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A Digital Signal  Processing Approach to Interpolation 

RONALD W. SCHAFER AND LAWRENCE  R.  RABINER 

Abrtrac+h many digital ldgnrl procerdng systems, e.g., 
rocodcre, modulation  and digital waveform coding 
i t isn~toaltertheesmplingrateofadigi~BigaatThusit is  
of considerable intemst to examine the problem of interpolation of 
bandlimited signals from the  vierpoint of digital signal processing. 
A frequency  dcunain  interpretation of the interpolation  process, 
through which it is clear that  interpolation is fundamentally a linear 
atering process, is presented. 

An examination d the  relative  merits of 5nite duration  impulse 
mnse (FIR) and Mte duration  impulse response @a) digital 
futae as interpolation 6lters  indicates  that FIR filters are  generally 
to be preferred for interpolation. It is shown that linear interpolation 
snd dassicnl polynomial interpolation  correspond to the use of the 
FIR interpolation  filter. The use of classical interpolation  me&& 
in signal procedug appl i~at io~  is illustrated  by a dientssion of FIR 
interpolation atere derived from the Lagrange  interpolation  formala. 
The  limitations of these 5lters  lead os to a consideration of optimum 
FIR 5lters for interpolation  that can be designed using linear pre 
gr- teehniqtlea ELamples are presented to illustrate  the sig- 
nikant improvements  that are obtained using the optimum filters 

I. INTRODUCTION 

T HE PROCESS of interpolation is familiar  to  anyone 
who  has  had  occasion to  "read  between the lines" in a 
table of mathematical  functions. In  digital  signal pro- 

cessing, interpolation  is  required  whenever i t  is  necessary to  
change  from  one  sampling  rate  to  another.  For  example,  in 
speech  processing systems,  estimates of speech  parameters  are 
often  computed at a low sampling  rate for  low bit-rate  storage 
or  transmission; however,  for constructing a synthetic speech 
signal  from the low bit-rate  representation,  the  speech pa- 
rameters  are  normally  required at much  higher  sampling 
rates [l],  [2]. In  such cases, the  sampling  rate  must be in- 
creased by a digital  interpolation process. As another  example, 
an efficient digital  realization of a frequency-multiplexed 
single-sideband  system  has  been  obtained [3] by  performing 
complicated  filtering  functions at a low sampling  rate  and 
simpler  functions at the high  sampling  rate  required for 
grouping  several  channels  into a frequency-multiplexed  for- 
mat.  In  this process, there is a need  for both  increasing  and 
decreasing  the  sampling  rate.  Another  example  where  sam- 
pling rate  reduction  is  required is in  converting a delta  modu- 
lation  representation of a waveform to a pulse-code modula- 
tion  (PCM)  representation [4].. 

In  these  and  other  examples,  it is important  to  thoroughly 
understand  the process of interpolation  from  the  point of view 
of digital  signal processing rather  than from a numerical  anal- 
ysis  viewpoint. For  example,  tables of mathematical  func- 
tions  are  generally  constructed so that  linear  interpolation 
produces  sufficiently accurate  results,  and  for cases where 
linear  interpotation is inadequate,  there  exists a great  variety 
of higher  order  polynomial  interpolation  formulas. In  signal 
processing appiications  there  is a great  temptation  to try to 
get  along  with  linear  interpolation  because i t  is a simple  tech- 
nique. In  this  paper we present a frequency-domain  interpre- 
tation of the  interpolation process in which i t  is  clear that  
interpolation  is  fundamentally a linear  filtering  process. This 
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discussion  makes it abundantly clear that  linear  interpolation 
is  generally not  appropriate for digital  signal processing appli- 
cations.  We  discuss the  advantages of finite  duration  impulse 
response (FIR)  over infinite  duration  impulse  response  (IIR) 
digital  filters  for use as interpolation  filters  and we  discuss the 
application of recently  developed  design  techniques  for F IR  
filters to  the design of optimum  interpolation filters. These 
filters are  compared  to  filters  derived  from classical poly- 
nomial interpolation  formulas  to  illustrate  the  improvement 
that  can be achieved. 

11. DIGITAL SAMPLING RATE ALTERATION 

A .  Sampling Contirruous- Time Signals 

form 
Consider a continuous-time  signal p ( t )  with  Fourier  trans- 

8 ( u )  = J ~ 2 ( f ) ~ ~ Y .  

The signal e(t) is sampled  to  produce  the  sequence 

z(n) = 3(nT) ,  - CQ < n < m 
where T is the  sampling period. The,z  transform  of  the se- 
quence x(n) is  defined as 

X(2)  = 2 z(n)r-". 
n--m 

The z transform  evaluated  on  the  unit circle X(@') will be 
called the Fourier transform of the sequence n(n).  I t  is well 
known that  the  Fourier  transform of the  sequence x(%)  is 
related  to  the  Fourier  transform of .+?(t) by [5] 

If ,(t) is  bandlimited, i.e., b(w) = 0 for 1 0 1  >a, and if T <r/sl, 
then  it  can be seen from (1) that  

as depicted  in Fig. 1 where T = z / Q .  
Assuming that  2( t )  is  bandlimited,  the  original  continuous- 

time  signal  can be obtained  uniquely  from  the  samples x(n) 
through  the  interpolation  formula 

r 
- ( t -  K T )  
T 

In  many  digital  signal processing  problems, we are given a 
sequence z(n),  corresponding to  sampling period T, and we 
must  obtain  from  the  sequence x(n) a sequence y(n )  = &(nT') ; 
i.e., the  sequence y(n) corresponds to  sampling p ( t )  at a dif- 
ferent  sampling  rate. If we evaluate (2) for t = nT', we obtain 
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Fig. 1. Illaetration of the relationship  between the Fourier transform of 
a continuoustime signal and the Fourier transform of the sequence 
obtained by sampling with period T. 

a direct  relationship  between y ( n )  and x(n), but   i t  is clear that  
such  an  equation  is impossible to  evaluate because the  func- 
tions  sin [(s/T)(t-KT)]/[(r/T)(t-RT)] are of infinite  dura- 
tion.  Rather  than  simply  truncate  these  functions,  it  is  more 
reasonable to design finite  duration  interpolators. To under- 
stand how such  interpolators  can be  designed and  to  under- 
stand  the  limitations of classical interpolators,  it is useful to 
consider the  frequency-domain  representation of the process 
of changing  the  sampling  rate. 

