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A Digital Pre-Distortion Based on Nonlinear
Autoregressive With Exogenous Inputs

Pooria Varahram, John Dooley, Keith Finnerty, and Ronan Farrell

Abstract—In this letter, a new pre-distortion technique for
power amplifiers in wideband applications is proposed. The pro-
posed pre-distortion technique is based on Nonlinear Autoregres-
sive with Exogenous inputs (NARX). The forward path of the
proposed predictive method is based on the memory polynomial.
Experimental validation is carried out with 4 carrier WCDMA
signal with 20MHz bandwidth and PAPR = 9.8 dB. The results
show significant reduction in the number of coefficients with com-
parable performance in terms of adjacent channel leakage ratio
(ACLR) and error vector magnitude (EVM) to Volterra series
techniques.

Index Terms—Memory effects, memory polynomial, NARX,
power amplifier (PA), Volterra series.

I. INTRODUCTION

POWER amplifiers (PAs) are one of the pivotal components
of wireless communication systems. Although ideal am-

plification should be linear, the actual PA normally deviates
from linear operation. As a result of the nonlinear behavior, the
spectral regrowth produced leads to superfluous radiations and
adjacent channel interference. Digital pre-distortion (DPD) is
one of the most common solutions used to compensate for the
non-linearity in the PA. It allows cost-efficient non-linear PAs to
run in their non-linear regions with minimized distortions. Until
now the majority of the research into this solution relied on the
Volterra series [1], [2] and subsets of the Volterra series such
as Hammerstein [3], Hammerstein-Wiener [4], and memory
polynomial [5] to model the digital pre-distortion.

Despite the Volterra series offering a usable model of the
PA with memory effects, it is fundamentally limited by its
structure, as a large number of coefficients are required to
accurately model a nonlinear PA. A Nonlinear Autoregressive
with eXogenous inputs (NARX) which is a special case of Non-
linear Autoregressive moving Average with eXogenous inputs
(NARMAX) with no noise dependent model was presented in
[6]. In nonlinear systems, Volterra series expands the current
output as a series of current and past inputs only. This in turn
leads to an explosion in the number of terms to be estimated. In
contrast, NARX can easily capture these effects due to having
nonlinear lagged terms. By this way the identification of the
nonlinear system becomes easier as fewer terms are needed
to model the system. Despite the fact that NARX provides
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better accuracy in modeling, added care must be taken to ensure
stability, compared to Volterra series techniques.

An analogous comparison would be Finite Impulse Response
(FIR) filter which comprises the systems present and past
inputs. An Infinite Impulse Response (IIR) filter depends on the
present and past inputs and also the past outputs. Even though
both can be designed to have a similar transfer characteristic,
the infinite impulse response filter can be implemented using
fewer weights and thus multiplications.

Previous publications have started to explore the use of
NARX structures to model or perform DPD for nonlinear PAs.
Authors in [7] claimed that Nonlinear Autoregressive with
eXogenous inputs can be used to linearize GaN class F PAs us-
ing an indirect learning architecture. The proposed three-layer
implementation consists of input layer, hidden layer, and output
layer. Two identical NARX networks represent the static and
dynamic blocks to linearize memory effects and memoryless
effects, respectively. In [7], the authors use the NARX structure
to linearize the PA; a Levenberg-Marquardt training algorithm
is used to calculate the coefficients for the neural network to
implement the digital pre-distortion.

Authors in [8] proposed a NAMRA DPD solution for RF
PAs. The structure of the DPD in [8] generates an output signal
from a lookup table based on the complex gain function. While
it achieves the required DPD performance for the given stan-
dard, a comparison with other DPD methods such as memory
polynomial and generalized memory polynomial (GMP) [9] are
not provided.

In this letter we present a novel NARX based DPD solu-
tion for RF PAs. Validation of the improved performance of
the NARX DPD presented in this letter is demonstrated by
experimental measurement. ACLR, EVM, and NMSE values
are calculated to give a comprehensive comparison between the
proposed approach and the popular GMP and MP techniques.

