9890(2) +0.285 -0.0039 73 

- 14.897(2) - 12.4 +0.041 300 

-128.919(3) +0.48 <o.cQ4 > 125 

-128.919(3) +2.90 < 0.004 > 720 

129/M(2) -90.7 <0.05 > 1800 

0.882( 1) +0.159 <0.002 >80 

3.1247(5) +0.99 <KOOl >lOOO 
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FIG. 6. Same as Fig. 3 but with an expanded energy scale, which makes the error bars visible, to show the time-step dependence of the improved 
algorithm. Note that the results for the simple diffusion Monte Carlo algorithm are almost completely off-scale. The fits for the improved algorithm 
include terms only up to 2nd order. The fitted value of the linear coefficient is zero within statistical errors. 
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FIG. 8. Time-step dependence of the mixed estimator of the kinetic energy of Be using a simple wave function. The triangles are the kinetic energies from 
the mixed estimator in simple diffusion Monte Carlo and the dashed-dotted line is a fit. The squares are the energies from the mixed estimator using the 
improved diffusion Monte Carlo algorithm and the solid line is a fit. The powers of 7 included in the fit are shown in the legend. The error bars are 
plotted, but appear as horizontal ticks since the errors are small. 
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FIG. 9. Same as Fig. 8 but for the mixed estimator of (12). The error bars in this case are large enough to be seen clearly at the shorter time-step values. 
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FIG. 10. Same as Fig. 8 but for the mixed estimator of (r-l). 
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FIG. 11. Mixed estimator of the kinetic energy of Lip Note the time-step error for simple diffusion Monte Carlo is so big, that the curve is almost 
indistinguishable from the y axis. The fits for the improved algorithm include terms only up to 2nd order. The fitted value of the linear coefficient is zero 
within statistical errors. 

verified in detail the applicability of his arguments to the 
simple algorithm, but the empirical evidence for the exist- 
ence of the ?‘4 term is strong. For example, replacing the 
?I4 term by a ~-i’~ term in the fit for the kinetic energy 
increased the value of x2 from 1.3 to 29.3 and yielded an 
extrapolated value that is in error by 0.9 H, whereas leav- 
ing out the ?‘4 term all together resulted in a x2 of 547 and 
an extrapolated value that is in error by -0.8 H. Our 
preliminary worki has plots of the kinetic energy for 3 of 
the 4 wave functions used in this paper which clearly show 
that the correct extrapolated value is not obtained in the 
simple algorithm if the g’4 term is omitted. 

The time-step errors for quantities other than the en- 
ergy (in those cases where it is large enough to be clearly 
discernible beyond the statistical errors) also appears to be 
quadratic. An example of this is shown in Fig. 11 where 
the mixed estimator for the kinetic energy of Liz is plotted. 
This is in contrast to Chin’s algorithm16 which has qua- 
dratic time-step errors only for the total energy and only 
for nodeless wave functions. 

In Table III we present values of a, the fluctuation of 
the local energy, T,,, the autocorrelation time of the en- 
ergy, and gTwm for both algorithms and r&r and the 
average acceptance for the improved algorithm. These 
quantities were measured in runs with a target population 
size of 100 walkers that were propagated for 4 x lo5 (Be 
and Li2) or 8 x lo5 (Ne) MC generations, making for a 
total of 4 X lo7 or 8 X lo7 Monte Carlo moves. In order 
to calculate T,, the Monte Carlo generations were di- 
vided into 100 blocks, each consisting of 4 X lo3 or 8 

X lo3 Monte Carlo moves. Note that the number of Monte 

Carlo moves in a block is in all cases much larger than 

T corr; else the value of r,,, would have been systematically 
underestimated. By repeating runs with different random 

numbers, we have determined that the errors in o are in the 

third significant digit and those in T,,, in the second sig- 
niflcant digit. 

If we ignore fluctuations, mostly due to statistical er- 

rors in the estimation of T&, the trends in Table III are 
very clear. dT,, is a measure of the number of Monte 
Carlo moves needed to reduce the statistical error to a 
given value. For a given value of r, the value of T,,, is 
larger for the improved algorithm than the simple one be- 

cause some of the proposed Monte Carlo moves are re- 
jected. This is reflected in reff being smaller than r. How- 
ever, the simple algorithm has a considerably larger o than 

the improved algorithm at the larger time steps because as 
r is increased it has an increasing density of walkers at the 
nodes-a region where the local energy diverges. The value 

of CT actually goes down a little with increasing r in the 
improved algorithm because of the averaging present in 
Eqs. (25) and (26). In our earlier version of the algo- 
rithm,17 where we used Eqs. (23) and (17) rather than 
Eqs. (25) and (26) the values of o were independent of r, 
as expected. The product aTcorn is always considerably 
smaller for the improved algorithm than for the simple one 
at the larger time-steps. Hence, not only does the improved 
algorithm have a much smaller time-step error and a 

higher efficiency due to the possibility of using larger val- 
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TABLE III. Comparison of a, the fluctuation of the local energy, and T,,, the autocorrelation time of the energy, for the simple and improved diffusion 

Monte Carlo algorithms. The product dT,, is a measure of the number of Monte Carlo iterations required to reduce the statistical error to a given 

value. The time step r is in inverse hartrees; E and D are in hartrees; and r,, are in units of 7. The numbers in parentheses are the statistical errors in 
the last digits. 