8. Sampling Rate Reduction-Integer Factms 

M is an  integer,  this  simply implies that  the new sequence  is 

y (n)  = 2(nT‘) = 1Z(nMT) 

Suppose  that  the desired sampling period is TI -   MT.  If 

= z (Mn) .  

Tha t  is, the  sequence z (n)  is  “sampled”  by  retaining  only  one 
out of each  group of M consecutive  samples.  The  values of the 
sequence y are  samples of the original  waveform li.(t); how- 
ever,  these  samples will uniquely  determine z(t) if and  only if 
T‘<r/Q. This  is  clearly jus t  a consequence of the  sampling 
theorem as expressed by (1). 

Since we are  interested  in  direct  relationships  between  the 
sequences y(n)  and x(n) ,  i t  is  instructive  to  derive  an  equation 
similar  to (1) that  relates  the  Fourier  transforms of the  two 
sequences. The  derivation of the  equation  is  facilitated  by  the 
definition of a new sequence w(n)  which is nonzero only at 
integer  multiples of M ;  that  is 

w(n) = z(n), n = 0, f M, +2M, . 
= 0, elsewhere 

where  the  sampling period is assumed  to be T for both se- 
quences. A convenient  representation of w(n) is 

where  the  term  in  brackets  may be recognized as a discrete 
Fourier series representation of a periodic sequence that is  one 
at integer  multiples of M and zero otherwise.  The  sequence 
y(n), corresponding  to  sampling period T ’ = M T ,  is 

y(n) = w ( M n ) ,  - < n < m. 

Fig. 2. Sampling  rate  reduction (T’=227. (a) Fourier transform of 
original sequence x(%) .  (b) Fourier transform of sequence y ( r )  =x(2n) 
showing aliasing. (c) Fourier transform obtained after sampling rate 
reduction of a low-paw filtered version of x(%). 

Therefore 

m 

Y ( Z )  = w ( M n ) z n .  
n--a 

Since w(n) is zero except a t  integer  multiples of M, we obtain 

m 

Y(2) = w(n)z-*/M 
n--m 

1 M-1 

M 1-0 

~ ( 2 )  = - x ( ~ - ~ ( ~ T / I ” z Z ~ / M ) .  (3) 

If  we evaluate Y(e)  on  the  unit circle, with  normalization 
appropriate  for  the new sampling  rate, we obtain 

There  is a clear similarity  between (4) and (1). 
An example of sampling  rate  reduction  by a factor of 2 is 

shown  in  Fig. 2. The  Fourier  transform of x(%)  is  depicted in 
Fig.  2(a)  for  the case when r/2Q < T <r/Q so that  

Fig. 2(b) shows Y(ehT’) for T‘=2T.  In  this case,  aliasing 
occurs  and i t  is  clear  that, in  general,  aliasing will occur in  the 
process of digital  sampling  rate  reduction unless the original 
sampling period  satisfies 
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T I -  
MQ 

% 

where Q is the  Nyquist  frequency of g( t ) .  If this  inequality  is 
satisfied, however, then 

1 

M 
Y(ehT') = - X ( e i . 9  

= - Z(U) 1 

M T  
1 % % 

T'  T' T' 
= -B(o), - - < W < - .  

If the original  sampling  period  does not  satisfy (S), aliasing 
distortion  can be avoided  only  by  passing  the  sequence x(n)  
through  an  ideal low-pass digital  filter  with cutoff frequency 
r /P .  I t  can  be  seen  that  the  filter  must  have  unit  gain,  since 
(4) provides the  factor 1/M needed to  correct  the  amplitude 
for  the new sampling  rate.  This, of course,  results  in a sequence 
y(n) corresponding to a continuous  time  signal p(t) which is a 
low-pass  filtered  version of the original  signal Z ( t ) .  

C.  Sampling Rate Incrcastlnteger Factors 
If the  sampling  rate is increased  by an  integer  factor L; 

then  the new sampling period will be TI=  TIL. Since  the se- 
quence x(n)  provides  samples of the desired  sequence  only at 
intervals of L samples at the new sampling  rate,  the  remaining 
samples  must be filled in  by  interpolation. To  see how this 
can be done  using a digital  filter,  consider the  sequence 

v(n) = z (n /L) ,  tz = 0, kL,  f2L,  . 
= 0, otherwise. 

The s transform of u(n) is 

V ( Z )  = z (n /L)z*  
m - 

= 5 z(n)z-L* = x ( ~ L ) .  (6)  
n=-m 

The Fourier  transform of this  sequence  is 

v(eiof") = X(ei"T'L) 

= X(ehT) .  

Thus V(ehT') is periodic with period 2%/T=2r/LTt ,  rather 
than 2r/P as is the case  in  general  for  sequences  associated 
with a sampling period T'. Fig. 3(a)  shows V(ehT') for the 
case T'= T / 3 .  If we  wish to  obtain a sequence y(n)  such  that 

y ( n )  = &(nT') 
then we must  insure  that 

1 

T' 
Y(e*T') = - 8(0), 

Assuming that  

1 

T 
X ( e h 9  = - *(a), 

then  it is clear  from  Fig.  3(a), 

% % - -  SUI- T 

that  the images of (l/T)k(w) 

Fig. 3. Sampling rate increase (2'" = T / 3 ) .  (a) Fourier transform of e- 
quences x(%)  and v(n). (b) Fourier transform of desired output of 
interpolation process. 

in V(tiUT') that  are  centered at w = 2 r / T  and k / T  must be 
removed by a digital low-pass  filter that  rejects all frequencies 
in  the  range % / T  < I W I  <%/TI. Furthermore,  to  insure  that  the 
amplitude  is  correct  for  sampling  interval T', the gain  of the 
filter  must be L. That  is, 

Y(eW')  = a(ei.T')V(ej.T') = a(ei.r')X(ei"T) 

1 

T 
= - H(e*T')8(w) 

where H(ehT') is  periodic  with  period 21/T'  and 

B(ehT') = L, 10 I I - % 

T 
r 

= o ,  -<  ( U I  <T' 
1 

T 
Thus  the ideal  interpolation  scheme for  increasing the 

sampling  rate  requires  the  creation of a sequence of L-1 
zero-valued  samples  between  each  value of the original se- 
quence,  which  is  then  filtered  with an ideal  low-pass  filter as 
in (8). 

