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PREFACE

This document, prepared by the Dynamics and Loads Section, Martin Marietta Corporation,
Denver Division, under Contract NAS5-11996, presents the results of a study for the purpose
of developing a computer program system for dynamic simulation and stability analysis of
passive and actively controlled spacecraft. The study was performed from May 1973 to
April 1975 and was administered by the Goddard Space Flight Center, National Aeronautics
and Space Administration, Greenbelt, Maryland, under the direction of Joseph P. Young.

Upon delivery, the computer program and associated documentation was checked in detail
by Harold P. Frisch. This document incorporates both the original Martin work and the
supplementary material prepared at the Goddard Space Flight Center.

The digital computer program, DISCOS (Dynamic Interaction Simulation of Controls and
Structure), has been extensively annotated and tested on a range of problems that should
have exposed nearly all theoretical errors and programming bugs.

From its inception in 1973, DISCOS has been designed to grow as new needs and more
efficient computational techniques develop. This feature makes it impossible to define a
final version. To circumvent this problem, the official release version will contain only
those additions to the delivered program that enhance program documentation and user
interface capability and correct programming errors.

Included in this version are more than 10,000 comment cards and a capability to routinely
direct the computer to output on the line printer virtually all computation along with
explanatory alphanumeric statements. A large percentage of the comment cards are in
subroutines DEF1, DEF2,.. ., and DEF5. These subroutines are composed entirely of
comment cards and provide the user with an area in the source file for keeping documenta-
tion current. In particular, subroutine DEF5 contains a narrative description of the program
and its current capabilities.

For the uninitiated reader, it probably would be best to speed-read subroutine DEF5 to
obtain a quick overview of the capabilities of the program and the solution techniques
applied before reading this document.

The potential user should be aware of the fact that DISCOS is not intended for simple prob-
lems. It is primarily for problems which were heretofore intractable. Consequently, the
theoretical basis for the program is highly advanced, and the computation algorithms are
designed for the efficient processing of the equations associated with large multidegree-of-
freedom systems.
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As an aid to the user, the paper on which the derivation of the coupled .flexible-body equations
of motion is based and a paper that outlines the solution method and comments on results
obtained from several DISCOS applications appear as reference material at the end of Volume
I. Volume I contains all relevant theoretical work.

Volume II describes the DISCOS program and its support programs. The user is encouraged
to refer to the comment cards provided in all DISCOS subroutines for additional descriptive
information. The comment cards found in the DISCOS subroutines are intended to provide
a link between the computer code and the theoretical equations provided in Volume I.

To effectively interface with the program, the user must be able to write the subroutines
that will define all non-gyroscope forces and torques. The user is provided with a clean
interface. When the load vector associated with the effects of springs, dampers, motors, gas
jets, etc. is defined and properly stored in the computer memory, DISCOS will automatically
transform it into the appropriate generalized form required by the formulation.

The inclusion of effects such as aerodynamic loading and thermodynamic deformation is
more difficult. However, the methodology is analogous to that used for including gravity-
gradient effects.

The methodology for including loads associated with springs, dampers, motors, gas jets,
constraints, etc. is found in Volume II and in the comment cards of the appropriate sub-
routines referred to in Volume II.

DISCOS is probably the most powerful computational tool to date for the computer simu-
lation of actively controlled coupled multiflexible-body systems. It is not an easy program
to understand and effectively apply, but it is not intended for simple problems. The user
is expected to have an extensive working knowledge of rigid- and flexible-body dynamics,
finite-element techniques, numerical methods, and frequency-domain analysis.
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A DIGITAL COMPUTER PROGRAM

FOR THE DYNAMIC INTERACTION SIMULATION OF

CONTROLS AND STRUCTURE (DISCOS)

VOLUME I

Carl S. Bodley, A. Darrell Devers, and A. Colton Park

Martin Marietta Corporation
Denver, Colorado

and

Harold P. Frisch

Goddard Space Flight Center
Greenbelt, Maryland

I. INTRODUCTION

Modern society has derived numerous and varied benefits from Earth-orbiting satellites.
These benefits include prediction of extreme changes in weather, exploration of mineral
and water resources, materials research, medical research and experimentation, solar-system
studies, and increased communications and defense capabilities. The design and ultimate
development of these satellites requires extensive analytical and experimental studies to
ensure complete confidence in the overall ability of the total system to perform its required
functions.

Two of the most important and potentially most difficult of these studies are the analysis
of dynamic response and the prediction of stability characteristics. In recent years, the
National Aeronautics and Space Administration (NASA) and members of the aerospace
industry have expended much effort in analyzing these phenomena. Although these are
worthy efforts, most have been somewhat limited in scope because of the extreme com-
plexity of the problems. Factors that make these studies so complex are: (1) the imposition
of a spin rate for either stabilization or artificial gravity; (2) the dynamic interaction of this
spin rate with large flexible appendages; (3) the complex environmental loadings, including
gravity gradient and solar radiation; and (4) the intricate control logic required for. maintain-
ing stability or for executing orbital maneuvers.

The authors at Martin Marietta Corporation acknowledge the assistance provided by Goddard
Space Flight Center (GSFC) personnel. Harold Frisch and James Donohue contributed
valuable technical comments and suggestions throughout the program. In particular, they



developed the basic approach to be used for data input, defined exactly what should be in-
cluded in the transfer function and stability analysis portion of the program, and defined
eight of the eleven demonstration problems. They provided the associated data that were
used to verify both the nonlinear time response and linear transfer function and the stability
analysis portions of the program. Raymond Welch provided the subroutine used to generate
root-locus plots. Dr. William Case provided valuable advice on interfacing with NASTRAN
output and generated the demonstration problem used to validate the interface subroutine
(NASFOR). * During the early program development stage, Dr. James Mason offered signifi-
cant advice on the need to compute internal forces at the interconnect points. Reginald
Mitchell contributed invaluable advice on requirements for making the program compatible
with the GSFC IBM 360/95 computer system. In addition, he supplied the contractor with
a 360-compatible plot package, furnished the contractor with a self-authored subroutine for
reading NASTRAN output, and was responsible for running all demonstration problems on
the 360/95 computer. Finally, the authors acknowledge the encouragement and efforts of
Joseph P. Young, Technical Monitor, who made numerous valuable comments and suggestions
throughout the study.

A. Overview

The state-of-the-art dynamic response analysis of a system of connected bodies is currently
restricted to topological systems of connected rigid bodies with (possibly) flexible terminal
bodies. Because of the complex orbiting configuration and mechanical systems proposed
for future space programs, the limitations of the current technology are severely restrictive.
This document presents a more comprehensive formulation that is capable of considering
any body of the total system as flexible and that is not restricted to a specific connection .
arrangement.

Applications of such methods and program systems are numerous and include simulation of
the Space Shuttle payload deployment/retrieval mechanism, solar-panel-array deployment,
antenna deployment, analysis of multispin satellites, and analysis of large, highly flexible
satellites.

This approach provides a general-purpose modeling capability for dynamic simulation and
stability analysis of passive and actively controlled spacecraft. In particular, the following
items are considered:

• Time-domain solution of the nonlinear differential equations of motion that
describe total or nominal response' of the complete spacecraft system idealized
as a collection of interconnected flexible (or rigid) bodies

• Linearization of the governing differential equations by numerical means

*The NASFOR subroutine has been superseded by a special NASTRAN DMAP program and associated preprocessor
program written by Harold P. Frisch.

fin certain cases, the total response of the dynamic system may be considered to be equilibrium state motion (nominal
response) plus perturbation motion with respect to the equilibrium state.



• Time-domain solution of the linearized differential equations that describe the
perturbation response of the complete spacecraft system about some predetermined
(calculated or user-specified) nominal motion

• General frequency-domain stability analysis corresponding to the linearized space-
craft representation

• Provision for arbitrary (explicitly time-dependent) loadings and environmental
interaction, such.as gravity gradient and thermally induced deformations resulting
from solar radiation

B. Description of the Physical System

The physical system undergoing analysis may be generally described as a cluster of contiguous,
flexible structures (bodies)'that comprise a mechanical system such as a spacecraft. The
entire system (spacecraft) or portions thereof may be either spinning or nonspinning. Member
bodies of the spacecraft are capable of undergoing large relative excursions such as those of
appendage deployment or rotor/stator motions. The general system of bodies is, by its
inherent nature, a feedback system in which inertial forces (such as those due to centrifugal
and Coriolis acceleration) and the restoring and damping forces'are motion-dependent. Also,
the system may possess a control system in which certain position and rate errors are actively
controlled through the use of reaction control jets, servomotors, or momentum wheels.

Bodies of the system may be interconnected by linear or nonlinear springs and dampers, by
a mechanism that is a combination of gimbal and slider block, or by any combination of these.
Also, any two bodies of the system may be free (one from the other) and possess six degrees
of relative motion freedom. Several or all of the six degrees of relative motion freedom be-
tween two bodies may also be a prescribed function of time (including zero motion).

For further introduction of the physical system, consider an illustrative example, such as
the system of bodies of figure 1, and let this example be the prototype for all subsequent
discussion and development.

In figure 1, a nontppological tree configuration has been deliberately indicated. There are
five hinges and four bodies, thus one closed path. Consecutive integer labels are used for
body reference points, hinges, sensor points,* and momentum wheels. The numerical
order in each of the four label sets may be random; however, it is understood that body 1
(which may be any body of the system) is associated with hinge 1. ' ' ; ' • -

For each body of the system, there is a body-fixed, right-handed reference frame, whose
origin may be at the body's mass center or at some structural hard point on the body. (A
body's elastic deformation is measured in its reference frame.)

* A "sensor point" is any point at which kinematic data must be obtained (e.g.,' where an attitude sensor is located).



Body Reference Point

D Hinge

• Sensor Point

Momentum Wheel

Inertial Frame

Figure 1. Labeling scheme for example system.

In this document, a hinge is defined as a pair of structural hard points (see figure 2) with a
point situated on each of two contiguous bodies. In figure 2, point p and point q comprise
a hinge. Clearly, a typical body may contain one or more hinge points, but a hinge may be
associated with only two bodies. Hinge 1 is given special consideration. It is also a pair of
points; but one of the pair is coincident with the reference point of body 1, and the other
point of the pair is coincident with the inertial origin. Thus, motion "across the hinges"
is used to represent system motion. The reference point of body 1 is located with respect
to the inertial origin by an inertially referenced position vector. The attitude of the refer-
ence frame of body 1, with respect to the inertial frame, is represented by three Euler
angles. Thus, six position/attitude coordinates are associated with hinge 1.

Each of the remaining hinges is considered in a manner somewhat similar to that of hinge 1.
Referring to figure 2, note that there is an orthogonal reference frame attached to point p
and another to point q. The triad of point p may have a "natural" (or undeformed) mis-
alignment with respect to the triad of body point m, plus additional.misalignment caused
by elastic deformation. The same relationship is true concerning points n and q.

Now six relative position/attitude coordinates are associated with the hinge of points p and
q. Point q is located from point p with a p-frame referenced position vector. The attitude
of the q-frame with respect to the p-frame is represented by three Euler rotations. Thus,
if NH is the number of system hinges, 6 X NH position coordinates are to be used in



Figure 2. Typical contiguous bodies of the system.

conjunction with modal displacement coordinates for defining the system's position state.
Note that only the time-variable position coordinates of the 6 X NH set of candidates are
considered as state-vector elements. (The position coordinates whose rates are constrained
to zero are not included; however, the position coordinates themselves need not be zero.)

The system of bodies usually has a number of so-called sensor points. A sensor point is
defined as a structural hard point with an attached right-handed orthogonal reference frame
that is used for a variety of purposes. A sensor point may be used to enable the program
system to monitor the position, attitude, or the rates associated with a specific structural
hard point. For example, a rate gyro, a star tracking device, or another motion/position
sensing device is physically situated at a sensor point. Also, a sensor point is used as a point
of application of a force or torque vector (see figure 2).

The system of bodies may contain built-in momentum wheels, of which some are constant
speed wheels and others are variable speed. The variable speed momentum wheels are motor
driven; the shaft torque results from a given control law. Each momentum wheel of the
system must be associated with a sensor point because, for a general flexible body, the gyro-
scopic coupling is influenced by elastic motion.

As is indicated in figure 1, the system may be in a nontopological tree configuration. The
methods employed in this development are such that closed-loop configurations (generally
referred to as nontopological) may be considered. If every body of the N-Body system is
rigid, there may be no closed loops because such a system has an\indeterminate "load path."
To accommodate closed loops, the system must contain sufficient structural flexibility
(compliance), and therefore modal displacement coordinates, so that the kinematic equations
of interconnection constraint are algebraically consistent.

The program development is such that none, several, or all bodies of the N-Body system
may be flexible. The system may be "forced" by environmental factors such as gravity,
gravity gradient, solar pressure, thermal gradient, and aerodynamic drag.



The computer program system described herein falls into several categories of capability:

• Synthesis and time-domain solution of the nonlinear differential equations of motion
of the complete spacecraft system idealized as a collection of interconnected flexible
(or rigid) bodies

• Linearization of the governing equations by numerical means

• Time-domain solutions of the linearized equations that describe perturbation response
of the complete spacecraft system about some predetermined (calculated or user-
specified) nominal motion

• General frequency-domain stability analysis corresponding to the linearized space-
craft representation

II. EQUATIONS OF STATE/TIME-DOM AIM SIMULATION

A. Introductory Discussion

The state equations* [that govern dynamic response of a system of interconnected flexible
bodies, which may be actively or passively controlled and which may be "forced" by environ-
mental factors such as solar pressure, gravity gradient, aerodynamic drag, etc., are presented
here in a concise summary form as:

(II-l)

<n-2>

= E Mj Mj di-3)

subject to the constraint equations

E WjH =

*For the interested reader, Reference Paper I describes the development of these equations in more detail.



In equations II-1 through II-5 the index, j, ranges from 1 through the number of bodies of
the system. Equations II-l through II-4 represent n first order, nonlinear, ordinary differ-
ential equations whereas equation II-S represents m additional conditions of kinematic con-
straint. Thus, the dimension of the state space for a given system of controlled bodies is
(n-m). That is, n-m state variables are required for defining the configuration at any instant
of time, t

State variables of the configuration space include absolute velocities, {ujj ; modal displace-
ments, |||j ; position coordinates (both angular and cartesian position), |/J|; and additional
variables.,^}, that will subsequently be referred to as control variables. These variables are
associated with the differential equations that define a given control law. However, they
may reflect any other auxiliary differential equations that are necessary for defining the
overall feedback system (for example, they may include thermal equilibrium states or other
state variables necessary for a complete definition of the state-dependent environment).

The right-hand sides of equations II-l through II-4 are functionally dependent on all the
state variables and time, although the relationships may be termed only implicit at this point.
Let it suffice that, in a way of introduction, a description of the nature of the governing
equations II-l through II-5 be given here and more explicit development and discussion follow
in subsequent sections.

Equation II-l represents the dynamic equilibrium equations for the typical jth body of the
system. They are of the form shown whether the body is treated as rigid or flexible. They
state, in effect, that a deformation dependent mass matrix, [m]., postmultiplied by a vector
of relative accelerations, {uf.-, produces a vector of inertial forces that is balanced by all other
state- and time-dependent forces,{G}., and interconnection constraint forces, [b]? \\\. The
vector,|G|., includes inertial forces due to centrifugal and Coriolis acceleration, as well as
elastic restoring forces, damping forces, control actuator forces, and so forth. The constraint
forces, [b]T |\|, are necessary in order to satisfy the kinematic constraint equation (II-5);
elements of the vector \\\ are actually Lagrange multipliers, evaluated and used in the solution
process.

Equation II-2 simply represents a selection transformation because the vector of modal velo-
cities, {Ik, is a subvector of {uK. Equation II-3, used to develop||3[, represents a kine-
matical transformation, transforming nonholonomic velocities to time derivatives of position
coordinates. Finally, equation II-4 is an auxiliary differential equation that is user-defined
and may be used to implement control dynamics and other feedback effects.

The constraint equation (II-5) represents kinematic conditions of a form similar to those
of equation II-3. In either case, there is a velocity transformation. Equation II-5 might be
termed an active set of kinematic conditions, and those of equation II-3, a passive set. The
active set is used to calculate m of the dependent elements of the |u|j vectors in terms of



the remaining independent elements and the prescribed velocities, { a f, some of which may
be zero and others user-defined functions of time. Thus, the constraint equations are of a
general form because nonholonomic, rheonomic conditions may be so represented. If the
{ U }j vectors satisfy the required conditions of equation II-5, the position rates, { 0 \, may be
evaluated by the passive conditions of equation II-3, resulting in a kinematically consistent
system.

Note that m equations of constraint are represented by equation II-5. There are also m
Lagrange multipliers in the vector, { X [. In studies of dynamic systems, the Lagrange multi-
pliers and the dependent velocities and accelerations are often entirely eliminated from the

governing equations. Such is not the case in this development in which Lagrange multipliers
are involved in the equations for two reasons: (1) to monitor the multipliers as a function

of system motion,, as they are interconnection forces and torques, and (2) for numerical
implementation, it is convenient to calculate and use the { X [ vector in equation II-l . The
Lagrange multipliers are calculated by differentiating equation II-5 and combining that result
with equation II-l giving:

{X} = (Z Wj [m];' t b ] / " 1 H - E ( flj M

Note the following functional dependencies:

thus,



(IH4)

thus,

- f ({« t H M' $}. {}}, \ 6 \ : t } (11-15)

and

, juf,

where, in the foregoing notation, the elements of the matrices/vectors on the left are functions
of the elements of the vectors on the right. The chronology of evaluations indicated must be
followed in the solution process.

The differential equations of motion for the system are therefore of the general form:



and the state vector and its time derivative are arranged as follows:

M- M,
K

M

Mi
NB

'•N6

R

R

("I

iil,

KJ,

NB

'N6

where NB is the total number of bodies of the system, Nj3 is the total number of position
coordinates necessary for orienting the system, and N6 is the total number of auxiliary
(control) differential equations required.

Now, if the |y| vector is known (numerically) from prescribed initial conditions or from
numerical integration of | y|, the primary task of the solution process is to numerically
establish the |y| vector. The |y [ vector is numerically (step by step) integrated to produce
an incremented |y| vector, and thus a sequence of time-point solutions.
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To summarize, a narrative description of the steps (numerical evaluations) necessary for pro-
ducing jyl given jyl , follows.

The matrices, [B]. and [b] ., are kinematic coefficients that depend on position and modal
displacement variables and are evaluated as the first step.

Now, if available numerical techniques (also computer software and hardware) were absolutely
accurate, the JUJ. vectors resulting from numerical integration of the {Uj. vectors would
satisfy the constraint equation II-5. Because this is not the case, the second step of the solu-
tion process is to calculate the dependent elements of the |u[ . vectors by using equation
II-5. In fact, because of anticipated numerical inaccuracies, only the independent elements
of the |u[. vectors are obtained by numerical integration. Only n-m "integrators" are
involved in the solution process even though all of the elements of the JU|. vectors are
numerically evaluated (by use of equation II-l); good numerical resolution is found in the
independent ju}, elements because the Lagrange multipliers |x| were used.

A kinematically consistent system results from satisfying equation II-5. The JU^ vectors
may now be used with the selection and kinematic transformations as indicated by equations
II- 2 and II-3 to numerically produce all the modal velocities, \ k \ \ > and position coordinate
rates, j$, completing the third step of the process.

Sufficient calculation has been completed to this point to evaluate the control variable rates
t * ( * \

according to equation II-4, producing |5j. During the process of calculating the 1 6} vector,
all of the required control actuator torques (or forces) are calculated because sufficient
numerical information is available. All of the constituents of the torques/ force vectors, \G\ . ,

t \ * *
are now available, and |G|., [m]., and [b]. are therefore numerically evaluated, which
completes the fourth step of the process. (Refer to the functional expressions of equations
11-11 through II- 14.)

With reference to equation II-6, note that there is now sufficient numerical information to
evaluate \\}, which is then used in equation II-l to calculate the |u}., completing the fifth
and final step of the process.

Note that, in the above discussions, the solution process may be carried out through comple-
tion, providing the state vector is numerically known. At any step of a simulation, the |y}
vector is known, of course, as the result of numerical integration. The initial state vector
is another matter. It is difficult, if not impossible, for a user to prescribe j U[ . vectors that
are kinematically consistent with the conditions of equation II-5 ; also, the nonholonomic
velocities of JUJ,, when considered as a complete set, are of a somewhat abstract nature.

