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1. INTRODUCTION

The similarity between the convolution integrall and the Fourier
transform integral has probably been recognized by mathematicians for
many years; however, an application of this similarity to the task of
calculating Fourier transforms numerically has apparently not been
widely appreciated. The basic method described in this paper was -
reported by Broome and Cooper2 who implemented it using an analog
computer. In many applications, however, it is more convenient to
work with digitized data and a digital computer analysis code even
though sampling problems might be introduced.

This method of digitel filtering has several advantages over the
conventional, direct integration method:

L. Computing time for the filter method is roughly one-third that
of the direct method, which may be significant either‘if‘large
volumes of data are to be processed or if the computatioh is to be
done "on-line." .
| 2. Linear filtering theory has heen developed cutcnoively, wlile
the problems of numericel integration of products of sampled data
functions are apparently not well understood.3 .1t appears that
extensions of this method could easily lead to a better understanding
of the errors in numerical Fourier transform calculations due to
noise in the function being transformed, and hence to better ways of
estimating these errors.

Subsequent to the development (but not the reporting) of this
technique, a method devised by Cooley and Tukey has been reported to be

1Couvulution is alternatively referred to as the superposition

theorem, Green's theorem,. and Duhamel's theorem.

o .
“P. W. Broome and G. C. Cooper, "Fourier Spectrum Analysis by
Analog Methods," Instr. Control Sys. 35(5), 155-60 (May 1962).

38. Lees and R. C. Dougherty, Refinement of the Pulse Testing

Procedure-Computer Limitations, Dartmouth College Research Report (Oct.'6h)
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orders of magnitude faster than d.:Lre'ct'integration.LL Consequently,
for applications requiring significant reductions in computing time,

the Cooley-Tukey -algorithm would be the likely choice.
2. DESCRIPTION OF THE METHOD

. The Fourier transform of a time-varying function f(t) is a

frequency-domain function F(w) given by

‘F(a.o) = Tf(t) ¢TINt gy | - (1)

S
where

& = radian frequency,
y=J1.

Equation (1) can be divided into its real and imaginary parts:

Flw) = ff(t) cos wt dt - j ?f(t)‘ sin wt dt. (2)

Thus to calculate the Fourier transform directly, the.products of
two time-vérying functions must be integratgd. '

The convolution integral gives the output of a linear system, or
filter, at any time t as a function of an input applied at previous
times, f(7):

. t :
g(t) = [ () © h(t-7) ar (3)
- 00
output of input to response of filter
filter at filter at at time t to an
time ¢ time 7T impulse applied

gt time 7

where the function h(t), the response of a linear filter to an impulse
applied at t = 0, is known as the imbulse response or welghting
function of the filter. Thus the convolution integral is also an
integration of the product of two time-varying functions similar to
‘each term of Eq. (2). Furthermore, a few manipulations of Egs.

(2) end (3) will make them equivalent. Hence, to apply convolution

hJ. W. Cooley and J. W. Tukey, "An Algorithm for the Machine

Calculation of Fourier Series," J. Math. Comp., 19, 297,(April 1965)
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to the problem of calculating Fourier transforms, the output time
responses  of filters with the appropriate weighting functions (i.e.
cos wt and sin wt) are calculated for an input perturbation f. Then
the outputs of the filters at a particular time will correspond to the
real and imaginary parts of the Fourier transform of f(t).

To equate the convolution integral to the Fourier transform
integral, we first make the upper limit of integration in Eq. (3)

zero, which can be done if f(7) can be made zero for all positive time:

0
g(0) = [ £(1) n(-1) dr (4)

Equation (4) shows that the filter output at time t = O would
be equivalent to the real (or imaginary) part of the Fourier transform
of f(1), Eq. (3), if h(-1) were equal to cos wt (or -sin wt).

For the reallpart, since cos wt is an even function, then cos wt =
"cos(-wt) and h(-7) = h(7); so Eq. (h).beccmes .

O

Re {F(uﬂ? = gR(O) = jaf(r) h(t) dar = j~g(T),COS(T) a . (5)

-co
On the other hand, since sin at is an odd function, then -sin wt =

sin(-wt) and h(-7) = -h(71); so the solution for the imaginary part is

In §F(w) = g(0) = - £(2) h(r) ar = - [ £(x) sin(t) az . (6)

- 00 -0
Usually the response of the system to be analyzed, f(t), will be
a function which has nonzero values for O <t <T, and zero values for
negative t and for times greater than T shown in Fig. la. There are
two methods that we can use to make the function that we analyze zero
for all positive time: we can either reverse the direction of f(t),
i.e. £f(-t) shown in Fig. 1b, or shift it by a time T, i.e. £(t+T)

shown in Fig. lc.