D. Changing by Nonintcgw Factms 
In  the previous  two  subsections we have discussed methods 

for  increasing  or  decreasing the  sampling  rate  using a linear 
time-invariant  digital filter. However, because of the  fact  that 
we required  that  the process be entirely a discrete-time  pro- 
cess, the new sampling period T' was  restricted  to be either  an 
integer  multiple  or  submultiple of the original sampling period 
T .  This  restriction can be eased  somewhat  by a two-step  pro- 
cess involving a sampling  rate  increase followed by a decrease. 

Suppose  the  desired  sampling period is T'=(M/L)T ,  
where M and L are integers. This does not seem to be a s i g  
nificant  limitation  in  practice  since  any  factor  can be approxi- 
mated as closely as desired by proper  choice of M and L. The 
two-step process  for interpolating to  a sampling period 
P = ( M / L )  T is as follows: 

1)  Increase  the  sampling  rate  by a factor of L by  inter- 
polation as in  Section  II-C.  Let  the  resulting  sequence be 
denoted yl(n)  with  sampling period T I =   T / L .  

2 )  Decrease the  sampling  rate  by a factor of M as in Sec- 
tion  II-B  to  obtain  the  desired  sequence y(n)  with  sampling 
period TI= MT1= (iK/L) T .  
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( C  1 
Fig. 4. Sampling  rate change by noninteger factor (T'= )T). (a) Fourier 

transform of x(%)  and o(n). (b) Fourier transform for increase of sam- 
pling rate by a factor of 3. (c) Fourier transform after sampling rate 
reduction by factor of 2. 

This process is illustrated  in  Fig. 4 for T'=$T;  Le., for a 
net  increase  in  sampling  rate.  Fig.  4(a) shows the  Fourier 
transform of the original sequence w(n). Fig. 4(b)  shows  the 
Fourier  transform of the  intermediate  sequence yl(n) which 
results  from  filtering  the  sequence 

~ ( n )  = ~ ( n ) ,  t~ = 0, +3,  f6, * * 

= 0, elsewhere 

with  an  ideal low-pass  filter having  gain 3 and cutoff frequency 
r / T .  The  result of reducing  the  sampliqg  rate of ylCn) by a 
factor of 2 is shown  in Fig.  4(c). 

If M <L, i.e., there is a net  increase  in  sampling  rate as 
in  Fig.  4, no aliasing can  occur,  and  the  interpolation filter can 
have a cutoff frequency a / T .  However if M >  L,  there  is a 
possibility of aliasing. In  this case  aliasing can be avoided  by 
making  the cutoff frequency of the  interpolation filter equal 
to */TI.  As in  Section 11-B, the  resulting  output  sequence 
y(n) will correspond to  samples of a low-pass  filtered  version 
of the original continuous  time  signal. 

111. INTERPOLATION USING FIR  DIGITAL FILTERS 
The previous section  makes it  abundantly  clear  that  the 

process of changing  the  sampling  rate  requires a low-pass 
filter. Since i t  is impossible to realize the  ideal low-pass  filter 
that  is required  for  exact  results, we must consider digital 
filters that  approximate  this ideal  behavior. As in all filtering 
problems,  there  are  many  important  considerations. A basic 
consideration is the choice between filters from  the class of 
F I R  filters and  from  the class of I IR  filters. Given  the type of 
filter to be used, the  problem of approximating  the ideal low- 
pass filter must be solved.  Finally,  there  are  important consid- 

erations  in how the filter is realized as software or hardware. 
A l l  of these  facets of the  problem  are interrelated-resulting 
in  arbitrary  tradeoffs  between  accuracy of interpolation  and 
efficiency of realization.  In  this  section we present  some ob- 
servations on filter  design and  realization  that seem to  imply 
that   FIR filters are  the  proper choice for  most  interpolation 
problems. 

A .  Phase Distortion 
The ideal interpolator  has  zero  phase  or at most a linear 

phase  corresponding  to  an  integer  number of samples of delay. 
I IR  filters cannot  have precisely linear  phase [6]. In  contrast, 
there  currently  exist  several  techniques  for designing optimal 
F I R  digital filters with precisely linear phase. These filters are 
optimal  in  the sense that  the  width of transition  band  between 
passband  and  stopband is minimum for  given values of pass- 
band  and  stopband  ripple  and specified passband  and s t o p  
band cutoff frequencies [7]- [ll]. These filters can be  designed 
with  arbitrarily  small  values for passband  ripple,  stopband 
ripple,  and  transition  bandwidth, at the  cost of increased im- 
pulse  response duration.  Thus  with  FIR filters, the  interpola- 
tion  error  due  to  phase  nonlinearity  can be zero  and  the  error 
due  to  amplitude  distortion  can be made  arbitrarily  small.  In 
the case of I I R  filters, although  extremely good amplitude 
characteristics  can be achieved,  there will always be an  inter- 
polation  error  due  to  phase  nonlinearity. 

B. Filter Realization 
I IR filters have recursive realizations  that  are  very eco- 

nomical in  terms of computational  complexity.  Leaving  phase 
considerations  aside, FIR filters in general require more  com- 
putation  to  achieve a given accuracy of approximation  to  the 
desired amplitude response than  do  IIR filters.  However, the 
particular  nature of the  interpolation problem makes F I R  
filters computationally  competitive  with  IIR filters. 

Consider  for convenience a zero-phase F IR  filter with  im- 
pulse  response h(n) which is nonzero in  the  interval 

where N is  an  odd  integer.'  In  reducing  the  sampling  rate  by 
an  integer  factor, i.e., TI=  MT, we may need a unity gain low- 
pass filter to  insure  that no aliasing  occurs  in retaining  only 
every  Mth  sample of the  sequence x(n).  In  thiscase  computa- 
tion  is  reduced because of the  nature of the desired output 
sequence.  The filtered output  sequence at the original sam- 
pling rate, defined as 9 ( n ) ,  is 

where all sequences  in (9) are  associated  with  sampling period 
T .  Clearly, all values of the  sequence 9(n)  need not be com- 
puted since the desired output  is 

where y(n) is  associated  with a sampling period TI=  MT. This 
is  in  contrast  to a comparable I IR  filter where  the  computa- 
tions  required to realize the poles  of the  system  function would 
have  to be camed out at the original sampling  rate  even 

1 See Section III-C for a comment on why N should be odd. 
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though M-1  out of M samples of f(n) would be discarded. 
A further simplification  results  from the  fact  that zero-phase 
F IR  filters  have the  property 

k(n) = k(- n). 
Thus  (loa) becomes 

~ ( n )  = k(K)[t(nM - k) + z(nM + k)] ((X-1) m 

&1 

+ k(O)z(nM). (lob) 

In  the case of sampling  rate  increase,  the  interpolated  out- 
put is obtained  with  sampling period T'= TIL by  filtering the 
sequence 

u(n) = z (n /L) ,  n = 0,  f L ,   f 2 L ,  - 
= 0, otherwise. 