( *l f ' lThe user is in a much better position to prescribe initial values of jjSf and {£}— the initial
velocities that are physically meaningful to him. Thus, to initiate the simulation (that is, to
create an initial state vector from information the user is in a position to prescribe) the
following preliminary steps must be taken.

11



The user must prescribe initial values of the j£j.. , ]£}:, j/H, j(3l, and |'S| vectors and the
variable speed momentum-wheel spin velocities, 0. Now, in that the prescribed position
rates, jal, are explicitly dependent on time and are always available, kinematic equations
II-3 and II-5 may be used together to establish initial values of all |u|.. The question
inevitably arises: Are the number of equations represented by II-3 and II-5 sufficient to
solve for the elements of the JU^:.? Consider the typical {UJ^ vector. Note that there are
six reference-frame velocities in each {u f. (namely, o>x, u> , coz, u, v, and w). Six relative
velocities are also associated with each hinge. Now, if the system is a topological tree con-
figuration, equations II-3 and II-5 comprise exactly the required number of equations to
establish the reference-frame velocities; that is, there are as many hinge points as there are
bodies, and, even if every body were rigid, the system would be determinate. In this case,
the initial sets of six reference-frame velocities are computed by equations II-3 and II-5;
the prescribed initial ||| vectors and momentum-wheel spin velocities are simply placed
in the appropriate {\J\ • vectors, and the initial state vector is thus defined.

If the system is not a topological tree configuration, then there are more equations (II-3 and
II-5) to be satisfied than there are reference frame velocities. (In other words, there are more
hinges than bodies.) In this case, elements of the |||. vectors must take on the responsibility
of helping to satisfy the kinematic conditions. For each hinge in excess of the number of
system bodies, there must be at least six deformation modes, represented by £ coordinates,
and they must be distributed throughout the system in such a way that the kinematic con-
ditions of equation II-5 are independent. Clearly then, when there are more hinges than
bodies (nontopological tree), one or more of the bodies must be flexible for the system to
be determinate. When the configuration is nontopological, the user will specify initial values
for all of the £, but he must acknowledge that they are not all independent and that the
dependent ones (automatically determined by the program) are calculated and replace the
values that he has specified.

From these considerations, note that the initial state vector is created by the program from
information that is user-supplied and that is physically meaningful to him. In the event of
a nontopological tree configuration, the user's only concern in regard to initial conditions is
whether he has supplied an adequate description of system flexibility for the system's
kinematical equations to be determinate.

B. Derivation of Equations of Dynamic Equilibrium

The differential equations of motion and auxiliary equations that characterize a physical
system may take any one of several equivalent forms. Equivalent form means that the same
physical system can be characterized by more than one set of mathematical variables; in any
case, the number of variables must be the same. For example, the motion equations for a
rigid body could be derived by using Lagrange's equations (resulting in six second-order
equations), or the Newton-Euler equations could be used when translational motion is
represented by three second-order equations, whereas rotational motion is represented by

12



six first-order equations (three moment-momentum equations and three attitude equations).
In each case, there are twelve state variables.

There are a variety of alternative methods of analytical dynamics that one may select from
to develop the final (programmable) equation format A timely and valuable commentary
accompanies the comprehensive comparative evaluation of these methods in a recent report
by Likens (Reference 1). The basis for this development is effectively included in his
discussion.

The intent here is not to highlight any particular method of analytical dynamics as being
superior to the others. Clearly, the methods are all equivalent if they are developed through
completion without any compromising simplifications. The choice of method is made after
considering the requirements associated with a particular problem or computer simulation
program. This development begins with a Lagrangian approach; then, algebraic manipula-
tion is used to derive the format of equations II-l through II-5.

Lagrange's equations for the general situation appear as

HA + 2D.E^ = Q + 2Lj,, iXi (IM8a)
dt \3q./ 3q. 3q. 3q.

for(j=l,2," n)

a, qs + a.t = 0 (IM8b)

j=i

for (i=l, 1," m)

In these equations, T and V are system kinetic and potential energies, respectively, and D is
the Rayleigh dissipation function (accounting for internal damping). The generalized con-
straint forces

augment the generalized forces, Q. (that arise because of the action of external factors), and
are necessary for satisfying the additional conditions of constraint of equation II-l 8b. The
form of equation 11-18 is complete and general, in that it includes unconservative forces

13



(explicitly time dependent), Q., and dissipative forces, 3D/9q., and the auxiliary constraint
equation (II-18b) are in an all-encompassing form because holonomic conditions may be so
represented. The coefficients, (ay, j = 1, 2, ••, n; t), may depend explicitly on the time, (t);
therefore, the constraint conditions as shown! account for both rheonomic and scleronomic
situations.

In the equations, n is the number of generalized coordinates involved in the representation,
and m is the number of auxiliary conditions of constraint. Note that, although the q. are
generalized coordinates (as they must be for the Lagrangian formulation), they are indepen-
dent only in the isolated case when m = 0 or when there are no auxiliary constraint conditions.
Some engineers share a misconception on this point: that, if the variables, q^ are not inde-
pendent, they are not generalized coordinates. In view of the m constraint equations, this
is simply a set of generalized coordinates that are not independent.

In cases where all of the constraint equations are holonomic, it is theoretically possible to
eliminate m of the q} in terms of the remaining n-m. However, if any of the constraint condi-
tions are nonholonomic, a Lagrange multiplier, \\\ , must be used in conjunction with that
equation. Of course, Lagrange multipliers may be used for either holonomic or nonholonomic
constraints.

In that the simulation program includes mathematical representation of active or passive con-
trol for elements of the spacecraft system, some state equations involve control variables in
addition to,equation 11-18. The manner in which the additional control equations enter into
the composite system state equations is the same whether they are in the form given by
equation II-1 or that of equation II-18. In either case, the control system state variables
retain their identity, although the control forces/torques necessary to "close the loop" are
transformed differently. In the case of Lagrange's equations, the control torques contri-
bute to the generalized forces, Q., whereas, in the case of summary equation II-l, they con-
tribute to elements of \G \ and may be interpreted as ordinary forces or torques, acting at a
structural hard point (or at a sensor point). Therefore, discussion of the control system
will be postponed until later, and the "mainline" motion equations will be emphasized until
the point is reached at which the control system coupling can be clearly indicated.

To "solve" Lagrange's equations of motion, the explicit form of the kinetic and potential
energy functions, the dissipation function D, and the form of the transformation relating
ordinary Cartesian position coordinates (positioning the typical system particle or element)
to the generalized coordinates, qj must first be defined; the form of the transformation is
necessary for expressing generalized forces, Q., in terms of external ordinary forces. After

J j

the form of the energy functions and coordinate transformation is defined, the indicated
differentiations (equation 11-18) are performed. A system of ordinary second-order differ-
ential equations, which in many cases are nonlinear and which require solution using numeri-
cal integration techniques, have been explicitly defined, but the motion equations have not
yet been solved.
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With numerical implementation and digital programming in mind, the form of the ordinary
differential equations is recasted. First of all, they should result in canonical first-order
form (the highest time derivatives appear uncoupled on the left-hand side). Also, compli-
cated combinations of generalized velocities and displacements should be grouped so that
such groups may be replaced with new variable names. These new variables have been
called "quasi-coordinates" in the literature. This will simplify the required computer pro-
gramming and minimize arithematic computation. Also, it helps considerably in organizing
the numerical algorithms necessary for evaluating the left-hand side of the state equations.
Thus, recasting the form of the governing equations is sufficiently justified.

The recasting process is begun by defining the forms of kinetic and potential energy and the
required transformation. First, note that bodies of the system of flexible bodies are tenta-
tively treated as if they are completely independent of each other. The influence of any
body on another is accounted for by the additional constraint conditions and the Lagrange
multipliers. Thus, if kinetic and potential energies for the typical body are expressed and
Lagrange's equations are applied to it, the ordinary differential equations pertaining to it
are simply a subset of equation,H-l 8, and the total system through the representative form
of the typical body will have been accounted for.

The generalized coordinates chosen to represent the configuration of the typical body include
three Euler angles to indicate attitude of the body fixed-axis system relative to an inertia!
frame, three projections (components) of the position vector from the origin of the inertial
frame to the origin of the body fixed-reference system onto the inertial axes, and N elastic
displacement coordinates. Note that the origin of the body fixed-axis system need not
necessarily coincide with the body center of mass. Also, the elastic displacement coordinates
may be measurements of displacement at a discrete set of points on the body, or they may
be coordinates associated with normal vibration modes. In either case, they represent dis-
placements measured in the body axis system. For the Ith flexible body, its generalized coori-
dinates are tabulated as:

N
e

X

Y

Z
/

Attitude
Euler Angles

Body's Reference Point
Position Coordinates

Elastic Displacement
Coordinates
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A transformation now exists that relates a set of nonholonomic velocities to the generalized
velocities that are extensively used in recasting the equations. The transformation appears
as:

V =

w

=

1
1

W21 ^22 "23

n

721 722" ?23

73i Ta 733

1

1

1 l.

•

d

•

^•^ • "^^

X

Y

Z

ir
0

•

_?— — — - (11-19)

where, in equation 11-19, the vector of nonholonomic velocities, {uf, contains the three
projections, (cox, co , u>z), of the angular velocity vector, co, onto the body fixed axes
(co is the angular velocity of the body reference frame), the three projections of the refer-
ence point translational velocity, (u, v, w), onto the body fixed axes, and the displacement
rates, | \ }. The elements of the transformation, j.. (i, j = 1,2, 3), are direction cosines;
the submatrix, [7], is an orthonormal rotation transformation relating the attitude of the
body fixed-axis system to the inertial frame. The submatrix, [TT] , is also a rotation transfor-
mation; however, it is not orthonormal because it relates vector components based on an
orthogonal basis to those of a skew (nonorthogonal) basis (namely, the axes about which
Euler rotations are measured).

In short,

(11-20)
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Clearly the elements of [/?] are functions of the three Euler angles. Twelve sets of Euler
angles are possible. Any one set is valid for use in subsequent development; the resulting
equation form is independent of selection from the twelve sets of angles.

Elements of the transformation, [0], may be explicitly defined in terms of three of the
generalized coordinates (the Euler angles).

The kinetic-energy expression for the Ith body is most easily expressed (initially) in terms
of the nonholonomic velocities, {uf, after which [/?] is used to replace |u| with [|3] jq|.
The kinetic energy is then expressed completely in terms of generalized displacements and
velocities—the form necessary for applying equation 11-18.

Kinetic energy for the typical body is

(H-21)

where v is the velocity field, and a is mass density, and where integration is carried out over
the volume, V, of the body.

The inertial position of any point, p, of the body (figure 3) is:

7 = XR + p0 + n (11-22)

where XR is the inertial position of the body's reference point (R is the origin of the body
axis system), p0 positions the point p' (which coincides with p in the undeformed configura-
tion) from point R, and 17 (x, y, z, t) is a measure of elastic displacement.

The vectors pQ and 77 are referenced to the body axis system, thus

= I i j (11-23)

y

z
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Body
Axis System

r* Flexible Body

Inertial
Reference Frame

Figure 3. The rth flexible body.

and

N I

7? (x,y, z, t) = I i j kj /A
k=l *

(x, y, z)'

(11-24)

the elastic displacement 17 is represented as the superposition of a finite number of single
valued space functions, 0k.

The velocity field, v, is obtained as

N

v =

k=l

(H-25)

with

V = 'R dt
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The velocity of the reference point, R, may be expressed in terms of components referenced
to either the inertial frame or the body frame; that is,

KJ

also

'R = I1 J kJ

(11-26)

w

The unit vectors, | i, j, k}, \l, J, K}, are related through the rotation transformation, [7],
and it follows that

^u"
V

w

= [7]

"X"

Y

_z_

(11-27)

To be concise, the repeated index summation convention is introduced at this point. With
this convention, when any two factors of a term have the same index, summation over the
range of that index is implied, and the 2 sign is deleted. For example, the third term on the
right of equation 11-25 is

and represents

L^
k=l
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Now, if equation H-25 is substituted into equation 11-21, the kinetic energy is

T = % / \ VR ' VR + lw x CP0
 + *>! ' f" X OBO

 + ")!

2v R • [«X <p 0 + 7 7 ) ] + 2 v R

(11-28)

+ 2 [w X (pQ + n ) 1

or, integrating term by term over V,

T = m I u v w] | u v w l

xx ~ xy xz

yx yy " yz

-J -J J
. zx zy zz J

X."

"y

I u v wj o sz -sy

0 S

LSy -sx oj

CO..

(11-29)

I u v wj
'axk1 **

LazkJ
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jina'was used:

and

'xxo

with

_ I v d> . adV
byyi

v

,v
°dV

continued

where the following"

(11-30)

m = / adV

</\r

(11-31)
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Also used was

and

and also,

p = • I (b (b "^ (b ( 6 . " t * ( w ( D . i ouV (TT-141
\k i " **» ™vk ™vi "vk ™zi ™zk I ^- /

S

xk =/[(y + 0yj ? j ) 0 z k " (z + 0zj t j ) 0 y k ] a d v

yzk zyk I yjzk zjyk J ^j

=/(J = I xxy ' '

= J x y o + b x y b y x j ^ + Cxjyk

ai-33)

(11-35)
v

(11-36)

(11-37)

All other quantities involved in equation 11-29 are obtained by cyclic permutation of the
indexes, x, y, and z. Finally, because the kinetic energy is of quadratic form in the elements
of {U f, it may be expressed as a triple matrix product

T = 14 [uj [m] )U[ (H-38)
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with

[m] =
—

xx xy ~ xz

yy ~ yz

Jzz

(symmetric)

0 -S S
z y

S 0 -S
Z X

-sy sx o

m 0 0

m 0

m

—
d , d , • • d „xi XA xN

dyl dy2 ' ' dyN

dzl dz2 ' ' dzN

axl ax2 * ' axN

a a • • JJayl ax2 yN

azl az2 ** 3zN

Cll C12 * " C1N

* * a

(II-39)

or in short,

[m] = _J_llsJ_d.
m (11-40)

Using equations 11-40,11-19, and 11-38 gives

(H-41)

Clearly, the elements of [m] depend only on the |k; the elements of [J3] depend on the Euler
angles, and kinetic energy is therefore a function of generalized velocities and the generalized
coordinates themselves. Thus, the functional notation,
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is applicable; terms such as dT/dq. will come about and play an important role in the
simulation.

To continue, it is necessary to express the potential energy, V, and dissipation function, D.
Assume that the elastic strain energy can be written as a positive definite quadratic form in
the elastic displacement coordinates, or

V = }4 IjJ M {*} (H-42)

the symmetric matrix, [k], is developed by standard finite-element techniques such as those
embodied in NASTRAN. If ||} is a set of normal modal coordinates, then [k] is diagonal
with the )th diagonal element appearing as

(11-43)

where co. is the jth natural frequency. Of course, normalization of the eigenvectors (mode
shapes) is assumed so that the generalized mass for the ith vibration mode is unity.

Now, because

(11-44)
= \*t\W

it follows that

v = u [qJls«lT [k] [s£] H (II"45)

Similarly, D is written as

D = Vi IqUS.]1 [C] [SjJqJ (H-46)

where matrix, [C], developed by standard finite-element techniques, is equivalent viscous

damping for the structure.

24



Refer back to Lagrange's equations (II-18a and IM8b), and reexpress them in matrix format
as follows:

-£ ([flT M [f l{q()= -[S?]
T ([k] [S{])q} + [C] [S{] {q} )

(H-47)

and

[ a ] j q f = - ) a t | (11-48)

What is meant by [/? , ] and [m . ] is the partial derivative of each element of [|3] and [m]>j >j
with respect to the jtfl generalized coordinate.

Now, define the ordinary momenta (see Reference Paper II):

{p}- H W \ q \

(11-49)

= H |u|

Also, because

H = m |4 \

it follows that
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Using equations 11-49,11-50,11-47, and 11-48,

[C]

and

On studying equations II-51 and 11-52, several observations can be made: First of all, recall
the form of t/3] and [SJ (equations 11-19 and 11-44). It is clear from these forms that

[0J-1T [Sf]
T = [S{]

T (11-53)

and that

[ S e ] ) q f = { « } (H-54)

and

("-55)

Also, because the elements of [m] depend only on £k , the first six elements of

{LUJ imj] lui}
are null; therefore

wr" {[uJ Kji M} ={LuJ KJ] |u(} di-56)
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Further, note that matrix [0]~1T transforms the generalized forces, JQi, to forces "actingin
the quasi-coordinates," or call

(H-57)

thus, |Gex}- contains ordinary forces and moments attributable to external sources and cor-
responds to time derivatives of the ordinary momenta.

Because the transformation, [/?], depends only on the Euler angles, it follows that only the
first six elements of the column

are nonzero, and, after considerable algebraic manipulation, this column may be reexpressed
as

[ ]

or

- 1
0 coz -co 0 w -v

-co 0 co -w 0 u
Z X

co -co 0 v -u 0
y x

0 coz -coy

-coz 0 cox

co -co 0
y x

~ ~

P(wx)

p(co )
y

p(co )
ww« ^^^_

P(u)

P(v)

p(w)

•

•

(11-58)
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With these observations and definitions, equations 11-51 and 11-52 may be reexpressed as

(11-59)

"jl l u f} + W

and

[b] JU} = {«} (11-60)

where

[b] = [a] [ft'1 (11-61)

was used, and

(11-62)

Note that constraint equation 11-60 is now expressed in terms of the nonholonomic velocities,
|u[; the coefficients, [b], are obtained directly from relatively simple, vectorial expressions
of kinematic constraint. The same [b] coefficients are transposed and used to multiply '
{\\, producing constraint forces/torques corresponding to the ordinary momenta.

If the {G f vector is now defined as

, ) , (H-63)
LVj[mtJ] |U}> - [mj jUf

it follows that dynamic equilibrium equations for the typical Ith body may be written as

|u(r = H;1 ()G( r + [b]T )X[J (11-64)
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to be used in conjunction with system kinematic constraint equations

f- H

which is the same form as that given by equations II-1 and II-5.

The last three terms of JG| given in equation 11-63 are inertial forces that involve velocities
and displacements of the body. The matrix [m] is an instantaneous inertia matrix, depend-
ing on instantaneous values of the deformation coordinates, | £ I. The centrifugal and
Coriolis effects are completely accounted for within the framework of the assumed velocity
field (given by equation II-25). These effects would not be accounted for if "tangential"
velocity due to elastic displacement were neglected (i.e., if it were assumed that
I o> X 77 I « I a? X pQ I. In this case, the inertia would be constant and independent of J£[.

An accurate definition of the dynamic equilibrium equations clearly hinges on a complete
and accurate definition of the constituents of the JG[r vector, which includes the inertia
matrix, [m]r. Also, the kinematic coefficients, [b] r, must be developed in an exact fashion.
Kinematics and a more explicit development of JG| are given in subsequent sections.

C. Kinematics and System Topology

From a Lagrangian formulation, all of the generalized forces, not derivable from a potential
function, ordinarily appear as |Q } on the right side of Lagrange's equations of motion.
Internal damping forces have been accounted for with the use of Rayleigh's dissipation func-
tion, D, and, for generalized constraint forces, by Lagrange's multipliers.

Thus, the remaining generalized forces to deal with include those that are attributable to
external factors such as aerodynamic drag, solar pressure, and other commonly encountered
environmental loadings.

Control forces (servodrive torques, reaction jets, etc.) are also treated as if they are external.
They are not explicitly external, of course, because they depend on time through position
and rate errors that are functions of elements of the state vector and on control system
state variables that arise from a given control law.

Assume that there is a finite number of points on the typical body at which a force vector
(or torque) is known to act. Each of these force/torque vectors contributes to the generalized
forces, |Q}. The generalized forces are calculated by expressing the virtual work of the ex-
ternal ordinary forces in terms of virtual displacements of the points of force application.
The transformation that relates ordinary coordinates to generalized coordinates is then used
to define the explicit form of the generalized forces. For example, suppose that a force f ,
and torque, T , act at point p of the typical body. Their virtual work is

6W = f~ ' 5 7 + 1 • 6fl (11-66)
p p p p
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Note that the virtual rotation, S 6 , was treated as a vector quantity. This is valid, even though
a general rotation is not a vector quantity, because the virtual rotation is infinitesimal and
is therefore a vector. Further, because virtual displacements are infinitesimal, 5 r and 5$_
may be expressed in terms of virtual displacements of the quasi-coordinates; that is,

8 < p -• IJT'J ( Sr,

L5r3.