Wave function 

Simple diffusion Monte Carlo Improved diffusion Monte Carlo 

7 0 T co* ~TC&I (T Tar CJ+,CO, ~.a~~ Acceptance 

Be 

Simple 

EvMc = -14.6275(l) 

E DMC = -14.6569(2) 

Be 

Good 

E vMc = -14.66648(l) 

E DMc = -14.66717(3) 

Lis 

Simple 

E vMc = -14.9472(2) 

E DMC = -14.9890(2) 

Ne 

Simple 

EvMc = --128.713(2) 

E DMC = -128.922(4) 

0.010 0.384 36.0 5.30 0.385 25.9 3.85 

0.050 0.373 10.5 1.46 0.368 8.5 1.15 

0.100 0.413 3.4 0.58 0.361 5.4 0.70 

0.150 0.465 2.4 0.53 jI.359 4.7 0.61 

0.200 0.521 2.1 0.57 0.358 2.9 0.37 

0.250 0.574 1.8 0.59 0.358 2.2 0.28 

0.010 0.125 13.5 0.213 0.085 28.0 0.200 

0.050 0.166 2.3 0.064 0.078 6.5 0.040 

0.100 0.214 1.8 0.083 0.075 3.3 0.019 

0.150 0.262 1.6 0.108 0.072 3.3 0.017 

0.200 0.316 1.6 0.163 -0.071 2.3 0.011 

0.250 0.380 1.4 0.197 0.070 2.1 0.010 

0.010 0.405 34.6 5.68 0.408 33.4 5.58 

0.050 0.394 9.4 1.46 0.390 11.5 1.75 

0.100 0.410 4.9 0.82 0.378 5.1 0.72 

0.150 0.442 3.1 0.61 0.371 4.5 0.62 

0.200 0.482 2.8 0.66 -0.370 3.6 0.49 

0.250 0.530 2.6 0.72 0.368 3.3 0.45 

o:cO10 2.084 134.6 584.0 1.861 139.9 485.0 

0.0050 2.205 25.6 124.4 1.805 37.1 120.7 

0.0100 2.319 13.0 70.3 1.774 17.6 55.2 

0.0150 2.485 11.3 69.8 1.760 17.6 54.6 

0.0200 2.676 6.9 49.4 1.751 15.5 47.6 

0.954 0.963 

0.828 0.861 

0.773 0.822 

0.758 0.813 

0.754 0.809 

0.754 0.805 

0.954 0.963 

0.828 0.861 

0.774 0.823 

0.759 0.814 

0.754 0.808 

0.751 0.802 

0.963 0.968 

0.836 0.858 

0.75 1 0.786 

0.710 0.753 

0.689 0.740 

0.679 0.734 

0.968 0.971 

0.843 0.856 

0.738 0.759 

0.667 0.693 

0.615 0.643 

ues of r, but even for a given large value of r it has a higher 
efficiency. 

At present, variational Monte Carlo is often resorted 
to when diffusion Monte Carlo is deemed too computation- 
ally expensive. However, the improved algorithm permits 
one to use large values of r, so that the values of T,, are 
actually smaller than that in most variational Monte Carlo 
algorithms in use, except for the recent accelerated Me- 
tropolis algorithm.39 Hence the improved algorithm should 
be applicable to any system that hitherto could only be 
treated by variational Monte Carlo. 

B. Comparison with the literature 

Thus far, we have compared the results of our im- 
proved algorithm with those of the simple algorithm which 
we claim to represent fairly some fraction of the algorithms 
found in the literature. To convince the reader that we 
have done more than just defeat a poor caricature, we 
proceed to compare with published results. As mentioned, 
this is hampered by the dependence of the time-step error 
on the trial wave function. Nevertheless, it is possible to 
roughly compare the time-step errors by using as a gauge 
the complexity of the wave functions or the value of the 
variational energy. Three groups of algorithms can be dis- 
tinguished. The first group consists of algorithms that are 
very similar to the simple algorithm of this paper. The 

second is the algorithm of Reynolds et al3 which incorpo- 

rates the accept/reject step, but does not contain the other 

improvements of our improved algorithm. The third group 

attempts to achieve quadratic time-step error. 

First, we compare with algorithms similar to the sim- 

ple diffusion Monte Carlo algorithm described above, pos- 

sibly differing from it only in detail, e.g., the detailed form 

of the cutoffs used for the local energy and the velocity, or 

whether a switch is made to a smaller time-step when the 

local energy or the velocity is large.21Y40 These methods 

should have time-step errors very similar to those of the 

simple diffusion Monte Carlo algorithm used here. 

Garmer and Anderson” used an extended basis set 

wave function for the F atom and report3’ a time-step error 

of 0.33 H at 7=0.012 H-‘. By way of comparison, the 

time-step error of our improved algorithm, used with an 

almost minimal basis set wave function, for a slightly 

heavier atom, Ne, is < 0.003 H at the same 7, a reduction 

by a factor of more than 100. Garmer and Anderson” 

present time-step errors for another lo-electron system, 

methane. Their single and double 5 wave functions had a 

time-step error of 0.2 H and 0.09 H, respectively, at 

7=0.005 H-r. These errors are 500 and 225 times larger 

than our error for Ne at the same time-step, in spite of the 

fact that, for a given total nuclear charge, time-step errors 
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are usually smaller for molecules than for a heavy atom 
with the same combined nuclear charge. 