.
£(t)
' : >t
O \.—f/’i‘
a. f£(t)
t.
,“)
t

-T c. f(t+T) 0
Fig. 1. Original Time Function with Time Reversal and Shift.

2.1 Method I,Reversing £(t) : f£(-t)

If the actual function transformed is f(-t), rather than £(t),
the relationship between this result and the desired transform of f(t)
must be determined: '

¥ [f(-t)] = fe(-6)e™I ar = fe(£)e™I at (D)
: % - .
which is just the complex conjugate of F(w).
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2,2 Method II,Shifting f(t) : f(t+T) f

The equation is

F [f(t-l-'l‘):l = ff(t)ejaﬂ' ¢TIt gy o (JOT ff(t)e-‘jwt at . (8)

In this case, the desired result is obtained by correcting for a

phase shift of ol radians.
3, DIGITAL FILTER SIMITATTON

A key factor in the method is the accurate digital simulation of
the response of a cosine --— sine filter (e.g. an undamped spring-mass
system) to an arbitrary forcing function. This is accomplished by
means of the matrix exponential technique.s"6

I'ne differential equation for a system which oscillates with.a

frequency w is

2 LY B
d 2 :
S5+ dx=0. (9) A
dt T

Alternatively, Eq. (9) can be put in the form of two first-order
equations and made to include a forcing function'zl(t):

dx

EE}' = amy 24 (t),
ax, (10)
- Ty

The solution of Eq. (10) when xl(o) = x2(0) = 0 and z(t)
is a unit impulse function applied at t = OF is:

5H. M. Paynter and J. Suez, "Automatic Digital Setup and Scaling
of Analog Computers," Trans. Instr. Soc. Am, 3, 55-64 (Jan. 196L).
6

S. J. Ball and R. K. Adams, "MATEXP" - A General Purpose Digital
Computer Program for Solving Ordinary Differential Equations by the ,
Matrix Exponential Method, ORNL-TM- (in preparation) . )



cos wt,

.

xl(t) (11)

x,(t)

This corresponds precisely to the impulse responses of the sine and

-sin wt

cosine filters which were required to satisfy Eq. (4).
To obtain the general solution to Eq. (10), it is convenient to

convert Eq. (10) to matrix form:

ax o

- Xtz | (12)
where xl

X = x )

. 2

{3
- 0
Z = Zl(t)) ,
;
The exact "incremental" solution of Eq. (12), which updates X

by a time 1, is

X(t + 1) = T x() + (& - DAt z(t) (13)

if we assume that Z is constant between t and (t + 7). Hence, by
evaluating the AT and‘(eAT- I)A-l_matrices once (for each w), X can
be successively updated by two matrix multiplications. The series

form of eAT is

2 3
At _ At _ (A)" . (At)
€ =147+ 2T + TRERRERE (14)

So 1 0 0] wT .-ngzg 0
At + + 21 (wr)

o 1| |wr o 0 T

21 _]

0] -Sw123
2l (w7)3 3
3! 0

m
il




10

olel et e e

Lt * :
= 2 L
(w1)3 _ (or)? (i) (o)
-(D'I'"' 3= - 51 + e e e l" 2! + u! - es s 0
Thus
AT cos wt sin wt
€ = A (15)

-sin wt cos wt

Expanding (eAT - I)A"l in the same manner, we e{rentually get

sin wrt 1l - cos wt .
(A7 - 1)a™t < N N (16)
cos(wr) ~ 1 sin wt
w w

Substituting Eqs. (15) and (16) into (13) and expanding, we get

sin wrt
xl(t + T) = cos WwT xl(t) + sin wrt XE(t) + == zl(t) s
(17)
R cos Wt - 1
‘xe(t + 1) = -sin wf xl(t) + cos wt xz(t) + — zl(t) .