In  this case it is convenient  to  write 

n+((N-I)/Z) 
y(n)  = o(K)h(n - K). ( 1  1) 

h - ( ( X - l ) / V  

Substituting  for o ( k )  results in 

n+((N-l) /2 )  

y(n) = x(R/L)k(n - R ) ,  k / L  an integer 
L-n-((N-l)/Z) 

t(n/L)+(W-l)/ZL)l 
I c x(k )k (n  - KL) ( 1 2 )  

L-[(nIL)-((N-l)/2L)I 

where [ a ]  means  "the  largest  integer  contained  in u." Al- 
though (11) suggests that  computation required  for  each out- 
put  sample  is  proportional  to N, we note  that  only  one  out of 
every L samples of u(n) is  nonzero. Thus we see  from (12) that  
the  actual  computation  required is proportional to  NIL. Note 
that  in  this  case  the  symmetry of the  impulse  response  cannot 
be exploited to reduce  computation. 

If an  I IR filter were  used,  relatively  little  saving  could  be 
achieved. In  fact,  in a cascade  realization,  almost  no  computa- 
tional  saving  could  be  attained  by  considering  the zeroes  in 
the  input sequence. 

Changing  the  sampling period according to T'= ( M / L ) T ,  
requires that  we first increase the  sampling  rate  by a factor L 
and  then  reduce  it  by a factor M. Clearly,  the  savings  previ- 
ously  discussed  could be incorporated  into  both  steps of this 
process. 

C.  Impulse Response Constraints 
The previous  discussion has  presented compelling  reasons 

for the use of linear-phase FIR filters in  interpolation. T o  con- 
clude  this  section we discuss  some  constraints  on  the  impulse 
response that  are specific to  the problem of interpolation. 
Recall that  the  output y(n) is given by (12). A reasonable 
requirement  on  the  interpolation  filter  is  that  the  values of the 
output at the original sampling  times be the  same as the origi- 
nal  samples.' That  is, for r an  integer, 

y(rL) = x(rL/L) = %(I), - m < I < 00. 
Equation (12) implies that 

tr+(N-1)/2Ll 
y(rL)  = ~ ( r )  = z(K)k(rL - KL) (13) 

LIr-(N-1) /2Ll 

* This Is ale0 a property of (2), as can be easily verihed. 

for  all  integer  values of r. From this equation, we see that 

h(0) = 1 

Constraints of this type are rather difficult to impose  on  an 
I I R  filter  design  procedure. 

Some final comments  on  the  choice of the  length of the 
impulse  response N are  in  order.  First, we have  assumed  that 
N is an  odd  integer; however, in  general N can be either  even 
or  odd  for  the  FIR filter. It can be shown [6],  [12] that  for N 
even, a linear-phase FIR filter must  have a delay of at least 
one-half sample. This one-half sample  delay itself corresponds 
to  interpolation  between  samples;  thus  such a filter  could  not 
preserve the  samples of the original  sequence.  Although  there 
may be instances  where  the  half-sample  delay  may  not be 
objectionable,  or  may  even be desirable,  odd  values of N a p  
pear to be appropriate  for  most  applications. 

A second  comment  regarding  the  choice of N concerns the 
fact  that we have  asserted that  by increasing N, we can 
achieve a better  approximation  in  the  frequency  domain to  
the ideal  interpolating filter. In  the  time  domain, increasing 
N implies that  more  values of the original  sequence are in- 
volved  in the  computation of a given interpolated  sample  and 
thus we should  expect  increasingly  better  results as N in- 
creases. We  have  observed that  because the  sequence u(n) has 
mostly  zero  samples, the  computation  is  proportional  to NIL, 
since the  impulse  response  always  spans  approximately NIL 
nonzero  samples.  Suppose that we wish to  always  have Q 
samples of the original input sequence  involved  in the compu- 
tation of each  interpolated  sample. Using (12) i t  is  easily 
shown  that  the  length of the  impulse  response  should be 

N = QL, if Q and L are   odd 

= QL - 1 ,  if either Q or  L are  even. ( 1 5 )  

If N is  slightly  larger  than  this  value;  the  computation of some 
interpolated  samples will involve Q+ 1 original  samples  while 
the  rest will involve  only Q. If N is  slightly  smaller  than  the 
value given by (15), then  the  interpolation will involve  either 
Q or Q-1  samples. Thus  to  insure  that Q samples of the 
original  sequence  are  always  involved, N should  satisfy (15). 

This  constraint  is  satisfied, as we will see,  for  filters  derived 
from classical interpolation  formulas. I t  is also important  in 
hardware  and  software  realizations of interpolation  filters 
where i t  allows the  computations  to be structured so that one 
does not  have  to  check  for  zero  samples  in  order  to  eliminate 
multiplications  by zero. 

IV. CLASSICAL POLYNOMIAL  INTERPOLATION 
In  this  section we apply  the  previous discussion of the 

interpolation process to  a study of classical polynomial  inter- 
polation  methods.  Our  aim is to  give a frequency  domain  inter- 
pretation of these  formulas  that will shed  some  light  on  their 
applicability  in  interpolation  problems  arising  in  digital  signal 
processing. In  the course of this  discussion, we shall  indicate 
how to  derive  linear  phase  interpolation  filters  from  tables of 
Lagrange coefficients. We begin with a discussion of linear 
interpolation. 