A second group of results to compare with was ob- 
tained by the algorithm of Reynolds et aZ.3 This algorithm, 
which includes an accept/reject step, probably has the 
smallest time-step error of the three groups of algorithms 
used up to the present time. Barnett et aL41 use double 5 
wave functions for F and F- and find time-step errors of 
-0.019 H and -0.087 H, respectively, at r=O.O05 H-‘. 
Our time-step error for Ne ( < 0.004 H at 7=0.015 
H-i) is more than 43 and 195 times smaller than their 
error for F and F-l, respectively, assuming that our time- 
step error scales quadratically in T for Ne, as it does for Be 

and Liz. Even if we make the more conservative assump- 
tion that our time-step error scales linearly in 7, our time- 
step error is more that 14 and 65 times smaller than their 
errors. 

Recently, Sun et aL4’ have used optimized wave func- 
tions and find time-step errors of 0.004 H at r=O.l H-r 
for Liz and 0.04 H at r=O.Ol H-i for water. Our time-step 
error for Liz at r=O.l H-’ is 0.00075 H, a factor of 5 
smaller than theirs, and for Ne <0.002 H at r=O.Ol 
H-‘, a factor of more than 20 smaller than theirs. In mak- 
ing the comparison for Liz, it should also be noted that 
they have the advantage of having used a slightly better 
wave function: theirs has 12 basis functions and recovers 
68% of the correlation energy in a variational calculation, 

whereas ours has 8 basis functions and recovers 62% of the 
correlation energy variationally. Also, in all of the compar- 
isons with this second group of algorithms, it should be 
borne in mind that they perform the accept/reject step on 
each electron rather than on the full n-electron move, so 
that their algorithm is at least a factor of two more time 
consuming. 

Finally, there have been attempts to design algorithms 
to achieve a small, quadratic time-step error*“*” for the 
energy. Vrbik” was the lirst to propose an algorithm that 
would have a quadratic time-step error provided that there 
are no discontinuities in the velocity and local energy. 
Vrbik and Rothstein13 used this algorithm along with a 
modified velocity to obtain what appeared to be an 
d ($) time-step error in the energy for a Hz molecule. 
Rothstein, Patil, and Vrbik14 presented several versions of 
their algorithm, each of which has a quadratic time-step 
error provided that there are no nonanalyticities in the 
velocity or the energy. However, these algorithms when 
applied to Hz and LiH did not have-a quadratic time-step 
error even in the nodeless Hz case, because the trial wave 
functions did not satisfy the correct cusp-conditions ex- 
actly. Furthermore, these authors found that algorithms 
with a relatively small error for one molecule have large 
errors for the other. DePasquale et al. l5 have tried several 
B (7) modifications of the usual drift and diffusion terms 
in an attempt to reduce the time-step error. Their proce- 
dure lacks general validity because a dilferent modification 
of the algorithm was constructed by trial and error for each 
of the systems studied, and in spite of this their time-step 
errors are large. In practice, quadratic time-step errors 
have only been achieved for the special case of nodeless 

2-electron systems16 and only for the total energy. More 
importantly, the time-step error, though somewhat smaller 
than that of simple diffusion Monte Carlo, is nevertheless 
very large. For example, the preferred algorithm of Ref. 16 
has a time-step error of 0.1 H at r=O.4 H- ’ for He-a 
very large value for a light atom in a nodeless 2-electron 
state. 

The domain Green function Monte Carlo method 4&*7 
has no time-step error. The time step in Green function 
Monte Carlo is not fixed but there is an average time step 
which is controlled by the shift in the potential. As the 
average time step is increased, a growing number of itera- 

tions are required to sum the Neumann series, which re- 
constructs the exact Green function from an approximate 
Green function. There is an optimal average time step, 
approximately given by the time step which maximizes the 
ratio of the average time step to the average computer time 
required to propagate the walkers to the next generation. 
The optimal average time steps for Be, Li2, and Ne are 
approximately 0.0006 H-‘, 0.0008 H-‘, and 0.00007 
H-‘, respectively. These time steps are factors of 400, 300, 
and 300 smaller than the largest time steps used in the 
improved diffusion Monte Carlo algorithm. Furthermore, 
there is much greater branching in Green function Monte 
Carlo resulting in the inefficiency of having many closely 
related, i.e., statistically dependent, walkers. For the sys- 
tems studied here, this resulted in an additional factor of 
1.5 to 2 greater statistical error, or a factor of 3 to 4 greater 
computer time for a given statistical error. This factor by 
itself is compensated for by the fact that in diffusion Monte 
Carlo one needs to perform calculations at several values of 
r to get an accurate extrapolation to zero time step. In 
other words, owing to the increased time step, the im- 
proved diffusion Monte Carlo algorithm is a few hundred 
times more efficient than Green function Monte Carlo. If 
we took into account the additional overhead of the more 
complicated Green function Monte Carlo algorithm, com- 
ing from the fact that in Green function Monte Carlo in- 
termediate points are sampled (at which wave functions 
and their gradients need to be evaluated), that do not con- 
tribute to the expectation values, the balance would tip 
even further in favor of the improved diffusion Monte 
Carlo algorithm. This is not to say that the domain Green 
function Monte Carlo algorithm could not be made more 
competitive by using a better approximate Green function 
from which to construct the exact Green function. The 
comparison is merely for the present state of the art. 

