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A DIGITAL SIGNATURE SCHEME SECURE AGAINST
ADAPTIVE CHOSEN-MESSAGE ATTACKS*
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Abstract. We present a digital signature scheme based on the computational difficulty of integer
factorization.

The scheme possesses the novel property of being robust against an adaptive chosen-message attack:
an adversary who receives signatures for messages of his choice (where each message may be chosen in a

way that depends on the signatures of previously chosen messages) cannot later forge the signature of even
a single additional message. This may be somewhat surprising, since in the folklore the properties of having
forgery being equivalent to factoring and being invulnerable to an adaptive chosen-message attack were
considered to be contradictory.

More generally, we show how to construct a signature scheme with such properties based on the
existence of a "claw-free" pair of permutations--a potentially weaker assumption than the intractibility of
integer factorization.

The new scheme is potentially practical: signing and verifying signatures are reasonably fast, and
signatures are compact.
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1. Introduction. The idea of a "digital signature" first appeared in Diffie and
Hellman’s seminal paper, New Directions in Cryptography [DH76]. They propose that
each user A publish a "public key" (used for validating signatures), while keeping
secret a "secret key" (used for producing signatures). In their scheme user A’s signature
for a message M is a value which depends on M and on A’s secret key, such that
anyone can verify the validity of A’s signature using A’s public key. However, while
knowing A’s public key is sufficient to allow one to validate A’s signatures, it does
not allow one to easily forge A’s signatures. They also proposed a way of implementing
signatures based on "trap-door functions" (see 2.1.1).

The notion of a digital signature is useful and is a legal replacement for handwritten
signatures [LM78], [MAT9]. However, a number of technical problems arise if digital
signatures are implemented using trap-door functions as suggested by Diffie and
Hellman [DH76]; these problems have been addressed and solved in part elsewhere.
For example, [GMY83] showed how to handle arbitrary or sparse message sets and
how to ensure that if an enemy sees previous signatures (for messages that he has not
chosen) it does not help him to forge new signatures (this is a "nonadaptive chosen-
message attack"; see 2.2).

The signature scheme presented here, using fundamentally different ideas than
those presented by Diffie and Hellman, advances the state of the art of signature
schemes with provable security properties even further; it has the following important
characteristics:

What we prove to be difficult is forgery, and not merely obtaining the secret
key used by the signing algorithm (or obtaining an efficient equivalent algorithm).
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Forgery is proven to be difficult for a "most general" enemy who can mount
an adaptive chosen-message attack. (An enemy who can use the real signer as "an
oracle" cannot in time polynomial in the size of the public key forge a signature for
any message whose signature was not obtained from the real signer.) In contrast to
all previous published work on this problem, we prove the scheme invulnerable against
such an adaptive attack where each message whose signature is requested may depend
on all signatures previously obtained from the real signer. We believe that an adaptive
chosen-message attack is the most powerful attack possible for an enemy who is
restricted to using the signature scheme in a natural manner.

The properties we prove about the new signature scheme do not depend in any
way on the set of messages to be signed or on any assumptions about a probability
distribution on the message set.

Our scheme can be generalized so that it can be based on "hard" problems
other than factoring whenever one can create claw-free trap-door pair generators.

Our scheme can be based on any family of pairs of claw-free permutations, yielding
a signature scheme that is invulnerable to a chosen-message attack even if the claw-free
permutations are vulnerable to a chosen-message attack when used to make a trap-door
signature scheme (see 2.1.1).

Fundamental ideas in the construction are the use of randomization, signing by
using two authentication steps (the first step authenticates a random value which is
used in the second step to authenticate the message), and the use of a treelike branching
authentication structure to produce short signatures.

We note that our signature scheme is not of the simple Diffie-Hellman "trap-door"
type. For example, a given message can have many signatures.

Our signature scheme is seemingly "paradoxical," in that we prove that forgery
is equivalent to factoring even if the enemy uses an adaptive chosen-message attack.
We can restate the paradox as follows:

Any general technique for forging signatures can be used as a "black box" in
a construction that enables the enemy to factor one of the signer’s public moduli (he
has two in our scheme), but

The technique of "forging" signatures by getting the real signer to play the role
of the "black box" (i.e., getting the real signer to produce some desired genuine
signatures) does not help the enemy to factor either of the signer’s moduli.

Resolving this paradox was previously believed to be impossible and contradictory
([Wi80] misled by Rivest).

The rest of this paper is organized as follows. In 2 we present definitions of
what it means to "break" a signature scheme and what it means to "attack" a signature
scheme. In 3 we review previously proposed signature schemes. In 4 we review
more closely the nature of the "paradox," and discuss how it can be resolved. Section
5 defines some useful conventions and notation, and 6 describes the complexity-
theoretic foundations of our scheme. In 7 we give some of the fundamental notions
for our signature scheme, and in 8 we give the details. In 9 we prove that it has
the desired properties. In the last section we discuss some ways to improve the running
time and memory requirements of this scheme.

2. Fundamental notions. To properly characterize the results of this paper, it is
helpful to answer the following questions:

What is a digital signature scheme?
What kinds of attacks can the enemy mount against a digital signature scheme?
What is meant by "breaking" the signature scheme?
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Little attention has been devoted so far to precisely answering these questions.
For instance, signature schemes have been generically called "secure" without specify-
ing against what kind of attack. This way, it would not be surprising that "secure"
signature schemes were later broken by an unforseen attack. We hope that the
classification we propose in this section may prove useful in resolving unpleasant
ambiguities.

2.1. What is a digital signature scheme? A digital signature scheme contains the
following components:

A security parameter k, which is chosen by the user when he creates his public
and secret keys. The parameter k determines a number of quantities (length of
signatures, length of signable messages, running time of the signing algorithm, overall
security, etc).

A message space, which is the set of messages to which the signature algorithm
may be applied. Without loss of generality, we assume in this paper that all messages
are represented as binary strings, that is, {0, 1}/. To ensure that the entire signing
process is polynomial in the security parameter, we assume that the length of the
messages to be signed is bounded by k c, for some constant c > 0.

A signature bound B, which is an integer bounding the total number of signatures
that can be produced with an instance of the signature scheme. This value is typically
bounded above by a low-degree polynomial in k, but may be infinite.

A key generation algorithm G, which any user A can use on input 1 k (i.e., k in
unary) to generate in polynomial time a pair (PA, S) of matching public and secret
keys. The secret key is sometimes called the trap-door information.

A signature algorithm r, which produces a signature r(M, SA) for a message
M using the secret key SA. Here o- may receive other inputs as well. For example, in
the scheme we propose first, o- has an additional input which is the number of previously
signed messages.

A verification algorithm V, which tests whether S is a valid signature for message
M using the public key PA. (That is, V(S, M, PA) will be true if and only if it is valid.)
Any of the above algorithms may be "randomized" algorithms that make use of auxili-
ary random bit stream inputs. We note that G must be a randomized algorithm, since
part of its output is the secret key, which must be unpredictable to an adversary. The
signing algorithm r may be randomized--we note in particular that our signing algor-
ithm is randomized and is capable of producing many different signatures for the same
message. In general, the verification algorithm need not be randomized, and ours is not.

We note that there are other kinds of "signature" problems that are not dealt with
here; the most notable being the "contract-signing problem" where two parties wish
to exchange their signatures to an agreed-upon contract simultaneously (for example,
see [B183], [EGL82], [BGMR85]).

2.1.1. A classical example: trap-door signatures. To create a signature scheme,
Diffie and Hellman proposed that A use a "trap-door function" f: informally, a function
for which it is easy to evaluate f(x) for any argument x but for which, given only f(x),
it is computationally infeasible to find any y with f(y)=f(x) without the secret
"trap-door" information. According to their suggestion, A publishes f and any one
can validate a signature by checking that f(signature)= message. Only A possesses the
"trap-door" information allowing him to invertf: f-(message) signature. (Trap-door
functions will be formally defined in 6.) We call any signature scheme that fits into
this model (i.e., uses trap-door functions and signs by applying f- to the message) a
trap-door signature scheme.
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We note that not all signature schemes are trap-door schemes, although most of
the ones proposed in the literature are of this type.

2.2. Kinds of attacks. We distinguish two basic kinds of attacks:
Key-only attacks in which the enemy knows only the real signer’s public key, and
Message attacks where the enemy is able to examine some signatures correspond-

ing to either known or chosen-messages before his attempt to break the scheme.
We identify the following four kinds of message attacks, which are characterized

by how the messages whose signatures the enemy sees are chosen. Here A denotes the
user whose signature method is being attacked.

Known-message attack. The enemy is given access to signatures for a set of
messages ml, , mr. The messages are known to the enemy but are not chosen by him.

Generic chosen-message attack. Here the enemy is allowed to obtain from A
valid signatures for a chosen list of messages ml," ", mt before he attempts to break
A’s signature scheme. These messages are chosen by the enemy, but they are fixed and
independent of A’s public key (for example the mi’s may be chosen at random). This
attack is nonadaptive: the entire message list is constructed before any signatures are
seen. This attack is "generic" since it does not depend on the A’s public key; the same
attack is used against everyone.

Directed chosen-message attack. This is similar to the generic chosen-message
attack, except that the list of messages to be signed may be created after seeing A’s
public key but before any signatures are seen. (The attack is still nonadaptive.) This
attack is "directed" against a particular user A.

