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Abstract ： In the process of complex products assembly-commissioning, manual 

operation is the main reason for low efficiency. The human-robot cooperation (HRC) 

technology combines the advantages of human and robot, and makes it complete the 

task in the shared space. It is an effective way to solve the problem by introducing the 

HRC technology into the complex products of assembly-commissioning. However, the 

current HRC technology has insufficient perception and cognitive ability of tasks. 

Therefore, this paper presents a digital twin-driven HRC assembly-commissioning 

framework. In this framework, a virtual-real mapping environment for HRC is 

constructed. In order to improve the cognitive ability of robot units to tasks, this paper 

proposes a method of intention recognition that integrates the features of parts into 

human joint sequences. In order to improve the adaptability of robot unit to task, the 

assembly-commissioning task knowledge graph is constructed to quickly extract the 

implement sequence of robot unit. At the same time, the deep deterministic policy 

gradient (DDPG) is used to adaptively adjust the robot unit implement action in the 

process of assembly-commissioning. Finally, the effectiveness of the proposed method 

is verified by taking a particular type of automobile generator as a case study product.  

Key works ： Digital twin; Human-robot collaborative; Human intention; DDPG; 

Assembly-commissioning; Complex products 

1. Introduction 

As the final guarantee of precision control in the product manufacturing process, 

the assembly usually accounts for 45% of the average workload in the actual production 

process [1]. The emergence of robot technology has dramatically improved the 

efficiency and quality of product assembly. The traditional industrial robot has been 

widely used in machining, assembly and spraying due to its advantages of high 

efficiency, high precision and high reliability [2-3]. However, industrial robots cannot 

wholly replace humans in the process of industrial production. Even in the automobile 

manufacturing industry with the highest automation rate, about 20% of the assembly 

tasks have to be done manually. The traditional industrial robot technology has the 

following limitations： 

1) The robot repeats one or several actions mechanically according to particular 

programming instructions and lacks the cognition of the environment; 

2) Due to the single structure of the robot, it is challenging to complete the 

assembly task alone in some fine operation or complex environment; 



3) For the flexible assembly task, there are great changes in the assembly process 

of the product. Every time the task changes, the robot program needs to be rewritten to 

meet the needs of the current task. 

Although human has the limitations of fatigue and low repetition accuracy, they 

have the decision-making ability that robots cannot match. In the face of a complex 

environment or unexpected situation, people can make decisions and adjust according 

to the actual situation. With the development of industry 4.0, the product assembly 

workshop is gradually transforming to a digital direction. HRC technology in assembly 

workshops has gradually become a reality. HRC assembly system is composed of 

human and intelligent robot. In a given task and space, humans and robots work 

together to complete complex tasks. HRC technology makes the relationship between 

the human and the robot from the traditional "controlled" to "partners". In the 

theoretical research of HRC technology, the joint perception and cognition between 

humans and robots make the assembly process have high flexibility, high flexibility 

and high precision. However, in the existing HRC assembly system, the robot's 

cognitive ability to the environment is weak, making it impossible to update the 

assembly strategy when the assembly environment changes quickly. 

In recent years, digital twin technology has been thriving in various fields. The 

digital twin concept is proposed by GRIEVES, which consists of three essential parts: 

physical products in real space, digital products in virtual space, and real-virtual 

connection [4-5]. The introduction of digital twin technology in HRC systems is an 

effective way to improve the cognitive ability of the robot to the environment. By using 

sensor technology and Internet connection, the digital twin model of HRC is applied to 

the actual operation stage, and the intelligent real-time control of the system is realized. 

Therefore, this paper proposes a digital twin-driven HRC assembly-commissioning 

method for the operation process of complex products. Based on the digital twin model 

of the HRC system, the synchronous mapping between the virtual assembly-

commissioning process and the actual assembly-commissioning process is realized by 

collecting environment data in real-time. By using the recognition method of fusing 

part features into the human joint sequence, human operation intention is recognized. 