0 -<y

V

(y 0

(11-67)

and

50
«*,

(11-68)

where (5r15 8r2, 5r3) are components of virtual displacement of the body's reference point,
R; (80X> 80y, 60z) are components of virtual rotation of the body axis system; and (axj,
a ., a .) are components of the jth space function, a., representing elastic rotation at point,
p (modal slopes, for example).

Now, assume that the force and torque vectors, (f and T ), are referenced to the body
axis system; they may therefore be written as

•Ir xp

yp

zp

(11-69)
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and

xp

yp

zp •

(II-70)

, Note that virtual displacements of the quasi-coordinates are related to virtual generalized
displacements by the same transformation that relates nonholonomic velocities to generalized
velocities (equation II-19). It follows that the virtual work attributable to 7 and T maybe

P p
written as

ffyi)

-<y

yp

"xp>

xp

yp

zp

xp

yp

zp

(11-71)

(6 + N X 6)

The virtual work is also expressed as

5W - H
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and, because 5q. is arbitrary and independent (treated as independent in the face of Lagrange
multipliers and constraint equations), it follows that

;T
- W T [bJ T I, J (H-72)p

Equations 11-71 or 11-72 have a noteworthy geometrical interpretation. Note that the first
three lines of

are components of the resultant torque vector, T + (pQ + TJ) X f , acting at the body's
reference point, R. The second three lines are components of the resultant force vector, f ,
whereas the ]th line, 0 > 6), corresponds to the standard procedure (of structural dynam-
icists) for calculating (X., or, as it is usually expressed, generalized forces acting in deforma-
tion modes are

Also, recalling the form of [/3] (equation 11-19), note that [TT]T resolves the resultant torque
vector (about orthogonal body axes) to components about skew axes about which Euler
rotations are measured, whereas [7] T resolves the resultant force vector (about orthogonal
body axes) to components along the inertial axes. Further, note that [b ] is a matrix of
coefficients that relates the velocity of any point, p, to the vector, |u[. This provides ad-
ditional insight as to why the same coefficients that are used in kinematic constraint equa-
tion 11-60 are used (in transposed form) to multiply |x| -producing resultant constraint
forces.

Thus, the remarkable duality of purpose associated with [b]-type coefficients has been
emphasized. They are initially expressed by writing simple kinematic velocity relationships.
The coefficients, [b] T, are then used to transform discrete ordinary forces and torques to
equivalent forces and torques acting through the body's reference point, R. The matrix,
[|3] , which is also a velocity transformation, is transposed to produce the transformation
to generalized forces (if they are desired).
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For ordinary momenta equations, the desire is simply to express {Gex}, which (following
equation 11-57) is given by

(11-73)

This \G \ given by equation 11-73 reflects only the contribution of the force/torque acting
' vAJ P . »

at a single point, p. The total }Gex} must be obtained by summing all the points of the body
at which forces and torques act, or

(11-74)

Kinematic coefficients, [b ], such as those of the previous example, will be required through-
out in the formulation of the state equations. They are used to synthesize the constraint
equations and to produce JGl, and they are involved in the velocity transformation of equation
II-3. It is therefore advantageous to think of a "bank" or collection of all the required kine-
matic coefficients to be put together in a semiautomatic fashion by using input specifications
to the digital program.

1. Sensor Point Kinematics— Force/Torque Transformations

Consider the typical structural hard point, s (figure 4). Assume that a right-handed triad is
fixed to point s and that the elements of the triad are unit vectors labeled 7, m, and n. Now,
body, n (which has point s on it), also has a right-handed triad fixed to point n. Suppose
that, even when body n is in an undeformed state, the s-triad is misaligned with respect to
the n-triad. When the body deforms, there may be further angular misalignment between
the two triads. Thus, the relationship linking the two sets of unit vectors is

m -[A] [A] (H-75)
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m

Figure 4. Two typical contiguous bodies of the system,

where LR..] and L»R,i] are orthonormal rotation transformations, the first relating the
a 3 S II

"naturally" misaligned triads via constant Euler rotations and the second accounting for
additional rotation due to the body's deformation point s.

The structural deformation at point s is assumed to be sufficiently small that the Euler
rotations associated with L.R, ] may be evaluated through the use ofs n

(11-76)

where [ag] is a (3 X N) matrix of modal rotation amplitudes at point s. (Each of the N
columns corresponds to a deformation mode.) Concisely'denote the traids associated with
points n and s by | en} and { eg |, respectively. The relationship linking the two sets of unit
vectors may then be expressed as

Kf • [f] Kl (11-77)

In subsequent kinematic development, there is a requirement for expressing the absolute
velocity of a typical s-point and the angular velocity of the-typical s-triad in terms of velocity
states of a given body. Picture a six-long vector (column) of velocity components (three
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rotational and three translational) that are projections of ws and vs onto the s-traid axes. It
is related to the |U}n vector for the body by the transformation

ys

COzs

w.

(8)

[A]

U

v

w

(n)

(11-78)

where [hg] and [as] represent matrices of displacement and rotation amplitudes, respectively,
and [S***,] is an antisymmetric matrix accounting for a vector cross product, or

*& ys + n ) oxs I

(11-79)

The superscripts in equations 11-78 and 11-79 are used to indicate the frame to which the
velocity components are referenced.

Kinematic coefficients such as those of equation 11-78 are generated for each so-called sensor
point of the system of bodies. They are used by the simulation program to produce contri-
butions to JGex | from given force/torque components in the manner indicated by equation
11-74.
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2. Hinge-Point Kinematics

Kinematics associated with hinges follows a line of development somewhat similar to that of
sensor points. Consider the points, p and q (figure 4), to be two structural hard points
associated with a given hinge. All necessary kinematic information pertinent to the hinge
is obtained through expressing the velocity of point q relative to point p and in expressing
the relative angular velocity between the q- and p-frames. It is convenient that the angular
velocity components are projections onto skew axes (Euler angle rates) and that translational

' velocity components are projections onto the axes of the p-triad. The six relative velocity
components may be assembled into a column matrix as

(11-80)

Ul

where {d}^ represents the three relative Euler angle rates and |A|k represents the three
relative translational velocity components all of which pertain to the ktfl hinge. The column
of relative velocities may now be expressed as

(11-81)

with

[bp] = (11-82)

and

[ ] [,Rn]
(11-83)

In equations 11-82 and 11-83, the rotation transformations, [pRm ] and [ R n l , are developed
to include the effects of structural deformation as indicated in equation 11-75; the rotation
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transformations, [Tr]'1 and [ R ], are developed in standard fashion using the three Euler
rotations, {0}k.

For further discussion, consider the system of bodies shown in figure 5. Topology of the
I system is simply indicated by an integer array, called "ITOPQL," as follows:

1 2 3 4 5 6 7 8

[ITOPOL] = 1 2 4 3 5 6 7 7

0 3 2 6 3 1 5 2

•Hinge number

• Body (n) relative to

• Body(m)

The [ITOPOL] array, which is the actual input to the simulation program, is used to define
system topology as indicated. Now, with reference to the example shown in figure 5 and
the corresponding (ITOPOL) array, the form of the velocity'transformation may be written

Body (1) (2) (3) (4) (5) (6) (7) (11-84)

Hinge
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NOTE:

Hinge labels are circled;
body labels art not circled.

Figure 5. Topology of a typical system.

where [bpi J and [bq. .] are matrices as defined in equations 11-82 and 11-83 (with i =
Hinge number and j = Body number). The velocity transformations of equation 11-84 repre-
sent the "bank" of all hinge kinematic coefficients previously mentioned and produces every
possible velocity component pertinent to hinges. Referring to basic system equations II-3
and II-5, note that selected lines, or equations, from the bank (equation 11-84) are taken to
represent constraint equations or position coordinate rate equations. The [B]j and [b]= !
coefficients of equations II-3 and II-5 are simply subpartitions extracted from equation 11-84.

To implement calculation of Lagrange's multipliers (equation II-6), it is necessary to develop
time derivatives of [b] . coefficients. In a manner similar to the foregoing, in which all [b] .
coefficients are extracted from the complete collections, the [b], matrices come from a

j
collection of matrices whose members are [bqn

Appendix C.
.] and [bD: ,], which are developed in• • ^i

D. Development of the \G\. Force Vector

The equations of dynamic equilibrium for the jth body of the system are given in an earlier
section as equation II- 1. As noted there, the right-hand side includes a so-called \G\. vector,
which accounts for all state-dependent forces except for those of interconnection constaint.
In equation 11-63, the \G\. vector is presented in a somewhat more-developed form.
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The purpose of this section is to provide more explicit development of the elements that
contribute to \G\. All contributions in the following expression may be accounted for
(omitting the j subscript, understanding that the typical, or jth body, is being dealt with):

M - tU - IT
(11-85)

Although the first term,|Gex} , has been discussed in the previous section (equation n-74),
note here that the ordinary force/torque components that produce {Gex[ may be considered
as a miscellaneous force vector. Its presence provides the program user latitude for including
a variety of additional effects. Clearly, it is the implement through which control forces/
torques are "fed back" to the dynamic system.

The second and third terms of equation 11-85 have been previously introduced. There is no
implicit restriction on the stiffness and damping matrices, [k] and' [C] Mnor is there a restric-
tion on definition of the {£ | coordinates; in the majority of cases, they will likely be coordi-
nates associated with orthonormal vibration modes. However, they may be physical (ordinary-
discrete) displacement coordinates as well. In the latter case, the [k] and [C] matrices are
usually coupled.

The last two terms of equation 11-85 are included to account for momentum-wheel coupling
and gravity effects, respectively. The treatment given to built-in momentum wheels is such
that, in addition to producing a contribution to \G^, there is also a required extension to
the form of the [m] . matrices because momentum wheels are inertially coupled. Thus, there
is sufficient requirement for a dedicated development concerning momentum wheels. The
next two sections deal exclusively with momentum-wheel and gravity effects, respectively.

The remaining terms that contribute to \G\ are basic inertial effects and involve the matrices,
[m] , [m k ] , and [m] . With reference to equation 11-39, the form, [m] , is given, correspond-
ing to the case with available single-valued space functions 0k. Ordinarily, access to such a
description of the structure's deformation modes is not possible because of the structural
complexity of typical spacecraft. The analyst should always be able to obtain, as data,
matrices of mbdal amplitude ratios (mode shapes) and the corresponding structural mass
matrix (generated by finite element techniques). To accommodate data based on the more
practical definition of structural characteristics, it is necessary to recast the inertia matrices,
[m] , in a similar but more general format. The generality of the development of paragraph
II.B is not compromised by extending the form of the inertia matrix. The extended, or more
general, inertia matrix is developed in Appendix A, but here, for purposes of developing
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inertial contributions to the JG| vector, the resulting form is accepted and the kinetic energy
expression is presented as

[U] ] jk^k {13} (11-86)

with the repeated index summation convention implied, and with [mo ] of the form

S i m ' a
_ J j (11-87)

that is, it is identical to the [m] given by equation 11-39 except that it is constant, independent
of deformation. The constant inertia matrix, [mo ], as given by equation 11-87, is always of
the form shown regardless of the choice of "modal" columns. The form of the matrices,
[m1] and [m2 ], is such as to accommodate the general situation; that is, their definition in-
cludes inertial integrals as defined for a continuous system (equations 11-30 through 11-37)
or as defined by structural mass matrices that are called "lumped" or "consistent."

The inertia matrix associated with £. is

2»i -\ -bs

2 6

2b,
3

(symmetric)

a. a, a.
4 5 6

a a a
7 8 9

0 0 0

0 0

0

&ti
|_ zx jkj

|(cxy).kj
1— —1

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0

(11-88)
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and the one associated with £. £k is

Cll 'C12 ~C13

C22 -C23

C33

(symmetric)

0

0

0

0

0

(11-89)

jk

Now, for N-deformation modes associated with a given body, it is understood that the range
of the indices, j and k, is N; the coefficients, (Cn) , (C12) , (Cxy) , are therefore stored
as 9 (N X N) arrays of inertial integrals, whereas (bj)., (t>2)., •• (b6). and (c^)., (o^)., •• («9).
are stored as a (6 X N) array and a (9 X N) array, respectively. Thus, from a programming
standpoint, note that 9N2 + 1 5N storage locations are required for accommodating the inertial
integrals necessary to account for the deformation-dependent mass matrix. Of course, if a
particular body is rigid (N = 0), then only the first (6 X 6) diagonal partition of [mo ] is used.

When the body is flexible (N >'0), the inertia matrix is calculated from deformation states
(£.) and inertia integrals in the manner indicated by equation 11-86; the redundant operations
due to symmetry and null operations are avoided in the digital code.

Having an instantaneous numerical evaluation of the inertia matrix, the term, [ft] [m] |u|,
is calculated and added to {G|, consistent with the expression of equation 11-58.

It is now possible to express explicitly, the combination of the remaining two inertial force
vectors in terms of the inertial integrals given in equations 11-88 and 11-89. For further
development, the combination may be defined as

|UJ [m J {U( - [m] |U} (11-90)
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Thus, the first element of G , corresponding to oox, is

«y

Kc12)2j + (C12)jfi] |C + Wz [(C13)sj + (C13)J8]

The second element, corresponding to u> , is

"x (b
4)j -2^y (b2)j + "z (b6)j

-u (0=4^ - v (as)j - w (afi).

The third element, corresponding to cjz, is

"y

42

(H-91)

(11-92)

-u(a7)j -v(a8)j -w(a9)j

(11-93)



The fourth element, corresponding to u, is

(Ge)4 - -K («,), + Wy (a,),

The fifth element, corresponding to v, is

(Gc)s = - |cox (a2)j + «y («,), + <oz (a^ | ^ (H-95)

The sixth element, corresponding to w, is

(Gc)6 = - L <«,), + coy (ae)j + coz (a9)j | ^ (11-96)

Finally, for the element k + 6, corresponding to an inertial force acting in the £k coordinate,

(11-97)

"x~y
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[(a4)k u + (as)k v + (o6)k w]

(11-97) continued

+ i "x KCyz)kj - (Cyz)jkl + co [(Czx) - (Czx) ]* x y& K.J y * j i v y *x K.J iiA jiv

On examining the composition of the inertial force (Gc)k+6, note that the first six bracketed
terms represent centrifugal forces (distance X omega-squared) acting in the deformation co-
ordinates, whereas the last bracketed terms of equation 11-97 represent Coriolis forces
(velocity X omega).

E. Momentum-Wheel Coupling

The spacecraft system undergoing analysis may have several "built-in" momentum wheels.
A momentum wheel is usually defined as a cylindrical or disk-shaped mass that spins about
an axis that is fixed to a structural hard point of a given body. The wheel can be either
spun up or despun by an electric motor whose rotor is part of the rotating mass. The shaft
torque that acts to accelerate the wheel also acts on the body in a negative sense, providing
active attitude control. The shaft torque is generally governed by a control law that "senses"
attitude and rate errors of the body. In this development, a momentum wheel is assumed
to be inertially symmetric about its spin axis.

To develop the inertial coupling effects of the typical momentum wheel, consider three
unit-vector bases:

01-98)

(H-99)

UJ =L^m' ,n ' J (11-100)
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The first triad is the body-reference triad for body n, the second is a sensor-point triad (fixed
to point s), and the third triad is fixed in the momentum wheel. One of the three unit vec-
tors of |_esj is coincident with one of the unit vectors of |_ewj (i.e., either C, m, or n may be
the spin axis depending on the preference of the analyst). In figure 6, n = n' is shown as
the common, or spin, axis.

The absolute angular velocity of the |_e
wj frame can be expressed as

[R1 + * ' 01-101)W .

where \PW \ is an elementary three-long position vector (null except for unity in the first,
second, or third locations corresponding to £, m, or n being the spin axis), and 6 is the
relative angular speed of the Le

w J frame with respect to the Le
sJ frame.

With the inertia! characteristics assumed (axisymmetry) for the wheel and with the velocity
expression of equation 11-101, the total angular momentum vector for the wheel may be
written as

h = w
(IM02)

[Jw]w (Pw( ft)

with [Jw] diagonal with all diagonal values equal to JT except for the position corresponding
to the spin axis, Js. JT is the mass moment of inertia about any axis perpendicular to the
spin axis, and Js is the spin inertia for the wheel.

6 = 0 n

Figure 6. Typical body/momentum-wheel relationship.
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The torque acting on the wheel (resolved to the [ e ] frame) is
S

= LesJ [JJ )coj + jPj

(11-103)

[JJ Kf - PU ip
w( J.«)

where an SK* operator is defined so that

•[01 = SK* )cos(

or

0 "s3 -".2

-co. 0 co
S J SI

0

= SK*

Wsl

CO

Ws3

(11-104)

The torque acting on body n at point s due to the wheel is -T, and it drives the body's quasi-
coordinate as

n + [JJ [bj {u}n + )PW( j.ff
(11-105)

with

• w (11-106)

and also, as can easily be shown,

fy M. =
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Now, the shaft torque is simply the projection of T onto the spin axis, or

Ts =

(11-108)

Equations 11-105 and II-108 permit the coupled equations for body n and several momentum
wheels to be expressed as

^'.IV
j,ip:A
js2p^2

>.*w:w]
0

0

>l*.

+

1 ~

E ^ [«.l IJJ k
w

0

0

I«L"
»,
^2

2
w

=

(fe s]
T[Jjfc |u}n

lb s]
T(SK*|pwf)(b s] |u}n j se

(11-109)

The inertially coupled body/momentum-wheel equations (for two wheels) are shown as
equation 11-109 simply for the purpose of indicating the form. Note that, within the
equations, there effectively resides the original form of the dynamic-equilibrium equations
for body n; namely,

(11-110)

which govern if no momentum wheels are associated with body n. In equation II-l 10, the
caret (A) has been placed over G to represent the right-hand side force vector that excludes
momentum-wheel effects.
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Now, on further study of the form of equation 11-109, note that, if the "locked" momentum-
wheel effects are already included in the definition of [m]n (which is the standard practice
when inertially coupling systems together), the (1,1) partition of the coefficients on the left
of equation 11-109 becomes simply [m]n. Also, the second column on the right of equation
11-109 is absorbed in jG[n , having already been accounted for in the development of dynamic-
equilibrium equations.

It therefore follows that, in order to implement momentum-wheel coupling with one of the
flexible bodies, it is only necessary to extend the |u[n vector to contain momentum-wheel
spin values, (0), to extend the inertia (except for the [1 ,1] partition) as indicated in equation
11-109 and to add to the right-hand side force vector

[bJT(SK*|pwf)[bs] \u} n j s ' e

T - J
si Js2

(11-111)

The values for shaft torque TS that appear in {Gmw j are established by a given control law
if the wheels are to be considered variable speed. If a given momentum wheel is of constant
speed (used only for "gyroscopic damping"), the torque equation for it is deleted from
the form of equation 11-109; however, its effects are still included in the upper partition of
the vector, JGmw} (the gyroscopic torque due to constant 0).

Clearly, the equations of dynamic equilibrium for a body, after having been augmented to
include momentum-wheel coupling, are still of the general form

(11-112)

F. Gravity-Gradient Effects

Attitude dynamics of orbiting spacecraft can be significantly influenced by the gravitational
force that is distributed according to the system's position and deformation state. The
gravitational force per unit mass varies (in a central force field) simply because different
mass particles are at different distances from the Earth's center of mass. Figure 7 describes
the geometry associated with a typical elastic body.
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Earth's Mass
Center

M

Typical Deformable Body

Figure 7. Geometry for gravity effects on a typical body.

For a central force field, the gravitational force per unit mass is given as

(M ri (11-113)
\ m

which, to a first-order approximation, is

wherei

GM

mi

the Earth's gravitational constant

the typical mass particle

local gravitational acceleration

a unit vector directed along R"
C

the origin of the body reference system

(II-l 14)
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The virtual work due to gravitational force can be written as

'p>

ri
8 -p\ m,

(11-115)
— 1 -5r adV

v

with nij replaced by differential mass adV.