Adaptive chosen-message attack. This is more general yet: here the enemy is also
allowed to use A as an "oracle"; not only may he request from A signatures of messages
which depend on A’s public key but he may also request signatures of messages which
depend additionally on previously obtained signatures.

The above attacks are listed in order of increasing severity, with the adaptive
chosen-message attack being the most severe natural attack an enemy can mount. That
the adaptive chosen-message attack is a natural one can be seen by considering the
case of a notary public who must sign more-or-less arbitrary documents on demand.
In general, the user of a signature scheme would like to feel that he may sign arbitrary
documents prepared by others without fear of compromising his security.

2.3. What does it mean to "break" a signature scheme? One might say that the
enemy has "broken" user A’s signature scheme if his attack allows him to do any of
the following with a nonnegligible probability:

A total break. Compute A’s secret trap-door information.
Universalforgery. Find an efficient signing algorithm functionally equivalent to

A’s signing algorithm (based on possibly different but equivalent trap-door infor-
mation).

Selective forgery. Forge a signature for a particular message chosen a priori by
the enemy.

Existential forgery. Forge a signature for at least one message. The enemy has
no control over the message whose signature he obtains, so. it may be random or
nonsensical. Consequently this forgery may only be a minor nuisance to A.

Note that to forge a signature means to produce a new signature; it is not forgery
to obtain from A a valid signature for a message and then claim that he has now
"forged" that signature, any more than passing around an authentic handwritten
signature is an instance of forgery. For example, in a chosen-message attack it does
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not constitute selective forgery to obtain from the real signer a signature for the target
message M.

Clearly, the kinds of "breaks" are listed above in order of decreasing severity;
the least the enemy might hope for is to succeed with an existential forgery.

We say that a scheme is respectively totally breakable, universally forgeable, selec-
tively forgeable or existentially forgeable if it is breakable in one of the above senses.
Note that it is more desirable to prove that a scheme is not even existentially forgeable
than to prove that it is not totally breakable. The above list is not exhaustive; there
may be other ways of "breaking" a signature scheme which fit in between those listed,
or are somehow different in character.

We utilize here the most realistic notion of forgery, in which we say that a forgery
algorithm succeeds if it succeeds probabilistically with a nonnegligible probability. To
make this notion precise, we say that the forgery algorithm succeeds if its chance of
success is at least as large as one over a polynomial in the security parameter k.

To say that the scheme is "broken," we not only insist that the forgery algorithm
succeed with a nonnegligible probability, but also that it must run in probabilistic
polynomial time.

We note here that the characteristics of the signature scheme may depend on its
message space in subtle ways. For example, a scheme may be existentially forgeable
for a message space but not existentially forgeable if restricted to a message space
which is a sufficiently small subset of.

The next section exemplifies these notions by reviewing previously proposed
signature schemes.

3. Previous signature schemes and their security. In this section we list a number
of previously proposed signature schemes and briefly review some facts about their
security.

(1) Trap-door signature schemes [DH76]. Any trap-door signature scheme is
existentially forgeable with a key-only attack since a valid (message, signature) pair
can be created by beginning with a random "signature" and applying the public
verification algorithm to obtain the corresponding "message." A common heuristic for
handling this problem in practice is to require that the message space be sparse (i.e.,
requiring that very few strings actually represent messagesmfor example this can be
enforced by having each message contain a reasonably long checksum). In this case
this specific attack is not likely to result in a successful existential forgery.

(2) Rivest-Shamir-Adleman [RSA78]. The RSA scheme is selectively forgeable
using a directed chosen-message attack, since RSA is multiplicative: the signature of
a product is the product of the signatures. (This can be handled in practice as above
using a sparse message space.)

(3) Merkle-Hellman [MH78]. Shamir showed the basic Merkle-Hellman "knap-
sack" scheme to be universally forgeable using just a key-only attack [Sh82]. (This
scheme was perhaps more an encryption scheme than a signature scheme, but had
been proposed for use as a signature scheme as well.)

(4) Rabin IRa79]. Rabin’s signature scheme is totally breakable if the enemy uses
a directed chosen-message attack (see 4). However, for nonsparse message spaces
selective forgery is as hard as factoring if the enemy is restricted to a known-message
attack.

(5) Williams [Wi80]. This scheme is similar to Rabin’s. The proof that selective
forgery is as hard as factoring is slightly stronger, since here only a single instance of
selective forgery guarantees factoring (Rabin neeeded a probabilistic argument).
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Williams uses effectively (as we do) the properties of numbers which are the product
of a prime p=-3 (mod 8) and a prime q=-7 (mod 8). Again, this scheme is totally
breakable with a directed chosen-message attack.

(6) Lieberherr [LiS1]. This scheme is similar to Rabin’s and Williams’, and is
totally breakable with a directed chosen-message attack.

(7) Shamir [Sh78]. This knapsack-type signature scheme has recently been shown
by Tulpan [Tu84] to be universally forgeable with a key-only attack for any practical
values of the security parameter.

(8) Goldwasser-Micali-Yao [GMY83]. This paper presents for the first time
signature schemes which are not of the trap-door type, and which have the interesting
property that their security characteristics hold for any message space. The first
signature scheme presented in [GMY83] was proven not to be even existentially
forgeable against a generic chosen-message attack unless factoring is easy. However,
it is not known to what extent directed chosen-message attacks or adaptive chosen-
message attacks might aid an enemy in "breaking" the scheme.

The second scheme presented there (based on the RSA function) was also proven
not to be even existentially forgeable against a generic chosen-message attack. This
scheme may also resist existential forgery against an adaptive chosen-message attack,
although this has not been proved. (A proof would require showing certain properties
about the density of prime numbers and making a stronger intractability assumption
about inverting RSA.) We might note that, by comparison, the scheme presented here
is much faster, produces much more compact signatures, and is based on much simpler
assumptions (only the difficulty of factoring or more generally the existence of claw-free
permutation pair generators).

Several of the ideas and techniques presented in [GMY83], such as bit-by-bit
authentication, are used in the present paper.

(9) Ong-Schnorr-Shamir [OSS84a]. Totally breaking this scheme using an adap-
tive chosen-message attack has been shown to be as hard as factoring. However, Pollard
[Po84] has recently been able to show that the "OSS" signature scheme is universally
forgeable in practice using just a key-only attack; he developed an algorithm to forge
a signature for any given message without obtaining the secret trap-door information.
A more recent "cubic" version has recently been shown to be universally forgeable in
practice using just a key-only attack (also by Pollard). An even more recent version
[OSS84b] based on polynomial equations was similarly broken by Estes, Adleman,
Kompella, McCurley and Miller [EAKMM85] for quadratic number fields.

(10) tH-Gamal [EG84]. This scheme, based on the difficulty of computing discrete
logarithms, is existentially forgeable with a generic message attack and selectively
forgeable using a directed chosen-message attack.

(11) Okamoto-Shiraishi [OS85]. This scheme, based on the difficulty of solving
quadratic inequalities modulo a composite modulus, was shown to be universally
forgeable by Brickell and DeLaurentis [BD85].

4. The paradox of proving signature schemes secure. The paradoxical nature of
signature schemes which are provably secure against chosen-message attacks made its
first appearance in Rabin’s paper, Digitalized Signatures as Intractable as Factorization
IRa79]. The signature scheme proposed there works as follows. User A publishes a
number n which is the product of two large primes. To sign a message M, A computes
as M’s signature one of M’s square roots modulo n. (When M is not a square modulo
n, A modifies a few bits of M to find a "nearby" square.) Here signing is essentially
just extracting square roots modulo n. Using the fact that extracting square roots
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modulo n enables one to factor n, it follows that selective forgery in Rabin’s scheme
is equivalent to factoring if the enemy is restricted to at most a known-message attack.

However, it is true (and was noticed by Rabin) that an enemy might totally break
the scheme using a directed chosen-message attack. By asking A to sign a value x2 mod n
where x was picked at random, the enemy would obtain with probability another
square root y of x2 such that gcd (x + y, n) was a prime factor of n.

Rabin suggested that one could overcome this problem by, for example, having
the signer concatenate a fairly long randomly chosen pad U to the message before
signing it. In this way the enemy cannot force A to extract a square root of any
particular number.

However, the reader may now observe that the proof of the equivalence of selective
forgery to factoring no longer works for the modified scheme. That is, being able to
selectively forge no longer enables the enemy to directly extract square roots and thus
to factor. Of course, breaking this equivalence was really the whole point of making
the modification.

4.1. The paradox. We now "prove" that it is impossible to have a signature scheme
for which it is both true that forgery is provably equivalent to factoring, and yet the
scheme is invulnerable to adaptive chosen-message attacks. The argument is essentially
the same as the one given in [Wi80]. Byforgery we mean in this section any of universal,
selective, or existential forgery; we assume that we are given a proof that forgery of
the specified type is equivalent to factoring.

Let us begin by considering this given proof. The main part ofthe proofpresumably
goes as follows: given a subroutine for forging signatures, a constructive method is
specified for factoring. (The other part of the equivalence, which shows that factoring
enables forgery, is usually easy, since factoring usually enables the enemy to totally
break the scheme.)