A .  Linear Intcrpobtwn 
Linear  interpolation  involves  only two consecutive  sam- 

ples of the original sequence r (n)  in  the  computation of an 
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interpolated  sample. Specifically, the  values  interpolated be- 
tween  two  samples x ( 0 )  and x(1)  lie on a straight  line  connect- 
ing  the  two original  samples,3 with  the original samples of 
course  being preserved.  Thus  the  equation  relating  the  output 
y(n), having  sampling period T’=  TIL, to  the  input  sequence 
x ( % ) ,  having  sampling period T ,  is 

= x(0) 1 - - + z(1) - , 0 I n < L. (16) ( 2) (3 
In  order  to  interpret  linear  interpolation as a linear filter- 

ing process, we must  derive  an  impulse response  for the  linear 
interpolation filter. This  can be done  by  comparing (16) to 
( 1 2 ) .  T o  begin, i t  is clear that  the  length of the  impulse  re- 
sponse  must be 

N = 2 L - l  

as discussed in  Section 111-C. If N were larger, more than 2 
samples of x(n)  would be involved  in  the  computation of some 
of the  interpolated  values. Likewise, if N were smaller,  only 
one  sample of the  input would enter  into  the  computation of 
some of the  interpolated values.  Using this  information, we 
can  write (12) as 

y(n)  = z(O)h(n) + z ( l ) h ( n  - L ) ,  0 I n < L. ( 1 7 )  

Comparing (16) and (17) we see that 

n 

L 
h ( n ) = 1 - - - ,   O L n < L  

h(n - L) = - 
n 

L 
O I n < L .  

Thus h(n) is  seen  to be 

h(n) = 1 - Inl /L ,  In I < L 
= 0, otherwise. (18) 

Clearly h(n) satisfies the  requirements of (14) since h(0)=1 
and h(n) = 0 for I nl > L. The  length of the  impulse response is 

N = 2 L - l  

consistent  with (15) for Q = 2 .  
Fig. 5 depicts  linear  interpolation as a convolution process. 

The  sequence u ( k )  and  the  triangular  envelope of the  impulse 
response h ( n - k )  are  shown  for  the case of T’=  T / 5 .  I t  is  clear 
that  because the  impulse response has  duration  N=5(2)-1 
= 9 ,  only two nonzero samples of o ( k )  are  ever  coincident  with 
h ( n - k ) .  Also i t  is clear that  

y (n)  = z ( n / L ) ,  n = 0,  k L ,   + 2 L ,  . * . 
The  system  function Corresponding to  linear  interpola- 

tion is 

This  system  function  is  plotted  in  Fig. 6 for L = 5 .  (Curve 

v ( k  1 

t 
x (  3 )  

1 
’k 

3L 

Fig. 5. Linear filtering interpretation of linear interpolation. 
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Fig. 6. Comparison of Lagrange interpolation 
frequency responses for L= 5. 

labelled Q = 2. )  We recall that  the  purpose of the  interpolation 
filter is to remove  the  images of the signal spectrum  that  are 
centered at integer  multiples of 2 r / T ,  while leaving  the fre- 
quencies below r / T  unaltered. I t  can be  seen from Fig. 6, that  
linear  interpolation achieves  significant attenuation  in  only a 
very  small region around  each  integer  multiple of 2 r / T .  Spe- 
cifically, attenuation is 40 dB or  greater  in a band of width 
0.35u/T centered a t  2 r / T ,  k / T ,  etc.  Thus  it  seems reason- 
able  to  note  that  linear  interpolation is appropriate  only if the 
original sampling  rate  is  many  times  the  Nyquist  rate. 

B.  Lagrange Interpolation 
Clearly  linear  interpolation will not be satisfactory in 

many  digital signal  processing applications. In  classical  nu- 
merical analysis,  the  inadequacies of linear  interpolation lead 
to  the use of higher order  polynomials; i.e., in  contrast  to con- 
necting  two  points  by a straight line, one finds a polynomial of 
degree Q -  1 that  passes through Q original samples.  The  inter- 
polated  values  then,  are  samples of this polynomial. A variety 
of formulas  have been derived  for  obtaining  samples of the 
polynomial directly  from  the  samples x ( % ) ,  however  since we 
are  only  interested  in  the  interpolation filter corresponding  to 
polynomial interpolation, we shall use the  most  convenient 
form;  namely,  the  Lagrange  interpolation  formula [13], [14]. 
The  form  corresponding  to  interpolation  with  equal  spacing 
from  sampling period T to T’=  T/L is 
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hIn 1 
y (n)  = AtQ(n/L)z(R) ,  Q even  (20a) 

&((+-I) /2) 

y (n)  = ArQ(n/L)z(k) ,  Q odd (2%) L .5 

01  

0 

( ( e l )  /a) 0 .S 0 

k--((Q-l) /2) 
0 

0 

where  we  have  again  chosen to  consider  interpolation  around 0 

some arbitrary  time labelled 0. In (20),  the  quantities AtQ( . )  
are called the  Lagrange coefficients and  are given  by the  equa- - 
t iOnS 

-a 
-L 0 L 2L 

(- f ) k + Q / r  (a) 
AkQ(f) ((7) + R )  !(+ - k ) ! ( f  - k) b( r )  

t 
+ p - i), Q even 

Q 

bl 
0.  t 
L.5 

AkQ(f) = ((T) + k) !((?) - R ) ! ( f  - R )  

-E (1 + (y) - i), Q odd. (21b) 
i-0 

Extensive  tabulations of these coefficients are  available  in 
tables of mathematical  functions [IS]. I t  is interesting  to  note 
that  

AkQ(t) = 0, t a n  integer, and # R .  

= 1, t = k. 

This is a result of the fact that  the interpolation  polynomial 
passes through  the Q original data samples. Tha t  is, 

y(kL) = z(k), for k an integer. 

Thus  the  condition of (14) is  satisfied  for  Lagrange  interpola- 
tion filters. 