In order to improve the adaptability of the robot to tasks and the environment, this paper 

uses the DDPG algorithm to realize the adaptive adjustment of robot action based on 

understanding the human operation intention. 

The rest of the organization of this paper is as follows. In Section 2, the related 

work of this method is introduced; In Section 3, this paper constructs a digital twin-

driven HRC assembly-commissioning framework; The digital representation method, 

the recognition method of human operation intention and the adaptive adjustment 

method of robot strategy are introduced. In Section 4, the application verification is 



carried out with the example of the assembly-commissioning of a particular type of 

automobile generator. Finally, conclusions and future works are discussed. 

2. Related work 

2.1 Digital twin assembly technology 

With the rapid development of computer technology, graphic display technology 

and artificial intelligence technology, digital twin technology has been widely used in 

various fields. In the industrial field, it is applied in the whole life cycle of products 

such as design [6], machining [7], assembly [8], residual life monitoring [9]. In the 

product assembly stage, Sierla et al. [10] obtains a digital twin from the digital product 

description and then realizes assembly planning and resource allocation automatically. 

Sun et al. [11] studied the process of high-precision product assembly and 

commissioning with the digital twin. Based on the total factor model of digital twin 

assembly, the assemblability prediction and assembly process optimization is realized. 

Guo et al. [12] proposed a digital twin-enabled intelligent manufacturing system (DT-

GIMS) to solve the assembly work of fixed islands. 

Although there is no unified standard for the definition of the digital twin, its 

essence is that: digital twin is a digital model of physical objects, which can evolve in 

real-time by receiving data from physical objects. To maintain consistency with 

physical objects in the whole life cycle. Based on digital twin, it can analyze, predict, 

diagnose, train and so on, and feedback the simulation results to the physical objects to 

help optimize and make decisions on the physical objects. 

2.2 HRC assembly technology 

At present, for highly complex and precise assembly tasks, robots lack the ability 

of independent processing. The combination of human flexibility and robot precision 

is an effective way to improve assembly ability. In recent years, the research on HRC 

has made significant progress. Takata et al. [13] proposed a planning method for HRC 

in a hybrid assembly system, allowing operators to choose initial human and robot 

configuration and minimize the expected total production cost, including robot 

investment and labor cost. Michalos et al. [14] discussed the design of HRC assembly 

workstation. According to the assembly process specification, different control, safety 

and human support strategies were implemented to ensure the personal safety and 

productivity of the whole system. Liu et al. [15] modeled the product assembly task as 

the human motion sequence and then controlled the robot to assist human work by 

predicting human motion. In order to make the robot aware of the tasks being performed 

by humans, Berg et al. [16] proposed an HRC assembly task action recognition method 

based on the Hidden Markov model. Nemec et al. [17] introduced the dynamic learning 

demonstration interface of compliant, cooperative tasks in the HRC assembly with 

compliant adaptation along the motion trajectory.  



In HRC manufacturing, industrial robots will work together with the human who 

performs assigned tasks seamlessly. Compared with traditional manufacturing systems, 

HRC manufacturing system has more customization and flexibility. In the field of 

assembly, an actual HRC assembly system should predict human intention and assist 

humans in the assembly process. 

2.3 Digital twin-based robot assembly technology 

To improve the intelligence level of the robot, it is an effective method to introduce 

digital twin or CPS technology into the robot assembly system. Yao et al. [18] 

introduced HRC assembly in CPPs, which improved the planning, monitoring and 

control in HRC assembly. Darvish et al. [19] proposed a flexible HRC assembly 

architecture, which integrates perception, representation, planning and control. After 

recognizing human behavior, online reasoning is performed to complete the HRC 

assembly. The digital twin technology provides a visual control function for human-

computer interaction through integrated analysis and real-time data collection in virtual 

space. Droder et al. [20] studied the role of machine learning in controlling robot 

behavior in digital twins. The robot can automatically avoid obstacles through the 

machine learning method. Oyekan et al. [21] established a digital twin workshop to 

analyze human response to robot's predictable and unpredictable motion. Driven by 

digital twins, the interaction between the human and the robot will become smooth and 

frequent. Bilberg et al. [22] established a corresponding DT for flexible assembly units 

in which the use of the simulation model is extended to real-time control, task allocation, 

task sequencing and program development. 