The virtual displacement field is expressed in terms of virtual displacements of the quasi-
coordinates as

5? = 6?c + 60 c X (p0 + ^) + 6^ (IM 16)

In combining equation II-l 15 with equation II-l 16, the torque about point c, due to gravityr
gradient effects, is

(D-llT)

where

S = the first mass moment about point c

J = the instantaneous inertia tensor (deformation dependent) for the body

The resultant force due to gravity effects is

R - & S + ^1 (eR ,
R R \
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and the forces acting in the kth deformation coordinate, £, is

(S). adV

(11-119)

adV

Now, the unit vector, eR, has projections onto the body axis system that continually vary
as the body changes attitude. The unit vector, eR, is expressed in terms of direction cosines,
and the three unit vectors associated with the body-reference frame are expressed as

e,, = (11-120)

Also defined are

(11-121)

S = 0 (11-122)

= SK* (11-123)

a • /w,adV (11-124)
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With these definitions and the force and torque expressions of equations II-l 17, II-l 18, and
II-l 19, it follows that the first three elements of the contribution to the right-hand force
vector due to gravity effects are

(11-125)

The second three elements are

- g<m
W + T • m){•}

The force due to gravity acting in the kth deformation mode is

(b) + (b)
•

2R

2r,

(IM26)

(11-127)

where the inertia integrals, (bn| (n = 1, 2, •• 6), and (Cf im) , (2
sistent with the development given in paragraph II. D ana Appendix

, m = 1, 2, 3), are con-
ix A.
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G. Provision for Inclusion of Thermal Environments

All problems associated with thermally induced deflections have in common the requirement
that, to determine the effect of solar heating, the spacecraft's attitude relative to the Sun
must be known. This required information can be extracted at any point in time from the
state vector. It is then necessary to have a model of the response of the flexible structure,
either static or dynamic, to solar heating.

Considerable work has been done on modeling flexible appendages in thermal environments
(References 2 through 4), and the results indicate that the response depends on the radiation
properties of the booms and the attitude relative to the Sun.

The simulation program accounts for time-dependent thermal deformations in the following
manner. It is assumed that a model exists whereby the structural deformation of a flexible
boom (or appendage) resulting from solar heating can be determined from elements of the
state vector and time. This deformation is subtracted from the actual deformation, and
the difference is premultiplied by the appendage stiffness matrix. The result is a vector of
modified, generalized restoring forces for the appendage, which is summed into the j G} .
vector for the appendage body.

In terms of the development given in paragraphs II.B and II.D where -[k] ||l is seen to be
the generalized restoring forces (in the deformation coordinates), note that -[k] |£i is re-
placed with -[k] (|£ 1 - i£e I). The thermal deformation state, | £ l , is that which must be
established from a thermal deformation model.

In this way, a closed-loop response analysis can be achieved, using external subroutines
to develop the thermal deformations. Some problems may require only open-loop opera-
tion if the variations of ||l in time is slow with respect to general dynamic response.

Rather than building a rigid (or irrevocable) model of thermal deformation, the dynamic
simulation program provides the user with an interface whereby he can formulate and code
a particular model. Thus, latitude with respect to user requirements is retained.

Ml. SYNTHESIS AND ANALYSIS OF THE LINEARIZED SYSTEM

Developments to this point have described the analytical techniques used to synthesize the
nonlinear characteristics of a dynamical system consisting of an assembly of interconnected
flexible (or rigid) bodies. Particular emphasis has been placed on spacecraft systems in
which individual bodies that comprise the system may be either spinning or nonspinning
and may have large excursions with respect to each other.

This section presents a comprehensive summary of the techniques developed for synthesis
and analysis of the linearized dynamic system with particular emphasis on frequency-domain
techniques. For the purposes of this discussion, it is convenient to redefine the nature of
the system under consideration and, in describing the techniques, to consider the total
dynamic system as a plant subject to a controller rather than as a spacecraft system consisting
of interconnected bodies that may be subjected to a control system.
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Linearization of the nonlinear state equations is necessary for applying the powerful analy-
tical techniques associated with linear system stability synthesis. When a nonlinear system
can be reduced to a linear system in the vicinity of a particular state of interest, it is much
more desirable to work with the linearized state equations. An additional feature related
to the linearized system permits the analyst to observe linearized perturbation time-response
characteristics for the system. The linearized time response can be easily automated by
recursive formulas, which are generally more efficient than nonlinear numerical integration
algorithms.*

A. Introductory Discussion

The main-line nonlinear time-domain analysis is structured to assemble a collection of inter-
connected bodies, including a control law. The general form of the governing equations
may be concisely indicated as

i = 1,2, . . . (III-l)

and the form of the function, F, is the essence of the nonlinear time-domain solution. In
fact, it can be stated that equation III-l is the fundamental basis for the entire DISCOS
program. Algorithms for evaluating the nonlinear state-vector time derivatives (and auxiliary
equations) are centered in a subprogram and its supporting routines. These functional
algorithms are used for linearizing the governing equations about a specified state. In addi-
tion, it is desirable to introduce some new variables, including sensor signals, Xss, and con-
trol torques, B. These new variables extend the number of equations, and the additional
expressions are linearized along with the basic state equations. Additional remarks con-
cerning the use and manipulation of the additional variables are given in a later section. The
remainder of this subsection will address specifics relating to the linearization process.

Attention is first focused on a single variable, yk, and its dependence on the system state,
Y1, through a known (though possibly nonlinear) functional relationship. Arguments begin
by considering an initial system state, Y* (o), and a functional algorithm with which to
evaluate the expression, yk = d/dt yk. The unknown, yk, is first expressed in terms of a
Taylor's series expansion about the given state, Y1 (o), as

(III-2)

•Reference Paper I provides a broadbrush narrative description of the theoretical development given in this section.
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Because the interest here lies in the linear part only, the series is truncated for all partial
derivatives greater than one and

3y

The task at hand, then, is to establish the partial derivatives indicated as yk . , thus yielding
an expression (for all AY1 = Y1 - Y1 (o), i = 1, 2, •• •) of the form

AY1 = H AYJ (III-4)

Because it would be nearly impossible (certainly impractical) to generalize the determination
of the partial derivatives as explicit analytical expressions involving the independent state
variables, a numerical approach has been adopted. This task is accomplished by employing
numerical perturbation techniques in conjunction with quadratic functions to establish the
desired partial derivatives. Symbolically, determination of elements of H . is attempted so

*J

that

Y1 = Y^o) + HyAY* (IH-5)

where it is assumed that:

• The functions, Y1, are indeed linear, sufficiently near the state, Y1 (o)

• The functions, Y1, although possibly nonlinear, can be represented as a quadratic
(or lower order) in the neighborhood of Y1 (o)

The basic approach is concisely summarized in two steps:

• Establish quadratic coefficients for Y1 in the vicinity of the state, Y1 (o)

• Evaluate the partial derivatives, H.., at the state, Y1 (o), using the quadratic co-
efficients and perturbation values on the independent variables.

B. Linearization Process

With reference to figure 8, the quadratic formula can be stated in matrix form as

«,) „ . - * - , - i . i an-6)
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•U)

Figure 8. The quadratic formula.

where 17 is a local spatial coordinate with origin corresponding to q,~, and it is desired to

establish the derivative, 3f/3q, evaluated at q,-.

In general, the required partial derivative is

3f (IH-7)
9q 3q

Because the three values, f~, f«+1), f(i+2)' are evaluated by the previously discussed functional
algorithm, these values satisfy equation III-6. More specifically, consider

"I l

i

Va

(III-8)
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and, by matrix manipulation, it follows that

f00 =
'i+l

i+2

-1

1+1

1+2

where the local coordinate, 17, is defined as

(HI-9)

•n = (IIMO)

and it can be noted that

It then follows that

- q.

0 0 1

1 1 1

-1

1+1

1+2

and, if T?i+1 = 1/2 is specified and it is noted that f~> =

0

1/4:

1

0 1

1/2 1

1 1

(III-ll)

(III-12)

(111-13)
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f(r?) = rj ij

2 - 4 2

-3 4 -1

1 0 0

'(0)

'(D

(111-14)

f'OO = [217 1 OJ

2

-3

1

-4

4

0

2

-1

0

<

/ \

(i)\ '

(111-15)

and, in particular,

an
(0)

= f'7?(T? (111-16)

and

9f_

dq
= f ' ( q = q , ) =q 'ko

(111-17)

/. Comments

Selection of an initial perturbation value, q(i + 2), from an initial specified state, q(o) =
Yk(o), is somewhat arbitrary. A value of 1 percent of the initial value has been successfully

used for all example problems during the course of the study. In the case where the initial
value is null, an infinitesimal value must be chosen. A value of 1 X 10"5 has been accom-
modated in the digital code. The intermediate choice of 7}(i + 1) = 1/2 was selected for
other reasons. Consider first that a single evaluation of a partial derivative, df/dY1 is not
sufficient to qualify its validity.

An approach has been employed whereby two successive evaluations of 3f/3Y* obtained

by successively cutting the perturbation in half must agree to a predetermined number of

significant digits (e.g., 5).* The choice of r?(i + 1) = 1/2 requires but a single new evaluation

*The establishment of the error criteria that will be used to compare successive evaluations of 3f/3 Y1 is strongly dependent
on computer word size. In special cases, numerical noise can exceed the established error criteria and prevent numerical
convergence. This problem can usually be circumvented by changing error criteria limits set in subroutine LINEAR.
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for each element in Y1 at each successive reduction in the perturbation value. In summary,
the linearization employs an iterative technique to establish the desired partial derivatives.

2. System Resonance Properties

The linearization process has provided a system of first-order differential equations that
describe the dynamical simulation in terms of perturbation variables about an equilibrium
state. The linearized canonical form appears as

AY1 = HyAYJ (i,j = 1,2,..'.) (111-18)

The coefficients, H.., contain all of the resonance frequency properties of the dynamical
system. The standard eigensolution form is indicated by taking the transform of this
expression to obtain

I8,J s - H} j) AY' (s) = 0 (111-19)

Extraction of the roots (eigenvalues) from H;; then gives the roots of the dynamical system.
IjJ

There will be N of these roots, and any complex roots will appear as conjugate pairs because
the elements of H.. are all real. The imaginary part of the complex pairs represents the
resonance (or characteristic) frequencies of the system.

C. Exchange of Variables

It is often necessary, for the analyst to require additional variables with which to assess the
stabilitycharacteristics of the dynamical system. These additional variables ordinarily take
the form of plant sensor signals and control system output forces and torques. Although
the desired variables may not be explicitly contained in the system state vector, Y1, they
are known in terms of the state variables through an expression of the form

(111-20)

Recall also from previous discussions that it has been established either directly or through
linearization that

AY1 = H j A Y J (111-21)
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Now, rewriting equation HI-20 in matrix form and identifying variables to retain, Yj, and
variables to eliminate, Y2, gives

Jwl =1. J (111-22)

and it can readily be established that

= 0]

where

[R] =

and

-c2' c2>
(111-23)

w

Thus, the state equations for the dynamical system can be written (in terms of variables
that include the desired plant sensor signals and control system forces and torques) as

(111-24)

and the transformation A.. = R"1 H.. R, is commonly referred to as a similarity transforma-
tion. The matrix, Aj.., is said to be the transform of H.. by the matrix R (Reference 5).

The similarity transformation, Ay, possesses a unique property in that the eigenvalues of
Ay are equal to the eigenvalues of H..! A simple proof that establishes this point follows:

The characteristic matrix of Ay is given by

(Ay - si) = (R-1 H. j R - si) = R'1 (H. j - si) R (111-25)
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It follows that Q(s), the characteristic polynomial of A-, is

Q(s) = det (Ay - si) = det R'1 (det (H. j - si)) det R

and, as (det R'1) = 1/det (R), it is apparent that

Q(s) = det(H. A - si) = P(s)

where P (s) is the characteristic polynomial of H... Thus, it is evident that the matrices,
Hj. and Ay, have the same characteristic equations

Q(s) = P(s) = 0

and, therefore, the eigenvalues of A- are equal to the eigenvalues of Hj..

Application of this property now permits isolation of the plant and controller, even for a
state-space representation of an inherently nonlinear system that can be linearized about
a specified state. Separation of plant and control-system variables is an important facet
of linear system stability synthesis.

7. Evaluation of the Similarity Transformation

This discussion relates to a procedural approach for determining the similarity transformation
matrix, [R], that will relieve the user from the burden of having to select those variables
to eliminate from the original state vector so that the auxiliary variables, B1 and X', can

SS

become an independent constituent of the modified state vector for use in the linearized
studies. With reference to equation 111-22, all the C{. coefficients are known because they
have been obtained through linearization of the auxiliary equations. The CL coefficients
simply define the dependence of the auxiliary variables, w*, on the original state variables,
Y1. In general, it is not possible to directly partition the C.. in the C1 and C2 partitions
as indicated in equation 111-22, for the decision has not been made yet as to which state
variables to retain and which to discard in preference to introducing the auxiliary variables,
w*. In this light, a best possible choice is made with regard to which of the variables to
eliminate from the state vector, Y1, so that the auxiliary variables, wj, may be included.
A one to one variable exchange will often occur between an element of w* and an element
of Y1. In any case, a variable exchange is necessary for structuring the total system into
the desired plant/controller framework whereby the plant and controller can be isolated
along with the plant sensor signals and the control-system inputs.
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The following approach is used in this simulation to accomplish the desired result (namely,
an optimum selection from Y1 as to which variables to eliminate so that w^ can be introduced
as a part of the state vector). With reference to equation 111-22,

(IH-26)

The primary focus of attention is now directed to a systematic examination of the C.- co-
efficients so that the variable exchange is accomplished in an optimum manner. To help
clarify the discussion, some size identifications are noted:

Cf has size NR by NS

Y1 has size NS by 1

w* has size NR by 1

NJQ = NS + NR

Clearly, at least one nonzero element exists in each row of the C- array. Otherwise, Y1 does
not represent an independent set.

Now, a search through the first NS elements of row 1 in the matrix array

(111-27)

will identify the largest element (absolute value) in row 1. Assuming that this element occurs
in column JBIG (1 < JBIG < NS) permits the division "of each element of row 1 by this
largest element, and subsequent elementary row operations on rows 1 through NR will
eliminate those elements below the pivotal element in column JBIG. This procedure is
repeated for each of the NR rows contained in the matrix, and the following observations
are noted:

• The appearance of a one (1.0) in a row identifies a variable that will be eliminated
in preference to including an element of w*.

• The absence of a zero or one in columns of a given row indicates which variables
will survive the exchange process.

• All variables in w^ (NR of them) will become part of a new and independent state
vector (the modified state vector).

• The transformation, R.. (i, j = 1 .. . NS) can be constructed from the matrix that
remains after the procedural approach has exhausted all of the NR rows of expres-
sion 111-27.
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2 Illustrative Example

A simple example is presented to further describe the actual mechanics used for evaluating
the similarity transformation. Linearization of the auxiliary equations has established that

w

and, to implement the proposed algorithm, the C matrix augmented with -I is first written
and the elements of C are further identified as

.NS

[
bll b!2 b!3 b!4

b21 b22 b23 b24

-1 0

0 -1

For illustrative purposes, assume that I b13 l>l (bu, b12, b14) I, and, hence, b13 is the
pivotal element for the first row. It follows that row 2 is modified by the relation

1 Ij i 1_eie2j — o23 f o2j

giving the matrix

b
'• ——

b
13

-b + b

13

-b23 -

"Cll

C21

b

b

b12

,
U13

C12

C22

+ b

1

0

13

1

0

C14

C24

-b23

C1S

C2S

°1
-1,

\

\

b

u
13

t h

13

1
_ ^_

U

13

b23

,

13

0

-1

-
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The process is continued by first dividing row 2 by the largest element and again using row
operations to eliminate the other element in that column. Again, for illustrative purposes,
it is assumed that the pivotal element of row 2 (say c22) is known, and row 1 will be modi-

fied by row operations as

12

C2j

22

giving

-S2

C21

C22

+ cn

C21

C22

dll

_'21

0
1

1

°

d!4

d24

0

1

dis

d2S

1

d

d,6

d26

C24

12
 C

 14
C22

G24

C22

C25

12 C 1S
C22

°25

C22

C12

C22

1

C22

from which the desired similarity transformation is established as

1 0 0 0

R., =
-dis

0 1 0 0
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It,now follows that the original state variables are written in terms of the modified state
variables as

0 0

0 0

D. System Transfer Functions

The entire system transfer function synthesis can be concisely summarized in a chronological
sequence of steps that began with linearization of the coupled mechanical/control law
equations that govern the dynamical motion. This process included linearization of addi-
tional equations that contained specific variables required for further consideration in the
stability analysis (namely, plant sensor signals and control system outputs). A similarity
transformation has been introduced that exchanges original state variables for these desired
sensor signals and controller outputs so that the resulting modified state vector is still repre-
sentative of an independent set of state variables. The resulting system of state-space
equations is later identified as equation 111-28.

The system characteristic matrix, Aj., provides the basis for evaluating the coupled mechanical/
control system resonant characteristics (natural frequencies), as well as the fundamental basis
for specification and determination of the various types of transfer functions. The next sub-
section addresses some of the more specific details regarding specific transfer function relation-
ships. A particular transfer function is identified by a type along with the desired output/
input variable designation. An eigenvalue problem is then stated, which leads to determi-
nation of the numerator roots (zeros) and denominator roots (poles) for the particular trans-
fer function. When the poles and zeros are known for a transfer function, this information
can be further processed and displayed by any of the conventional display modes: Bode,
Nichols, Nyquist, and/or root locus.

The conventional block diagram representation for the coupled plant/controller system
(figure 9) provides additional insight for determination of system transfer functions.

The first-order differential equations for the system are written as

Zs = A B + B R (111-28)

65



Plant ~[G]

Controller [H]

Figure 9. Plant/controller block diagram.

and it is helpful at this point to express the equation in matrix form and indicate the sepa-
rate partitioned subsets of Z1, Aij( 2), BT.., R^, B^., and RS

J as

all
a21

E31

341

312

a22

332

342

313

323

333

343

314

324

a34

344

V

v

JR.} (111-29)

The following observations are noted

a31 =0 bTi = -a14 bsi = 0

a41 =0 bT2 = -a24 = 0

a13 =0 bT3 = 0 bs3 =

a23 = 0 bT4 = 0 bs4 = a42
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and equation 111-29 can be restated as

all
321

312

322

332

342

333

343

314

324

334

344

x;

0

0

N*
0

a™32

342

N (HI-30)

Equation 111-30 is the operating basis for stating particular transfer function relationships

for the plant/controller system.

The general procedure is to establish a system transfer function between inputs RT and RS

and outputs X .and B. Loops may be opened to provide open-loop information by mani-ss
pulating the Ay coefficients to prohibit certain feedbacks.

To symbolically describe specification of a transfer function, begin by consolidating the b

coefficients and taking the Laplace transform of equation HI-30 to give

[is] {Z(s)j = [A] {Z(s)f + [b] |U(s)J (111-31)

or

j"[is] - [A] |z(s)} = [b] |u(s)} (111-32)

and then employ Cramer's rule to evaluate a given element, Z(sf, due to a particular input,
U(s)q, where

Z(s)p/U(s)fl =
aug |Is - A|

Ils-Al
(111-33)

and where aug I Is - A I is accomplished by placing column q of b into column p of I Is - A I

The Q-R algorithm (References 6 and 7) is a useful tool with which to extract the indicated

determinants in equation IH-33.
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1. Root Extraction Process

With reference to equation 111-33, evaluation of both the numerator and denominator roots

is desired. The denominator root extraction is straightforward in that pj, P2, P3, *"* Pn

is sought from an expression of the form

D(s) = det(p]s - [A])

so that

D(s) = (s - Pl) (s - p2) • • '•' (s - pn) = J[ (s - p.) (111-34)

This evaluation is completed by extracting the characteristic roots of the matrix, A... In
general, these roots will be complex because A}. is not symmetric.

The process used for evaluating the numerator is best illustrated with an example. Consider
that we have the (4 by 4) characteristic system matrix,

all
321

331

a41

a!2

322

332

a42

313

a23

a33

343

314

324

334

344

and the column of coefficients bj that premultiply;the desired input variable, Uq. Further,
let it be desired to obtain the transfer function relating output of the third variable in the
state equations, y3, to the input, Uq.