Since this solution is "exact" only when z. is a stair-step function,

1
it might appear that greater accuracy could be achieved by using a
trapezoidal (or higher order) approximation to zl(t). However, as

3

Lees~ has pointed out, this results in a correction term for the

Fourier transform calculation of the form

Fipue (w) ~ (Fstairstep- (w)> (correction term (w)) (18)

However, the Fourier transforms are usually used to calculate the
transfer function G(w) of a system from the ratio of output-to-input

Fourier transforms:

(w)

. |
(w) = F—"‘li% : (29)

“input

With the assumption that the same sampling interval T is used for
both input and output, the correction terms for both the input and

output transforms will be the same and will cancel out. Hence nothing

d)

b

~
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is gained by using higher-order approximations to the forcing functions.
L, ESTIMATION OF ERRORS IN FOURIER TRANSFORM CALCULATIONS DUE TO NOISE

An elegant method for determining the mean-séuare response of
linear, constante-coefficient filters to random noise inputs has been
a part of the analog computer literature for many yéars.7’8 This
method (illustrated in Fig. 2) is based on the equivalence of the

correlation function of white noise and a unit impulse function 8(t).

Filter Impulse Response

fe

Fig. 2 Impulse-Response Method for Mean-Square Output Response.

A noise-shaping filter (Fig. 2) is used to account for differences

-‘between pure white noise and the actual input noise seen by the linear

filter, which in this case would be noise in the signal to be Fourier
trensformed. The gain factor N_ is the power-specfral density (PSD)
of the white noise input (before being shaped). Analysis shows that
the steady-state output of the integrator>equals the mean-square out-
put of the filter due to the Gaussian noise input. The problem with
applying this method to the sine or cosine filter, however, is that

the integrator output would never reach a steady state, but would

‘continue to increase with time, indicating that the error component s

of the real and imaginary part estimations would increase with

7A. E. Rogers and T. W. Connolly, Analog Computation in Engineering

Design, McGraw-Hill, New York, 1960, Chapter 7.

8;. m. Laning and R. H. Battin, Random Processes in Automatic

Control, McGraw-Hill, New York, 1956, pp 90-1Lk.




integrating time.
A detailed analysis of the effects of noise is beyond the intent
of this report, but it is hoped that these observations might serve

as a starting point for further investigations.
5. DESCRIPTION OF THE FOURIER TRANSFORM CODE‘FOURCO

FOURCO has been set.up'as a general purpose Fortran IV code for
calculating the Fourier transform of sampled input data (FI) and output
data (FO), and for printiné freqﬁency response functions for up to
100 selected radian frequencies (W). The data is read in by the
subroutine DATAIN, which can easily be altered to suit the format of
the particular data., There is no nominal 1limit on the number of data
points that can be processed, because the code will read in successive
batches of 10,000 time samples as required, process each one as it
goes until it reaches the end of a run, and then will compute the
frequency response. Because of the batch data option, the second
method of shifting f(t) is used in preference to the reversed input
f(-t). The shifting method is also better suited to on-line calculations.

A variety of options is provided by FOURCO; the choice of which
option to use sometime depends on the type of signal heing analyzed
(i.e. periodic or aperiodic) or on personal preferences. Specification
of the choices by the user is made by setting the option flags M(l)
through M(5), as follows:

1. Data Read~-in and Processing Option, M(1)

M(1) > 0: Read in (and process) only M(1) input function data
points (FI). Read in FO until a blank card is
encountered.,

M(1) = O: Read in both FI and FO until a blank card is

) encountered.

M(1) < 0: Read in (and process) a single input function (FO) only.
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2. Frequency Option, M(2) - :
M(2) > 0: Read in all M(2) frequencies, W(1) up to W(100).
M(2) = 0: Frequencies to be harmonics of the fundamental
(WO), up to a limit WFIN, with a minimum spacing
of DW; i.e., if W(I+1)/W(I) < DW, the next harmonic
frequency would be substituted for W(I+l), etc.,
until H%%%%l-z DW.A
M(2) < O: Frequeﬁcies to be equally spaced on a logarithmic
plot between WO and WFIN, where W(I) =
: DW % W(I-1); DW > 1.0.
3. Input Data Printout Option M(3)
M(3) » 0: Print FI and F0 data as read in. ,
M(3) = 0: Print FI and FO data after subtracting bias.
M(3) < 0: No printout.
L. Bias Selection Option, M(k)
M(4) > 0: Subtract average values of FI and FO before processing.
M(4) = O: Subtract first-point values of FI and FO before
processing.
5. Ensemble Average Option, M(5)
M(5) > 0: Average and print M(5) data set transforms.
M(5) < 0: Omit option.