Ceperley* has developed a more general form of the 
Green function Monte Carlo method that does not require 
the motion of the electrons to be within their ‘domains’ and 
has used a better approximate Green function from which 
to construct the exact Green function. Hence it is possible 
to take larger time steps. However, in this method the 
electrons may attempt to cross nodes. Hence the time-step 
error is not totally eliminated, though it is probably very 
small. The effective time step used in Ref. 8 for Liz is 0.043 
H-r which is considerably larger than the optimal time 
step in domain GFMC but a factor of 6 smaller than the 
largest time step we used in the improved diffusion Monte 
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FIG. 12. Same as Fig. 3 but for the good Be wave function. 

Carlo method. In common with domain Green function 
Monte Carlo, Ceperley’s method also suffers from the en- 
hanced branching and the overhead of constructing an ex- 
act Green function from an approximate one. 

C. Good wave function comparisons 

So far we have presented results for simple wave func- 
tions in order that the advantage of using a better wave 
function should, if at all, lie with the other algorithms to 
which we compare ours. We now show that when the im- 
proved algorithm is used with good wave functions it is 
possible to obtain some of the most accurate results to date. 
Figures 12 and 13 are plots of the total energy as a function 
of the time step for an accurate Be wave function. The time 
step error for either algorithm is, as expected, much 
smaller than for the same algorithm using the simple wave 
function. As shown in Table II, at T= 0.2 H-‘, the time- 
step error of Emix and Egr in the improved algorithm is a 
factor of 3 10 and 1100 smaller than that of simple diffusion 
Monte Carlo. It should be noted that the simple algorithm 
has a time-step error in the growth estimator that is larger 
than that in the mixed estimator. This becomes increas- 
ingly noticeable as & is improved and is a direct reflection 
of the fact that the growth estimator lacks a zero-variance 
principle in the case of the simple algorithm because walk- 
ers that cross nodes are killed. Table II also shows that the 
errors in Ekin, (?) and (7-l) change very little for the 
simple algorithm in going from the simple to the good 
wave function, but the errors of the improved algorithm 
are greatly reduced. This is a reflection of the fact that the 
improved algorithm yields the correct distribution in the 

limit that the trial wave function approaches the true wave 
function, but the simple algorithm does not. 

We note from Table II that the value of the energy, 
extrapolated to ~=0, is 0.0103 H lower for the good wave 
function than for the simple one. This demonstrates that 
the nodes of single configuration simple wave functions for 
Be are significantly in error. Those of the two-configuration 
good wave function, which takes into account the near- 
degeneracy correlation of the electrons, are very good. The 
r=O value of the energy for the good wave function is 
-14.66718~0.00003 H which is 0.OCO21*0.00003 H 
lower than the best energy calculated directly to date using 
a state-of-the-art 650 000 determinant multiconfiguration 
Hartree-Fock wave function,43 and only 0.00019+0.00006 
H higher than Olsen and Sundholm’s43 extrapolated en- 
ergy, which is obtained by a double extrapolation to infinite 
single-particle and multiparticle bases size. This result is 
remarkable, and is a consequence both of the improved 
diffusion Monte Carlo algorithm and of the high quality of 
the wave function, despite its compactness. 

V. DISCUSSION 

To summarize, we have identified four important in- 
gredients that make an algorithm with a small time step 
error. First, it is necessary to construct trial wave functions 
that satisfy the cusp conditions so as to avoid divergences 
in the local energy. Second, by incorporating an accept/ 
reject step the algorithm is constructed so as to sample an 
electron distribution at least as good as the trial wave func- 
tion I& 1’. Third, we have identified the nonanalyticities in 
the local energy and the velocity that result in large time- 
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FIG. 13. Same as Fig. 6 but for the good Be wave function. 

step errors and we have proposed simple modifications to 
the approximate Green function that take these into ac- 
count. These improvements to the Green function not only 
reduce the time-step error but also enhance the acceptance 
and consequently the efficiency of the algorithin and re- 
duce greatly the chance of encountering persistent config- 
urations. Fourth, although we find that the improvements 
to the Green function render the likelihood on encounter- 
ing persistent configurations negligible, we propose simple 
modifications of the algorithm that render them impossi- 
ble. 

Further improvements to the algorithm are possible. 
First, since the acceptance probability for one-electron 
moves is greater than for multielectron moves, and since 
updating the wave function after one-electron moves takes 
less time than after multielectron moves, it may be advan- 
tageous, for systems with many electrons, to revert to the 
original Reynolds et al. 3 method of doing the accept/reject 
on each electron, while preserving all the other modifica- 
tions proposed. Another possibility is to use the Green 
function of this paper as the approximate known Green 
function from which the exact Green function is con- 
structed by iterating the Neumann series.’ Since the ap- 
proximate Green function of this paper is a good approx- 
imation to the true Green function, it may be possible to 
both use large time steps and have a rapidly convergent 
Neumann series. Such an algorithm would still have a non- 
zero time-step error, as does Ceperley’s algorithm,’ be- 
cause some walkers would attempt to cross nodes, but they 
would be even smaller than the errors presented in this 
paper. 