The state equations for this system would appear as

an

a.21

331

a41

312

322

332

342

313

a23

333

343

a!4

a24

a34

344

(111-35)
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and, with reference to equation HI-33, the numerator is

N(s) = aug I Is - A I

or

N(s) = det

s-an

' i

(111-36)

After performing elementary row operations, equation 111-36 can be restated in the form

N(s) = b,det

31

-a21 + a31 b2/b3

-312 + a32bl/b3

s-a22 + a32b2/b3

32

-a14 + a34

34 (111-37)

or, in symbolic terms, as

N(s) = b, det | [Is] - [a],|

where the matrix a is given as

321 ~a

341 ~a31 b4/b3 342 ~a32 b4/b3

14 bl/b3

24

344 -334 b4/b3

(111-38)

Note that the previous 'expression for N (s) is finite only if b3 =£ 0, and the question is: Can
b3 realistically be null? The answer is yes, as the following example indicates.
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Consider the simple mechanical system consisting of two masses connected by a single spring/

dashpot combination as shown in figure 10.

k

•AAV

X2

'/ f ////// // ////f/f///

Figure 10. Simple mechanical system.

The state-space representation is

-c/nij

c/m2

I

0

c/»t

-c/m2

0

1

-k/m,

k/m2

0

0

k/»,"

-k/m2

0

0

A)w*H•(«.)

l/m, 0

0 l/m2

0 0

0 0_

and the frequency domain (or transformed) equations in s are

1/ir

0

0

0

li °

l/ma

0

0
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where

[A] = -c/m c/nij -k/nij

c/m2 -c/m2 k/m2 -k/m2

1 0 0 0

0 1 0 0

Now, consider the transfer function, X^sVFj, where the augmented numerator is

N(s) = det

1/nij -c/nij

0 s + c/m2

0 0 s

0 - 1 O

-k/mx

k/m2

0

and the pivot element is the (1, 1) element or l/m1 ^ 0. On the other hand, the transfer

function, Xj (s)/F1, has the augmented numerator

N(s) = det

s + c/nij -c/nij 1/irij -k/nij

-c/m2 s + c/m2 0 k/m2

- 1 0 0 0

0 -1 0 s

and the pivot element is the (3, 3) element, which is null.

The problem to be addressed now'involves evaluation of the numerator determinant, N(s),

when the pivotal element is null. The particular mathematical problem may be restated as

N(s) = det [I]s - [A] (111-39)
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where [I ] is the identity matrix, [I], of size N with a null diagonal element. Addition and
subtraction of the quantity, [I ] x , where x is an arbitrary constant not equal to one of the

f*t

roots of [A], yields

N(s) = det - [[A] - [T] x][ I ] ( s - x ) - [A] - [I] x (III-40)

and, if (s - x) = 1/P is defined, there results

N(s) =
(-DN

det -TX (det Ip - (A -
! )

(111-41)

The roots, (PJ, i = 1, N), are found as the eigenvalues of the expression

r~ ~ T1

[[A] - [i] XJ (111-42)

and the eigensolution permits N(s) to be written as

N(s) = ^- det

PN

A - IX ( P - P , ) ( P - P 2 ) • • ' • (P -PN
(HI-43)

The following observation can now be made: a p} equal to zero implies a root at infinity
(or a characteristic polynomial having an order less than N). Thus, the null pj's are elimi-

tnated from the expression, giving the characteristic polynomial an order, n, which is less than
N. It is a rather common occurrence for the number of zeros (an order of N(s) to be signi-
ficantly less than the number of poles (order of D(s)). With reference to equation 111-43,
the numerator expression, N(s), can be written as

N(s) = (-l)Ndet A -TX

PI P2 Pn )
(1 __) (1 _ _ ) . . . (1 . _;) ( (Hl-44)

P P P \
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and, recalling that p = 1/s-x, yields

N(s) =

i

det A - IX -s2)

(111-45)

Next, note that

TT (x-S i )=TT (111-46)

and it follows that

N(s) = (-l)N-» TT P,'
1=1

- X TT (s - Si) (111-47)

The numerator root gain, kR, can now be identified as

=(-l)N'n TT P; det ' (111-48)

and the Bode gain, kR, for the numerator is

kB =

where m < n

2. Transfer-Function Classification

With reference to figure 9, it is possible to directly identify six transfer function types, each
characterizied by the specific variables involved and by the presence of feedback. In addition,
a seventh type will also be described whereby certain control variables feed back and others
do not. This type is similar to an open-loop transfer function but treats selected channels
of the controller as part of the mechanical system (plant). During the course of this discussion,

73



it will become apparent that additional transfer function types are easily accommodated by
rather simple manipulations with the system characteristic matrix, A^.*

In general, note that the process of obtaining the desired transfer function involves but a
few basic steps. The transfer function characteristic matrix, JRy, and the desired force
coefficient vector, b., are obtained directly from the system characteristic matrix, A... These
two matrices are then put in a form so that the Q-R algorithm can be used to extract system
roots.

a. Type I (Plant On/y)-Type I is the forward path transfer function for the plant with no
feedback and is of the form

(111-49)

The control variables, 51, and control outputs, B1, do not feed back into the plant. The matrix
expression depicting the system of interest is

d_

dt
n

321 322 bT2

(111-50)

The matrix, A^, to use in the general expression given as equation 111-33 is referred to as
fR.. or the reduced A., matrix,

IR, an a i2

22

(111-51)

The augmented fR.. matrix is obtained by removing the column corresponding to the input
variable, R£, from the expression, bT, and inserting this column into the column in fRy,
which corresponds to the desired output, Xp

s. The resulting transfer function is then given as

aug | Is - IR|

I Is - IR|
(111-52)

* Additional comments pertaining to the exact definitions of various types of transfer functions implemented can be found
in subroutine DEF5 Debug-116 in the discussion concerning "Frequency Domain Analysis " (Volume II, Appendix B,
page B-332).
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b. Type II (Controller Only)—Type II represents the feedback path, H(s), for the controller
only. The desired transfer function relates control-system outputs, B1, to sensor signal in-

= H(s) (111-53)

The reduced characteristic matrix, fR.., and the corresponding input coefficients, b.,,, are
IJ l*v

given as

IR, a33 334

a43344

32

(111-54)

c. Type III (Open Loop, HGj-Type III falls within the framework of the classical open-loop
transfer function designation and relates control system outputs, B1, to external plant inputs,
RJ

T. The algebraic expression for a given output variable, Bp, due to an external input, R^.,
is indicated as

« = (HG)(s) (111-55)

The open-loop system characteristic matrix, FR.., and corresponding input coefficients, bik,
are

all
a21

312

322

332

342

333

343

a43

344

ik -a
14

-a
24

0

0

(111-56)

It was previously noted that a31 = a41 = a13 = a23 = 0, and, in addition, the partitions, a14

and a24, are set to zero to prohibit the B1 feedback. Thus, the loop is opened to establish
HG, and the open-loop transfer function in s. Note that the negative sign in the bik coeffi-
cients simply indicates that the B1 feedback is negative with respect to the external plant
inputs, R^..

75



d. Type IV (Open Loop, GH)—An additional open-loop transfer function is often desired
for assessing the plant sensor signal outputs caused by controller noise inputs. The transfer
function then relates sensor signal outputs, X^, to control system noise inputs, RJ

s. The
plant sensor signal vector does not feed back into the system so that

= (GH)(s) (111-57)

and the system characteristic matrix, fRy, and the external input coefficients, b}k, are identi-
fied as

an

E21

ai2

322

333

343

3!4

324

334

a44

(111-58)

Note that the a,, and a,9 partitions have been nulled to eliminate sensor signal feedback.

e. Type V (Closed Loop — Control Ratio) — The system control ratio is given as the transfer
function that relates plant variable outputs to externally applied plant inputs with the control

system entirely active. This transfer function is expressed as

_G_

i l+GHJ
(111-59)

and the system characteristic matrix, FR.., and the external input coefficients, bik, are identi-

fied as

an

321

312

322

332

342

a33

343

a!4

324

334

344

ik -a

-a

0

0

14

24

(111-60)

The negative sign in the matrix, b-k, indicates that the feedback is negative.
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/. Type VI (Closed Loop)—An additional closed-loop transfer function has been accommo-
dated within the digital simulation. Specifically, Type VI relates plant sensor signal outputs
to sensor signal noise inputs with all control-system loops active. The transfer function is
symbolically indicated as

Xcf = (transfer function) Rq

ss s (111-61)

where the system characteristic matrix, IR.., and corresponding input coefficients are identi-
fied as

IR, all
321

3!2

E22

332

342

333

343

314

324

334

344

o

o

332

342

(111-62)

g. Type VII (Quasi-Open Loop)—An additional transfer function type is identified here and
is referred to as a quasi-open loop (figure 11). It is of the open-loop type in that we are
interested in control-system outputs, B1, attributable to plant variable inputs, RJ

T. For
example, suppose that, for a multichannel control system (such as azimuth and elevation),
outputs B1 are desired on the controller channel that do not feed back and suppose that the
other channel is active in that it feeds back into the plant.

Plant

Channel 1

B2
Channel 2

38

Figure 11. Type VII quasi-open loop block diagram.
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For the configuration indicated, a typical Type VII transfer function (TF) would be given by

BP = (transfer function) R*

and the form of the system characteristic matrix, IR-, and plant input coefficient matrix,
bjk, would be

all
S21

312

322

332

342

333

343

»14

s*s

324

334

344

14

-a
24

0

0

(111-63)

r** f^t^

The subpartitions, a 14 and a24, indicate modification of the original partitions, a14 and a24.
Specifically, amn is a subset of a- that is obtained by keeping only those n columns of at

that correspond to the B1 variables that feed back to the plant.
mn

3. Transfer Functions—Polynomial Description

This subsection is addressed to implementation of control-system transfer functions described
as the ratio of two polynomials in the frequency domain, s. Specifically, consider

TF = P(s)/Q(s) (111-64)

where

Q(s) = a0 a3s

and

P(s) = b0 b2s
2

f bmsl"
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Because the previously described governing equations have been stated in canonical first-
order form, the polynomial description for the transfer function is restated in the form

6' = Ay 6J + B,U (111-65)

The block diagram for the system is

U P(s)

Q(s)

5

from which we write

P(s)
I = -^ . U (111-66)

and expansion of the implied operator in s results in a differential equation of the form

where

a06 = bm U + b^ U ' + - • - + b, U + bQU

n = d"6

dtn

In general, the order of P(s) will be no greater than the order of Q(s) or m < n.

a. m =77— Equation 111-67 is divided by an to obtain

« + Cn., V + ---- ' + C.,. 6 + C06 = dm U + dm_ l U"1 + • • • + djU + d0U (111-68)

where

ai
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and

The following example is used for illustration:

Consider the equation with m = n = 4,

6 + C3 6 + C26 + Cj6 + CQ6 = d4. U + d3 U

or, in operator form,

s48 + s3C36 + s2C25 + sCj6 + CQ5 = s4d4U + s3d3U + s2d2U + sdjU + dQU

This can be rewritten as

C26 - d2Ui + s c6 - dU + C8 - dU = 04/5 - d4U \ + s3 ^C3S - d3u) + s2/

and the substitution

= 5 - d4U

permits a reduction in order to

A new variable can again be introduced:

80
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and the foregoing can be rewritten as

s2 (62 t C25 - d2U) + 8(^6 - d,U) + (CQ6 - d0U) = 0

It follows that, if

63 = 62 + C26 - d2U

is defined,

s(5 C05.- d0U = 0,

results, and the substitution

gives

The variable, 6, can now be eliminated from each of the foregoing expressions, and the re-
sults can be generalized to nth -order systems.

The result is concisely stated as a matrix equation that is recognized to be of the desired
form initially given as equation 111-65,

1

0

0

0

0

1

0

0

•

•

•

•

*

•

0

0

1

0

- Cn-,dn

dn-2 - Cn-2.
dn

u
(HI-69)

d, - C,dn

dO - C0dn
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where 81 and 8,'the original variables of the equation, are related as shown previously, and
U is the input variable to the transfer function expression as indicated in equation 111-65.

b. m < n—The general expression for the case where m < n is easily accommodated by
restricting the d} coefficients to reflect the limit m. Commonly, only the dQ coefficient
will be finite.

4. Frequency Response

Transfer-function poles, zeros, and root gain can be converted to the standard Bode form
for frequency response by combining time constants, damping, and resonant frequencies as

TF =

Ml

TT a*

Ml

TT

N2

TT

M2

TT

2f.s s2

+ + —

CO. co.

CO, CO,'

(111-70)

where the Bode gain is

kB = k

IT
i=l

m

¥

where

k = root gain

r = system constants

f = system damping at frequency co

co = system resonant frequency

The frequency response is then calculated by substituting jco for s and evaluating the transfer
function expression at various co's. The digital simulation uses a vernier frequency incre-
menting approach that automatically introduces smaller frequency increments near the poles
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and zeros. This variable frequency incrementing technique permits better transfer-function
resolution near the resonances at which amplitude and phase can vary rapidly.*

5. Root Locus

The root-locus method of analysis and design is based on the relationship between the poles
and zeros of the closed-loop transfer function and those of the open-loop transfer function.
The method is used to determine the location of the roots of the characteristic equation
as a function of a single open-loop gain parameter. The locations of these roots are indicative
of the relative system stability. The analyst may use the method as a design tool by adjust-
ing the poles, zeros, and the open-loop gain parameters so as to yield a closed-loop system
with satisfactory critical frequencies (poles and zeros).

To further describe the theoretical basis for the method, refer to the conventional control
ratio for a feedback system as shown in figure 12.

G ( £

C s

H ( s )

Figure 12. Conventional feedback control system.

The control ratio, C(s)/R(s), is

C(s) = G(s)

R(s) 1 + G(s)H(s)
(111-71)

'Eigenvector analysis in conjunction with frequency domain analysis is not a common practice; however, for complex,
highly coupled multirigtd and flexible-body systems, it becomes a necessity. System roots often shift significantly from
body and control frequencies, and are therefore impossible to physically interpret Eigenvector analysis of the character-
istic matrix associated with the transfer function under study can be used-to determine a measure of the degree to which
each of the body and control-system degrees of freedom couple to form the total system roots and associated modes
(eigenvectors). For further information, see subroutine DEF5.
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and the open-loop transfer function, G(s) H(s), is identified as a ratio of two functions in s,

- (Hi-72)
Q(s)

The characteristic system equation is

1 + G(s)H(s) = 0

or (HI-73)

P(s)
1 + k — — = 0

Q(s)

The conventional root-locus plot portrays the loci of the values of s that satisfy the character-
istic equation as k varies from zero to infinity. Note that

• At k = 0, the roots of the characteristic equation are equal to the roots of Q(s),
which are the same as the poles of the open-loop transfer function, k P(s)/Q(s).

• As k approaches infinity, the roots approach the roots of P(s), the open-loop zeros.

Thus, as k varies from 0 to infinity, the loci of the closed-loop poles migrate from the open-
loop poles to the open-loop zeros, and the direction of migration depends on the sign of
the open-loop gain parameter, k.

Rewriting equation 111-73 yields a more conventional expression for the characteristic
equation as

- -, (HI-74)

and two conditions are required as follows:

P(s)

Q(s)
= 1

= 180°, k> 0
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The first of these conditions can be expressed as

k =
Q(s)

P(s)

for those values of s that satisfy the angle criterion. The conditions that govern the migration

of the roots in the complex plane can be solved by an iterative procedure. The iterative pro-

cedure for evaluating! a single root locus* is described in Appendix E.

E. Linear Time-Domain Response

The linearized canonical first-order system of equations can also provide a basis for studying

system time history in terms of perturbations about a specified state when the system indeed
behaves in a linear manner in the vicinity of the state. The nonhomogeneous form of the

equations, the basis for determining system transfer functions, appeared previously as

7> = A. .Zf+ b.kUk(t) (HI-75)

The external system inputs are the elements of Uk. It is convenient to establish the solution
for the foregoing system through the use of a recursive^formula numerical-integration proce-

dure rather than through the Runge-Kutta approach.

Consider the Adams' corrector formula (Reference 8) at time, t + 1,

(111-76)

where h is the incremented time step.

Application of this formula to our system of equations gives

h

—24 [9 A 7^ + 9 h U* + 19 z1 - 5 z' +7'y ij Vl y °ik ut+l ly L\ 3 zt-l zt-2

*Welch, Raymond V. NASA/Goddaid Space Flight Center, Branch Report No. 254, October 2,1973.
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and manipulation yields the solution for all the z1 at time step, t + 1,

f

Note the requirement for z1 at timeistep, t - 2; hence, the requirement for a starter (e.g.,
Runge-Kutta) for initiating the solution process.

Goddard Space Flight Center
National Aeronautics and Space Administration

Greenbelt, Maryland October 1977
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Abstract

An approach for dynamic simulation and stability analysis of systems
of interconnected flexible bodies is discussed. The overall approach is
unique in that any member body of the system can be flexible and the
total system is not restricted to a topological tree configuration. The
equations of motion are developed using the most general form of La-
grange's equations including auxiliary nonholonomic, rheonomic conditions
of constraint. Lagrange multipliers are used as interaction forces/
torques to maintain prescribed constraints. Nonlinear flexible/rigid
dynamic coupling effects are accounted for in unabridged fashion for in-
dividual bodies and for the total system. Elastic deformation can be
represented by normal vibration modes or by any adequate series of
Rayleigh functions, including so-called quasi-static displacement func-
tions.

A digital computer program system has been developed to numerically
implement the modeling and analysis capability for a wide range of dyna-
mic simulations including the nonlinear time domain and/or linear fre-
quency domain. In particular, application has been made to: (1) time
domain solution for nonlinear response of systems idealized as a collec-
tion of individual bodies; (2) numerical linearization of system govern-
ing equations; (3) time domain solution for perturbation response about
a nominal state; and (4) frequency domain stability analysis correspond-
ing to the linearized form.

Introduction

State of the art dynamic response analysis of a system of inter-
connected bodies, typical of current and projected large spacecraft, has
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been restricted until recent years, to rigid bodies interconnected in a
topological tree configuration. The formalisms of Hooker and Margulies
(Reference 1) and Roberson and Wittenburg .(Reference 2) set the prece-
dent with respect to a procedural synthesis and solution of the equations
of motion governing such a system of bodies. Computer programs, with
associated formalisms, have also .been developed by Velman (Reference 3),
Frisch (Reference 4) and Farrell, Newton and Connelly (Reference 5).
These have proven to be highly applicable and useful tools for studying
spacecraft dynamic response in the time domain. Following these earlier
formalisms, a host of investigators (for example, References 6, 7, 8 and
9) extended the earlier concepts to include flexible terminal bodies and
the capability to deal with environmental effects such as gravity gradi-
ent torques.

Almost all current spacecrafts are configured such that existing
analytical techniques are completely adequate. That is, a typical space-
craft can be modeled as a rigid central body with flexible terminal bodies
interconnected in a topological tree configuration. However, it is anti-
cipated that future spacecraft designs will include configurations that
cannot be adequately represented by a topological tree. To be more
definitive, a non-topological tree configuration is one wherein there
exists re-entrant branches or closed loops of connectivity. Such a sys-
tem has, in effect, a statically indeterminant load path; this creates
special problems for a dynamic analysis formalism.

This paper describes, in summary form, an analytical technique and
associated computer program system which deals effectively with the
problems of re-entrant connections. The analytical considerations and
DISCOS* computer program system are documented in detail in Reference 10.

Definition of the Physical System

The spacecraft, which is subjected to analysis, can be described as
a cluster of contiguous, flexible structures, or bodies. In the analy-
tical treatment, the entire spacecraft system, or portions thereof, may
be spinning or nonspinning. Member bodies of the system are capable of
undergoing large relative excursions such as those of appendage deploy-
ment, or rotor/stator motions. Bodies of the system may be interconnected
by linear or nonlinear springs and dashpots; they may be interconnected
via a mechanism that consists of gimbal and slider block or a servo-
actuator, or any combination of the above.

Analytical Considerations - Nonlinear State Equations

In conjunction with this discussion that follows, the interested
reader is urged to see Bodley and Park (Reference 11) where attention

* Dynamic interaction and Simulation of Controls and JJtructure
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is concentrated on development of governing equations of motion for a
single flexible body. In the referenced development, ordinary momenta
components (as opposed to the generalized momenta of Hamilton's canonical
equations) are used as state variables. The ordinary momenta correspond
to nonholonomic velocities (or, time derivatives of quasi-coordinates)
in the same way that generalized momenta correspond to generalized velo-
cities. The development has been used by the authors to study dynamic
behavior of a single flexible body and also it appears to have withstood
the test of time with respect to general validity and accuracy.