A magnitude ratio correction factor COR is also read in so that
different scale factors for FI and FO can be accounted for. The
magnitude ratio printed is the ratio of output-to-input from raw
data calculations multiplied by COR. _

The computation times for FOURCO are roughly proportional to the
number of input data points multiplied by the number of frequencies
calculated. The basic (and most time consuming) calculation is ‘
updating the filter outputs; this requires six floating multiplies
and four floating adds per step. Approximate running times on the
IBM-7090 are given by

T XK % NT % W,



e

where
- T = running time, min,
K =5.0x 10'6,
"NT = total number of data points and analyzed,
NW = number of frequencies.

K is somewhat larger if the input data printout option is selected.
A typical analysis of 12,500 input and output data points at 47

frequencies took 4 min with input data printout.

6. APPENDIX

6.1 FOURCO Input Instructions

The input data arrangement for a typical case is shown in Fig. 3.

(  TITLE CARD

FI, FO DATA
( W DATA CARD(s
f’ OPLI'ION CARD

TITLE CARD

(7 BLANK CASE
2
/
CASE 1

Fig. 3. FOURCO Input Data Layout .

The title, option, and frequency cards are set up with the

following format:
1. Title Card (12A6)

Any T2 alphanumeric characters

8
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2. Option Card (615, 2F10.0)

M(1)

M(2).

M(3)

M(4)

M(5)

(SPARE)

CoR |

15

I5

I5

I5

I5

I5

F10.0

F10.0

M(1) to M(5) = Option flags (see Sect. 5).
DT = Sampling interval

COR = Magnitude ratio correction factor

3. Frequency Card(s)

a. If M(2) <0: (3F10.0)

Dw
F10.0

 WFIN
F10.0

'7 WO
F10.0

" WO
DW = frequency spacing factor (see Sect. 5)
WFIN = high frequency limit

minimum radian frequency

b. If M(2) > 0: (8F10.0)
Ww(1) W(2) ceesess Up to 8 per card
F10.0 F10.0

Total number of W's read in = M(2)
W(I) = radian frequency.

6.2 FOURCU Fortran Listing

FOURCO is written in Fortran IV for the IBM-7090 computers at
the Oak Ridge Computing Technology Center. Copies of the source or

binary decks are available from the author on request.

o
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$I1BFTC MAIN DECK
PROGRAM FOURCO
DIGITAL FILTER FOURIER TRANSFORM CODE

OPTION CODE
M( )
PCS # NOe DATA PTS. FOR INPUT FI (PULSE)
0 # NO. DATA PTS FOR F1 ANP FO EQUAL
NEG # SINGLE INPUT (FO) ONLY
M(2)
POS # READ IN ALL M(2) W=S
0 # WO + HARMONICS, DWAMIN. SPACING
NEG # WOl+1)#W(I)#DW
M(3) '
POS # PRINT Fls FO DATA AS READ
D # PRINT AFTER SUBTRACTING BIAS
NEG # NO PRINTOUT
MG )
POS # SUBTRACT AVERAGES 10 PROCESS FIls FO
g # SUBTRACT FIRST POINTS
M(5) # NO. OF DATA SETS IN ENSEMBLE TO BE AVERAGED

## PROGRAM SFTS M(6) # =1 IF MORE THAN 10000 DATA PTS

aNalaNaNaXaNaRAN AN AR NARAN A RA AN YN e RaNaNa)

DIMENSION FI(1D0O0)»FO(10000) M6 sW(100)
DIMENSION TITLEU12)sCIACIUD)»COA(I0D)
DIMENSICN X1S1(100)sX1S00100),X251(100)sX250(100)
COMPLEX CIsCOsCIAsCOA
COMMON FIsFOsMyWsXISIsX[509X251sX250
] READ(55100)TITLEsM»DTsCOR
100 FORMAT(I2A6/61552F10,0)
WRITE(6s1Q1)TITLE sMsDTHCOR
IDIOFORMAT (IHI s | 2A6/6HOM 1-6561696H DT #sF10e4s
13Xs | 4tHCORRs FACTOR #3E2008)
ISET#Q
IF(M(21)15515516
15 READ(S55103)IW0sDWLWFIN
103 FORMATI(8FI1Q.0)
W) #Wo
NW#| -
IF(M(21)117+18s16
17 DO 19 I#2.100
WOLYAWLI=1) %DW
IF(WFIN-W{(I))20s19,519
19 NWHNW+ I
GO TO 20
18 DWS#2,0
DO 21 I#2s100
22 WL HW( 1Y #DWS
DWSH¥CWS+1.0
WIMEWCI)ZWETI=1)
IF(WIM=DW)22+23,23
23 IF{VWFIN-W(I))20s21s21