But it is trivial then to show that an adaptive chosen-message attack enables an
enemy to totally break the scheme. The enemy merely executes the constructive method
for factoring given in the proof, using the real signer instead of the forgery subroutine!
That is, whenever he needs to execute the forgery subroutine to obtain the signature
of a message, he merely performs an "adaptive chosen-message attack" step--getting
the real user to sign the desired message. In the end the unwary user has enabled the
enemy to factor his modulus! (If the proof reduces factoring to universal or selective
forgery, the enemy has to get the real user to sign a particular message. If the proof
reduces factoring to existential forgery, the enemy need only get him to sign anything
at all.)

4.2. Breaking the paradox. How can one hope to get around the apparent contra-
dictory natures of equivalence to factoring and invulnerability to an adaptive chosen-
message attack?

The key idea in resolving the paradox is to have the constructive proof that forgery
is as hard as factoring be a uniform proof which makes essential use of the fact that
the forger can forge for arbitrary public keys with a nonnegligible probability of success.
However, in "real life" a signer will only produce signatures for a particular public
key. Thus the constructive proof cannot be applied in "real life" (by asking the real
signer to unwittingly play the role of the forger) to factor.

In our scheme this concept is implemented using the notion of "random rooting."
Each user publishes not only his two composite moduli nl and n2, but also a "random
root" r. This value r is used when validating the user’s signatures. The paradox is
resolved in our case as follows:
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It is provably equivalent to factoring for an enemy to have a uniform algorithm
for forging; uniform in the sense that if for all pairs of composite numbers n and n2
if the enemy can randomly forge signatures for a significant fraction of the possible
random roots r, then he can factor either n or n2.

* The above proof requires that the enemy be able to pick r himself--the forgery
subroutine is fed triples (n, n, r), where the r part is chosen by the enemy according
to the procedure specified in the constructive proof. However, in "real life" the user
has picked a fixed r at random to put in his public key, so an adaptive chosen-message
attack will not enable the enemy to "forge" signatures corresponding to any other
values of r. Thus the constructive method given in the proof cannot be applied! More
details can be found in 9.

5. General notation and conventions.
5.1. Notation and conventions for strings. Let a Co(ll.. "x be a binary string,

then c will denote the integer Yk=o ak2x- (Note that a given integer may have several
denotations, but only one of a given length.) The strings in {0, 1}* are ordered as
follows: if a and/3 are binary strings, we write a </3 if there exists a string y such
that a is a prefix of y, y has exactly the same length as/3, and </</3.

If is a /c-bit string, we let DFS (i)= {/3[/3 <-i}. (Imagine a full binary tree of
depth /c whose root is labelled e, and the left (right) son of a node labelled a is a0
(a l) and let DFS be the Depth First Search algorithm that starts at the root and
explores the left son of any node before the right son of that node. Then DFS (i)
represents the set of nodes visited by DFS up to and including the time when it reaches
node i.) Note that DFS (i) contains the empty string.

5.2. Notation and conventions for probabilistic algorithms. We introduce some
generally useful notation and conventions for discussing probabilistic algorithms. (We
make the natural assumption that all parties, including the enemy, may make use of
probabilistic methods.)

We emphasize the number of inputs received by an algorithm as follows. If
algorithm A receives only one input we write "A(. )," if it receives two inputs we write
"A(.,. )," and so on.

We write "PS" for "probability space;" in this paper we only consider countable
probability spaces. In fact, we only deal with probability spaces arising from probabilis-
tic algorithms.

If A(. is a probabilistic algorithm then, for any input i, the notation A(i) refers
to the PS which assigns to the string o- the probability that A, on input i, outputs o-.

We point out the special case that A takes no inputs; in this case the notation A refers
to the algorithm itself, whereas the notation A( refers to the PS defined by running
A with no input. If S is a PS, we denote by Ps(e) the probability that S associates
with element e. Also, we denote by [S] the set of elements which S gives positive
probability. In the case that [S] is a singleton set {e} we will use S to denote the value
e; this is in agreement with traditional notation. (For instance, if A(. is an algorithm
that, on input i, outputs 3, then we may write A(2)= 8 instead of [A(2)] {8}.)

Iff(. and g(., .) are probabilistic algorithms thenf(g(., .)) is the probabilis-
tic algorithm obtained by composing f and g (i.e., running f on g’s output). For any
inputs x, y,... the associated probability space is denoted f(g(x, y,...)).

If S is a PS, then x-S denotes the algorithm which assigns to x an element
randomly selected according to S; that is, x is assigned the value e with probability
Ps(e).
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The notation P(p(x,y,...)lxS;y T;...) will then denote the probability
that the predicate p(x, y, .) will be true, after the (ordered) execution ofthe algorithms
x -S, y - T, etc.

We lett denote the set of probabilistic polynomial-time algorithms. We assume
that a natural representation of these algorithms as binary strings is used. By 1 k we
denote the binary representation of integer k, i.e.,

k

6. The complexity theoretic basis of the new scheme. A particular instance of our
scheme can be constructed if integer factorization is computationally difficult. However,
we will present our scheme in a general manner without assuming any particular
problem to be intractable. This clarifies the exposition, and helps to establish the true
generality of the proposed scheme. We do this by introducing the notion of a "claw-free
permutation pair," and by showing the existence of such objects under the assumption
that integer factorization is difficult.

This section builds up the relevant concepts and definitions in stages. In 6.1 we
give a careful definition of the notions of a trap-door permutation and a trap-door
permutation generator. These notions are not directly used in this paper, but serve as
a simple example of the use of our notation. (Furthermore, no previous definition in
the literature was quite so comprehensive.) The reader may, if he wishes, skip 6.1
without great loss.

In 6.2 we define claw-free permutation pairs and claw-free permutation pair
generators.

In 6.3 we show how to construct claw-free permutation pair generators under
the assumption that factoring is difficult.

Finally, in 6.4 we show how to construct an infinite family of pairwise claw-free
permutations, given a generating pair fo, fl, of claw-free permutations.

Altogether, then, this section provides the underlying definitions and assumptions
required for constructing our signature scheme. The actual construction of our signature
scheme will be given in 7 and 8.

6.1. Trap-door permutations. Informally, a family of trap-door permutations is a
family of permutations f possessing the following properties:

It is easy, given an integer k, to randomly select permutations f in the family
which have /c as their security parameter, together with some extra "trap-door"
information allowing easy inversion of the permutations chosen.

It is hard to invert f without knowing f’s trapdoor.
We can interpret the two properties above by saying that any user A can easily

randomly select a pair of permutations, (f, f-l), inverses of each other. This will enable
A to easily evaluate and invert f; if now A publicizes f and keeps secret f-l, then
inverting f will be hard for all other users.

In the informal discussion above, we used the terms "easy" and "hard." The term
"easy" can be interpreted as "in polynomial time"; "hard," however, is of more difficult
interpretation. By saying that f is hard to invert we cannot possibly mean that f-
cannot be easily evaluated at any of its arguments. We mean, instead, thatf- is hard
to evaluate at a random argument. Thus, if one wants (as we do) to use trap-door
functions to generate problems computationally hard for an "adversary," he must be

For example, any f can be easily inverted at the image of a fixed argument, say 0. In fact, we may
consider inverting algorithms that, on inputs x and f, first check whether x =f(0).
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able to randomly select a point in the domain off and f-1. This operation is easy for
all currently known candidates of a trap-door permutation, and we explicitly assume
it to be easy in our formal treatment.

DEFINiTiON. Let G be an algorithm in Yt that on input 1 k, outputs an ordered
triple (d,f,f-) of algorithms. (Here D [d( )] will denote the domain of the trap-door
permutation f and its inverse f-.) We say that G is a trap-door permutation generator
if there is a polynomial p such that

(1) Algorithm d always halts within p(k) steps and defines a uniform probability
distribution over the finite set D [d )]. (That is, running d with no inputs uniformly
selects an element from D.)

(2) Algorithms f and f- halt within p(k) steps on any input x D. (For inputs
x not in D, the algorithms f and f-1 either loop forever or halt and print an error
message that the input is not in the appropriate domain.) Furthermore, the functions
xf(x) and xf-(x) are permutations of D which are inverses of each other.

(3) For all (inverting) algorithms I(.,.,., Ytsg, for all c and sufficiently large
k:

P(y=f-l(z)l(d, ff-1)-G(l’); z <- d(); y<- 1(1 ’, d,f, z))<k-.
We make the following informal remarks corresponding to parts of the above

definition.
(1) This condition makes it explicit that it is possible to sample the domain of f

in a uniform manner.
(3) This part of the definition states that if we run the experiment of generating

(d, f, f-l) using the generator G and security parameter k, and then randomly generating
an element z in the range of f, and then running the "inverting" algorithm I (for
polynomially in k many steps) on inputs d, f, and z, the chance that I will successfully
invert f at the point z is vanishingly small as a function of k.

DEFINITION. If G is a trap-door permutation generator, we say that [G(I)] is
a family of trap-door permutations. We say that f and f-1 are trap-door permutations if
(d,f,f-1)[G(l)] for some k and trap-door permutation generator G.

6.2. "Claw-free" permutation pairs. The signature scheme we propose is based
on the existence of "claw-free" permutation pairs; informally, these are permutations
fo and fl over a common domain for which it is computationally infeasible to find a
triple x, y, and z such that fo(x)=f(y)= z (a "claw" or "f-claw"--see Fig. 1).

DEFINITION. Let G be an algorithm in that, on input 1, outputs an ordered
quintuple (d, fo, f-l, fl,f-) of algorithms. We say that G is a claw-free permutation
pair generator if there is a polynomial p such that:

(1) Algorithm d always halts within p(k) steps and defines a uniform probability
distribution over the finite set D [d )].