According to the operation requirements, the traditional HRC has a long cycle in 

scheme demonstration, layout planning, motion control, test and verification. The 

digital twin technology is introduced into HRC, and the virtual HRC environment 

corresponding to the physical HRC environment is established to realize the two-way 

interaction of virtual-real. The digital twin HRC shortens the design cycle, realizes the 

closed-loop control of action and feedback, and improves production efficiency. 

3. Digital twin-driven HRC assembly-commissioning system 

The digital twin technology is introduced into HRC to realize the integration of 

recognition, control and optimization of the HRC assembly-commissioning process. As 

shown in Fig. 1, this paper constructs a digital twin-driven HRC assembly-

commissioning framework. According to the frame structure, this paper mainly studies 

three aspects: the digital expression of HRC assembly-commissioning environment, the 

human intention recognition and the adaption adjustment of robot unit strategy. 



 

Fig. 1 Digital twin-driven HRC assembly-commissioning framework 

(1) Digital expression of HRC assembly-commissioning environment. In HRC 

assembly-commissioning operation, human, robot unit, parts and auxiliary tools are 

integrated into the physical environment. The use of various sensors (such as cameras, 

3D laser scanners, etc.) and robot controllers for relevant data acquisition, such as robot 

operation data, parts location information and assembly size information. The virtual 

environment is composed of digital twin models corresponding to physical elements of 

the HRC system. In the virtual environment, we can use the digital twin model to 

simulate the assembly-commissioning action, visualize the data and map the virtual and 

real action synchronously. OPC-UA communication protocol can be used to realize 

two-way data interaction between the physical environment and virtual environment. 

(2) Human intention recognition. In the operation of HRC assembly-

commissioning, it is necessary to realize the fast identification of the assembly-

commissioning task. It is an effective way to judge the intention of assembly-

commissioning by capturing human behavior. The task of assembly-commissioning is 

modeled as the action sequence of humans, and the intention of assembly-

commissioning can be predicted by identifying the human actions. The robot can aid 

humans according to their intention of assembly-commissioning to support humans in 

time and adapt to the rhythm of human work. In the process of assembly-

commissioning, the use of human intention recognition not only ensures the smooth 

operation of HRC but also improves production efficiency. 

(3) Adaption adjustment of robot unit strategy. Based on completing the intention 

of the human, the robot unit extracts the feasible action sequence strategy according to 

the task situation. The robot unit is divided into the robot and end-effector. The 

assembly-commissioning process is necessary to control the robot motion path and the 



end-effector pose to complete the task. In order to realize the task quickly and 

accurately, the robot unit needs to adjust adaptively according to the task and the change 

of environment. 

3.1 The digital representative of HRC environment 

In the actual assembly process of complex products, the assembly environment 

includes diversity, dynamic and complexity. Through the digital representation of 

physical elements, the monitoring, prediction and optimization of the data-driven 

model can be realized. As shown in Fig. 2, digital twin technology is essentially a digital 

representation of physical entities. The digital twin model can truly reflect various 

attribute information of physical entities. As suggested by Tao [23], the DT is built in 

four layers, i.e., geometry (creation of 3D CAD objects), physics (kinematics of robots 

and human), behavior (placement of CAD objects in the scene), and rule (assembly 

process sequence). We use 3D modeling software (UG, CATIA, Solidworks, etc.). For 

parts, we need to build enough acceptable geometric models to reflect the assembly 

dimension error. In order to reduce the burden of computers, the digital model of 

complex equipment should be as lightweight as possible while retaining its essential 

functions. The static and dynamic information is saved in the XML file. The static 

information mainly includes product assembly topology, assembly process, physical 

attribute information and so on. And robot unit-related reference parameters. The 

dynamic data mainly includes the spatial pose data of parts, the operation data of the 

robot unit, the behavior data of humans, etc. In the process of assembly-commissioning, 

the real-time operation data of the robot (operation path, speed, acceleration, etc.), state 

data of end effector, human action behavior data and spatial position data of parts are 

collected by the binocular camera, robot controller and 3D laser scanner. The collected 

data drive the virtual space model to make it consistent with physical space elements. 