In general, the  formulas  in (20) may be evaluated  for  any 
value of n such  that 

Q even 

In this  case the same Q original  samples  are  involved  in the 
computation of all the  interpolated  samples  in  the  time  inter- 
val  spanned  by  the original  samples. If  we perform the  inter- 
polation  with a linear  filter, we can choose the  length of the 
filter  impulse response so that Q original samples  are  always 
involved  in the  computation: however, a given set of Q 
original  samples  is  used  only to  compute  L-1  interpolated 
samples. Thus we can  interpret  the  Lagrange  formulas  in (20) 
in  terms of Q- 1 different  impulse  responses-corresponding 
to  the Q-1 different  interpolation  intervals  between  the Q 
original  samples. As an  example,  consider  the  case for Q = 3. 
In  comparing (12) and  (20b), we note  that  the  three  samples 
~ ( - 1 ) ~  x ( O ) ,  and x(1)  can  enter  into  the  interpolation  in  two 

't t 

I b )  

Fig. 7. Impulse re8pomea for three-point (Q = 3) Lagrange  interpolation. 

interval O<n<L. 
(a) Interpolation in the  interval - L<n<O. (b) Interpolation in the 

intervals.  Thus 
1 

Y(n) = AkQ(n/L)z(k) 
b l  

1 

= z (k )k (n  - RL) 
t--1 

for  values of n 

- L < n S O  

O S n < L .  

If  we compare  the  above  two  equations, we obtain 

k(n + L )  = A-l'(n/L) 

k(n) = Ao'(n/L) 

k(n - L )  = A l a ( n / L ) .  

If these  equations  are  evaluated for the first  interval we obtain 
the  impulse  response of Fig.  7(a)  where L = 5 .  Likewise,  Fig. 
7(b)  shows the  impulse  response  corresponding  to  Lagrange 
interpolation  in  the  second  interval.  Clearly  neither of these 
impulse  responses  has  linear  phase,  since  they  do not  satisfy 
the  symmetry  condition h ( n ) = h ( - n ) .  Indeed, i t  is easy to  
show that whenever Q is odd, none of the impulse  responses 
corresponding to  Lagrange  interpolation  can  have  linear 
phase.  However, if Q is even,  one of the Q- 1 impulse re- 
sponses  does  have  linear  phase. 

As a second  example  suppose Q=4. Using  (20a) we obtain 

2 

Y(n) = A b 4  ( n / L )  Z ( k ) .  (22) 
k=-1 
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Fig. 8. Impulse responses for four-point (Q = 4) Lagrange interpolation. 

As in  the  previous  example we can  evaluate ( 1 2 )  for N = QL - 1 
and we obtain  the  equation 

2 

~ ( n )  = x(K)h(n - KL) 
k-I 

from which by  comparison  to ( 2 2 )  we obtain 

h(n + L )  = L 1 4 ( n / L )  

h(n) = Ao4(n /L)  
k (n  - L)  = A14(n /L)  

h(n - 2L) = As'(n/L). 

These  equations  can be evaluated  in  the 3 intervals 

I: - L < n S O  

11: O < n < L  

111: L < n 2L 

to  obtain  the  three  impulse responses shown in Fig. 8 for  the 
condition L = 5 .  The  exact  values  for  the  three  impulse re- 
sponse coefficients are also  given in Fig. 8. We  note  that  the 
impulse response corresponding to  interpolation in the  central 
interval 0 In <L, is symmetric  and  thus  has  zero phase. The 
two  other  impulse responses clearly  do  not  have  linear  phase. 
Indeed,  it  is  clear  that, in general,  Lagrange  interpolation  has 
phase distortion  except  in  the Q even  case  and  interpolation 
in  the  central  interval.  Thus  if we wish to use impulse  re- 
sponses derived  from  the  Lagrange  interpolation  formula for 
interpolation in  signal  processing applications we should use 
the  conditions  that yield zero  phase. In  general the  linear 

phase  impulse response derived  from a Q point  Lagrange  inter- 
polation  formula  is  obtained  from  the  equations 

. . . . . . . . . . . . . . . . . .  
h(n + L )  = A-lQ(n/L)  

h(n) = AoQ(n/L) 

k(n - L )  = AlQ(n /L)  
s . . . . . . . . . . . . . . . . .  

where 0 In < L. 
In  Fig. 6 we have  plotted  the  frequency response of the 

zero-phase interpolators  derived  in  this  manner for  Q = 2,4,6,8, 
and L = 5 .  Since  the  impulse response duration is N =  QL- 1 ,  
N = 9 ,  19, 29, 39 for these cases. Clearly,  the effect of increas- 
ing Q is  to  improve  the  frequency response of the  interpolator. 
Whereas  the  linear  interpolator  has  40-dB  attenuation  in a 
bandwidth of 0.35rlT centered  around  each  integer  multiple 
of 2 r / T ,  for  the  4-point  and  6-point  interpolators,  the  band- 
widths  are O.7r/T and O.%/T, respectively,  for a t  least 40-dB 
attenuation.  Thus at the expense of increased computation, 
we can  achieve a  significantly better  interpolation by  using a 
filter derived using (23 ) .  

The  interpolation filters derived  from  the  Lagrange  inter- 
polation  formula  achieve high attenuation  in a narrow  band 
around  integer  multiples of 2*/T because the zeroes of the 
system  function  tend to be clustered  about  those frequencies. 
For  example,  in  the case of linear  interpolation  (Q= 2), by 
looking at (19) we see that H(e)  has a double  zero  on  the  unit 
circle at integer  multiples of 21/T.  For  Q=4, we have  found 
that  there  are  clusters of 4  zeroes not precisely on  the  unit 
circle but close in  the  vicinity of w = 2 r / T ,   k / T ,  etc. As a 
result,  the  attenuation close to frequencies 2 r / T  and 4a/T 
is very high. This is clear from  Fig. 9,  where  the  system  func- 
tion for the case  Q = 6 is plotted  on a log scale.  However, i t  is 
also  clear that  between 2 r / T  and h/T, the response of the 
Lagrange  interpolation filter leaves  much  to be  desired. 
Clearly, as Q gets  larger,  the  impulse response gets longer and 
there  are more  zeroes to distribute so as to  increase  the  attenu- 
ation  and  broaden  the  attenuation  bands.  This raises the 
question as to how we might design F IR  digital filters so as to 
make  the  best use of the filter zeroes. 

V. OPTIMUM FIR INTERPOLATION FILTERS 
In  practical  situations,  signals  are  often  sampled at a rate 

that is only slightly higher than twice the  Nyquist  frequency 
in order  to minimize the  computation  required for digital 
filtering  and  other signal  processing  procedures. In  this  case, 
the ideal interpolation filter  for increasing  the  sampling  rate 
has  constant  gain  in  the  frequency  range 0 I I W I  < r / T ,  and 
zero gain elsewhere. For  such  signals we are clearly interested 
in  the  best possible approximations  to  the  ideal low-pass 
filter. 