FIG. 1. A claw.
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(2) Algorithms fo, f-l, fl and f-l halt within p(k) steps on any input x D. (For
inputs x not in D, these algorithms either loop forever or halt with an error message
that the input is not in the necessary domain.) Furthermore, the functions xfo(x)
and xfl(x) are permutations ofD which are inverses of each other, as are xfl(x)
and X"f?l(x).

(3) For all (claw-making) algorithms I(.,., .,.) s4, for all c and sufficiently
large k:

P(fo(x) =fl(Y)= zl(d, fo,f,fl,fCl) +- G(lk); (x, y, z) I(1 k, d, fo,fl))< k -c.
Note. It would be possible to use a variant of the above definition, in which the

functionfmay actually return answers for inputs outside ofD as long as it is understood
that the difficulty of creating a "claw" applies to all x, y for which the function f
returns an answer. Thus, it should be hard to find any triplet (x,y, z) such that
fo(x) =fl(Y)= z even when x, y are not in D. We do not pursue this variation further
in this paper.

DEFINITION. We say thatf= (d, fo,fl) is a claw-free permutation pair (or claw-free
pair for short) if (d, fo,fl,fl,f?l)[G(lk)] for some k and claw-free permutation
pair generator G. In this case, f-1 will denote the pair of permutations

6.2.1. Claw-free permutation pairs versus trap-door permutations. In this subsection
we clarify the relation between the notions of claw-free permutation pairs and trap-door
permutations, by showing that the existence of the former ones implies the existence
of the latter ones. (Since trap-door permutations are not used in our signature scheme,
this subsection can be skipped by the reader without loss of clarity.)

CLAIM. Let G sd be a claw-free permutation generator. Then there exists a
G sd which is a trap-door permutation generator.

Proof The algorithm ( is defined as follows on input 1 k" Run G on input 1 k.
Say, G outputs the ordered tuple (d, fo,fl,fl,fl). Then, ( outputs (d, fo,fl).

We now show that G is a trap-door permutation generator. Assume for contradic-
tion that it is not the case. Namely, there exists a constant c> 0 and an inverting
algorithm I(.,., .,.)s such that for infinitely many k:

P(fo(y) zl(d, fo,fffl) t(lk); z <-- d( );y [(1 k, d, fo, z)) k -c.
Note now, that since fl is a permutation, algorithms fl(d (.)) and d (.) both define

the uniform probability distribution over [d( )]. Thus, for infinitely many k,

P(f (x) fo(Y)

zl(d,fo,f’,fl,f) G(lk); x +- d( ); z -fl(x); y- [(1 k, d, fo, z))>= k -c.
Let I(.,., .,.) be the following inverting algorithm" On input 1 k, d, fo and

compute x-d( ), zf(x), y-[(1 k, d, fo, z) and output (x, y,z).
Then, I is ins and for infinitely many k,

P(fo(x) =fl(Y)= z[(d, fo,fl,fl,f;-1) - G(lk); (x, y, z) I(1 k, d, fo,fl)) >- k-.
This contradicts G being a claw-free permutation generator and thus G must be

a trap-door permutation generator.
We note, however, that the converse to the above claim may be false. For example,

the pair of ("RSA") permutations over Z,*= {1 <-x <- n" gcd (x, n)= 1}, defined by

fo(x) x (mod n) and f(x)-- x (mod n)

(where gcd (b(n), 15)= 1) is not claw-free" since the two functions commute it is easy
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to create a claw by choosing w at random and then defining x-=fa(w), y =-fo(w), and

z =fo(x)=-fa(Y) =- w as (mod n).
However, it is likely that fo and fa are trap-door permutations.

In practice, one may want to relax the definition of a claw-free permutation pair
generator slightly, to allow the generator to have a very small chance of outputting
functions fo and fl which are not permutations. We do not pursue this line of develop-
ment in this paper.

6.3. Claw-free permutations exist if factoring is hard. The assumption of the
existence of claw-free pairs is made in this paper in a general manner, independent
of any particular number-theoretic assumptions. Thus, instances of our scheme may
be secure even if factoring integers turns out to be easy. However, for concretely
implementing our scheme the following is suggested.

We first make an assumption about the intractability of factoring, and then exhibit
a claw-free permutation pair generator based on the difficulty of factoring.

Notation. Let

Hk:{n:p" q[ipl=lql=k,p=-3 (mod8), q=-7(mod8)}
(the set of composite numbers which are the product of two k-bit primes which are
both congruent to 3 modulo 4 but not congruent to each other modulo 8), and let
H=UkH.

Remark One way to choose "hard" instances for all known factoring algorithms
seems to be to choose k to be large enough and then to choose n randomly from Hk.

These numbers were used in [Wi80] and their wide applicability to cryptography
was demonstrated by Blum in [B182]; hence, they are commonly referred to as "Blum
integers."

Let Qn denote the set of quadratic residues (mod n). We note that for n H:
-1 has Jacobi symbol +1 but is not in Qn;
2 has Jacobi symbol -1 (and is not in Qn).

We also note that every x Qn has exactly one square root y Q,, but has four
square roots y, -y, w, -w altogether (see [B182] for proof). Roots w and -w have
Jacobi symbol -1, while y and -y have Jacobi symbol +1.

The following assumption about the intractability of factoring is made throughout
this section.

Intractability Assumption for Factoring (IAF). Let A be a probabilistic polynomial-
time (factoring) algorithm. Then for all constants c > 0 and sufficiently large k

1
P(x is a nontrivial divisor of n[n Hk( ); x-A(n))<--77.

K-

(Here we have used the notation n H() to denote the operation of selecting an
element ofH uniformly at random.)

Define fo,, and fl,, as follows:

x (mod n)
fo,, (x) _x2 (mod n

4x (mod n)
fl,,(x) _4x2 (mod n)

if x2 (mod n) < n/ 2,
if x (mod n) >= n/2,
if4x: (mod n) < n/2,
if 4x2 (mod n) >= n/2.

The common domain of these functions is

()=1 and 0<x < n/2};
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it is easy to see that the range of these functions is included in Dn for n H. Note
also that it is easy to test whether or not a given element x is a member of Dn, since
Jacobi symbols can be evaluated in polynomial time.

We now show that fo.. and fl.. are actually permutations of D. for n H. Suppose
fo,n is not a permutation of Dn; then there exist distinct elements x, y in Dn such
that fo,.(x) =fo..(Y). This can only happen if x2= y2 (mod n), which would imply that
x= +y (mod n). But this is impossible if x and y are both in Dn, thus proving that
fo,. is a permutation. The proof for fl.. is similar.

Not only are fo.. and f.. permutations of D. when n H, but their inverses are
easily computed, given knowledge ofp and q. Given p and q, it is easy to distinguish
quadratic residues (mod n) from nonresidues with Jacobi symbol equal to 1; this ability
enables one to negate the input to the inverse function if necessary in order to obtain
a quadratic residue (mod n). Of course, dividing by 4 is easymthis step is needed only
for inverting fl.n. Next, taking square roots (mod n) is easy, since we can take square
roots modulo p and q separately (making sure to pick the square root which is itself
a quadratic residue) and combine the results using the Chinese Remainder Theorem.
Finally, the result can be negated (mod n) as necessary in order to obtain a result in

D.. Since all of these steps are computable in polynomial time, each of the inverse
functions f( and fl-,ln is computable in polynomial time, given p and q as additional
inputs.

THEOREM 1. Under the IAF, the following algorithm G is a claw-free permutation
pair generator. On input 1 k, G.

(1) Generates two random primes p and q of length k, where p---3 (mod 8) and
q 7 (mod 8),

(2) Outputs the quintuple

(d, fo,,,f(-,,,f,,,f
where

(a) Algorithm d generates elements uniformly at random in
(b) Algorithms f0,n andf, are as described in the above equations,
(c) Algorithmsfff,, andf, are algorithmsfor the inversefunctions (these algorithms

make use ofp and q).
Proof. We first note that uniformly selecting k-bit guaranteed primes can be

accomplished in expected polynomial (in k) time (by the recent work of Goldwasser
and Kilian [GK86]) and that asymptotically one-quarter of these will be congruent to
3 (mod 8) (similarly for those congruent to 7 (mod 8)). (In practice, one would use a
faster probabilistic primality test such as the one proposed by Solovay and Strassen
[SS77] or Rabin [RaS0].)

Let n H and (d, fo,,f(-,,f,n,f,-,)[G(lk)]. First, fo, andf, are permutations
of D, [d )]. Then, we need only show that if there exists a fast algorithm that finds
x and y in Dn such that fo,(x)=fl,n(y) (mod n) (i.e., a claw-creating algorithm) then
factoring is easy. Suppose such an x and y have been found. Then x2 4y2 (mod n).
(Note that xe--- -4y2 (mod n) is impossible: since 4ye is a quadratic residue (mod n),
-4y 2 cannot be a quadratic residue (mod n), for n H.) This implies that (x+2y)
(x-2y)-=0 (mod n). Moreover, we also know thatx +2y (mod n), since (x/n)= 1
and (2y/n)=-1. Thus gcd (x+2y, n) will produce a nontrivial factor of n.