Although the examples we have chosen are from the 
electronic structure of atoms and molecules, algorithms of 
other applications of diffusion Monte Carlo can be im- 
proved similarly. In fact in some cases, these improvements 
will be even more important than in the applications de- 
scribed here. For example, in simulations of Lennard-Jones 
systems, because of the hard-core repulsion of the 
Lennard-Jones particles, the velocity is very large if two 

particles approach each other, while the local energy di- 
verges strongly. Building these nonanalyticities into the 
Green function and into the short-distance behavior of the 
trial function4 would greatly improve the efficiency of the 
simulation. 
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APPENDIX A: SUMMARY OF ALGORITHM 

In this appendix we summarize the improved 

algorithm to facilitate its implementation by others. 
Comments in the algorithm will be indicated as follows: 
(* . . . comment . . . *). 

For a= 1 to No generate by variational Monte Carlo 

independent walkers (Ra,wa) with wcr= 1 and 

Y=(R) > 0. 

Use the algorithm given below to obtain reff and to 
equilibrate the walkers. This defines the walkers at 
t=O, ET(O), and S(0). 

Reset to 0 values of the cumulative variables used to 
compute expectation values. (Do not reset weights w 
or II.) 

.a?,,= 0 and a’=O. 

4. For times t^= 1 to T do (* Do a mn of length 
T. *) 

’ 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 
16. 

17. 

(g= l/r) 

K-l 
ET(~) = Emi,(t^ - l,T,) - $-log-. 

e NO 

[* cf. Eq. ( 11). Ee(O,T,) is taken from equilibra- 
tion runs *I. 

Il (i,T,) = ~~Gj1e-7~~(i-m). [* cf. Eq. ( 13). Val- n 
ues of ET for t < m are taken from equilibration 
runs *I. 

For each walker a= 1 to Nt do 

G(R,R’) = G(R’,R) = 1. 

[* Evaluate G(R’,R) for forward move. *] 
For each electron i= 1 to II do 

(* Drift and diffuse. Each symbol below 

referring to electron i should have an index 
i. For simplicity of notation such indices 

have been suppressed. *) 

a&(R) 
?=m -_ 

Find r,,, the position of the nucleus nearest 
to r, and the nuclear charge 2. 

!G= d- 
zzf5. 

(* Evaluate i and decompose Y using cy- 
lindrical coordinates. *) 

Z 
z = r - r,, ; z^=-* _ _ 

Z 

1 -z22 
a = $1 + “--%+m; 

7=(-l+ $ZG&)v/(av2r> 
[* cf. Eq. (36) *]. 

T=Fg+F$ 
Z” = max(z + @,O). 

2qpz” 
PA = z+z” 

18. [* The previous seven steps detine a func- 
tion d(r), the position drifted to from an 
arbitrary initial position r. *] 
d(r) =r”=r,,+p”lj+~~~~. 

19 F= 1 -F=-fj erfc 
z+u,7 

1 I F 

20. 

21. 

22. 

23. 

24. 

[*cf. Eq. (40) “I. 

With probability p do 

Sample f from gl(& = (2~-r)-~‘~ 

e -g12T (* e.g., with the Box-Muller 
method *>. 

r’ = rs + c. 

Else 
3 

25. 

26. 
27. 

Sample g from g2 (E) = ie-2i1gl (* for 

instance see Ref. 45 *). 

r’ = r, + g. 

End do. 

G(R’,R):=G(R’,R) 

x Edr’--d(r)3 

+@2W-mdl. 

28. 

29. 

30. 

End loop over electrons i started at step 9. 

Evaluate &(R’) and E,(R’) and V(R’). If 
@r(R) <O setp=l--q=O and go to step 36. 

[* Evaluate G(R,R’) for reverse move. *] 
For each electron i= 1 to n do 

31. Perform steps 10 through 18 starting from r’ 
rather than r to evaluate rk,, (the position of 
the nucleus nearest to r’) and d( r’) . 

32. 

33. 

I-T=a=ierfc 
z’ + i$ 

I I F’ 

G(F,R’):=G(R,R’) [p”gl{r-d(r’)) 

+?g22(r-rhuc) 1. 

34. 

-35. 

End loop over electrons i started at 30. 

(* Compute accept/reject probability. *) 

7 o=l---a 
1 1 

=min lmax(0,a~-50) I$T(R') 12~(R9R',7),1 

1 $TW I 2GW,R,~) . 

36. (* Reweight walker. *) 

S(R’,.T)= (ET(~)-Emix)+[E~-EL(R’)] 
1 

P( R’) 
x V( R’) I 

%R,;) = UWt”) -&ix) + [&ix-EL(R) 1 

- 

_~ -xq [“cf. Eq. (39)“]. 
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37. Aw=exp 
I[ 

$,!?(R’,i) +,!?(R,i)) 

38. 

39. 

40. 

t-&R,;) reff [*cf.Eq.(25)*]. 1 1 
w:= whw. 

(* Update expectation values of all 
observable% *) 
d sum:=-QPs,,+H(~T,)wCp~(R’) +wf(R)3. 