That is virtual and real synchronous mapping. 

 

Fig. 2 The digital representation for HRC environment 



3.2 Human intention recognition 

In HRC, how to make robot recognize human intention is one of the key 

technologies of HRC. Through human intention recognition, the robot unit can perform 

the corresponding feedback action without additional input operation (such as keyboard 

and mouse input), while ensuring the real-time and accuracy of the system. In this paper, 

the intention recognition method based on the human skeleton is adopted. There is a 

great similarity in human operation behavior in the process of an assembly task. In order 

to solve the problem of low recognition accuracy of similar assembly actions, we 

analyzed the characteristics of human assembly behavior. Generally, human behavior 

is fixed and process-oriented, and there is a sequence relationship between various 

behaviors of humans. 

Moreover, human behavior is mostly to operate the workpiece. The characteristics 

of parts play an important role in distinguishing the behavior of humans. Therefore, this 

paper proposes an intention recognition method that integrates part features into the 

human joint sequence, as shown in Fig. 3. 

 
Fig. 3 The framework of assembly-commissioning task recognition 



3.2.1 Human behavior recognition 

This paper uses a lightweight human joint estimation model to extract joint human 

information and uses 1€Filter [24] to smooth it. The human skeleton feature sequence 

can be obtained after OpenPose [25-26] for the input video image sequence. As shown 

in Formula (1) S = [𝑝1, 𝑝2, 𝑝2, ⋯ , 𝑝𝑡] (1) 

Where 𝑝𝑡  is the set of human key points at the input time 𝑡 . This can be 

expressed as follows Formula (2). 𝑝 = {𝐵𝑜𝑑𝑦: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), ⋯ , (𝑥14, 𝑦14)}𝐻𝑎𝑛𝑑: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), ⋯ , (𝑥21, 𝑦21)} 
(2) 

Where, (𝑥𝑖 , 𝑦𝑖) is the position of the 𝑖𝑡ℎ key point in the image coordinate. In 

this paper, 14 upper body nodes are used in the body skeleton. One root node and 20 

finger nodes are used in the hand skeleton. 

At the same time, the original image uses the pre-trained convolution neural 

network to extract features. Human's assembly behavior has an obvious time sequence. 

We can extract the features of a new frame in the video stream through the self-attention 

model. By querying the recorded frames in memory, the order of historical skeleton 

information is obtained directly, and the skeleton information of each frame is used as 

the input of a moment. The feature extraction layer fully connects the input skeleton 

information, and position coding information is added, and then the output features of 

each behavior are obtained through two self-attention layers. The output features are 

spliced and combined with an output matrix to obtain the final temporal features. 𝑇 = 𝑊𝑂𝐵 
(3) 

𝐵 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑏𝑖), 𝑖 ∈ [1,6] (4) 

Where, 𝑊𝑂  is the output matrix and 𝑏𝑖  is the output result of the 𝑖𝑡ℎ input 

passing through the self-attention layer. From the data flow process and the principle 

of self-attention, we can see that in the process of temporal feature extraction, the 

skeleton features of each frame will be associated with the skeleton features of other 

frames, and the influence degree will be calculated, that is, the feature recognition of 

each frame behavior must consider the characteristics of all the frames before and after 

it. 