21 NWHNW+
GO TO 20
16 NwWgM(2)

READI(55103)(WIT)Ys1#]1sNW)
20 DO 51 J#IsNw
CIA(JYACMPLX(D.0,0.0)
51 COA(JI#CMPLX(0.,0,0.0)
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4
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TTOA#0.0
NTO#0

NGROUP ¥ |

DO 40 J#! sNW

XISI(J)#0.0

X150(J)#0.0

X251(J1#0.0

X2S0(J)1#0.0 ,

CALL DATAIN(NT)

NTOP#NTD

NTOENTO+NT

NTT#NGROUP#* 10000
IF(NTO-NTT) 75646

JRET#Q

GO TO 24

NGROUP#NGROUP+ 1

MUY #=1|

IRET#1 .

NTI#0

IF(MUI ) EQaDINTIRNT
IF(M(1).GT+0sAND.NGROUP, EO.I)NTI#M(I)
CALL FOURT(NTIsNTsDTsNW)
IF(IRET}2+258
WRITE(6,102)

IUZUFORMAT(IHU’be,bHFRtQ.9I3XoI5HMAGNITUDE RATIOo

42

41

135

(S,

i

1 7Xs 1 2HPHASE (DEG4))
TTO#FLOATINTO)#DT

PI#0.0

TTI#TTO

IFIM{1).GT.01 TTI#FLOAT(M(I))%DT
DO &1 J#1sNW

IF(MU1).LTeD) . GO TO 42

SIWTI# TTI#W(J)
CIH#CMPLXIXISI(J) 9X2ST(J)) ¥CEXP(CMPLX(04DsSJIWTI)
CALL AMPHI(CIsAIsPI)

SIWTO# TTO*W(J)
COBCMPLX{X1S0(J)»X250(J) ) *CEXP (CMPLX(D, D.SJWTO))*COR
CALL AMPH(COsAQ,PO)
IFIMUL)LTLD) AIRTTO

AQ#AO/ZAT .

PO#PI~PO

IF(M(5).LEel) GO TO 4|
CIACUY¥CIACJI+CI*TTO
COA(J)ECOA(JII+CO®TTO
TTOA#TTOA+TTO
WRITE(6s104)JsW(J)sAOsPO

4 FORMAT(IH »13s6X,3E20.8)

IF(M(5).LEel) GO TO |
ISETHISET+|
IF(M(5).GTLISET) GO TO 52
WRITE(6s105) M(5)

FORMAT (22HIENSEMBLE AVERAGES FORs 4, [4H SETS OF DATA.)

WRITE(65102)

DO 50 J#I1sNW

LFIMUL ) oL To0) CIACLIH#CMPLX(TTOASD D)
CO#CONJGICOALIY /CTACIY) '
CALL AMPHI(COsAO0»PO)
HRITF(6’|ﬂ4)JvW(J)9AO,PO

GO 70O |

END
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$IBFTC DIN DECK

SUBROUTINE DATAINI(NT)

'DATA 'INPUT FOR FQURCO
DIMENSION FI(10000)sFO(10000)sMi6)sWt100)+D(9)
DIMENSION XISI(10D)sXISCU10d)sX2S1(100)sX250(100)

COMMON FIsFCsMysX1SI»X1S0sX251sX2S0
NT#0 '

FIA#0.0

FOA#0.0

IF(M{1)4LE+D-ORM(6)4LTo0) GO TO 5G
NTI#M(])

READ(55105) (FO(L1)sFI(L)sI#1sNT1)
FORMAT FOR MSRE PULSE RESPONSE 10556
FORMAT (26Xs2F3,0)

IDBANT I+

DO 33 I#1IDB» 10000
READI5s106)TIMESFOLI)
FORMAT(F4.0522X3F3,.0)