(* Accept or reject mov_e. *) 
a’:=a’+ 1, R(t) =R’(t), V(i) =V’($, etc., 
with probab$ity p. 
a’ = 0, R(t)=R(t^-1), V(i)=V(t”-1), etc., 
with probability q. 

41. End loop over walkers a started at step 7. 

42. Split/join walkers as described in text. 

43. End loop over times t started at step 4. 

APPENDIX B: TRIAL WAVE FUNCTIONS 

The quality of the trial wave functions plays an impor- 
tant role in comparing the performance of the algorithms 
discussed in this paper. For completeness we therefore give 
in this appendix the explicit form of the trial wave func- 
tions used. For detailed justification of the functional forms 
we refer the reader to earlier work.3”38 

The simple n-electron wave functions we used are of 
the form commonly employed in the literature: 

N&t 

+= nzl (dnD:DA) II J(rij), 
i<j 

where DT ( D1) are the up (down) spin Slater determi- 
nants, J( ‘ii) = {exp (aijrij/( 1 + bril)) and Yij is the inter- 
electron distance of electrons i and j. This form consists of 
a product of an antisymmetric part (consisting of a sum of 
Ndet determinants) and a symmetric Jastrow part (involv- 
ing a product over all pairs of electrons); although the 
notation does not make this explicit the Jastrow part is 
different for like and unlike spins. The i’Vorb orbitals in the 
determinants are themselves linear combinations of prod- 
UCtS Of-N&is Slater functions and normalized real spherical 
harmonics 

&m&s 
(Bl) 

TABLE IV. Simple Be wave function. Ndet = 1, Nbais = 3, and Nori, = 2. 
Jastrow parameter b= 1.0383. 

Basis functions 

IS IS 2s 

t 4.143989 3.365966 1.096756 
GJ 0.509325 1 0 

C28 0.094609 0 1 

where iVB = ( (2~~)2n~+‘/(2n~)!) 1’2 is the normalization 
constant of the radial part of the basis function. The basis 
functions, N&is in number, are identified by their ng and 
ZP values (e.g., nP = 1, Zp = 0 in agreement with standard 
usage is denoted as a 1s function); complete identification 
requires in addition L$ and mp The electron-electron cusp 
condition3’ implies that the Jastrow aij equal l/2 for pairs 
of electrons with antiparallel spins and l/4 for parallel-spin 
pairs. The determinants Df ( D1 ) are functionally identical 
and are of order n/2. The values of the parameters &, C,,, 
d, and b are given in Tables IV-VII. 

The Jastrow function of the simple wave functions cor- 
relates pairs of electrons whereas the Jastrow function of 
the good wave function correlates pairs of electrons and a 
nucleus.3G38 It is a function of three variables, rip rj, rij, the 
distance to the nucleus of electrons i and j, and the dis- 
tance between these electrons. The function is written in 
terms of scaled variables Ri = ri( 1 - eBKri)/Kri, and addi- 

tional variables S, T, U, and R = dw where S 
= Ri + R, T = Ri - R, U = Yij( 1 - 6?-“‘ij)/Krij. It has 
the form 

PC Ca3A T, U> + Q( -Ca3S, T, U) 
= exp 

where again the spin-dependence is understood and made 
explicit in Table VIII. Here P( (a),S, T, U) is a complete 
4th order polynomial in S, T, U and 

Q((a3,S,T,U) 

=(a35U+a36S)R+a37U3/R+(a38+a39u> 

x (R2- U2)logR2. (R3) 

The terms in Q are motivated by the Fock expansion46 and 
serve to reduce the magnitude of the finite discontinuity in 

TABLE V. Simple Liz wave function. Ndet = 1, Nbask = 8, and Norb = 3. The first four basis functions are 
centered on the first atom and the second four on the second atom. Internuclear separation is 5.051 a,,. 
Jastrow parameter b=0.821683. 

Basis functions 

IS 1s 2s 2Pz 1s 1s 2s 2Pz 

68 3.579103 2.338523 0.707563 0.532615 3.579103 2.338523 0.707563 0.532615 

%3 0.606630 1 0 0.061592 0.606630 1 0 -0.061592 

c, 0.603086 1 0 0.002946 -0.603086 -1 0 0.002946 

GS 0.104957 0 1 0.305729 0.104957 0 1 -0.305729 
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TABLE VI. Simple Ne wave function. Ndet = 1, Nbasis = 10, and Norb = 5. Jastrow parameter b=2.454995. 
Basis functions 7 and 8, and orbital 4 are the same as basis functions 5 and 6, and orbital 3 with px replaced 
by p,,. The same holds for basis functions 9 and 10, and orbital 5 withp, replaced byp, Parameters not given 

explicitly in the table are defined by 5s = I& = 6s and & = cs = < . is, a 11 nontabulated C, vanish, except Css= 
C,, = C,s and Cs, = C,s = C’s,,,. 