Presuming the validity of that development, the equations of dynamic
equilibrium are

{*}-{«} a)

where |p| represents a column vector of ordinary momenta and where |G|
represents a collection of all external forces, internal restoring and
dissipative forces, state dependent inertial forces (i.e., gyroscopic,
Coriolis, Euler forces, etc.), and servo- actuator forces/torques. Devel-
opment of the explicit form of the \G\ vector is very lengthy and is,
therefore, not given here. The interested reader will see Reference 10
where the various contributions to the |G| vector are treated with indi-
vidual detail. Let it suffice to comment that it is possible to account
for all state dependent and explicitly time dependent effects in an un-
abridged fashion.

Now, the vector of ordinary momenta, |p| is related to a vector of
nonholonomic velocities |u| through a deformation dependent mass matrix
[mj ; that is,

M =
where the elements of [ml generally depend on the displacement coordin-
ates |||. Thus, the mass matrix has a time derivative. Implementation
of the equations of motion of Reference 11 for solution via digital com-
puter did not require evaluation of [m] and this was one attractive fea-
ture of the formalism. Such is not the case when considering a cluster
of interconnected bodies, when the formalism uses Lagrange multipliers
(interconnecting constraint forces/torques) and kinematic equations of
constraint, as will be seen.

The equations of dynamic equilibrium for the jth body of the system
may be extended to include, on the right hand side, the effects of the
interconnection forces and torques and thus,

n / \

(3)
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Also, the equations of kinematic constraint are easily expressed as

(4)

where [b] j represents a matrix of kinematic coefficients for the jth
body and where ja(t)[ is a column of prescribed time dependent velocities
across the interconnection junctions. The subscript j ranges from 1
through the number of bodies of the cluster.

Now, to be able to implement Equations (3) and (4) in a numerical
integration solution process, it is necessary to numerically evaluate the
highest derivative elements;in this case, evaluate |p| , given initial
values for jpl . However, before this is possible, it is necessary to
view Equations (3) and (4) as simultaneous equations involving |p[ and
j X | as sets of unknowns. To simultaneously satisfy Equations (3) and
(4), let us differentiate Equation (4) with respect to time and change
the variables of Equation (3) as follows:

(5)

thus,

(6)

- N-
Now, substituting Equation (6) into Equation (7) yields

H-Ett'LH^L
(8)
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The numerically evaluated j X |given by Equation (8), when substitu-
ted into Equation (6), provides complete numerical definition of {U } ,
which represents a vector of time derivatives of nonholonomic velocities
(accelerations as seen by the observer moving and rotating with the ref-
erence frame of the jth body). The collection of jujjvectors for the n
bodies of the cluster serves as a portion of the complete state vector.
Now, as the. expression to evaluate the j X } and | G* } vectors and the [m] j
matrix must involve dependence on the elements of JU | j and on position
and displacement coordinates j 0 \ and j £ ̂ , there must be additional
differential equations to provide j /3 } and | £ lj feedback. These are of
the form:

and

("h

where | /3 | represents a vector of position coordinates (gimbal angles and
cartesian position vector components) and where | £ }j represents dis-
placement coordinates corresponding to assumed displacement functions
(eigenf unctions, or any other kinematically admissible functions that
are consistent with the boundary conditions). In Equation (9) the [B] s
represents a matrix of kinematic coefficients of very similar form to
the [b]j of Equation (6). That is, the elements of [b]j and [ B ] j are
each dependent on the elements of \ 0 \ and j £ | . Finally, in Equation
(10), the [s]j matrix simply provides a selection operation as j | |* is
a subvector of JU

The collection of j £ }j vectors, for the n bodies, and the j /3 } vec-
tor are truly the generalized coordinates of the structural system (they
provide a complete configuration description of the system of bodies) .
We note that the equations of dynamic equilibrium (6) involve generalized
coordinates and velocities in an implicit fashion, while generalized ac-
celerations are not evident.

To complete the definition of the state equations, one must account
for additional differential equations such as those linking control
actuator torques to combinations of state elements (attitudes, their
rates and time integrals) through an appropriate control law. These are
of the form

, t). (11)



The explicit form of the "controller", Equation (11), must be pro-
vided by a prospective DISCOS program user in that there is an unlimited
variety of additional differential equations he may desire to use. We
note that the functional dependence of j { | on state vector elements is
not restricted to linear form. In fact, the additional differential
equations may include sample data systems, hysteresis, dead-
bands and any other type nonlinearity or discontinuity that can be
numerically represented.

The required kinematic and selection transformations, the equations
of dynamic equilibrium, and the additional controller equations collected
together are:

*[']!{»})

(12)

W, ••

where the subscript j ranges from 1 through the number of cluster bodies.
These first order differential equations thus represent the state equa-
tions governing a system of controlled, interconnected flexible bodies.
They are clearly of the form

= fk (yr y2> •• V

which is easily adaptable to numerical integration.

Numerical Linearization for Frequency Domain Studies

If an equilibrium state is known, and if it is desired to examine
stability characteristics with respect to that state, then numerical
perturbation techniques can be employed. Considering an autonomous
system, such that fk = 0; and expanding Equation (13) in a Taylor's series
(in Ayfc) yields the linear, perturbation equations

Ay = A Ay (14)
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with

— i

j

The DISCOS program system obtains the partial derivatives A. ̂
numerically (see Reference (10)). Now, as the original system states
don't necessarily include observed outputs of the "plant", the program
system also linearizes additional functions that relate observed outputs
and control actuator torques (forces) to the original states, such that

Fc j (16)

The partial derivatives, Ct- , having been numerically defined, pro-
vide a means of eliminating as many of the original perturbated states
as there are elements of | Aw | , and thus, a replacement similarity
transformation on the linear equations (Equation (14)) can be executed.
That is, it is possible to develop

such that

or

as.

The linear equations (Equations (18)) represent the exact same
system as Equation (14), ( [A*] is similar to [A] ), but the new pertur-
bated states now include observed outputs and actuator torques. The
advantage of transforming the system's linear equations to the form of
Equation (18) is that now a plant-controller concept is inherent. Thus,
subpartitions of [A*] can be easily manipulated so as to create charac-
teristic matrices corresponding to forward-loop, return-loop and loop-
gain definitions of the dynamic system. In summary, [A*] contains all
of the required numerical information to provide the general format of:

[.] {,} + [„] {»}
corresponding to any open or closed-loop block diagram of the dynamic
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system. Thus, there is provision for conducting frequency domain studies
that support stability analysis and control system design.

Analysis of a Multibody Spacecraft

An analytical investigation utilizing the DISCOS digital simulation
code was conducted to investigate the dynamical behavior of a typical
satellite configuration. The configuration chosen was a spinning vehicle
possessing four doubly hinged solar array assemblies, as shown in Figure
1. The vehicle was symmetric but consisted of two types of solar array
subassemblies. Upon deployment, the x-z plane assemblies deployed such
that «x * 90° and Tx = 180°. The y-z assemblies deployed in a similar
fashion; however, they also articulated such that upon deployment,
Vy = 90°.

y-panel (typical)
rotated 90 deg x-panel (typical)

Figure 1. Spacecraft Schematic

The analytical investigation was two-fold in that a nominal config-
uration without the array constraint was first exercised to verify simu-
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lation of the deployment mechanism. The spacecraft was despun by apply-
ing a torque directly to the main body and, as the despin occurred, the
arrays were simultaneously deployed. The array deployment then resulted
from both spin induced dynamics and the spring/dashpot/cable deployment
mechanism characteristics. Nondimensionalized results for the nominal
despin/deployment are presented in Figure 2. The figure also shows a
comparison with results from the NBOD simulation of Frisch (Reference 4).
The variation in x and y array deployment characteristics represents the
time delay of y assembly deployment initiation due to the "yo-yo" despin
cables uncovering first the x arrays and then the y arrays.

The constrained array analysis employed a flexible linkage between
adjacent arrays to affect the desired non-topological tree type config-
uration. Flexible modal properties were also considered for the panel
portion of the array assemblies. The spacecraft and the spar portion of
the arrays were considered as rigid. Results for the despin/deployment
dynamics of the non-topological configuration are given in Figure 3. The
^x for the x assembly arises because of flexibility between the opposing
x assemblies. There is no ̂ x restraint between the spacecraft and the x
assembly.

A test program was conducted to qualify the analytical results.
Comparison of test data and analysis was generally very good, however,
test results indicated more symmetry between x and y assembly positions
than did analytical results. This was attributed, in part, to tolerance
accumulation in the structural joints.

Discussion of Selected Applications

The system governing equations of motions, as incorporated in the
DISCOS program system, have been applied to numerical analysis of a wide
range of dynamic systems. The results thereof have been used as both
design aids and to confirm ground test and flight data. The following
text briefly describes selected efforts and is included here to provide
the analyst with insight as to general applicability.

Appendage Deployment

The SCATHA (Spacecraft Charging At High Altitude) spacecraft will
deploy five dual element tubular experiment booms in three sequential
events. The vehicle is spin stabilized; no active control system exists.

Spacecraft/boom design was accomplished following development of
the deployment time history; the deployment profile influences stability
considerations and deployment rates at boom latch were used to size the
boom tubes and the boom latch mechanism. Additionally, the analyses were
used to show that the acceleration environment caused by the boom latch
event would not be detrimental to the experiments.

99



co
<u

09

S

4J
c

o
r-l
O.

0)
M

100



CO

o
•H
4J
•H
CO
O
(X

01

•a
a.

CO
cu

o
4J
CO

CS
un

uo-pjsod

4J
c

ao

X
-a-

o

•H
CO
O
Q,

01

Clj
O.

•1-1
CO

10

O

00
•r-l

O
m

101



The SCATHA mission has the requirement to jettison the Apogee
Insertion Motor (AIM) following its burnout. The AIM jettison system
consists of a single-point spring separation device; there are no guide
rails to constrain motion. The separation analysis of the two-body
system is further complicated by the fact that the spacecraft is spinning
with a finite coning angle, neither separating body is inertially symme-
tric, and the separation device (spring) may have a lateral force com-
ponent. Bounds on the design coning angle at separation, allowable
inertial asymmetry and separation device tolerances were established
to preclude the possibility of short term recontact of the AIM. Addi-
tionally, an envelope of the separation relative velocities was developed
for use in long term recontact studies.

Orbital Docking

The orbital docking maneuver of the proposed Space Tug was investi-
gated in order to establish the effects of large amplitude fluid motion
which might occur during the impact event. A variable length pendulum
analog was implemented to account for fluid mass motions and the time
histories of gross vehicle motions and interaction forces were established
to serve as an aid to impact attenuation mechanism design.

Digital Control Law

The Block 5-D spacecraft served as the prototype for the TIROS-N
satellite and was analyzed in order to provide a valid simulation model
directly applicable to investigation of the TIROS-N on orbit attitude
dynamics. The configuration consisted of a central body with an articu-
lated solar array subject to a four channel controller: (1) a three axis
digital autopilot employing saraple-and-hold and computational delay logic
and (2) an array drive motor to compensate for spacecraft motions and
provide a fixed inertial orientation for the solar array. The control
law (furnished by Goddard Space Flight Center in block diagram format)
was cast in first order form and interfaced with the spacecraft equations
of motion. Response to initial attitude errors were determined.

Other Applications

The versatility of the DISCOS program system admits its use for a
wide range of dynamic studies. The nonlinear time domain response analy-
sis capability has been, or will be used (in addition to those items des-
cribed previously) to investigate (1) space fabrication techniques en-
visioned for future large space structures, (2) launch vehicle- performance
associated with the Titan III, Stage II post-SECO event, and (3) the
librational motion of a very large satellite subject to gravity gradient
excitation and orbital transfer maneuvers. The frequency response analy-
sis capability has been successfully exercised in the development of
stability criteria for the Titan III, Stage I POGO event.
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Concluding Remarks

A cursory description of nonlinear differential equations,of state
that govern dynamic behavior of a system of interconnected flexible
bodies has been given, along with discussion of an available digital
computer code that synthesizes and numerically solves the equations in
time and frequency domains. A few of the numerous possible applications
of the program code are discussed. A comprehensive expose of the analy-
tical and programming considerations is not possible herein, due to space
limitations and, of course, that has not been the objective of this dis-
cussion. The objective has been to highlight some of the attendant
features of the formalism and program code so as to provide insight into
the motivation and rationale behind them.

Lagrange multipliers have been used for every constraint of the
system, not just the ones involved in the closed loops. This has re-
sulted in increased program flexibility, in that some of the rheonomic
constraint conditions can be unilateral.

In conclusion, the authors feel that the nature of the formalism
and associated program code, DISCOS, is sufficiently general to cover a
broad range of future applications.
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THE INFLUENCE OF STRUCTURAL FLEXIBILITY ON THE DYNAMIC RESPONSE OF SPINNING SPACECRAFT

C. S. Bodley1 and A. C. Park2
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Abstract

A unique approach to dynamic response analysis
of highly flexible, rotating spacecraft is pre-
sented. Formulation of applicable equations of
motion includes dynamic coupling between elastic
.deformations and spacecraft rotation rates. Cou-
pling is shown to be a closed-loop effect, in which
elastic deflections significantly influence vehicle
angular rates, and conversely, elastic response is
strongly influenced by (if not entirely caused by)
vehicle spin rates. Angular motion is shown to be
most strongly influenced by changes in inertial
characteristics caused by elastic deformation, and
this deformation is in turn influenced by centri-
fugal and Coriolis forces. Equations of motion are
nonlinear, first-order differential equations of
first degree. State variables include projections
of translational and rotational momentum vectors
onto the rotating vehicle frame and the generalized
momenta and deflections corresponding to a set of
normal vibration modes. Additional state variables
Include inertial position coordinates and quater-
nion (Euler 4-parameter) elements to characterize
vehicle attitude. Numerical results for a typical
spacecraft are presented, and the influence of
flexibility is evaluated.

Introduction

A variety of mathematical formulations and com-
putational procedures related to dynamic behavior
of spinning flexible satellites has appeared in re-
cent literature. Most investigators have been con-
cerned with rotational stability of nearly rigid
vehicles undergoing small elastic deformation. In
addition to intrinsic dynamical features of a
freely rotating flexible vehicle, other authors
have considered the effects of external distur-
bances such as gravity gradient and attitude con-
trol.

Approaches to derivation of governing differ-
ential equations of motion are diverse. Likins^'
has classified analytical procedures in three cate-
gories: (1) discrete coordinate methods, (2) hy-
brid coordinate methods, and (3) vehicle normal co-
ordinate methods, and has found each to have an
area of applicability. With his hybrid coordinate
method, Likins separates a vehicle into a number of
idealized structural subsystems, each of which is
classified either as a flexible appendage or as a
rigid body or particle. Applications are pre-

(2 3)
sented ' to demonstrate the method's utility in
design of an attitude control system, and in analy-
zing a dual-spin spacecraft with solar panels and
a damped linear oscillator that simulates a nuta-
tion damper.

'Senior Staff Engineer, Dynamics and Loads

Staff Engineer, Dynamics and Loads

The Eulerian N-body dynamic formulation of Hooker-

Margulies and Roberson-Wittenburg has been
programmed for general use by Parrel1, Newton, and

Connelly. With this method, the vehicle is con-
sidered as a set of N interconnected rigid bodies.
In a recently published two-part paper, Ness and

Farrenkopf and Ho and Gluck^ ' extend the N-body
concept with two methods. The first, called the
unified approach, features an automated synthesis
of the governing differential equations of motion
of a multibodied flexible spacecraft system. With
this method, terminal bodies of the topological
tree configuration (no closed loop) may be flexible,
but interior bodies must be rigid. The second
method, called the perturbation approach, is more
general in that any body is allowed to deform, but
spacecraft motion due to flexibility is treated as
a small perturbation of nominal motion, resulting
in piecewise linear differential equations.

/a)
Keat describes a method analogous to the N-

body approach that is applicable when satellite non-
rigidity is characterized by generalized coordi-
nates. Other approaches to derive governing dif-
ferential equations include a formal application of

Lagrange's equation by Newton and Farrell.

Meirovitch uses Hamilton's principle, where
body motion is described by a "hybrid" system of
equations (not to be confused with the hybrid co-
ordinates of Likins) consisting of both ordinary
and partial differential equations.

This paper presents a new derivation of appli-
cable differential equations of motion. The ap-
proach considers a more fundamental basis, namely
the use of D'Alembert's principle. This approach

is somewhat similar to a method reported by Likins
in one of his earlier papers. However, the proce-
dure presented here results in a system of first-
order ordinary differential equations, akin to
Hamilton's canonical equations. It also does not
require use of normal modes of deformation for ei-
ther the spacecraft as a whole or for appendages as
separate structural components, but may use normal
modes to facilitate numerical solutions.

The method has the following advantages: (1)
the final format of governing differential equations
is similar to classical Newton-Euler rigid-body
equations, (2) derivation of equations is uncompli-
cated, (3) vehicle strain energy, kinetic energy,
and total angular momentum can be easily monitored,
(4) equations are particularly amenable to program-
ming for digital simulation.

We have limited the scope of this study to ex-
clude effects of external environment, being con-
tent to examine the behavior of a freely spinning
flexible satellite in the time domain. Extension
of the analysis to consider attitude control, gra-
vitational forces, and other disturbances presents
no great difficulty.
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Development of the Analysis

Governing nonlinear differential equations of
motion for spinning flexible spacecraft result
from direct application of D'Alembert's principle.

Lanczos^ ' sta'tes that "all the different prin-
ciples of mechanics are merely mathematically dif-
ferent formulations of D'Alembert's principle."
He implies that D'Alembert's principle is a truly
fundamental principle, particularly useful when
using "kinematical variables" to characterize the
motion.

In studies of rigid-body dynamics, it is con-
siderably more convenient to use angular velocity
components that are projections of the spin vector
onto the moving axes. We believe it is more con-,
venient to use kinematical variables when consider-
ing the dynamics of a flexible spinning spacecraft.

Geometry and Kinematics

Consider the geometry of a deformable spinning
spacecraft, as shown in Figure 1.

Figure 1 Geometry of Deformable Spinning
Spacecraft

We use two rectangular Cartesian frames of
reference; an inertially fixed (Newtonian) axis
system (X.Y.Z) and a moving frame (x,y,z). We
should emphasize that reference point R does not
necessarily coincide with the mass center of the
deformable body, nor is it necessarily fixed to
some material point of the body, although it could
be either. We represent body deformation as a
single-valued displacement field n to be measured
in the moving reference frame. In the figure,
material point p is shown in a deformed configura-
tion_specified by the instantaneous position vec-
tor p. The corresponding point p' is in the un-
deformed configuration and is specified by the po-
sition vector p fixed to the moving reference
frame. These geometric notions are in line with
traditional treatment of a system of parti-

cles, ' ' although our development considers a
continuous structure.

In view of these geometric considerations, we
may now specify an absolute velocity field, v,
associated with the deformable body, and by kine-
matic principles, express velocity of the typical
point p as

v - v + u x p + (p)

where v denotes the absolute velocity of refer-
R

ence point R, u represents angular velocity of the
moving reference frame, and (') represents the

time derivative of the enclosed quantity, as seen
by an observer rotating with the moving reference
frame. In particular, in Eq 1 the term (p) can

be written as

(p) (n) (2)

The displacement field, n, can be further de-
veloped as a linear combination of a finite number
of single-valued displacement functions (of x, y,
and z), so that we can write

n (x,y,z,t) = 2-i'K U.y.z) C.(t) (3)

and it follows that

(n)

We can also express the acceleration field, a,
associated with the deformable body as

(v) (5)

which will be needed in subsequent expressions of
equilibrium. We have tacitly implied that compo-
nents of all vector quantities (except r , the po-

R

sition vector to reference point R of Fig. 1) are
projections onto the rotating reference frame (i,
j, k), thus we can write

v = iu + jv + kw
K

iu + jw + ku>
x y

P = i

+ k

With the preceding definitions and notations, we
are in a position to develop applicable state
equations.