3.2.2 Part feature recognition 

The full convolution network is used to recognize the assembly features. Image 

segmentation is used for pixel by pixel classification. The output feature map has fixed 

length, width, and channel characteristics, and the feature vector with fixed length can 

be generated by convolution and full connection. The characteristic length can be 

determined by setting the number of neurons. In feature extraction, the downsampling 



parameters of the pre-training model are fixed to keep the original feature extraction 

ability. Convolution neural network is used to replace the hog, sift, and other artificial 

design features, which avoids the tedious manual feature design process and uses the 

black box characteristics of the neural network to obtain more valuable features. After 

obtaining the downsampling result, i.e., the feature graph of the image, a new fully-

connected layer is added for further feature extraction and generation of the one-

dimensional vector. The one-dimensional vector is integrated into the behavior 

recognition model as a part feature. 

3.2.3 Multi-feature fusion recognition 

For each newly entered frame in the video stream, three basic features are 
extracted:  

1) the pose feature 𝑃𝑡 of the current human skeleton key points is used to describe 
the pose information of human limbs;  

2) The workpiece feature 𝑊𝑡 in the frame is used to describe the position category 
information of parts, tools and other objects in the assembly scene;  

3) Body time sequence information 𝑇𝑡 is used to describe the changes of human 
limbs in a period.  

For the fusion of the three features, a simple way is to directly splice to generate a 
high-dimensional vector, extract and classify the features through several fully 
connected layers. However, this method does not consider the interdependencies among 
features. For example, the body behavior of humans is the operation of parts, and the 
movement of historical limbs has guidance information for the current limb posture. 
Therefore, this paper also uses a self-attention mechanism to consider the dependence 
of each feature because the order of features does not affect the results, so it does not 
need to add location coding information to distinguish the order. The self-attention 
model consists of two attention layers, three input steps, representing three features. 
The output of the attention layer is spliced through two full connection layers, and the 
dimension is reduced to the number of assembly behavior categories. Finally, the 
probability of behavior classification is calculated through a softmax. 
3.3 Adaption adjustment of robot unit strategy 

According to the operation intention of the human, the robot unit is needed to assist 

the assembly-commissioning task. This section mainly describes the implement 

sequence and action method of the robot unit. 

3.3.1 Robot and End-effector implement sequence 

According to the actual situation, the assembly-commissioning sequence is a 

dynamic and variable process in complex products assembly-commissioning. This 



paper constructs a knowledge graph of the tasks of assembly-commissioning [27-28], 

which is used to realize the fast retrieval of the implement sequence of the robot unit, 

as shown in Fig. 4. The task knowledge graph includes two parts: pattern layer and data 

layer. The data layer is a triple node-attribute-value and node-connect-node composed 

of solid objects (parts) and relationships. A semantic network graph is obtained when 

triples exist in large quantities. The pattern layer is the core of knowledge graph 

modeling for assembly-commissioning tasks. In order to clearly describe the semantic 

information of the complex task of assembly-commissioning, the pattern layer 

organizes the information according to the assembly process mode. According to the 

information organization of the knowledge graph, the task document is defined by class 

relationship class and class attribute value. In order to simplify the complexity of the 

task, we take part as the first level node and the robot unit and human as the second 

level node. In the process of assembly-commissioning, the human operation intention 

(human behavior and parts) is regarded as the search label. The robot unit implement 

sequence can be extracted quickly by searching the corresponding task. 

 
Fig. 4 Robot unit implement sequence retrieval 

3.3.2 Robot and End-effector implement action 

After acquiring the implement sequence of the robot unit through the assembly-

commissioning task knowledge graph, the next step is to require the robot unit to 

execute actions according to the actual environment. During the movement of the robot 

unit, two key requirements are involved: obstacle avoidance and shortest path. It is 

necessary to establish a good mapping relationship between the sensor input data and 

the control output to realize the rapid response ability of the robot unit to obstacles. But 

the mapping is complex and nonlinear. The reinforcement learning algorithm is an 

effective way to realize the adaptive adjustment of robot unit action. 