Basis functions 

1s 1s 2s 2s 2Px 2Px 

ci 10.694072 8.410602 4.368380 2.820366 5.459 124 2.413540 

1 0.628185 -0.003506 0 0 o- 
0 -0.545029 0.582661 1 0 0 

0 0 0 0 0.430262 1 

TABLE VII. Antisymmetric part of the good 2configuration (Cdeterminant) Be wave function. Ndet 

= 4, Nbasir=6, and Nort, = 8. Orbitals 1 and 2 comprise the first determinant, orbitals 3 and 4 comprise the 
second determinant. The third and fourth determinants are identical to the second determinant with px 
replaced by pv and p,, respectively. Determinant 1 has a-coefficient of 1 and determinants 2, 3, 4 have 
coefficient -0.13854052. (Note that the coefficients are for unnormalized determinants.) The Jastrow part of 
the wave function is given in Table VIII. 

Basis functions 

1s IS 2s 2Px 

4 3.19558419 2.98632518 1.01884335 1.00267375 
Gj 1 0.00394241 0 0 
c, 0 -0.56216281 1 0 
c3j 1 0.00007078 0.00688704 0 
c4j 0 0 0 1 

TABLE VIII. Jastrow part of the good 2-configuration (4determinant) Be wave function. K=O.34975. Coefficients that are zero by symmetry have been 
omitted, hence the missing rows. 

Term u” a” b” b” 

1 

2 
4 
5 
6 
7 

10 
11 
13 
14 
16 
18 
20 

21 
22 

23 

24 
31 

32 

33 
34 
35 

36 

37 

38 
39 

u 
s 
u2 
S2 

T2 
US 

u’ 
s3 

u2s 
us= 
UT2 
ST2 

fs 
P 

u’s 
us’ 

UST’ 
u2s2 

U2T2 
S2T2 
UR 

SR 
U’/R 

(R2 - U2)log R2 
U(p2 - U2)log R2 

0.5 ~0.25 0.76601265 0.15740663 
-0.32174049 -0.16167748 1.19899131 2.52528576 
-0.21045945 -0.52058647 -1.33114784 - 1.35904505 
-0.47543025 -0.03961320 -2.23269739 -2.99137524 

0.35599892 0.31816662 0.66142506 1.10603549 
0.79354593 0.76705 142 3.12932039 2.68709399 

-0.58102451 -0.64373415 -0.70800536 -0.69092478 
0.27774564 0.02890483 0.57532420 0.51324051 
1.15309740 0.65819572 2.05533492 2.44485355 

-0.97233708 -0.26631618 -0.81533750 -0.65662838 
-0.22800272 -0.04673077 0.22890273 -0.07731331 

0.20655924 0.12141523 0.42943719 0.73491736 
-0.23278323 -0.03592145 -0.62929393 -0.21125656 
-0.09443317 -0.03069166 -0.02204179 -0.01084392 

0.09478121 0.06408161 0.10065836 0.13288769 

0.71679511 0.43474543 0.80843246 0.87773934 
0.44601457 0.18215904 -0.00843236 0.12032247 
0.32921730 0.11925596 -0.32792418 -0.61325175 

-0.85492061 -0.47289798 -0.34844499 -0.70648420 
-0.12507010 -0.12123822 0.20593344 0.12914268 
-0.18247064 0.02862570 0.13438414 0.14765475 
-0.62590436 -0.22546956 -2.71459521 -3.58148361 

0.449 19268 -0.26189060 1.01996374 2.72970787 
0.13707051 0.21943996 -0.05980694 -0.94453732 

-0.08096158 -0.05173070 0.00131255 0.02686620 
-0.05582019 -0.ti268818 -0.09655479 0.10040772 

J. Chem. Phys., Vol. 99, No. 4, 15 August 1993 

Downloaded 30 Oct 2007 to 131.128.120.114. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



the local energy in the limit that two electrons approach a 
nucleus.47 Symmetry demands that terms containing odd 
powers of T have zero coefficients; hence these terms are 
omitted in Table VIII. 

The good Be wave function has 114 parameters, Id,, 
4cas’s, 45;s’s, lo, 52a’s, and 52b’s. In order to satisfy the 
cusp conditions these coefficients must satisfy 50 equations 
in the coefficients {a},{b}. Four of these equations depend 
on the cd’s, and &‘s. Although these 50 conditions can be 
imposed exactly, in the wave function presented here only 
five are satisfied exactly and the remaining are imposed 
approximately by a penalty function. Hence 109 parame- 
ters are varied in the optimization. We have also con- 
structed several wave functions, that have only one-sixth to 
one-third as many parameters, that are almost but not 
quite as good as the wave function presented here. 

The tables below give the values of the parameters of 
the wave functions, namely Cd, CD and b for the simple 
wave functions or C,,, CD, d,, K, {a} and {b} for the good 
wave function. dl can without loss of generality be chosen 
to be unity. 

APPENDIX c: ALTERNATIVE TO GENERALIZED 

METROPOLIS 

In this appendix we present an alternative to the gen- 
eralized Metropolis algorithm for exactly sampling any 
known distribution. This alternative is useful in the context 
of the diffusion Monte Carlo algorithm, where the walkers 
carry statistical weights. In that case the accept/reject step 
can be replaced by a reweighting step. 

Let f(R) be any known distribution that we wish to 
sample. One possibility is provided by the generalized2628 
Metropolis algorithm. Here we discuss an alternative in 
which the usual accept/reject step is replaced by a 
weighted, unconditional acceptance. 