(6)

Development of State Equations by Direct Applica-
tion of D'Alembert's Principle

Equations of motion for any dynamical system
are derived, in one way or another, from consider-
ations of equilibrium; some authors use the term
equations of equilibrium synonymously with equa-
tions of motion. A system of impressed forces is
not generally in equilibrium, and motion of the
system (implying accelerations and additional in-
ertial forces) results in an overall system of
forces (impressed and inertial) that is in balance.
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D'Alemberc's principle states that any system
of impressed and inertlal forces is in equilibrium,
and therefore, the to t a l v i r t u a l work of the sys-
tem is zero for r eve r s ib le v i r t u a l displacements
that satisfy the given klnematlcal conditions, or

«W 6r • (f - oa) dV (7)

D'Alembert's principle, restated as Eq 7, is the
basis from which we derive applicable equations
of state.

The given kinematical conditions with which
the virtual displacements must be consistent are
represented by the velocity expression of Eq 1.
Elements of this expression are kinematical vari-
ables (sometimes referred to as nonholondmic ve-
locities) because we stipulated that all vector
quantities would be represented as projections on-
to the rotating axis system. These nonholonomic
velocities (u, v, w, u ', u , <i) ) are not time de-

x y z •
rivatives of actual position coordinates. Multi-
plying the nonholonomic velocities by differential
time (dt) leaves a set of infinitesimal quantities
(dr , dr , dr , d6 , d6 , dO ) that are not dif-

x y z x y z
ferentials, but are quantities referred to as

"differentials of quasi coordinates". ' '
Because they are infinitesimal quantities, they
correspond to a set of virtual infinitesimal dis-
placements (6r , 6r , 6r , 66 , 66 , 66 ) and, in

x y z x y z
view of Eq 1, 6 and 7, we can write the virtual
displacement field as

v odV

odV

(13)

(14)

If we differentiate left and right members of
Eq 12 through 14 and compare the results with
Eq 9 through 11, we arrive at the following state
equations

p x f d V - d J X p _ v x p
U R V

/

f dV - 10

f dV + odV

(15)

We see immediately that, if £ are suppressed,

the first two of Eq 15 represent the rigid-body
equations of motion. The third of Eq 15 is, ne-
glecting the second term-on the right, a familiar
equation of motion for the kth normal coordinate

if we consider J $, • f dV to include effects of

structural damping and restoring forces and if we
define £. to be a normal coordinate.

6r = i|6r1 68 p - 68 p
y z z y

Referring to Eq 12 through 15, and using the
momentum components defined by Eq 16, viz.,

+ j| + 5 6

k|6r +68 p - 68 p
\ z x >y y x

(8) ky3

Jys +

Combining Eq 7 and 8 results in

) + i!i x v I odV = / f dV

/ P *|(v)*f ». • r
o x v

(v)

odV

odV

X ;

•/

f dV

(9)

(10)

f dV (11)

allows us to write the state equations as

" (wy4 ~ uy

y3 = G3 - (V2 - Vl} " (uy5 ' Vy4)

(17)

because virtual displacements 6r , 6r ,•••, 6£,
x y k

are arbitrary and independent quantities. These
results are familiar expressions of equilibrium
if we recall some results from studies of dynamics
of a system of particles.

Lec us now define the following momenta

(12)

*6 = G6 - (V5 - "yV

yk+6 - *k+6 '

It can now be seen that the (6+n) state equa-
tion given by Eq 17 are expressed as functions of
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the state variables themselves and other undeter-
mined quantities. It Is therefore necessary to
develop a means to establish these quantities In
terms of known state variables.

If we substitute Eq 1 in Eq 12 through 14,
respectively, there results

«k)* « o d V

+ P X (U) x P)

odv

(18)

(19)

Integrating the first of these (over the volume V)
term-by-term allows us to write

- r - v/ r - \ •
p - m v + u « / p odV + J A I *. odV I J.
v R •'„ k \JV K / K

m v_ +
K

(21)

where m is the total system mass, S is the
"static" moment vector.

In a similar manner, the other equations
yield

(22)

Pr

^E $ • $ 5.
• K J J

(p x J )

odV

'6+n

(20)

p. • u + /,

j
(23)

where h is a momentum vector referred to the mov-
ing coordinate system and is defined as

h = li j kj [J] {a} (24)

and d and e, are undetermined coefficients.
k kj

Comparison of Eq 21 through 23 with Eq 16 yields
the matrix relationship between the state vari-
ables (y, , y,,,1 2
ables ( <

J -J -Jxx xy xz

yy yz

zz

-S Sz y

S -S
z x

-S Sy x
m

m

m

(Symmetric)

_

d , . . . . dxl xn

d . . . . dyl yn

d , . . . dzl zn

a , • • .axl xn

a , . . . .ayl yn

a , . . .azl zn

ell ' ' ' eln

e22 -

enn

the kinematic vari-

(25)

where the coefficients in the above array are
defined to be ( Vo

J = (J )aa aa o
(27)

when

(26) where a,6 = x.y.z and a •? B ;

n

j aj j.

where a = x,y,z ;

(28)
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dok ° bBYk " b
YBk

(29)

/ a = x 6 = y Y = z

when , a = y 8 = z Y = x ;

"• o

e., = c . , + c . + c ,jk xjxk yjyk zjzk

where j,k = 1, 2,•••, n ;

and

odV

(30)

•-/V
In the definitions above, we have used

(31>

(32)

ja = x B = y Y=z

when !a = y B=z Y = x

I a - z B = x Y = y

(33)
V

where o,B = x,y,z and a

oo dV
('

where a = x,y , z ;

0dV

odv

akBj

(35)

where o,S = x,y,z; j,k = 1,2,---, n .

Solution for unknown velocities on the right-hand
side of Eq 25 in terms of state variables is now
straightforward.

The first six forces (torques) in the state
equations are components of the resultant im-
pressed force (torque), namely

\ • f (P « 1)dV

dV

1,2,3 . (36)

Remaining n forces acting in deformation coordin-
ates, £, are defined to be

*-1.2....,» (37)

where

and

= /Vf dV (38)

= "

+ (D2

n
byyk + bzzk * £ ( cykyj * Czkzj} Cj

b , + b , + 53 (c , . + c , .) C.zzk xxk f-f zkzj xUxj j

+ o>z b , + b , + y; (c, + c, j
z I xxk yyk *-r xkxj ykyj

-uu [b + b + Y (c + c"x y I xyk yxk *•* xkvj ykxj •

L + b + T (C"x z I xzk zxk ~ xkzj zkxj

- u) tay z yzk zyk ~ ykzj zkyj j

ID [wa , - va , 1 + u [ua , - wa , ]
x yk zk y zk xk

u [va , - ua , 1z xk yk

n

n

+ "z ̂  (cxkyj - 'ykxj' Cj ' (39)

All previously defined coefficients depend on
the g variables, and therefore, the state equa-

tions must be augmented to establish values for
the respective £. . This can be done by integra-

ting the (,, , which are obtained from solution of

the simultaneous equations given by Eq 25. The
final form of the (2n+6) state equations is
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This presentation of the state equations is
complete in that all variables required to char-
acterize vehicle elastic response have been in-
cluded. However, it is often necessary, or at
least desirable, to monitor the vehicle's posi-
tion and attitude with respect to the inertially
fixed reference frame. This can be done by ad-
dition of supplementary state variables. The
position of reference point R can be monitored
through definition of the three projections of the
vector r onto the inertial axes. These can be

R
obtained by integrating components of v along

K
the inertial axes. The inertial attitude of the
moving reference frame can be monitored by using
quaternion (Euler 4-parameter) elements. We have
found this to be more practical than use of Euler •
angles because the potential of "gimble lock" as-
sociated with large excursions is eliminated.

Application

Equations of motion previously described were
programmed for solution on a digital computer.
The program was then used to analyze the dynamic
response of a representative elastic spacecraft,
the Phase A version of the proposed Planetary
Explorer (Fig. 2). This investigation was in-
tended to establish the influence of variations
in flexibility on overall response.

-Omnidirectional
Antenna Experiment and

Instrument
Compartments

Small Probe
(3)

Lower Solar Array

Antenna

•Omnidirectional'
Antenna

Figure 2 Planetary Explorer Venus Multi-Probe
Configuration

Dynamic Model and Response Analyses

Three response simulations were performed.
The first. Case 1, considered the body to be
rigid, and the other two considered variations in
overall structural flexibility. Case 2 assumed
nominal flexibility derived from a finite-element
representation of the structure, and Case 3 assumed
a 25% increase in flexibility. Modal character-
istics required as input to the response analyses
were obtained from the 60-degree-of-freedom model
shown in Figure 3. The first six elastic modes
are shown in Figure 4.

Figure 3 Dynamic Model of Planetary Explorer

Figure 4 Elastic Modes for Planetary Explorer

The structure was assumed to be free from the
influence of external forces (torques); elastic
response was excited from the undeformed state
through imposition of initial reference-axis angu-
lar velocity components

j k]

0

TT

lOit

(rad/sec)

Because normal vibration modes were used, and
reference point R was initially at the center of
mass, vectors a and S are zero (a = 0 from
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orthogonality considerations of the unsupported
vibration modes). Therefore, the mass center and
reference point remain coincident throughout the
simulation.

Results

The three principal Inertias and projections
of the spin vector onto the principal axes are
shown in Figures 5a through 5c and Figures 5d
through 5f, respectively. These inertias, as a
function of time, are determined by extraction of
characteristic values (eigenvalues) of the inertia
dyadic, J, of Eq 24 and 25. Here we note with no
great amazement that, for the rigid case, the
principal inertias are constant, and spin vector
components on the intermediate and minor princi-
pal axes are oscillatory; one trace leading the
other by 90°. The frequency of these oscillations
agrees with that predicted from the rigid-body

expression

(J - J ) (J - J )
zz xx zz yy

J J
xx yy

obtained by considering the stability of pertur-
bations in u.

Examination of the principal inertias for the
two flexible cases again indicates an oscillatory
nature, the steady-state value of the major axis
inertia being somewhat increased over the initial

• value. This is consistent with the characteris-
tics of the spin vector components, where we see
that the steady-state projection on the major
axis is decreased from the initial value. This
is a direct result of conservation of angular mo-
mentum. We note further that the projections on
the intermediate and minor axes indicate a null
value at steady state. It can therefore be con-
cluded that, in the presence of flexibility (and
implied structural damping), the spin vector tends
to align with the major principal inertia axis.

! The orientation time history of the z-
reference axis (k of Fig. 1) to the principal
axis system is shown (Fig. 6) for the two flexi-
ble cases. These plots indicate angles determined
from three direction cosines extracted from the
orthogonal rotation transformation that relates
reference and principal axis systems.

For nominal flexibility (Case 2), we note
that the reference axis is nearly coincident with
the principal axis system and that steady-state
excursion will be less than 1°. Case 3 shows
markedly larger excursions, for here we note that
although one angle is approximately 90°, angles
between the reference axis and the other two prin-
cipal axes have a significant value. In fact, the
steady-state excursion is seen to be about 10°.
This increase in reference-axis excursion results
from increased structural flexibility, although it
is not possible to specify the exact relationship
between flexibility and reference-axis excursion.

Figure 7 shows three characteristic motion
variables for the two flexible cases. Figures 7a
and 7b indicate the projection of the spin vector
onto the momentum vector, which, as we prescribed

no external torques, is known to be fixed in in-
ertlal space. This projection is oscillatory and
approaches a steady-state value whose magnitude
is somewhat less than the Initial value, Implying
a steady spin condition. Inspection of the
steady-state value and comparison with Figures 5e
and 5f, where the spin vector tends toward align-
ment with the axis of maximum principal inertia,
allows us to conclude that the major principal
axis tends to coalesce with the momentum vector.
This conclusion is verified through Inspection of
Figures 7c and 7d, where we have shown the time
history of the angle between the spin and momentum
vectors. Note that the angle is a measure of the
nutation and that structural flexibility (damping)
acts as a nutation damper; the damping increasing
with increasing activity in the deformation
coordinates

The angle between the z-reference axis and
Z-inertial axis (K of Fig. 1) is shown in Figures
7e and 7f. These data indicate the relative ex-
cursion of the spacecraft with respect to the 4n-
ertial frame.

The elastic displacements at the three satel-
lite points (the probes in Fig. 2 and 3) are
shown in Figure 8. For nominal (Case 2) flexi-
bility, the magnitudes of the three n deflections

are approximately equal and the n and n deflec-
x y

tions indicate the almost symmetrical axial exten-
sion of the booms. This result Is not surprising,
for the imposed initial conditions resulted in a
spin rate that was in close agreement with ob-
served natural frequency of the third elastic mode,
and the effect of this spin rate has been to ex-
cite an almost pure mode. No such observation is
evident for the modified flexibility case because
the resultant system natural frequencies are much
lower in value than the imposed spin rate. In-
creased structural deformation with increased
flexibility is, however, quite evident.

Figure 9 shows time variations of the flexible
system energies, where we noted the constant
rigid-body value on the kinetic-energy history.
Kinetic energy (Fig. 9a & 9b) is seen to decrease
and approach a steady-state value. This further
validates previous assertions with respect to
variations in principal Inertias and angular ve-
locity components. The steady-state value can be
verified through inspection of Figure 5. Figures
9c and 9d indicate the corresponding strain en-
ergy arising from structural deformation. Once
again we see the tendency toward the steady-state
value that will be achieved as elastic motion is
finally dissipated. Case 3 indicates the higher
value of strain energy expected because of the
nature of elastic deflection histories shown in
Figure 8.

In conclusion, we point out that total system
energy (Fig. 9e & 9f) is monotonically decreasing
to a value equal to the sum of the steady-state
kinetic and strain energies.

The results—that the spin vector coalesces
with the axis of maximum principal Inertia—are
in agreement with the precept that a spinning sys-
tem will, in the presence of damping, seek the
lowest possible energy level consistent with a
constant angular momentum.
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Conclusions

We have used a direct application of
D'Alembert's principle to arrive at canonical
state equations and have shown that these equa-
tions have minimal coupling. The similarity of
this development to classical Newton-Euler equa-
tions for a rigid body clarifies assessment of
effects of deformation on the overall motion.
This clarity is not so evident when the equations
are derived by application of Lagrange's equations
or Hamilton's principle.

Numerical examples yield results that agree
with previous knowledge regarding behavior of
flexible spinning vehicles. In particular,
coalesence (in the steady-state configuration) of
the spin vector, momentum vector, and major prin-
cipal inertia axis was observed. Total system
energy was shown to decay to a steady-state value
consistent with a constant angular momentum. Re-
sults clearly show that initial and final princi-
pal axes can be misaligned depending on relative
values of spin rate and structural vibration fre-
quencies. The steady-state configuration is not
necessarily axisymmetric, even though the unde-
formed configuration was.

We have purposely limited the numerical in-
vestigation by excluding effects of gravity or any
other external disturbances. In so doing, we
have been able to isolate mutual effects of vehi-
cle spin and deformation; in themselves complex
phenomena.

By concentrating on a freely rotating flexible
vehicle we have established a practical and mathe-
matically rational procedure for analyzing more
complex dynamical systems. In particular, exten-
sion of the methodology to include gravity gradi-
ent, attitude control, or dynamics of an inter-
connected system of flexible vehicles (e.g., ar-
ticulating appendages, multispin configurations,
etc) can be accomplished in an orderly fashion.
Another extension might be linearization of the
equations to examine stability in the frequency
domain.

In conclusion, we note that the procedure can
consider a rigid main body and, therefore, might
be used to support a test program in which one or
more flexible structures is attached to a rigid
spin platform.
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APPENDIX A

DEVELOPMENT OF THE INERTIAL INTEGRALS

In developing the equations of motion (paragraphs II.B and II.D of the main text), certain
inertial integrals are identified that are required to account for the deformation-dependent
inertia matrix and that are involved in calculating the effects of centrifugal and Coriolis
forces.

The basis for calculating these integrals is a triple-matrix product that involves a so-called
discrete mass matrix, [M], which is assembled by finite element techniques and which may
be used in calculating vibration modes. The other constituent of the triple-matrix product
is a modal transformation that transforms ordinary velocities associated with the finite-
element model to the velocities of the {u}. vector.

Referring to the transformation as [<j>], the triple-matrix product is therefore

[m] = [0]T [M] [<t>] (A-l)

which is the basis of the kinetic-energy expression of equation 11-21 of the main text. Now,
the mass matrix, [M], is invariable with respect to the body's deformation. However, the
modal transformation, [0], depends on the {£} in a linear fashion, or [0] may be expanded

as

[0] = [0]o + [A0] (A-2)

where [0]Q is a matrix of constant elements, and [A0] is variable with respect to deformation.

On substituting equation A-2 into equation A-l and referring to equation 11-86 of the main
text, it follows that

K] = [00]
T [M] [0o] (A-3)

[M] [0J + [0o]
T [M] [A0] (A-4)

A-3Preceding Page Blank



and

(A-5)

Assume that the finite-element model of the body has a "global" Cartesian frame in which
the ordinary velocities are measured, and further assume that the generalized coordinates
of the finite-element; model are grouped (or ordered) so that all the x-translations are together,
followed by all the y- and then z-translations and that the translations are followed by sets
of x-, y-, and z-rotations. With this implied ordering, it follows that the discrete mass matrix
is partitioned in the form:

[M] = mxx mxy

myy

mxz

myz

mzz

(symmetric)

«•»

mxp

myP

mzp

mpp

^

myq

mzq

mpq

mqq

mxr

myr

mzr

mpr

"V

mn

(A-6)

with p, q, and r corresponding to rotation coordinates about x-, y-, and z-axes, respectively.
Similarly, the modal transformation is partitioned as

{1}

N

M
{if

[hy]

[hz]

[ay]

(A-7)

Each square subpartition of equation A-6 has rows equal to the number of structural joints
(collocation points) of the finite-element model, as does each subpartition of equation A-7.
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The submatrices in the last column partition of equation A-7, ([hx ], [h ], • •, [az ]), have
columns equal to the number of deformation modes used to represent the body and are
matrices of modal translation and rotation amplitudes.

The forms of [0o ] and [ A0] are seen immediately from equation A-7 in that the only
nonzero parts of [A$] are attributable to the {77} vectors. The [0] matrix is effectively
a kinematic velocity transformation consistent with the form of equation 11-25 of the main
text, and it follows that

IM = f (A-8)

Equation A-4 shows the product of two constant matrices; namely, [M] [00 ]. The two
triple products on the right of equation A-4 require evaluation of only the first three row
partitions of [M] [00 ]. Thus, the following is defined

(The first three row partitions of [M] [0o]) =

iPxst

(A-9)

with, for example,

M (A-10)

and

(A-ll)

Kpl Kl + KJ by]
 + Kl I°zl

It is unnecessary to expand each partition of equation A-9; the partial product is numerically
obtained, and the examples of equations A-10 and A-l 1 are for purposes of illustration only.
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Now, with reference to the intermediate constant matrices given in equation A-9 and the
definitions of equations A-4 and A-5, the following inertial integrals* are developed:

f«,J = PJ Pg - [Py4] pg- (A-12)

= (PX4] [hz] - {PZ4J [ig (A-15)

« (PXSJ • Pg - P.sJ D»J (A-16)

[bt] » PZJ] pg - [Pyl3 [hzj

[b2] = PX2] [hz] - P>Z2] [hj (A-22)

D>3] » P>y3] [hj - [PX3] [hy] (A-23)

*The reader is advised to refer to paragraph H.D, particularly equations 11-88 and H-89,,of the main text.
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P>4] = PJ [\] - Pxl] [hz] + [Py2] [hz] - [PZ2] [hy] (A-24)

[bs] = [Pxl] [hy] - [Pyl] [hj + [Py3] [hz] - [Pz3] [hy] (A-25)

[b6] = [PX2] [hy] - [Py2] [hx] + [Pz3] [hx] - [Px3] [hj (A-26)

[Cyz] = [hy]
T [Pzk] - [hz]

T [Pyk] (A-27)

[CJ = [hz]
T [Pxk] - [hx]

T [Pzk] (A-28)

,[Cxy] = [hx]
T [Pyk] - [hy]^ [Pxk] (A-29)

[Cn] = [h ]T [mzz] [h ] - [h ]T [ml [hz]
(A-30)

- [hz]
T [myz] [h ] + [hz]

T [m ] [hz]

(A-32)

[C12] = - [hy]
T (mj [hz] + [h ]T [mzz] [hx]

(A-33)
+ [hz]

T [myx] [hz] - [hz]* [myz] [hx]

A-7



A-8

Kyi W + thyJT KJ fV (A-34)

[m] [hj - [hz]
T lmj [h]z y y
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APPENDIX B

DEVELOPMENT OF ROTATION TRANSFORMATIONS

In terms of Euler angles, the analyst may choose from twelve possible orthonormal rotation
transformations in order to orient one orthogonal triad with respect to another. For each
of these orthonormal rotation transformations, there is an associated rotation transformation
that is not orthonormal and that is used to transform angular velocity projections (onto a
nonorthogonal vector basis), which are time derivatives of Euler angles, to projections (onto
an orthogonal vector basis) that are commonly referred to as time derivatives of angular
quasi-coordinates (co_, cov,;and o> ).