6.4. An infinite set of pairwise claw-free permutations. For our scheme we need
not only claw-free pairs of permutations, but an infinite family of permutations which
are pairwise claw-free and generated by a single claw-free pair f= (d, fo,f).
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We define the function f(. for any string 6 {0, 1}+ by the equation:

f(X) "--f/0(fl( (fid_l(fid(X))’"

if i= ioil"’" ia_lia. (Also, read f-l as (f)- so that f[l(f(x))= x.)
Each f is a trap-door permutation: it is easy to compute fi(x) given fo, fl, i, and

x, and to compute f[(x) if f6- and f- are available. However, given only fo and
it should be hard to invert f/ on a random input z, or else fo and fi are not trap-door
permutations. (By inverting f on a random input we also effectively invert fo on a
random input, where io is the first bit of i.)

This way of generating an infinite family of trap-door permutations was also used
in [GMY83].

Looking ahead, we shall see that a user A of our scheme can use the f’s to perform
basic authentication steps as follows. Let us presume that A has published fo and f
as part of his public key, and has kept their inverses f- and f- secret. If user A is
known to have authenticated a string y, then by publishing strings and x such that

f(x)=y,

he authenticates the new strings and x.
For this to work, when the signer A reveals f-(y), he should not enable anyone

else to compute f-(y) for any other j.
The signer achieves this in our scheme by coding using a prefix-free mapping

(.). This prevents an enemy from computing f(x) from f,(x) in an obvious way
since (j) is never a prefix of (i). The following Lemma 1 shows that this approach is
not only necessary but sufficient.

Note. Actually, the mapping (.) that we use is a one-to-one mapping from tuples
of strings of bits to strings of bits. The mapping (.) is prefix-free in the sense that
(al," ", an) is never a prefix of (bl,. ., b,,) unless n rn and a b,...,
Any prefix-free mapping is usable if it and its (partial) inverses are polynomial-time
computable and the lengths of a,..., an and (a,- , a,) are polynomially related.
For concreteness, we suggest the following encoding scheme for the tuple of strings
a,. ., a,. Each string ai is encoded by changing each 0 to 00 and each 1 to 11, and
the encoding is followed by 01. The encodings of al,..., an are concatenated and
followed by 10.

Lemma 1 essentially says that if (d, fo, fi) is a claw-free pair, then it will be hard
to find two different tuples of strings and j, and elements x and y such that
f(i)(x ---f(j)(y).

LEMMA 1. Letf= (d, fo,f) be a claw-free pair, x and y be elements of d and i, j
two different tuples ofbinary strings such that there exists a string z such that z
f(j>(y). Then there exists an f-claw (x, x2, x3) where x3 f[ (z) for some prefix c of (i).

Proof Let c {0, 1}* be the longest common prefix of (i) and (j). Such a c must
exist since (.) is a prefix-free encoding scheme. Thus, setting x3 <--f-(z), x <-f-o(Z),
and x<-f(z), we obtain an f-claw (x, x2, x3). (If c is the empty string then f-
denotes the identity function, so x3 z.) Note that the f-claw is easily computed from
f x, and y. [:]

7. Building blocks for signing. In this section we define the basic building blocks
needed for describing our signature scheme. In 8, we will define what a signature is
and how to sign, using the objects and data structures introduced here.

Assumption. We assume from here on that all claw-free functions used are defined
over domains which do not include the empty string e.
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This assumption is necessary since we use e as a "marker" in our construction;
note that it is easy, via simple recodings, to enforce this construction if necessary.

We begin by defining the essential notion of an f-item.
DEFINITION. Let f=(ds, fo,f) be a claw-free pair. A tuple of strings

(t, r; c,..., e,,) is an f-item if

fc,,...,c,,>(t)--r.

DEFINITION. In an f-item (t, r; c,. ., Cm),
is called the tag of the item,

r is called the root of the item, and
the ci’s are the children of the item. We note that the children are ordered, so

that we can speak of the first child or the second child of the item.
Note that given a claw free pair f and a tuple it is easy to check if the tuple is

an f-item by applying the appropriate ji> to the tag, and checking if the correct root
is obtained.

Figure 2 gives our graphic representation ofanf-item (t, r; Cl, c2) with two children.
DEFINITION. We say that a sequence of f-items L1, L2,’’’, Lb is an f-chain

starting at y if, for 1, , b- 1, the root of Li+ is one of the children of Li and y
is the root of L1. We say the chain ends at x if x is one of the children of the item Lb.

r

t

C2

FIG. 2. An f-item with two children.

For efficiency considerations, our signature scheme will organize a collection of
a special-type of f-chains in the treelike structure defined below.

DEFINITION. Let be a binary string of length b and f a claw-free pair. An f-i-tree
is a bijection T between DFS (i) and a set of f-items such that:

(1) if string j has length b, then T(j) is an f-item with exactly two children,
exactly one of which is e, the empty string. These f-items are called bridge items.

(2) if string j has length less than b, then T(j) is an f-item with exactly two
children, Co and Cl, both of which are nonempty strings. Moreover, Co, the Oth child,
is the root of T(jO) and Cl, the 1st child, the root of T(jl).

The f-item T(j) is said to be of depth b if string j has length d. (The bridge items
are thus the items of depth b.) The root of T is the root of the f-item T(e). The internal
nodes of T are the root and the children of the f-items of depth less than b. The leaves
of T are the nonempty children of the bridge items. Thus the internal nodes and the
leaves of an f-i-tree are actual values and not f-items. Leaves possess binary names of
length b; leaf j is the nonempty child of bridge item T(j). The path to leafj =jo’"jb
is the f-chain T(e), T(jo), ", T(jo’" "jb).
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FIG. 3. An f- lO0-tree.

Binary f-items

Bridge f-items

g-items

Figure 3 gives our graphic representation of an f-100-tree, as it would be used in
our signature scheme. In this figure we denote by r[ the root of f-item T(i), and by
rg the leaf (nonempty) child of bridge item T(i). (Also present in Fig. 3 are a number
of "g-items," which are not part of the f-100 tree but are attached to it in a manner
to be described.)

There are two reasons for letting the bridge items of an f-i-tree have the empty
string as one of their children. First, it makes them de facto f-items with only one
child, a subtle point in our proof of security that is pointed out in Remark 1. Second,
it makes them distinguishable from items with two children, a simple point used, for
instance, in Lemma 2.

8. Description of our signature scheme.
8.1. Message spaces. The security properties of the new signatures scheme hold

for any nonempty message space M c {0, 1}+.
8.2. How to generate keys. We assume the existence of a claw-free permutation

pair generator G and, without loss of generality, that the bound B on the number of
signatures that can be produced is a power of 2: B 2b.

The key-generation algorithm K runs as follows on inputs 1 k and 2b:
(1) K runs G twice on input 1 k to secretly and randomly select two quintuples

(dr, fo,f’,f,,f?’ and (dg, go, gl,g,,g-(’)6[G(lk)].

(2) K then randomly selects r{ in Dr [dr( )].
(3) K outputs the public key PK =(f, rf, g, 2b) where f is the claw-free pair

(dr, fo,f,) and g is the claw-free pair (dg, go, gl).
(4) K outputs the secret key SK (f-’, g-’).

The PK and SK so produced are said to be (matching) keys of size k.
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8.3. What is a signature? A signature of a message m with respect to a public key
(f, r{, g, 2b) consists of the following:

(1) An f-chain of length b + 1 starting at a string r{ and ending at rg, and
(2) A g-item with rg as its root and m as its only child.

8.4. How to sign. In the remainder of this section we shall presuppose that user
A’s public key is PK (f,, r{, g, 2b) where f= (dy, fo,fl) and g= (dg, go, gl). User A’s
secret key is SK (f-, g-i). We denote by Ds the domain [df( )], and denote by Dg
the domain [dg( )] similarly.

Conceptually, user A creates an f-l b-tree T, which has 2b leaves. The root of T
will be rf. The other internal nodes of T are randomly selected elements of Dy. The
leaves of T are randomly selected elements of Dg.

To sign mi, the ith message in the chronological order, user A computes a g-item
Gi whose root r Dg is the ith leaf of T, and whose only child is the message mi. He
then outputs, as the signature of mi, G and the f-chain in T starting at root ry and
ending at leaf r.

In practice, it will be undesirable for user A to precompute and store all of T. He
will instead "grow" T as needed and try to optimize his use of storage and time. This
is taken into account by our signing procedure. In what follows, we describe a variation
of our signing method that requires the signer to remember just his secret key and his
most recently produced signature, in order to produce his next signature. The reader
may find it helpful to refer to Fig. 3 while reading this description.

The signing procedure (also called ff’9). We presume that the procedure is initial-
ized with the values of the public key PK and the corresponding secret key SK in its
local private storage, that has already signed messages mo, m,..., m_ and kept
track of the number of previous messages signed (i.e., the variable i= io" ib-, which
is a b-long bit string, which may contain leading O’s), and the most recent signature
produced.

To compute a signature for message mi, the ith message, user A performs the
following steps.

(1) Output f-chain.)
(1.1) (Output f-items in common with previous signature.) If 0b this substep is

skipped, and control passes to step (1.2). Otherwise, for each string j which
is a common prefix of and i- 1, he outputs the f-item (tf, rf; rfo, rfl) which
was part of the signature for message mi_, in order of increasing length of j.