3.3.2.1 action function 

DDPG algorithm uses a deep neural network for function approximation, which 

can solve continuous action space [29-30]. As shown in Fig. 5, we have established two 

DDPG for robot path and end-effector pose: robot DDPG and end-effector DDPG. In 

the first stage, the robot DDPG is used to plan the path from the initial position to the 



target position (𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 → 𝑃𝑡𝑎𝑟𝑔𝑒𝑡). After the robot reaches the target position, the 

second stage is executed. The second stage is to adjust the pose of the end-effector 

through the end-effector DDPG. Robot DDPG and end-effector DDPG are composed 

of two networks. The value function network is also called the critic network. The input 

of the critic network is action and observation, and the output is a value of the state-

action pair. In addition, the strategy function network is also called actor-network.  

 

Fig. 5 The overall structure of robot and end-effector DDPG 

The input of the actor-network is the observation value, and the output is the action 

value. We use 𝜃𝜇  and 𝜃𝑄  to parameterize the function approximator. The critic 

network is updated as Formula (5), and the actor-network is updated Formula (6). 

Critic network：{ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡: 𝜇(𝑠|𝜃𝜇): 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝜃𝜇𝑡𝑎𝑟𝑔𝑒𝑡: 𝜇′(𝑠|𝜃𝜇′): 𝑆𝑜𝑓𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝜃𝜇′         
(5) 

 

Actor network：{ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡: 𝑄(𝑠|𝜃𝑄): 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝜃𝑄𝑡𝑎𝑟𝑔𝑒𝑡: 𝑄′(𝑠|𝜃𝑄′): 𝑆𝑜𝑓𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝜃𝑄′         
(6) 

According to the data flow, the actor-network selects 𝑎𝑡  according to the 

behavior strategy and sends it to the robot controller to execute the action. Return the 

action reward 𝑟𝑡 and the new state 𝑠𝑡+1 in the HRC environment. Actor stores 𝑠𝑡+1 

conversion process (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay buffer as the data set of predict network. 

R transitions are randomly sampled from the replay buffer as a minibatch training data 

set of actors and critic predict network. A single transition in minibatch is represented 

by (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1). In DDPG algorithm, the optimizer is used to update the predicted 

network is critical by minimizing the loss, as shown in Formula (7)： 𝐿(𝜃𝑄) = 1𝑅 ∑(𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))2𝑖  (7) 

Where 𝑦𝑖  can be regarded as the label 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′)|𝜃𝑄′). 

What is stored in the replay buffer is generated by the agent-based behavior strategy. 



We optimize the actor-network by maximizing the policy objective function J, as shown 

in Formula (8). ∇𝜃𝜇𝐽 ≈ 1𝑅 ∑ ∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖) ∙ ∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑖𝑖  (8) 

The actor-critic network obtains each time step t of the robot and the end-effector, 

and obtains the optimal action strategy in the actor. Finally, the virtual HRC 

environment is transformed into the robot control program and sent to the robot 

controller. Moreover, this cycle continues until the completion of the task. 

3.3.2.2 Reward function 

In order to carry out reinforcement learning training more stably and make the 

robot unit obtain the optimal action strategy, we establish DDPG reward mechanism. 

In training, the observation, action and reward function are presented in Tab. 1. The 

reward value is related to the observation space elements, and the observation space of 

robot ontology includes the running time (RT), path length (RPL), collision (RC) and 

singularity (RS). The observation space of the end-effector includes running time (ET), 

path length (EPL) and non-target collision (EC). [α1, α2, α3, α4, α5, α6, α7] is weight 
recombination, which can be obtained by experiment. Where α3, α4 and α7 must be -
1. The reward obtained by the agent of the robot and end-effector is the weighted sum 

of all rewards. The motion of the robot is [θ1, θ2, θ3, θ4, θ5, θ6], which represents the 
rotation angle of each joint axis. The action of the end-effector is [X, Y, Z, Rx, Ry, Rz], 

which represents the pose of the end-effector. 