IFITIME) 2434533

NT#NT+ |

NTH#NTHNTI

GO TO 35

IF(M(U1).EQe.Q} GO TO 3|
FORMAT FOR OURR NOISE - 109
NS#1

NF#20

DO 52 1#1,500

READ(55109) TIMEs(FO(J) s J¥NSsNF)
FORMAT(15XsF5.0s20F340)
IF(TIME)S | +53951

NS#NS+20

NF#NF+20

NT#NT+20

NTI#0

GO TO 42 ‘

DO 36 1#!s 100004 ,

FORMAT FOR MSRE PRBI TESTS - 107
READ(55107) D

FORMAT (FBe2s4(FT7e3sEl1at))
IF(D(!1)eLEeDsO) GO TO 37

DO & J¥is4

K#I+J=-1

KP#2%J

F1(K)#DI(KP)

FO(KI#DIKP+1)

NTH#NT+4

NTI#NT

DO 40 I#!sNTI

FIARFIAIFI(T)
FIA#FIA/(FLOATINTI))

DO 43 I#1sNT

FOA#FOA+FO( 1)

FOA#FOA/FLOATINT)

IF(M(3) 14444445

IF(NTI.GTe0) WRITE(G6sIDD)(FI(T)sI#IsNTIT)
FORMAT(3HOFI/(IH »IPIQEII143))
WRITE(6,108){FO(I)s1#]|sNT)
FORMAT (3HOFO/{|H »IPIDEIl43))
IF(M(6},LT.0) GO TO 6
IF(M({4))757+8

L%
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SUBTRACT AVERAGE
8  FISKFIA
" FOS#FOA

G0 TO 6

SUBTRACT |=-ST POINT
7 FISKFI(])

FOS#FO ()

SUBTRACT SAME AS IN DATA GROUP |
6 IF(NTIEQ.0) GO TO 13

DO 9 I#IsNTI,

NEG FI FOR MSRE PRBS
9  FIUIVHFIS-FI(])
13 DO 12 I#IsNT
12 FO(I)HFO(I)Y~FOS

“IF(NTI.GT.0) WRITE(6s101)FIASNTI
101 FORMAT (13HOAVERAGE FI #,£20.8,

l4H FOR»1645H PTS,)

WRITE(65102)FOASNT
102 FORMAT (13HOAVERAGE FO #sE2De8s4H FOR»1655H PTS.)

TEIMUSB) ) absb 946 S ’
47 WRITE(6sI07)(FI(1)sI#1sMPRINT)

WRITE(65i08) (FO(I)sI#IsNT)
46 RETURN ‘

END



20

$IBFTC FOURI DECK

SUBROUTINE FOURTI(NTIsNT»DTsNW)

DIMENSION F1010000),FO(13000)sM(6)sW(100)
DIMENSION XI1SI(10Q0)»sX1S00100)sX2S51(100)9X250(100)
COMMON FIsFOsMyWeXI1SIsX1509X2514X250

DO 8 JH¥ | »NW .

WTHW(JIHDT

CWTH#COSIWT)

SWT#SIN(WT)

SWTW#HSWT/W(U)
CWTMWH(CWT-10)/W(U)
IF(NTI.EQ.01GO TO IO

INPUT F(T) INTO SINE FILTER
XIT#XISI()

X2T#X251 ()

DO 9 I#1sNTI
XITTHCWT#X I T+SWTHX2T+SWIWHFI(])
X2THCWTHX2T-SWT*X | T+CWTMW*FI (1)
YITH#XITT

CXISTUDI#XLT

X2S1(U)y#X2T

X1 T#X150(J)

X2T#X250(00)

DO 11 T#1sNT
XITTHCWT %X I T+SWTHX2T+SWTWXFO(])
X2THCWTHX2T-SWTH#X | T+CWTMW*FO(])
XIT#XITT

XISO(JI#XIT

X2S0(Jy#X2T

RETURN

END

$IBFTC AMPHI DECK

C

SUBROUTINE AMPH(CsAsP) :
CONVERTS COMPLEX NUMBER C TO MR AND PHASE (DEG)
COMPLEX C )

A#CABSI(C)

IFCA) 2]

P#0.0

RETURN

P#57.296%ATAN2 (AIMAG(C)sREAL(C))

RETURN

END
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