(1.2) (Output new f-items in f-tree.) For each string j (if any) which is a proper
prefix of i, but not a prefix of i-1, user A creates and outputs an f-item
T(j), in order of increasing length ofj. The f-item T(j)= (tf, rf; rfo, r) is
created as follows" Ifj e its root rf is the r{ from the public key; otherwise
it is the kth child of the most recently output f-item, where k is the last bit
of the string j. The children rfo and ri of the f-item with root rf are chosen
at random from D-. The tag tf=fio,r>(rf) is computed using f- and f-
from the secret key. Note that the last item output (by either step (1.1) or
(1.2)) has r{ as one of its children.

(1.3) (Output bridge f-item.) User A next outputs a single f-item with root r( and
gwhose children are e and r, a randomly chosen element from Dg. The tag

t{ for this item is again computed using the secret trap-door information
for inverting fo and f.

(2) (Output g-item.) Finally, user A outputs the g-item G (t, r; rn). The tag
t for this item is computed using the g- from the secret key.
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The items output by the above procedure constitute a signature for mi. Notice
that there are many possible signatures (among which A chooses one at random) for
each occurrence of each message, but only one signature is actually output.

The reader may verify that the above procedure for producing a signature will
have a total running time which is bounded by a polynomial in k and b.

Notice that if A has signed messages, the function T mapping each string
j DFS(i) to f-item T(j) is an f-i-tree as defined in 7.

8.5. How to verify a signature. Given A’s public key (f rs, g, 2b), anyone can
easily verify that the first b + 1 elements in the signature of mi are f-items forming an

f-chain starting at r and ending at r, and that the g-item in the signature has r/g as
its root and mi as its only child. If these checks are all satisfied, the given sequence
of items is accepted as an authentic signature by A of the message mi.

It is easy to confirm that these operations take time proportional to b times some
polynomial in k, the size of the public key.

8.6. Efficiency of the proposed signature scheme. Assume that iff (dy, fo, f) is a
claw-free pair of size k, then an element of D/is specified by a k-bit string. Then the
time to compute a signature for a message m of length is O(bk) f-inversions (i.e.,
inversions of fo or f) and O(l) g-inversions.

Another relevant measure of efficiency is "amortized" time. That is, the time used
for producing all possible 2 b signatures divided by 2. In our scheme, the amortized

"f-inversion" cost is O(k). The amortized "g-inversion" cost is 0(I) if the average
length of a message is 1.

The length of the signature for rn is O(bk+ 1), where is the length of m, as m
is included in rn’s signature as the child of the g-item. Clearly, if m is known to the
signature recipient, the g-item need not include m: it suffices to give its root and its
tag. This way the length of the signature can be only O(bk) long, which is independent
of the length of m and possibly much shorter.

The memory required by the signing algorithm is O(bk), since it consists of storing
(the f-items in) the most recently produced signature.

9. Proof of security. Let us start by establishing a convenient terminology.
DEFINITION. We call signature corpus the first (for some > 0) signatures output

by our signing procedure 6e. We shall generally use the symbol b to denote a signature
corpus.

We define the following quantities relative to a signature corpus b, consisting of
signatures relative to a public key PK (f, rye, g, 2).

(1) The set of items of S, denoted by (5e), is the set of the items in the signatures
of Ae.

(2) The set of f-items of 6e, denoted by f(b), is the set off-items in (6e).
(3) The set of g-items of 6e, denoted by g(Ae), is the set of g-items in
(4) The set of messages of b, denoted M(6e), is the set of messages signed by

i.e., the set of children of the g-items of
(5) The f-tree of 6e, denoted by -Y(Ae), is the f-i-tree having root ry and, as path

to leaf j (j 0,..., i), the f-chain of the jth signature of
(6) The set of internal nodes of b, denoted by (b), is the set of the internal

nodes of -f(s).
(7) The set of nonroots of, denoted by (ow), is the set of those internal nodes

of 3-f(5e) that are not the root of any f-item of ow. We may think of these nodes as
"hooks" from which additional f-items will be grown as new signatures are created.

(8) The set of leaves of 0, denoted (Sf), is the set of leaves of
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Notice that all the above sets are unambiguously defined. For instance, an item
in f(3) has exactly two children while an item in g(Se) only one, the bridge elements
of (6e) have exactly one empty child and thus are distinguishable from other items
in f(Sf), and so on.

Some of these definitions can be observed in Fig. 3. For example, the leaves of
f rofol rof rofl rlfoo and its nonroots are rlfol and r.the f-100-tree in Fig. 3 are rooo, o, 1,

Let us now see how the signature of a message never signed before relates to a

given signature corpus.
LEMMA 2. Let 3 be a signature corpus relative to a public key PK (f, rye, g, 2b)

and let (r be a signature (relative to the same public key) of a message m not belonging
to M (3). Denote by (tr) the set of items in r. Then (or) (6f) the set ofnew items)
contains either

(1) a g-item with root r (6f), or

(2) an f-item with root r

Proof First notice that (cr)-(3) is not empty as it contains G, the g-item of
o-. In fact, G cannot belong to f(3), as it is a g-item, and cannot belong to g(Se), as
m is its only child and all items in g(Se) have elements of M(3) as their children.
Assume (r)-(Se) also contains an f-item. Then this f-item belongs to F, the f-chain
of o- whose first item has r{ as root, one of the internal nodes of 5f. Thus, for some
item in F, (2) holds. Assume now that (o-)-(Se)--G. Then the root of G is the
nonempty child of B, the bridge f-item of o-. By hypothesis, B is in (Se); thus, the
root of G belongs to (Se) and (1) holds.

Recall Lemma 1 from 6.4:
LEMMA 1. Let f--(d, fo,f) be a claw-free pair, x and y be elements of d and i, j

be two different tuples of binary strings such that there exists a string z such that
z= f(i>(x) =f(>(y). Then there exists an f-claw (x, x2, x3) where x3=fl(z) for some

prefix c of i).
We can now prove Lemma 3:
LEMMA 3. There exists a polynomial-time algorithm A that, on input, a corpus 3

relative to a public key PK (f rYe, g, 2b) and the signature (r of message not belonging
to M 3) finds either

(1) a g-claw, or

(2a) an f-claw, or

(2b) an f-item whose root belongs to f(3).
Proof (The cases are numbered according to the corresponding cases in Lemma

2.) If ease (1) of Lemma 2 holds for 5f and o-, then we have two g-items with the same
root r in (Se). Namely, an i, j, x and y such that g<i>(x)--g<>(y)= r and we get a
g-claw by Lemma 1. Otherwise, if case (2) of Lemma 2 holds, let F be the f-item that
satisfies condition (2) of Lemma 2. If F has the same root as some F’f(Se), then
again by Lemma 1, we get an f-claw; otherwise, we get an f-item whose root belongs
to Af(6e). [3

Remark 1. Notice that if o- is generated by the legal signer (i.e., the 5e procedure)
then, with very high probability, case (2b) will hold in Lemma 3.

In the proof of the main theorem we will assume that there exists a successful
adaptive chosen-message attack, and derive a contradiction by showing that this attack
would enable an enemy to easily create either an f-claw or a g-claw with sufficiently
high probability. Recall that in an adaptive chosen-message attack the enemy can
repeatedly use the real signer as an "oracle" before attempting to forge a new signature.
The next lemma, Lemma 4, essentially states that the signing process can be simulated
perfectly by an efficient algorithm that knows the public key and only half of the secret
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key: the inverses of the first claw-free pair. (That is, in some sense, this algorithm is
a forger.)

To state Lemma 4, additional notation regarding "interactive" probabilistic
algorithms, needs to be introduced. The notion of an adaptive, chosen-message attack
involves the interaction of two algorithms: 5e9 (the signer) and 5e (the signature
requestor). These algorithms "take turns": 5e requests a signature of a given message,
owow signs it, 5e requests a second signature, 5eSe signs it, and so on. We might view
the two routines as "co-routines" that pass control back and forth while preserving
their own state. We formalize this interaction by means of the combining algorithm
that defines a composite algorithm from two auxiliary ones. The combining algorithm
c will invoke repeatedly 5eSe and ow in alternation, corresponding to their taking
turns. The algorithms 5eSe and9 have private-state variables (denotedV and V)
that are preserved from invocation to invocation. Algorithm Scow (which produces
signatures) takes as input a public key PK, an auxiliary input X (which for the moment
is unspecified but will later denote either the corresponding secret key SK or part of
it), a new message to sign, and its private-state variable. It produces as output a
signature for the new message and an updated version of its private-state variable.
Similarly,9 is a probabilisitic algorithm which takes as input a public key, a sequence
of previous signatures relative to that public key, and its private-state variable, and
produces as output a message to be signed and an updated version of its private-state
variable.

The following algorithm makes specific the process of combining owSe and
ALGORITHM ((oq)oqa, 5e; PK, X, i)
Set
Set E and E to .
for j--0 to do:

mj,V 9 PK, {9 , 9_},V (Request signaturefor message
(, Ve) 9(PK, mj, Vze, X). (Produce signature for message
Output .

Here denotes the signature of the jth message.
We extend our notation of probabilistic algorithm in a natural way by letting

c(99, 9; PK, X, i) represent the probability space that assigns the sequence tr the
probability that c outputs tr after invoking alternatively (for times) owow (with initial
input PK and X) and9 (with initial inputs PK).

We can now state Lemma 4, stating that the signing process can be simulated
effectively if the f/’s inverses are known but the gi inverses are not.