Tab. 1 Observation space, actor space and reward function 

DDPG Action Reward Observation 

Robot [θ1, θ2, θ3, θ4, θ5, θ6] r1=α1RT+α2RPL+α3RC+α4RS 

RT: Running time 

RPL: Path length 

RC: Collision 

RS: Singularity 

End-

effector 
[X, Y, Z, Rx, Ry, Rz] r2=α5ET+α6EPL+α7EC 

ET: Running time 

EPL: Path length 

EC: Collision with non-

target 

4. Case study 

The automobile generator has high complexity, high precision and multi-

constraint conditions, and its structure is shown in Fig. 6. In the process of assembly-

commissioning of automobile generators, more redundant manual operation results in 

low assembly-commissioning efficiency. Therefore, this paper introduces the digital 

twin-driven HRC assembly-commissioning method, which is used to verify the 

effectiveness of the proposed method. 



 

Fig.6 Structure of automobile generator 

4.1 Construction of digital twin HRC system 

In order to realize the method proposed in this paper, we set up a physical 

experiment environment and virtual experiment environment, respectively, as shown 

in Fig. 7. The physical experiment environment mainly includes humans, UR5 robots, 

a test bench, auxiliary assembly tools, auto generator parts and related measurement 

tools. The data of the HRC assembly-commissioning process are uploaded to the virtual 

experimental environment through various measuring devices and robot controllers.  

In the virtual experimental environment, we build a digital twin HRC system 

composed of a data acquisition module, an assembly-commissioning task knowledge 

graph module, a digital twin model simulation module, a core intelligent algorithm 

module and a data statistical analysis module. The functions of each module are as 

follows: 

1) Data acquisition module: This module is used for data acquisition of physical 

experiment environment, mainly including robot state data, human behavior data, parts 

assembly state data, etc. On the one hand, these data drive the corresponding digital 

twin model to achieve real-time synchronous mapping. On the other hand, it can be 

used for the analysis of intelligent core algorithms; 

2) Assembly-commissioning task knowledge graph module: the assembly-

commissioning task knowledge map can quickly retrieve the execution sequence of the 

current robot unit; 

3) Digital twin model simulation module: one function of this module is for HRC 

task simulation, and the other is for visualization of the virtual synchronous physical 

assembly-commissioning process; 



4) Core intelligent algorithm module: in this paper, the module calculates and 

analyzes physical data. It is mainly for human intention recognition and dynamic 

planning of robot unit strategy; 

5) Data statistics and analysis module: this module is mainly used for statistics of 

automobile generator assembly-commissioning process data. 

 

Fig. 7 Digital twin HRC system 

4.2 Method application 

According to the assembly-commissioning task of automobile generators, this 

paper carries out experiments from two aspects: human intention recognition and robot 

unit implementation strategy. The experimental group was divided into 20 groups, and 

the mean value calculated the results. 

(1) Human intention recognition 

In this experiment, the method is compared with skeleton recognition and image 

recognition. This paper analyzes the identification efficiency and accuracy, respectively, 

as shown in Tab. 2. The method based on image recognition takes the complete image 

or the complete image sequence as input. The model will cause the excessive 

redundancy of input information because of the attention to the background and light 

of the image. The recognition efficiency (2.5s) is seriously hindered, and the 

recognition accuracy (62%) is greatly affected by the redundant part of the image. 

Because the traditional image recognition method does not consider human behavior, 

its efficiency is slightly higher than the method proposed in this paper. The method 

based on skeleton recognition has the advantage in recognition efficiency (1.5s). 

However, because some human movements are highly similar, the recognition 

efficiency (83%) is relatively low. The results show that the recognition efficiency (1.7s) 



of the proposed method is much higher than that based on image recognition and 

slightly lower than that based on skeleton recognition. The recognition accuracy (98%) 

is much higher than the other two methods. 

Tab. 2 Comparison of task recognition results by different methods 

Methods Recognition efficiency (s) Recognition accuracy (%) 

Image-based recognition 2.5 62 

Skeleton-based recognition 1.5 83 

Method of this paper 1.7 98 

（2）Robot unit implement strategy 

This experiment mainly observes the response time of robot action and the 

accuracy rate of reaching the target position, as shown in Tab. 3. Before the DDPG 

model training, set the number of sets to 1500 and the memory pool capacity to 56000. 