On  the  other  hand, in situations where the original se- 
quence x(n)  is derived  by  sampling at a rate  considerably 
higher than twice the  Nyquist  frequency, we require a rela- 
tively  narrow  passband of constant  gain  and a number of stop- 
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Fig. 9. Frequency respome of six-point (Q = 6) linear phase Lagrange 
interpolation filter. L = 5, N = 29. 

bands of zero  gain,  with  the  frequency response  being  some- 
what  arbitrary elsewhere. This  means  that high-order  poly- 
nomial interpolation  filters  may  be  quite  satisfactory  for 
signals that   are sufficiently oversampled.  However, it is gen- 
erally possible to  achieve significantly better  interpolation 
filters  using optimization  techniques. 

A .  Design Spccificotwns 
A scheme for approximating  the ideal interpolator  is 

shown  in  Fig. 10. There  is a band of frequencies, 0 <w <wp, 
called the  passband  in which the  frequency response should be 
close to 1.‘ In  practice we allow  for an  error of f61. In  addi- 
tion,  there  are  one  or more stopbands in  which the  frequency 
response is  required  to be within f a n  of zero. The choice  of 
the  parameters  in Fig. 10 depends  upon  the desired accuracy 
of interpolation  and  to  some  extent  upon  the  nature of the 
input sequence. The choice of passband  and  stopbands de- 
pends  upon  the  Nyquist  frequency of the original  signal. If the 
original sampling period is such that r / T  d l ,  then wp must 
be very close to r / T ,  and  the first stopband,  beginning at w,,, 

approximate L in the passband instead of 1.0. This is  easily accomplished 
4 If the sampling rate is increased by a factor of L, the  6lter gain must 

by mnltiplying  the impulse response samplea by L. 
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must  also be close to r / T .  Thus  the  transition  band wp<w 
<wn, must be very  narrow, which implies that  a large  value of 
N will be required. 

I n  such cases, it is reasonable  to define only  one  stopband, 
w,, <w < r / T ‘ .  However,  in cases where r / T  is significantly 
higher than  the  Nyquist  frequency,  the  transition  band be- 
tween  passband  and  stopband  can be  wider, and  i t  makes  sense 
to define stopbands  around  each  integer  multiple of 2 r / T ,  
with  transition  bands w,,+hW, <w <u,~, etc.,  in which the fre- 
quency response is  unconstrained. As can  be  seen  from Figs. 6 
and 9, this  is  the  type of frequency response that characterizes 
the  Lagrange  interpolation filters. 

B .  Design Techniques 

expressed as 
The frequency response of a zero-phase F I R  filter can be 

(N-1) / 2  

E(ehT’) = h(0) + 2 h(n) cos (wnT’).  (24) 
n-1 

The tolerance  scheme  depicted  in Fig. 10 can be expressed as 
the following set of inequalities: 

1-KK621H(ehTf)51+K62,  O l w l w ,  (25)  

- 6 2  I H(ehT’) I&, w ~ I w I w ~ + A w I  

w . , ~ w I w , ~ + A w ~  (26) 

where we have defined K = &/Zit as the  ratio of the  passband  to 
stopband  error. For a given N and K, these  equations  may be 
evaluated  on a dense set of frequencies  in  the specified pass- 
band  and  stopbands  and  may  be  solved  for {h (n)  ] and 6, 
using either  linear  programming  techniques [ll] or  discrete 
Chebyshev  approximation  techniques [ l o ] .  I t  has been shown 
[ l o ]  that  the filters  designed by  these  techniques  are  optimum 
in  the  sense of having  the  narrowest  transition  bands  for  given 
61 and as. For  these filters, the  error  in  the  passband  and  stop- 
bands  exhibits an  equiripple  behavior..An  example of a low- 
pass  fiker designed by  linear  programming is shown  in  Fig. 11. 
In  this  case L=5,   N=29  (Q=6) ,  w , = O . h / T ,  w , , = l . k / T ,  
K =  1.0. The  resulting filter has 61=6r=0.00586. (The filter 
gain has been normalized to 0 dB for  convenience in  plotting.) 
The equiripple  behavior of the  stopband  is  readily  apparent. 

The filter in  this  example does not  satisfy  the  constraints 
on h(n) given in (14); however, these  constraints  are  linear 
and easily can be added to the  constraints of ( 2 5 )  and (26). 
Thus  in  the  optimization  procedure h(0) is  constrained  to 1.0 
and h( f L) ,  h( f 2L), etc., are  set  to 0. The filter performance 
is  only  slightly  degraded  by  the  addition of these  constraints. 
Fig. 1 1  shows an  example  where all the fixed-design parameters 
were the  same as in  the  previous example. In  this case the 
resulting  value of &=& was 0.00599. I t  can  be seen from  Fig. 
12 that  the  equiripple  nature of the  frequency response is 
destroyed, but with  little sacrifice in  performance. 

If the original  signal bandwidth  is  much less than r / T ,  
a bandstop filter may  provide  superior  performance  to a com- 
parable low-pass  filter. Fig. 13 shows an  example  for L = 5  
where N = 2 9 ,   w , = O . h / T ,   ~ . ~ = l . i r / T ,   A w l = & = 0 . 6 r / T ,  
w,,~=3.7r/T,andK=l.O.Inthiscase6~=6~=0.0000681.Thus 
thls filter does a much  better  job of attenuating  the  images of 
the  signal  spectrum  around  the frequencies 2r/T and k / T ,  
but  only if the original signal  bandwidth  was  much less than 
r / T .  I t  can be seen that  the  extra  attenuation  around 2 r / T  
and k / T  is  obtained at the expense of the regions around 
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Fig. 11. Frequency response of a typical low-pass interpolation filter 
designed by linear  programming. L = 5,  Q = 6, N = 29, up= 0 . 6 r / T ,  
u.~= 1 . 4 ~ / T ,  61 = 6z=O.W586. (No impulse  response constraints.) 
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Fig. 12. Frequency response  for the example of Fig. 1 1 ,  with impulse 
response constraints. In  this case 61 = 62 = 0.00599. 
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Fig. 13. Frequency response of a typical bandstop interpolation filter 

o , , = 1 . 7 r / T . o s = 3 . 7 * / T .   A W = A W Z = O . ~ T / T ,  and 61=6~=0.oooO681. 
designed by linear  programming. L =  5 ,  Q = 6 ,  N=29,  w , = 0 . 3 ~ / T ,  
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Fig. 14. Comparison of linear-phase  Lagrange interpolators and opti- 

mum bandstop filters ( L  = 5). Plots show minimum stopband attenua- 
tion as a function of half the stopband width. For the optimum 
bandstop filter (N = 29), the curve is off scale for oP<0.2r/T. 