Let G(R’,R) be a stochastic kernel that is used to 
propose moves from R to R’. (A stochastic kernel is one 
that is non-negative everywhere and whose integral over 
the first argument is one.) Let A (R’,R) be the reweighting 
factor for moves from R to R’. We wish to find A(R’,R) 
such that the equilibrium distribution of this process is 
f(R), i.e., f(R’) = JdRA(R’,R)G(R’,R)f(R). From 
the fact that G(R’,R) is a stochastic kernel it follows that 
a possible choice is 

A(R, R) =fW W&R’) 
, f(R) G(R’,Rj. - 

- (Cl) 

Note that A (R’,R) in Eq. (Cl > will exceed one for some 
choices of R and R’, it can only be interpreted as a re- 
weighting factor, not as a probability. This alternative to 
the generalized Metropolis method has the advantage all 
moves are accepted, but the disadvantage that there is an 
additional source of fluctuations of the weights of the walk- 
ers. 

It is interesting to note that although the total kernel 
A (R’,R) G( R’,R) yields the correct distribution f(R), it is 
not stochastic and does not satisfy detailed balance. On the 
other hand, if we choose A(R’,R) to be the square root of 
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the’ right hand side of Eq. (Cl ) then detailed balance is 
satisfied but this kernel does not yield the desired distribu- 
tion f(R). In case the reader is surprised by this result, we 
note that to generate a given distribution detailed balance 
is not a necessary condition, and it is a sufficient condition 
only when the kernel is stochastic. 

APPENDIX D: TIME-STEP ERRORS IN SIMPLE 
DIFFUSION MONTE CARLO 

We argue in this appendix that the act of killing walk- 
ers that cross nodes in the simple diffusion Monte Carlo 
algorithm leads to a ? term in the time-step error of the 
growth estimator of the energy Egr. We also show that the 
nonanalyticity of the local energy and the velocity near 
nodes does not alter the order of the time-step error in 
either the growth or the mixed estimator [the leading term 
is d (r)] if the energy is cut off as in Eq. (9). 

As in Section III C we let RI denote the distance in 
configuration space to the nearest node of r++ Let f r be the 
distribution of the simple diffusion Monte Carlo random 
walk with time step 7, so that fc is the limit of no time-step 
error. One suspects that the error Sf, = f, - fc induced 
by the nonanalyticities of the local energy and of the ve- 
locity near a node is unimportant beyond some healing 

distance /z - fi away from the node. Although the exact 
distribution behaves quadratically near the node, 
fs(R, ) z c& + * * ~*. , the simple diffusion Monte Carlo 
distribution has a constant density of walkers at the node: 
f,(R, > z a, + bJZR, + c& + * I *. The exact distribu- 
tion behaves quadratically near the node so that the coef- 
ficients a7 and b, must vanish as r --* 0 to retrieve the exact 
distribution. We note in passing that for the improved al- 
gorithm a, and b, are rigorously zero for all 7 as a result of 
the accept/reject step. 

How might we model this r dependence of the coeffi- 
cients for the simple algorithm? One way is to argue that 
the a7 + bgR, contribution must somehow “match onto” 
the correct c& behavior in the vicinity of the healing 
distance. Thus a, + b& - c,-J2, from which one reads off 

a7 - iI2 - randb,-,X - &. Numerically exact results 
obtained for a one-dimensional lattice model indicate that 
the simple arguments presented here are correct so long as 
the local energy does not diverge in the vicinity of the 
nodes.48 

Let us first consider the error induced by the node for 
the mixed energy estimator. In Eq. (8) the divergence of 

the local energy EL is cut off to 2/ fi, thus 

a&nix - f,(R, )dRI -AZ-r. 

Hence the nonanalyticities in the nodal region do not de- 
crease the order of time-step error in Emix from the d (r) 
error already present in the simple diffusion Monte Carlo 
algorithm. Similar arguments also apply to the growth es- 
timator. 

We note that on the other hand, if Eq. (8) is not used 
to cut off the divergence in the local energy, the above 
estimate is modified to 
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6Eti- 
a6f,(R~ > c D 6 , 

JO -1 

which is logarithmically divergent at any nonzero r. If the 
local energy at a point infinitesimally on one side of a nodal 
surface diverges to + 00, the local energy at a point infin- 
itesimally on the other side diverges to - to. Hence the 
logarithmic divergences cancel, but the infinite variance 
renders the algorithm unusable. 

Next we show that if walkers that cross nodes are 

killed then the growth estimator Egr has an 8( fi) time- 
step error. The population at time t+ 1 is in error due to 
killing walkers that cross nodes in the simple algorithm. 
The number of such walkers near the node is estimated as 

6Nt+ 1 -Nt - NJ3 - Nt?“2. CD31 

The growth estimator is basically 

(somewhat more precisely, it is the ratio of the sum of the 
walker weights wa, but this form is correct to leading or- 
der). So if we now say N,+ i is “in error” by the above 
estimate for SN,, i, we find, after expanding the logarithm, 
that: 

Thus the convergence of the gro;wth estimator is slower 
than the mixed. Our empirical observations discussed in 
Section IV confirm the two power laws for the two estima- 
tors. The’r1’2 convergence of Egr makes accurate extrapo- 
lation to r=O very ditllcult. 
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