LEMMA 4. There exists an algorithm 4 in4 such thatfor all requestors5 4,
for all public keys PK (f, rf, g, 2b) and for all nonnegative integers < 2 b,

c(4, 9; PK, {f-l}, i)= c(9, 9; PK, SK, i)
(where9 is the legal signing process of 8, and SK is the corresponding secret key to
PK).

Proof. Consider the following algorithm . We inductively assume that

(, 9; PK, {f-l}, i- 1)= c(9, 9; PK, SK, i- 1).
Thus the f-chains in the first i-1 signatures output by c uniquely define an f-
(i-1)-tree T. Algorithm stores i-1 and the f-chain of the last produced signature
and executes the following instructions to sign m, the ith message, where io" lb.

(1) (Authenticate mi with a g-item.) Pick an element t at random in D and
compute r g<mi>(tg) SO as to generate the g-item (t, rg; mi).
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(2) (Build thef-chainfrom r{ to rYi to the extent that it is not already done.) Compute
ioi i, the longest proper prefix of that is also a prefix of i- 1. For x 1
to b-j, generate T(io’’’i/x), an f-item whose root is the ij/xth child of
T(io...i/_), and whose two children are independently and randomly
selected elements of Ds. (Algorithm easily computes the tag of this new

f-item by using f-.)
(3) (Create the bridge item authenticating r;.) Using f-i and f-l, create an f-item

with children e and rg and having as root the ibth child of T(io’’" ib-).
(4) (Outputsignature ofmi) Output T(e), T(io), ", T(io ib-), the newbridge

item T(io,.’’, ib) and the new g-item. [3
-1In Lemma 6 we show a similar result: the signing process can be simulated if g

is known, but f- is not. The proof of Lemma 6 makes essential use of the fact that
there is a known upper bound on the number of signatures to be produced. (The bound
provides a limit on the amount of a preprocessing step that is the subject of Lemma 5.)

There is, however, a very important difference between the signing simulation
procedure described in Lemma 4 (which uses f- but not g-) and that of Lemma 6
(which uses g- but not f-). The proof of Lemma 4 works with any fixed root r,
which can be fixed arbitrarily before the simulation procedure is invoked.

By contrast, the signing simulation procedure of Lemmas 5 and 6 actually produces
the necessary root r{ to be part of the public key in its preprocessing step. The root
produced is uniformly distributed over Ds. Thus, from the point of view of an observer
that monitors the behaviour of the signer when he publishes his public key, the
preprocessing step is indistinguishable from a genuine key generation step. Moreover,
by monitoring the signing process, the observer cannot tell whether the signer really
knowsf- or if he has first applied the preprocessing procedure of Lemma 5 to produce
his public file and only then applied the simulation procedure of Lemma 6.

DEFINITION. For all strings ml,..., mi, let sequence(m,..., mi) denote the
trivial interactive algorithm that, no matter what inputs it gets, when invoked for the
jth time (j 1,..., i) outputs the string m.

Let us define two probability spaces over the f-i-trees which are crucial to our
analysis.

DEFINITION. Let PK (f, r{, g, 2b) and SK (f-, g-) be a pair of matching
public and secret key, where f= (dy, fo,fl). Recall that c is the combining algorithm.
Define two probability spaces, -,p: and -,y,g, as follows:

-i,pl is generated by randomly selecting ow in (5, sequence(ml, , m);
PK, SK, i) and then computing -Y(). (Note that -,p/ does not depend on
the values of the messages m,. ., mi but it does depend on i, the number of
messages.)
-,y,g,2 is generated by randomly selecting in c(, sequence(ml,..., mi);
(f, dy(), g, 2b), SK, i) and then computing -Y().

Informally, -i,pl is the probability space obtained from -,y,g,2 by randomly picking
rY Dy and fixing it in PK.

Notice that both probability spaces are easily generated if the secret key SK
(f-, g-i) is among the available inputs. However, both probability spaces remain
easy to generate on a more restricted set of inputs. It has been implicitly proved in
Lemma 2 that -,p: can be generated in probabilistic polynomial-time on inputs i, PK
and f-1 alone. The following lemma shows that -,.r,g2 is easily generated on inputs
i, f g, 2b alone.
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LEMMA 5. There exists- Rag such that for all claw-free pairsf= (dr, fo, fl) and
g (dg, go, gl) and for all integers < 2 b,

-( i,f g, 2b) -i,y,g,2

Proof Consider the following algorithm that constructs an f-i-tree T in "reverse
order"; that is, it constructs f-item T(x) before f-item T(y) if y < x. (This is necessary
since - does not have access to f-1.) The construction goes as follows.

If string j DFS(i) has length b, - selects the nonempty child of T(j) at random
in Dg. Otherwise (if j has length shorter than b), - selects, as 0th child of T(j), the
root of T(jO) and, as 1st child, the root of T(jl). In case jl does not belong to DFS(i),- selects the second child of T(j) at random in Ds.

Having selected the two children Co and c of T(j), - selects its tag at random
in Ds. Then it computes the prefix-free encoding ((Co, c)) and selects as the root of
T(j) the element f<c>(t), which - easily computes using fo and f.

Notice that each T(j) so computed is a proper f-item and that the resulting T is
a proper f-i-tree belonging to -i,y,g,2 ]. Let us now analyze the probability distribution
according to which T has been selected.

First notice that the leaves of T (that is the nonempty children of the items of
depth b) have the same distribution of the leaves of an f-i-tree randomly selected in
-i,,g,2. In fact, in both cases, all leaves are uniformly and independently selected
elements of Dg. Then notice that the roots of the items of T of depth k (that is, the
children of the items of T of depth k-1) are selected uniformly and independently
in Dg. In fact, the root of each item is obtained by applying f<,>, a permutation of D
randomly selected from some probability space, to an element (the tag) independently
and uniformly selected in D. From this it easily follows that - selects T at random
in -,y,g. It is easily seen that -a and thus satisfies all the required properties
of our lemma.

LEMMA 6. There exists an algorithm ag Ygag such that for all signature requestors
5t’Y Rag,for all claw-freepairsf d, fo,f) and g dg, go, gl), andfor all nonnegative
integers < 2 b,

cg(sd, 5F; (f ds(), g, 2b), {g-l}, i)= (5, oc’; (f dr(), g, 2b), {f-l, g-l}, i).

Proof Consider the following algorithm ag. In a preprocessing step, a runs
algorithm - of Lemma 5 to randomly select an f-i-tree T from T,,g,2. Let r{ be the
root of T. This root is used to construct the public file PK (f, r{, g, 2b), with respect
to which all subsequent signatures will be produced as follows, ag starts the signature
requestor owS on input PK. Then it simulates the signing procedure with initial inputs
PK and the corresponding secret key SK (f-, g-) without usingf -1 in the following
way. When outputs mj, the jth message to be signed, a retrieves the f-chain T,
the path from the root of T to leaf j. Then a computes the necessary g-item by using
g

Before stating and proving our Main Theorem, let us single out a simple lemma
stating that one cannot invert a claw-free pair on a randomly selected input of its domain.

LEMMA 7. Let G be a claw-free permutation pair generator. Then, for any inverting
algorithm I Rag, any c > 0 and sufficiently large k,

P(h0(z) x or hi(z) xl(d, ho, h’, hi, h-’)+- G(I’);

x -- dh( ); z - I(1 k, d, ho, hi)) % k -c.
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Proof Otherwise the following algorithm would find a claw with too high a
probability: randomly select y in dh, randomly select between 1 and 2, compute
x= hi(y) and run I to get z such that h(z)---x for j

We are now ready to formally state and prove our Main Theorem. We start by
strengthening the definition of existentially forgeable to include probabilistic success
on the part of the forger.

DEFINITION. We say that a signature scheme is e-existentially forgeable if it is
existentially forgeable with probability e where the probability space includes the
random choices of the adaptive chosen-message attack, the random choices made by
the legal signer in the creation of the public key, and the random choice made by the
legal signer in producing signatures.

It is very important to note that the random choices made in creating the public
key are included in the probability space; our proof depends critically on this definition.
The Main Theorem of this paper is the following.

MAIN THEOREM. Assuming that claw-free permutation pair generators exist, the
signature scheme described in 8 is not even 1/Q(k)-existentially forgeable under an
adaptive chosen-message attack, for all polynomials Q and for all sufficiently large k.

Proofof the Main Theorem. The proof proceeds by contradiction. We assume, for
the sake of contradiction, that for some polynomial Q and for infinitely many k our
signature scheme is 1/Q(k)-existentially forgeable under an adaptive chosen-message
attack by an algorithm ff in.

By definition, the forging algorithm ff consists oftwo algorithms in: a signature
requestor ff, which is active in a first phase when it adaptively asks and receives
signatures of messages of its choice, and a signature finder ffff, which is active in a
second phase when it attempts to forge a signature of a message not asked about by ff.