II. NARX PRE-DISTORTION TECHNIQUE

A. Identification Algorithm

Here, the identification is based on post-distortion algorithm.
Once the post-distortion coefficients have been identified, it can
be copied to the running path where the actual pre-distortion is
implemented. It has been shown in [10] that the coefficients
obtained from post-distortion are identical to pre-distortion and
hence can be applied to the running path. The identification
procedure is to obtain the coefficients of the inverse of the
PA and copy these coefficients to the forward path. The good
thing about the NARX DPD is its identification can be done
directly using Least Square (LS) estimation. This is in contrast
to NARMAX where its coefficients need to be estimated in an
iterative way [6]. The method to extract these coefficients is to
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first capture the input and output signals, swap them, and then
the least square algorithm needs to be applied as

u[n] = −
K∑

k=1

I∑
i=1

akiu[n− i] |u[n− i]|k−1

+

K∑
k=1

M∑
m=0

bkmy[n− d−m] |y[n− d−m]|k−1 + e[n] (1)

where u[n] and y[n] are the sampled observations of the input
and output of the PA, respectively, and a is the delay sample be-
tween the input and output of the PA and sometimes called the
dead time. It should be noted that, in almost all the literatures,
this delay is not considered in their analytical derivation. That
is because the propagation delay on an experimental test bench
can be accounted for prior to signal analysis; e[n] is the noise
sequence which represents the modelling error and all the noise
in the system; a, b are the identification parameters and K is the
nonlinearity order (odd and even), and I and M are the memory
length of the output and input samples, respectively. For the N
input-output data sequence, the post-distortion function (1) in
matrix form are

u = Φw + e (2)

where Φ = [A1, . . . , AKI , B1, . . . , BKM ] is a basis function
with Al=−

∑K
k=1

∑I
i=1 u[n−i]|u[n−i]|k−1 and Bl=

∑K
k=1∑M

m=0 y(n−m)|y(n−m)|k−1, w is a vector of coefficient
w=[a11, . . . , aKI , b10, . . . , bKM ]T , u=[u[1], u[2], . . . u[N ]]T

where N is the length of the signal and the symbol (·)T denotes
complex conjugate transpose. The least square solution to iden-
tify the coefficient w is given by

ŵ = (ΦHΦ)
−1
ΦHu (3)

where (·)H and (·)−1 denote Hermitian transpose and inverse
of the matrix, respectively, and ŵ is the estimated coefficients.

There is no difficulty to extract the estimated coefficients
of pre-distortion function (ŵ), as both sequences of input and
output data samples are available from the PA measurement
or during the identification procedure. For simplicity, the error
term in (1) has been ignored. The main consideration, however,
is to apply these coefficients to the pre-distortion function in the
running path. The reason is that, in the NARX, the past output
samples of the pre-distortion function are not known. Hence,
the difficulty of applying NARX DPD is in the running path
where the initial output value is not known.

B. New Prediction Method

Here, a new method to apply the NARX pre-distortion in
the running path is proposed. In this approach, the output of
the pre-distortion function can be initialized by a few known
output values. This depends on the order of the NARX DPD.
In this method, the system performance works well even with
the first order. The known value can be obtained either from
the measurement or, in our case, from the memory polynomial
series as follows:

u[n] =

K∑
k=1

M∑
m=0

bkmx[n−m] |x[n−m]|k−1 (4)

Fig. 1. ACLR performance of the NARX DPD. (A) Output without DPD. (B)
Output with NARX.

where x and u are the input and output of pre-distortion,
respectively. Hence, the proposed prediction algorithm for the
special case of I = 1, M = 0 is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u[1] =
K∑

k=1

bk0x[1] |x[1]|k−1

u[2] = −
K∑

k=1

ak1u[1] |u[1]|k−1+
K∑

k=1

bk0x[2] |x[2]|k−1

u[3] = −
K∑

k=1

ak1u[2] |u[2]|k−1+
K∑

k=1

bk0x[3] |x[3]|k−1

...
...