31/T and  5s/T where  the  attenuation  is much less. Thus 
optimum filters of this  type  (and classical  filters) should  only 
be used if one is certain of the  bandwidth of the  input se- 
quence. 

C.  Comparison to Classical  Interpolators 
I t  is of considerable  interest  to  compare  the filters derived 

from classical interpolation  formulas  and  those designed  by 
linear  programming. In the design of the  optimum filters, the 
parameters of the  tolerance  scheme of Fig. 10 were set so that  
&= 62 with  symmetrical  stopbands of width Awl=A%= . . 
= h, centered a t  integer  multiples of 27r/T. This is reasonable 
since  in interpolation,  preservation of the  passband is gen- 
erally as important  as rejection of stopbands.  In  order  to  com- 
pare  the  Lagrange filters to  the  optimal filters, values of 61 and 
6 2  were measured at   the edges of the  passband  and  the  first 
stopband,  respectively.  Since for the  Lagrange filters, 61 is 
always  greater  than B 2  for the  above definition of passband 
and  stopbands,  the  comparison  has been made on the basis of 
passband  error. 

Fig. 14 shows such a comparison for the case L = 5 . 5  The 
solid curves  are for linear-phase filters derived  from  the  La- 
grange  interpolation  formula where N = QL - 1 and Q = 2, 4, 
and 6 .  These  curves show the  error  in decibels at   the edge of 
the  passband, i.e., 20 loglo &, as  a  function of up. As an ex- 
ample, for linear  interpolation ( Q =  2 and N = 9 )  we see that 
the  passband  error is - 42 dB for up = O.ln/T.  Furthermore, 
since &>6? we can  say  that  the  attenuation is a t  least 42 dB 
in the region (2r/T-O.l7r/T)  <u<(27r/T+O.la/T).  For 
wider bandwidths,  the  performance is worse:  however, for 
higher order  interpolators  the  performance becomes appreci- 
ably  better as is expected. 

The  dotted  curves in Fig. 14 show passband  error for band- 
stop filters  designed by  linear  programming. By comparing 
corresponding  curves,  it  can be  seen that  the  optimum designs 
are  always significantly better  than  the  corresponding classi- 
cal interpolator,  with  the  improvement being most  striking for 
narrow  bandwidths  and for the higher order  filters. 

Clearly,  there  are  a  variety of optimum designs correspond- 
ing  to  situations in which passband  and  stopband  approxima- 
tion errors  are  not  treated  as being of equal  importance.  For 
example if & = K&, then  the case K > 1 corresponds to placing 
more importance on stopband  attenuation  than on passband 

5 The comparisons  are  similar for larger values of L. 
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Fig. 15. Comparison of optimum  bandstop  and optimum low-pass inter- 
polationfilters(L=5).ThecurveforN=29isoffscaleforwp<0.2r/T. 

error.  This  situation would be a more  favorable  situation for 
the classical  filters, although i t  is always possible to design  a 
better filter  using the  optimum design  procedures. 

Another  interesting  comparison is between optimum low- 
pass  filters and  optimum  bandstop filters. T o  compare  these 
filters, we set 

2* 4* 

T T 

and & =&2= 2 w p  for the  bandstop filters and 

* p = - -  WI1  = - - * I 2  

2* 

T 

and &=T/T’--W,, for the low-pass  filters. That  is, both filters 
were  designed to  accommodate  the  same  input  signal  band- 
width. Fig. 15 shows the difference between  stopband  attenua- 
tions  for  the  bandstop filters and  the low-pass  filters as a func- 
tion of bandwidth.  From  these  curves we see that for  narrow 
bandwidths  the  bandstop filters have significantly greater 
attenuation; however as the  bandwidth  approaches half the 
original sampling  frequency,  there  is no difference between  the 
two types of filters. 

U P = - -  *a1 

VI. CONCLUSIONS 
I n  this  paper we have discussed the process of interpolation 

as a problem in  digital filtering. Most of our discussion has 
involved  frequency-domain  representations of the  interpola- 
tion process and design criteria  for  digital  interpolation filters. 
We  have  taken  this  approach because i t  is  the  most  reasonable 
for  digital signal  processing applications where i t  is necessary 
to either  raise or lower the  sampling  rate of a signal.  This 
point of view is  in  contrast  to  that of interpolation  in  tables 
where  one  is concerned primarily  with minimizing the  error  in 
a particular  interpolated  sample. Because of the  variety of 
factors involved in  the design of an  interpolation filter, we 
have  not tried to give  design formulas  and  error  bounds  that 
would have  limited  value,  but  rather we have chosen to at- 
tempt to illuminate  the  important  factors  involved  in  the 
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interpolation process and  to discuss  general  design procedures 
that can be adapted  to a variety of situations. 

In  particular, we have  argued that linear-phase F I R  filters 
have  many  attractive  features  for  discrete-time  interpolation 
and  have  shown how they  may be efficiently utilized.  Classical 
polynomial interpolation  has been  discussed in  the  context of 
digital signal  processing. Interpolation filters derived  from 
polynomial interpolation  formulas  are  attractive because the 
impulse response can be  easily computed  or looked up  in a 
table.  However, we have  seen  that  the  frequency response of 
such  systems  leaves  much  to be  desired in  digital signal .pro- 
cessing applications  where  the original sampling  rate  may be 
only  slightly  above  the  Nyquist  rate. 

As an  alternative  to filters based  on classical interpolation 
formulas, we discussed optimum low-pass and  bandstop  FIR 
filters that  were  designed by  linear  programming. The  band- 
stop  filters  have  frequency responses that  are  very  similar  to 
the classical interpolators,  but  are  always  superior.  The  band- 
stop designs appear  to be most  important for  cases when  the 
original sampling  rate  is  several  times  the  Nyquist  rate, while 
the low-pass  designs are  appropriate  when  the original sam- 
pling rate  is close to the  Nyquist  rate. 
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