A • y z

For digital computation, these transformations can be generated automatically, given a
selected order of rotation. The purpose of this appendix is to indicate the steps and numerical
manipulations that are required. To this end, consider one of the twelve types (e.g., a 2-3-2
permutation) as an illustrative example.

Consider the two orthogonal vector bases, whose relative orientation we want to describe,
to be

(B-l)

and

(B-2)

Now, if 0j, 02, and 03 are the three successive Euler rotations about axes (2-3-2), respectively,
it then follows that

fa} MTJ (B-3)
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COS0J

0

-sin0 j

0

1

0

sin0j

0

COS0J

"r
T
F

(B-3) continued

and

= [T2]

cos02 -sin02 0

sin02 cos02 01

(B-4)

[T31 {•

cos03

0

-sin03

\

0

1

0

sin03

0

cos03

i

T

k

(B-5)

On combining equations B-3, B-4, and B-5, there results

= [TJ [T2] [T3] {e} (B-6)

Now, a 2-3-2 permutation means that the first rotation, (0j), is about the second axis of the

{zT} basis, the second rotation, (02), is about the third axis of the { e '/"basis, and the third
rotation, (03), is about the second axis of the {e "} basis.

Consider the correlation between Euler rotations and the corresponding axis (table B-l).
It is now clear that the elementary rotation transformations, ([Tj ], [T2 ], and [T3 ]),

always involve 01, 02, and 03, respectively, but any of them may have three different forms,

depending on the axis associated with its rotation. That is, when 0. (i = 1, 2, 3) is about
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Table B-l
Correlation of Euler Rotations and Axes

Type

0, about

02 about

03 about

1

1,1

2,j'

3*"

2

U

2,j'

1,1"

3

U

3,k'

1,1"

4

1,1

•3,k'

2,1"

5

2,J

3,kf

1,1"

6

2,J

3,k'

2,1"

7

2,J

l,i'

2J"

8

2,J

l,i'

3,k"

9

3,K

l,i'

2,T"

10

3,K

l,i'

•3*"

11

3,K

2,j'

3,k"

12

3,K

2,j'.

1,1"

axis (1), then

IT,] = 1 0

0 cos0. -sin0.

0 sinO. cos0,• i i

(B-7)

when 0j is about axis (2),

cos0. 0

0 ' 1 0

0 cos0

(B-8)

and, finally, when &i is about axis (3),

[Tf] = cos0. -sin0.i i

sin0. cos0j

0 0

o"

o "

1

(B-9)

Thus, it is evident that, to create the required orthonormal rotation transformation, equation
B-6, only a rotation type (table B-l) and the three Euler rotations need to be specified.
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The associated rotational velocity transformations are developed as follows. Consider, again,
the 2-3-2 permutation. For this case, it is possible to express the angular velocity vector c3
in two ways:

co = icox + jcoy + kcoz

and

(B-10)

co = (B-ll)

On combining equations B-10 and B-ll, there results

{"}= M \0\

or

-x

"y

CO_ z_

=

cos03 0 -sin03

0 1 0

sin0, 0 cos0,
3 3

sin02 0 '0

cos02 0 1

0 1 i 0__ .

Y
,«2

Q
_ 3 _

(B-12)

or

W = [T3]
T [A]T (B-13)

Now, the inverse transformation of equation B-12 is required for hinge kinematics applications,
or it is necessary to express

"'M'1 = [A]T" [T3 ]

= t [E]- l[E] (B-14)

[E] [T3]
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with [E], an elementary row interchange transformation that, for the (2-3-2) example, is

[E] = 1 0 0

0 0 1

0 1 0

(B-15)

and causes HE] [A]Tj to be of the form:

[E] [A]1 =T _ a 0 0

0 1 0

0 0 1

(B-16)

so that

I/a 0 0

0 1 0

-fla. ,0 1

(B-17)

with a = sin02 and |3 = cos02.

The purpose of introducing [E] was to make the form of equation B-l 7 the same for all
twelve types of Euler rotations. This is convenient with respect to programming considera-
tions. It follows that:

• For types 1, 5, and 9, a = cos02, (3= sin02.

• For types 2, 6. and 10j a=sin02, 0 = cos02.

• For types 3, 7, and 11, a = -sin02, 0 = cos02.

• For types 4, 8, and 12, a = cos02, 0 = sin02.

Also, for each of the twelve types, there is an elementary row interchange transformation,
[E], that can be constructed from simple inspection of the permutation integers of table
B-l (e.g., 2-3-2). In fact, it is not necessary to actually construct [E] because information
to construct it is merely applied to [T3 ] (interchanging its rows), which produces [E] [T3 ].
Thus, the velocity transformation of equation B-l 4 can be created for any of the twelve
possible types with comparative ease.
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APPENDIX C

TIME DERIVATIVES OF KINEMATIC COEFFICIENTS

The i formulation and numerical implementation of motion equations for the system of inter-
connected bodies involves a vector of Lagrange multipliers, j \|. (Refer to equations II-l
and H-6 of the main text.) In order to numerically evaluate |X|, time derivatives of kinematic
coefficients (velocity transformations) associated with hinges must be calculated.

With reference to paragraph H.C of the main text, note that, for each hinge, there is a [b ]
and a [b ] matrix of kinematic coefficients. The basic form of these matrices is repeated
here, followed by the sequence of steps necessary for developing their time derivatives.

The [b ] array is

[0]

[P
RJ

W-1 [qRJ [op]

tpRml [hp]

(C-l)

and

l b q l - w1 W i i°] i w1 W K,]
I I

[ RJ [S(n)} I [ R ] ' [ R ] [h ]lp nj l nq * I Lp nj I lp nj l qj

(C-2)

To develop [b ] and [b ], it is necessarj' to expand the following as

Preceding Page Blank
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(CM)

(c'5)

and

— MR] [S(n)] ] = [ R ] [S(n>] + [ R ] [S(n>] (C-6)ji I lp nj l nq ' I lp nj l nq J lp nj l nq J

The 3 by 3 matrix time derivatives defined by equations C-3 through C-6 have factors (also
3 by 3 matrix time derivatives) that are expanded in terms of previously defined quantities
as follows:

[P
RJ = [SK* ([P

RJ ["p

[qRn] - [SK*([qRJ [aq] {!„[) ][qRn] (C-8)

with

- W W (W + KI 1U))

(C-10)



[SJJ] = (C-13)

Finally, the time derivative of [Tr]'1 requires additional consideration. (Refer to Appendix

B.) The rotation transformation, [Tr]"1, is developed as

W1 = IE] [T3] (C-14)

and it is shown that the form

([E] [A]T)~* = [A] = l/o 0 0

0 1 0

-P/a.O 1

(C-15)

holds for each of the twelve possible Euler rotations. In that [E] is constant, [A] depends

only on 02, and [T3 ] depends on 03 only. It follows that

dt
[E]) [T3]

where the Euler angle rates, 02 and 03, are numerically evaluated before their use in equation

C-16 through application of equation II-3 of the main text (that is, they reside in that part

of the state-vector time derivative, j yl, that has been evaluated).
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APPENDIX D

MONITOR OF SYSTEM MOMENTA AND ENERGIES

Developing state equations for predicting dynamic response of a system of interconnected
flexible bodies involves a considerable amount of complicated formulation and programming
codes regardless of the particular method of analytical mechanics selected for basing develop-
ment.

The inherent complexity of such a digital simulation program gives rise to the question: Is
there any way to check the program validity? In an attempt to answer this question, one
suggestion is to compare results with those of other dynamic simulations or hardware tests.
If such a comparison is positive, credibility (to a degree) is established. However, another
absolutely necessary (if not sufficient) condition must be passed to establish validity. For
a dynamic system free of external forces and torques, angular and linear momenta must be
conserved, and total energy (kinetic plus potential) must not increase in time.

A desirable feature for such a digital simulation program is to have a built-in monitor of
momenta and energy. The purpose of this appendix is to develop (in terms of previously
identified state variables and system parameters) the expressions for total system angular
and linear momentum vectors and the total system energy.

The total angular momentum about the inertial reference can be expressed (from definition)
as

X 7) dm (D-l)

with the summation over the number of bodies, NB, of the system, with x being the vector
positioning the elemental mass, dm, from the inertial origin, with v being the absolute
velocity of dm, and with integration taken over the volume of the jth body, V.. Also, from
definition, the total linear momentum with respect to the inertial frame is

!-•
VJ

NB

v dm (D-2)
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Now, consistent with the notion of a body fixed-axis system and with a consistent velocity
field assumed (paragraph II.B of the main text), it follows that, over the volume of the j"1

body,

x = X RJ (D-3)

and

v = j X (Po + „) (D-4)

On substituting equations D-3 and D-4 into D-l and D-2 and integrating, it becomes clear
that the first six elements of the product

K f
fc I

(D-5)

are projections of the jf* body's angular and linear momentum vectors onto the moving-body
axis system. In fact, {pw\ includes the effect of momentum wheels (equation 11-109 of the
main text), which must be accounted for. Thus, the angular momentum of the ]th body
about its body origin is

(D'6)

whereas the linear momentum of the jth body is

(D'7)

where Ijj J is the unit-vector basis associated with the body fixed-reference triad.
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Rotation transformations that relate vector components in each body system to the inertial
system exist, and position vector from the inertial origin to the reference point of each body
exists. It follows.that

NB

L • E * ,
'NB (M>

- E W '«.!,

and that

NB

H= E

(D-9)
NB

- E

The total angular and linear momentum vectors are calculated by the program in the manner
indicated in equations D-8 and D-9. For a variety of torque/force-free configurations that
have been examined, momentum has been conserved within acceptable numerical tolerances.

The total energy is calculated (equations 11-38 and 11-42 of the main text) as

NB

j— 1

The kinetic energy contribution of embedded momentum wheels is included (as it must be)
because [mL includes momentum-wheel inertial coupling terms and JUJ, includes momentum-
wheel spin rates, (0).

S

Potential energy, in addition to that shown in equation D-10, comes about if there is a
"sprung" hinge (e.g., associated with the 0k coordinate). If the spring force/torque is linear
with 0k, additional potential energy is
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APPENDIX E

ROOT-LOCUS SOLUTION TECHNIQUES

INTRODUCTION

The root-locus solution procedure that is included in the digital program was supplied by
Goddard Space Flight Center (GSFC) personnel and is included here for completeness. The
following discussion has been extracted from GSFC Branch Report No. 254, dated October 2,
1973 (Raymond V. Welch, author).

Two expressions are identified as the basis for initiating the solution process:

P(s)
K

QO)
= 1 (E-l)

= 180° K > 0 (E-2)
Q(s)

Expressions E-l and E-2 contain polynomial expressions for the conventional open-loop
expression,

KG(s) H(s) = KP(s)/Q(s) (E-3)

The solution process requires a starting point (known to lie somewhere on the loci) from
which to generate the desired locus; therefore, assume that a known value of s exists, (e.g.,
so) so that

= 180° (E-4)

(i.e., so is a point on the locus). A good starting point might be an open-loop pole or zero
because these points are usually known a priori; however, any point along the branch of the
locus to be determined may be used. The locus is then traced, using the following procedure.

E-3
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STEP1

Draw a "small" circle of radius, r, centered at so, and define sc to be the values of s which
lie on this circle (figure E-l). These values of s are determined analytically by

Sc = So

1+ re" (E-5)

Segment Along One
Branch of the Locus

s - plane

Figure E-1. Variable definitions at starting point of locus.
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where 6 is measured as the angle generated by a counterclockwise rotation from the positive
real axis of the s-plane. If the locus does not terminate inside the circle, at least two values
of 0 must exist between zero and 360 degrees so that

(E-6)

(More than two values of & will exist that satisfy this equation if breakway points of the
locus are encircled or if the circle is large enough to intersect other branches of the locus.
Consequently, to avoid changing branches, r must be kept smaller than the distance between
the branches of the locus.) If, for 6 = 0j and 6 = 02, the foregoing equation is satisfied,
scl and sc2 are points on the locus (figure E-l) where

•c,
(E-7)

= So

These roots are found by an iterative process.

STEP 2

Define i//(0) by

(E-8)

where sc is defined above and 6 is any arbitrary angle. If i//(0) does not equal 180°, increment
0 by A0 and reevaluate i|/(0). Continue this process until i//(0) passes through 180°. Because
i//(0) is a monotonic function across the locus, tK0) crossing 180° implies that the locus has
been crossed. When i|/(0) passes through 180°, redefine A0 as

' 0 < K < 1 (E-9)

and again calculate \K0). If \K#) does not equal 1 80° for this point, increment 0 by this new
A0 and recalculate <//(0). Continue this process until i|/(0) again crosses 180°. Reduce A0
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again by the foregoing process, and repeat the previous operation until Ad = 8, where 5 is
some predefined small positive number. At this time, \//(0) will be 180 ±e°, where e is a
"small" angle whose size is a function of 6 ; thus, a root on the locus has been found that
is either scl or sc2 , depending on the initial choice of 0 and on the initial sign of Ad. For
this subprogram, the initial value of 6 is optional, but, if no choice is made, a value of 1 80°
is used. Also, the initial increment, A0, is set at 10° with the change in A0 for every 180°
crossing defined by

It was found that 6 = 1 0~8 was small enough to ensure e < 0.001° except for possibly
values of s near the open-loop poles or zeros. Assume that 0 is chosen initially so that the
root found is located at the point, scl , as previously defined and as shown in figure E-l, and
suppose that it is desired to continue the locus in this direction.

STEP 3

Draw a circle of radius, £ , centered at scl . Again, if the locus does not terminate inside the
circle, the locus will intersect the circle in at least two points. Because the circles located
at s0 and scl are of equal radius, one of these points is s0 as shown in figure E-2. This root
is eliminated from the search routine by restricting the range of 0 to

0j - 120° < e < el + 120° (E-ii)

These limits are chosen because they are the points at which the circles located at SQ and
scl intersect. Thus, the search for a new root is conducted only in a previously unsearched
region. The initial angle is chosen at 0 = 01 - 120° A0>o, and Step 2 is repeated until
A0 = & (i.e., another root is found).

STEP 4

Draw a circle of radius, r, centered at the root found in the previous step, and repeat Step 2
with the restrictions on 0 as defined in Step 3.

Repeat Step 4 to determine the roots along one branch of the locus. The value of the gain,
K, for each of these roots is calculated from

P(s)

E-6



JO)

Segment Along One
Branch of the Locus

Figure E-2. Search area definition for finding roots

after the first root is found.
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TYPICAL KULT1BODY CONFIGURATION

Note:

1. All momentum wheels must
also have a sensor point,

2. Body I must always be
positioned relative to
the Inertlal reference.

3. Hinge 1 Is always between
Body 1 and the Inertlal
reference.

Body Reference Point

Hinge Point

Sensor Point

Momentum Wheel

Inertlal Reference

IK.

TYPICAL TWO BODY/HINGE POINT AMANCEMENT

Body m

1. Motion of the q frame on Body n Is measured relative to
the p frame on Body a,

2. The p and q frames are positioned with respect to Body
m and n reference axis systems f

3. Hinge J is identified via array ITOPOL,

4. Array IHDATA contains additional hinge Information.
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Hinge No.

Body No.

PROGRAM SIMULATION IMTEGER ARRAYS

Topology, Size - 2 x NH

1 2 3 4 5

Body n has frame q
Body m has frame p

Example: Refer to Column 3 (Hinge 3) and
note Body 4 Interfaces with Body
1 via Hinge 3.

No. of Elastic Modes/Body. Size - 1 x NB

Example: Body No. 4 has 2 elastic modes.
Body No. 2 has no elastic modes.

Sensor Point Locations, Size = 1 x NSIIFTSMW

Sensor Pt.

13 4 2 4 43J

ITYPE

92

83

Example: Sensor Point \5/ Is located on Body 4

(as are Sensor Points ^^ and \*y)

Hinge Information, Size •* 7 x NH

1

3

0

0

0

0

0

0

2

1

0

0

0

1
1
1

etas

3

7

0

0

0

1

0

1

4

2

1

1

0

1
1
1

in

5 < Hinge No.

11

0

2

1

1

1

0

the sta

Note

1.

2.

0:
1:

2:

ITYPE • Euler Type

Elements in rows
hinge constraint

2-7
type

identify

Free/forced
Fixed
(Zero

Constraint
relative velocity)

Rheonomic Constraint
(time dependent/

te vector

Additional Remarks:

1. The numbei — — _.._ __ _ _ _ _ _ _ _ _ _
equals the sum of "zeros" plus the sum
of the "twos" (excluding row 1) In the
array.

2. The number of Lambdas (constraints)
equals the number of "nonzeros"
(excluding row 1) in the array.

IMO

1 2 3

5 1 4

2 1 3

1 1 0

6]

Momentum Wheel Information, Size » 3 x NOFMD and
2 x NOFMO

Momentum Wheel No.

Sensor Point No.

Spin Axis .(1, 2, or 3)

1 = Active; 0 = Constant Speed

Wheel Rates (Initial)

Wheel Inertia about Spin Axis
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BJLER ANCLE PERMUTATION CANDIDATES x ITYPE

1st notation

2nd Rotation

3rd Rotation

ITYPE - 12

Axis

Axis

Axis

of 6j

of 62

Of 63

I I

2 2

3 1

3 4 5

1 l'2

3 33

1 2 J 1

6

2

3

2

7 8

2 2

1 1

2 3,

9

3

1

2

10

3

1

3

11

3

2

3

12

3

2

1

Example: Using ITYPE - 6

CONSOLIDATION OF KINEHATICAL COEFFICIENTS

(The "b" Coefficients)

1

2

3

4

5

P

P "

q

q

-q .

p

q

p

<

Note:

1

(U>2

{U)3

Only a single entry is in partition for
Hinge 1 and It Is a q type parti-
tion from the connection kinematical
array above,

All other row partitions have both a p
and a q constituent for each "hinge"
between contiguous bodies.

(8)1

(6)2

<8>3
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CONNECTION KINEMATICS •>. TYPICAL HINGE

a "p" Point

A93

4xi

ii3

-iT1 R R
q p p m

- R S
P m mp

Note:

1- 1RJ

2. In

„-!

- R
p m

Is a
the j

-n"1 R R oq p p m p

- R hp m p

a "q" Point

+*-> Rq n

R R SP q q n nq

rotation transformation from
to the 1 reference frame.

general, ̂  ̂  - ̂

rates

and

to body axes projections of
the angular velocity vector.

1

hl

SU

,

frame,

1 -frame ,

Is a skew symmetric matrix whose
elements are the components of the

R R
p q q n

+I"1 R o
q n q

R R h
p q q n q

X

"V
".

J) v

w

tl
i.2

en/

"n

1ft 1
I ml

j

STATE VECTOR ARRANGEMENT

COHSTRAINT FORCE/TORQUE VECTOR W '

{X) • (

J

1

^1 1

2

3

14

*5

)

)

)

>

8

9

AIO

)

)

)

)

11

»

13

1".

\

(

t*)Z

F )

(F )

,
1

z 2

X 3
(v,
(
(

(
(

(

<
<

TlK

Fx\

Fy^
V".

T2)5

T3>5

F
x>5

Vs

*

(F ) refers to Hinge 1

'{U)i"

{U}2

(U)3

(UK
u'h"
(£)2

<5)3

(5)i.
"*"

82

83

6w

65
S6

87
oDS

89
B,o

Bll

Bl3

BII.

8,5

BIS
_6_1_7_

«2

«3

; <y) -

> <

'{Oh'
(U>2

<U)3

(UK

"u'h
lCj2

Ub
UK

"si"
82

83

B\

65

8s

67

Ro°8

89

s'io
8'll

8l3

3,1.

6,5

8,6

8,7_

4

«3

'

^

where (U) - -.

vr
52

-For this example, prescribed
as function of time, i.e., a
rheonomic constraint as
noted in IHDATA
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