...

u[N ]= −
K∑

k=1

ak1u[N−1] |u[N−1]|k−1

+
K∑

k=1

bk0x[N ] |x[N ]|k−1 .

(5)

The only drawback with this approach is, following the
initialization, only the predicted values of the output are used
in the right hand-side, hence, any errors in the predicted value
quickly accumulate and diverge the series and result in instabil-
ity. In [11], the generalized frequency response function of the
NARX is derived whereby the bounded input bounded output
(BIBO) stability is guaranteed by the BI and BO spectrum. For
the proposed method, the prediction mean square error (MSE)
of û(n)

MSE {û(n)} = E
{
|û(n)− u(n)|2

}
(6)

where E{·} is the expected value and û(n) is the estimated
pre-distortion output. The stability condition can be obtained
when the NARX series is converged based on the inequality
condition ‖y‖2 ≤ C‖u‖2 where ‖ · ‖2 operator is the second
order norm, which also represents the energy of a signal, and
C is a finite value. For the post-distortion algorithm above, the
stability condition can be obtained by

N∑
l=1

|e(l)|2 ≤ δ (7)

where δ is a small tolerance value.
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TABLE I
NMSE COMPARISON OF DIFFERENT DPD TECHNIQUES

III. EXPERIMENTAL VALIDATION

The experimental verification and comparison of the NARX
DPD is carried out in terms of normalized mean square error
(NMSE), ACLR, and EVM. Hence, first NMSE is analyzed
followed by ACLR and EVM measurement. The signal used in
this experiment is a 4 carrier WCDMA with 20 MHz bandwidth
centered at 2.63 GHz with instantaneous-to-average power
ratio (IAR) = 9.8 dB at 0.01% CCDF. The sampling rate is
92.16 Mbps and 24,576 samples have been captured for training
DPD. The test bench includes an R&S vector signal generator
SMU200A and R&S FSQ vector signal analyzer, Doherty PA
(RTP26010-N1) with typical gain of 40 dB. LabVIEW and
Matlab are used for signal generation, measurement, and pro-
cessing, and the resulting signal is supplied directly to the PA
from the SMU200A. The captured signal was averaged eight
times to suppress the noise floor of the signal.

Endeavoring to demonstrate the effectiveness of the proposed
DPD solution in as fair a comparison as possible, the optimum
model dimensions are sought for both the memory polynomial
(MP) and generalized memory polynomial (GMP) models.
Fig. 1 shows the ACLR performance of the proposed NARX
DPD. The ACLR performance of other techniques is shown
in Table II. It can be observed that there is asymmetry in the
out of band distortion which is due to the memory effects and
is compensated by applying NARX DPD. The difference is
more obvious on the left side of the spectrum. Table I shows
the NMSE comparison between MP, GMP, and NARX. From
Table I, it can be seen that NARX DPD gives comparable
NMSE performance against MP and GMP with fewer number
of coefficients. This reduces the computational complexity
compared to MP and GMP techniques. However, with the same
complexity, the NARX DPD outperforms MP and GMP in
terms of NMSE performance. It is important to mention that
a higher value of auto regressive (I) does not have much im-

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT DPD TECHNIQUES

provement in the NMSE performance. Table II gives the perfor-
mance comparison between different DPD techniques in terms
of ACLR and EVM metrics with the peak output power (POP)
of 28.8 Watt. It can be seen that NARX with 25 coefficients
outperforms MP and GMP with 30 coefficients.

IV. CONCLUSION

In an effort to reduce the computational and memory over-
head for pre-distortion approaches, a novel NARX-based DPD
is presented. The proposed approach shows marginally better
linearization performance compared to memory polynomial
and generalized memory polynomial techniques. However, the
true benefit of this approach is in its accuracy for reduced
numbers of coefficients. Experimentally validated performance
comparisons have been made in this letter by providing the
analysis of the ALCR and EVM.
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