Let PK (f, r(, g, 2b) and SK be a public/secret-key pair of size k, randomly
selected by our key generator using a claw-free permutation pair generator G. In the
first phase a signature corpus b -c(9,; PK, SK, i) is generated, where i< 2 b.
Then o%ff is run on input 0 and PK. Let ek denote the probability that o%ff outputs
or, a legal signature, with respect to PK, for a message m M(ow). (This probability is
taken over all the coin tosses of G, ff,o and

What we have assumed is that, for infinitely many k,

1
ek >=

Q( k)"

By Lemma 3, given O and tr, it is now easy to compute either
(1) a g-claw (i.e., a claw for the second claw-free pair in PK), or
(2) an f-claw (i.e., a claw for the first claw-free pair in PK), or
(3) an f-item whose root belongs to
Denote the probability that case (1), (2) or (3) hold, respectively, by 61, t2 and

63. Then, for infinitely many k, we have

tl(k) + t2(k) + 83(k)=> ek>

Thus either
(1’) there is an infinite set K1 so that for k K1
(2’) there is an infinite set K2 so that for k K2
(3’) there is an infinite set K so that for k K3

Q(k)"

6l(k) > 1/3Q(k), or
62(k) > 1/3Q(k), or
33(k) > 1/3Q(k).

We will show that either case leads to a contradiction.
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Assume case (1’) holds. Then consider the following algorithm in that, on
input 1 k and a claw-free pair h (dh, ho, h,) of size k, randomly selected by G, finds
an h-claw with sufficiently high probability.

ALGORITHM 1. Pun G on input 1 k to randomly select a quintuple
(df, fo,fl,fl,f?’). Select rfDf at random and construct the public key PK=
(df, fo,f,, rf, dh, ho, h,, 2b). (Notice that PK is a random public key of size k of our
signature scheme.) Randomly select the signature corpus (6e, o; PK, SK, i).
Though PK’s matching secret key SK is not totally known, this random selection can
be efficiently done as, by Lemma 4, there exists an ss such that
c(b,; PK, SK, i)= c(sd,; PK, f-’, i). Now run ffff on input b and PK to
sign a new message. From this last signature and 6e, try to compute an h-claw.

Notice that, for k K1, Algorithm 1 will successfully compute an h-claw with
probability 6,(k)> 1/3Q(k). This contradicts the claw-freeness of G.

Assume now that either (2’) or (3’) holds. Consider the following algorithm in
sg, whose input is 1 k and a claw-free pair h (dh, ho, h,) of size k randomly selected
by G.

ALGORITHM 2. Run G on input 1 to randomly select a quintuple
(dg, go, g, g,, gT1) Randomly select the signature corpus

t c(t, t); (h, dh( ), g, 2b), {h -1, g-l}, i),

which can be done as by Lemma 6 there exists an algorithm s such that

cg(Se, g; (h, dh( ), g, 2b), {h-’, g-’t, i)= cg(ag,; (h, dh( ), g, 2b), g-l, i).

Then run oo on input 6e and PK.
Assume that case (2’) holds. Then, for k e K2, from the output of Algorithm 2 an

h-claw can be computed with sufficiently high probability to violate the claw-freeness
of G.

Finally, assume that case (3’) holds and k K3. Then, given a random x dh(),
the following algorithm will invert h on x with nonnegligible probability (contradict-
ing Lemma 7). 5 runs Algorithm 2 except that, when constructing -h (Oo) as in Lemma
5, it makes x the value of a randomly selected nonroot of 5. Notice that this operation
does not change the probability distribution of 5e. (Recall that the preprocessing
procedure of Lemma 5 just picks at random all the internal nodes of ow.) Thus ow is a
random signature corpus with respect to a randomly selected public key of size k.
Thus, from the output of Algorithm 2, 5 computes an h-item with root r

with probability 63(k)> 1/3Q(k). When this happens, with probability 1/IA/’ (Se)l, we
have r= x. Now, given the h-item computed, 5 can easily compute either h’(x) or
h-(’(x), and Lemma 7 is contradicted. This completes the proof of the Main
Theorem.

10. Variations and improvements. In this section we describe ways to improve the
efficiency of the proposed signature scheme without affecting its security.

10.1. Using &’s to sign rather than gT"s. This variation is of interest if it is
substantially easier to compute go or g, than to compute their inverses. In this case
steps (3) and (4) in the signing procedure can be replaced by:

(3) (Output g-item.) User A selects a random tDg, and (using go and
computes the root r of the g-item (t, r; m), and outputs this item.

(4) (Output bridge f-item.) Using his knowledge of f-’ and f-’, user A outputs
an f-item with root r( and an only child rg.
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Now each usage of gff or g-i has been replaced by a usage of go or gl.

Although one might be tempted to use this variation using one-way permutations
instead of trap-door permutations for the gi’s, this temptation should be resisted, since
our proof of security does not hold if this change is made.

10.2. Fast iterated square roots. As we saw in 6.3, if factoring is computationally
hard, a particular family oftrap-door permutations is claw-free. By using these permuta-
tions in a straightforward manner, we obtain a particular instance of our signature
scheme. Let us discuss the efficiency of this instance. The computation of f(x)
consists of computing the square root which has Jacobi symbol 1 and is less than n/2,
modulo a Blum-integer n. We can compute f?(x) as f(x/4). Computing g(x) and
g-((x) is the same, except for using the appropriate n. If n is k-bits long, this can be
done in O(k3) steps. Thus the signature of a k-bit message can be computed in time
O(b" k4), or in O(k4) amortized time.

This particular instance of our scheme can be improved in a manner suggested
in discussions with Oded Goldreich (see [Go86]--we appreciate his permission to
quote these results here). The improvement relates to the computation off(x) (or

We note first of all that taking square roots modulo n is equivalent to taking uth
powers modulo n, where u. 2-- 1 (mod 4(n)), and where 4(n) is Euler’s phi function.
More generally, to find a 2th root of x modulo n one can raise x to the vth power
modulo n, where v-= u (mod 4(n)). Computing by first computing v and then
raising x to the vth power is substantially faster than repeatedly taking square roots.

To apply this observation, we note that the functions defined in 6.3 satisfy

rrev((y))

where "rev" is the operation which reverses strings and interprets the result as an
integer, where m is the length of (y), where all operations are performed modulo n,
and where the final sign is chosen to make the result less than n/2. The only computa-
tionally difficult portion here is computing a 2"th root. Using the observation of the
previous paragraph, the computation of such an f-inverse can be performed in time
proportional to the cube of the length of n, in the case that messages have the same
length k as n. Using these ideas, the signature of a k-bit message can be computed in
time O(b. k3), or in O(k3) amortized time.

10.3. "Memoryless" version of the proposed signature scheme. The concept of a
random function was introduced by Goldreich, Goldwasser and Micali in [GGM84].

Let Ik denote the set of k-bit integers. Let Wk denote the set of all functions from
I to I, and let F W be a set of functions from Ik to I. We say that F-- t_J F is
a polyrandom collection if:

(1) Each function in F has a unique k-bit index associated with it. Furthermore,
picking such an index at random (thereby picking an f e Fk at random) is easy.

(2) There exists a deterministic polynomial time algorithm that given as input an
index of a functionf Fk and an argument x computes f(x).

(3) No probabilistic polynomial in k-time algorithm can "distinguish" between
W and F. Formally, let T be a probabilistic polynomial-time algorithm, that on input
k and access to an oracle Oy for a function f: Ik I outputs 0 or 1. Then, for all T,
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for all polynomials Q, for all sufficiently large k, the difference between the probability
that T outputs 1 on access to an oracle Os when f was randomly picked in Fk and
the probability that T outputs 1 on access to an oracle Oy whenf was randomly picked
in Wk is less than 1/Q(k).

In [GGM84] it was shown how to construct a polyrandom collection assuming
the existence of one-way functions. The existence of claw-free permutation pairs is a
stronger assumption, and thus implies the existence of a polyrandom collection. See
5.4 for an implementation of a claw-free family of functions based on factoring and

[GGM84] for details on how to construct a polyrandom collection.
Leonid Levin suggested the following use of a polyrandom collection in order to

reduce the amount of storage that a signer must keep from O(bk) to O(b) bits. His
suggestion also eliminates the need to generate new random numbers (e.g., rg) during
the signing process.

Let k denote the security parameter. In the secret key generation phase, in addition
to computing the secret trap-door pairs (fl,f?l), (g, g-() user A also picks a random
function h in a polyrandom collection Fk, and keeps h secret. (We assume that k > b.)
During the signing process, A keeps a counter to denote the number of times the
signing algorithm has been invoked. To sign message mi, A signs as before, except
that (using m to denote the length of j)"

Instead of picking values rf at random from D, he computes them as r
h(0-mj).

Instead of picking values rff at random from Dg, he computes them as rf
h(l-mj).

We claim that the "memoryless" version of the signature scheme described above
enjoys the same security properties as our orignal scheme. The proof (which we shall
not give in detail) is based on the observation that if the memoryless scheme was
vulnerable to an adaptive chosen-message attack, then it would be possible to efficiently
distinguish pseudorandom functions from truly random functions.

A further improvement (due to Oded Goldreich Go86)] removes even the necessity
of remembering the number of previous signatures by picking the index for a message
M as a random b-bit string. To make this work, the maximum number of signatures
that can be produced by an instance of this scheme is limited to 2"/g, so that it is
extremely unlikely that two messages would have the same index chosen for them.
The security proof can be modified to accommodate these changes. (Note that in the
preprocessing step that builds an f-tree, we would now only build a portion of it

,/5-
consisting of 2 randomly chosen paths of length b.)

ll. Ope problems.
It is an open question whether the RSA scheme is universally forgeable under

an adaptive chosen-message attack.
Can an encryption scheme be developed for which decryption is provably

equivalent to factoring yet for which an adaptive chosen ciphertext attack is of no
help to the enemy?
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