At the same time, the steps are 15, and the detection noise is initialized to 0.1. 

According to different environments and tasks, the robot unit uses the DDPG model to 

obtain the implement action to reach the target position within the range of capability. 

In this paper, we take rotor assembly-commissioning as an example. In the aspect 

of assembly-commissioning deviation, the collaborative assembly-commissioning 

deviation is 0.35mm. At the same time, the adjustment deviation of the DDPG model 

is 0.89mm; The setup deviation of pre-programming is 1.92mm. The method proposed 

in this paper adaptively adjusts the pose of the end-effector, which is the main reason 

to reduce the alignment deviation. In terms of assembly-commissioning time, it takes 

272s to use this method for collaborative assembly-commissioning; It takes 498s to 

complete the same task with DDPG; It takes 728s to complete the same task by pre-

programming. The method proposed in this paper can meet the requirements of mission 

accuracy because of its small adjustment error. At the same time, this method does not 

need to adjust the attitude of the robot unit manually many times, so it takes less time 

than before. 

Tab. 3 Comparison of robot unit performance by different methods 

Methods Deviation (mm) Time (s) 

Pre-programming 1.92 728 

DDPG model 0.89 498 

Method of this paper 0.35 272 

 

4.3 Results 

In this paper, the assembly-commissioning time of traditional manual (T-M) and 

digital twin-driven human-robot cooperation (DT-HRC) methods are counted, 

respectively, as shown in Fig. 8. Our experimenters have already mastered the operation 

method through enterprise training and much practice. In this experiment, the mean 



value of 20 groups of data was calculated. The results show that the DT-HRC method 

is 46.3% of the T-M method in the total assembly-commissioning time of automobile 

generators. 

 

Fig. 8 Comparison of results of total assembly-commissioning time 

5. Conclusions and future work 

In the process of complex products assembly-commissioning, manual operation 

accounts for a large proportion. At the same time, too much redundant manual operation 

not only consumes the labor force but also slows down the assembly efficiency 

seriously. In recent years, with the continuous improvement of robot security 

technology, cooperative robot as a new generation of industrial robots has been 

introduced into the production system. Unlike traditional industrial robots, cooperative 

robots and people can share work tasks and spaces. The human and cooperative robot 

performs tasks together, combining the advantages of manual production and automatic 

production, significantly improving production efficiency. The continuous application 

of cooperative robots makes the technology of HRC more and more mature. However, 

the existing HRC assembly system is not adaptable to the environment, and it cannot 

update the assembly strategy quickly when the assembly task changes. In order to meet 

the assembly requirements of complex products, this paper presents a digital twin-

driven HRC assembly-commissioning method. The main contributions of this paper are 

as follows: 

1) A digital twin-driven HRC assembly-commissioning framework is established 

to realize the virtual-real synchronous mapping of the virtual-real HRC process; 

2) In order to improve the efficiency and accuracy of task recognition, this paper 

proposes an intention recognition method that integrates part features into the human 

joint sequence; 

3) In order to realize the adaptive ability of the robot unit to the environment, this 

paper extracts the implement sequence of the robot unit quickly by constructing the 



assembly-commissioning task knowledge graph. It uses the DDPG algorithm for the 

adaptive adjustment of the robot unit action. 

Finally, this paper takes an automobile generator as an example to verify the 

application. The results show that, compared with the traditional assembly method, the 

proposed method can effectively improve the assembly efficiency. In the future, we 

will introduce AR technology into the system to enhance the virtual reality fusion 

ability of digital twins. 
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Figures

Figure 1

Digital twin-driven HRC assembly-commissioning framework



Figure 2

The digital representation for HRC environment



Figure 3

The framework of assembly-commissioning task recognition



Figure 4

Robot unit implement sequence retrieval

Figure 5

The overall structure of robot and end-effector DDPG



Figure 6

Structure of automobile generator



Figure 7

Digital twin HRC system



Figure 8

Comparison of results of total assembly-commissioning time




