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A Dilated Inception Network for Visual

Saliency Prediction
Sheng Yang , Guosheng Lin , Qiuping Jiang , and Weisi Lin , Fellow, IEEE

Abstract—Recently, with the advent of deep convolutional
neural networks (DCNN), the improvements in visual saliency
prediction research are impressive. One possible direction to
approach the next improvement is to fully characterize the multi-
scale saliency-influential factors with a computationally-friendly
module in DCNN architectures. In this work, we propose an
end-to-end dilated inception network (DINet) for visual saliency
prediction. It captures multi-scale contextual features effectively
with very limited extra parameters. Instead of utilizing parallel
standard convolutions with different kernel sizes as the existing
inception module, our proposed dilated inception module (DIM)
uses parallel dilated convolutions with different dilation rates which
can significantly reduce the computation load while enriching
the diversity of receptive fields in feature maps. Moreover, the
performance of our saliency model is further improved by using a
set of linear normalization-based probability distribution distance
metrics as loss functions. As such, we can formulate saliency
prediction as a global probability distribution prediction task for
better saliency inference instead of a pixel-wise regression problem.
Experimental results on several challenging saliency benchmark
datasets demonstrate that our DINet with proposed loss functions
can achieve state-of-the-art performance with shorter inference
time.

Index Terms—Visual attention, saliency detection, eye fixation
prediction, convolutional neural networks, dilated convolution,
inception module.

I. INTRODUCTION

V
ISUAL attention mechanism refers to the ability of Hu-

man Vision System (HVS) to automatically select the most

salient or interested regions from natural scenes by filtering out

redundant and unimportant visual information for further pro-

cessing. Around 108–109 bits per second of visual data enters
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into our eyes as reported in [1]. Without the help of visual atten-

tion mechanism, the HVS is impossible to handle and process

this large volume of data in real-time. Therefore, it is important

to understand and simulate the behavior of visual attention to ad-

vance a wide range of visual-oriented multimedia applications

such as image retrieval [2], image retargeting [3], video sum-

marization [4], image and video compression [5], [6], visual

quality assessment [7]–[9], object detection [10]–[12], virtual

reality content design [13], and more.

In general, visual attention is stimulated by two types of fac-

tors: bottom-up and top-down. Bottom-up saliency-driven at-

tention, which is derived directly from the distinctiveness of

visual stimuli, helps people to rapidly focus on conspicuous

points/regions automatically. In contrast, top-down attention is

task-driven and usually can help people to deal with specific

visual tasks.

This paper focuses on modeling the task-free bottom-up vi-

sual attention mechanism by predicting human eye fixations on

natural images. The study of this visual attention modeling, com-

monly referred as visual saliency prediction/detection, is an ac-

tive problem in the field of computer vision and neuroscience.

Typically, a saliency map, where a pixel with brighter intensity

indicates a higher probability of attracting human attention, is

generated as the output of the developed visual saliency detec-

tion models.

Most of classic bottom-up saliency prediction models [14]–

[16] are biologically inspired. They mainly adopt multiple

low-level hand-crafted features, such as intensity, color, and

so on, and combine these features in a heuristics way (e.g.

center-surround contrast [14], graph-based random walk [15],

etc.). However, these low-level hand-crafted features and their

heuristics combination are insufficient to represent the wide va-

riety of factors that contribute to visual saliency [17]–[19].

With the advent of Deep Convolutional Neural Networks

(DCNN), the feature extraction and combination could be for-

mulated in a data-driven manner through fully end-to-end train-

ing. At present, DCNN-based saliency models have defeated the

classical saliency prediction models in all challenging saliency

datasets [20]–[22]. Within these DCNN-based models, the use

of multi-scale contextual features [17], [18], [23], [24], which

aims to characterize the diverse saliency-influential factors at

different receptive field sizes, makes them stand out. However,

these state-of-the-art saliency models suffer from the huge com-

putation cost by fully exploiting these comprehensive feature

representations.
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In this work, we propose a DCNN architecture called Dilated

Inception Network (DINet) for bottom-up visual saliency pre-

diction. In order to fully exploit the multi-scale contextual fea-

tures, an efficient yet effective dilated inception module (DIM)

is involved. The original inception module [25] utilizes multi-

ple convolutional layers with different kernel sizes to serve as

multi-scale feature extractors with various receptive fields. In

contrast, our DIM uses parallel dilated convolutions with dif-

ferent dilation rates [26] to capture more comprehensive and

effective multi-scale contextual features with much less com-

putation cost. In general, our DINet can be decomposed into

two parts: encoder and decoder networks. The DCNN-based

backbone network is paired with our DIM to serve as the en-

coder. Then, the multi-scale features are forwarded to a simple

yet effective fully convolutional decoder network for saliency

inference.

A recent study [27] shows that training a DCNN-based

saliency model with their softmax normalization-based prob-

ability distribution (PD) distance metrics results in superior

performance with respect to commonly-used pixel-wise regres-

sion loss functions. Instead, we further propose a set of linear

normalization-based PD distance metrics as the new learning

objectives to outperform both of them. As demonstrated in our

ablation experiments, the saliency prediction model trained with

our loss functions achieves better performance than the same ar-

chitecture trained with either softmax normalization-based loss

functions or standard regression loss functions.

The performance of our DINet is evaluated on various saliency

benchmark datasets. The peer comparison results indicate that

our DINet can achieve state-of-the-art performance in terms of

both efficiency and efficacy. The source code of the DINet and

its pre-trained model are publicly available.1

In summary, our main contributions are threefold:
� We propose an efficient and effective dilated inception

module (DIM) to capture the multi-scale contextual fea-

tures. The scale diversity is enriched by introducing par-

alleled dilated convolutions with various dilation ratios at

lower computation cost. Moreover, the effectiveness of this

DIM can be verified by our proposed visualization method

and ablation analysis.
� A set of linear normalization-based probability distribution

distance metrics are proposed as loss functions to optimize

our DINet. They provide an additional linear regularization

leading to a promising performance gain.
� The computation cost is further reduced by replacing the

deconvolution layers with a fully convolutional decoder

structure. As a result, the whole model is efficient to achieve

real-time performance.

The rest of this paper is organized as follows. The re-

lated works on visual saliency prediction are summarized in

Section II. The proposed DINet and optimization method are

illustrated in Section III. The detail analysis and the peer com-

parison on public benchmarks will be provided in Section IV,

and the conclusion is given in Section V.

1[Online]. Available: https://github.com/ysyscool/DINet

II. RELATED WORK

In this section, we first review the previous saliency prediction

models with deep learning architectures. Then, we particularly

summarize the existing deep saliency models with multi-scale

feature extraction modules.

A. Deep Learning-Based Visual Saliency Prediction

Nowadays, the advances in deep learning have already

boosted the progress in saliency prediction. To the best of our

knowledge, the first attempt to use convolutional neural net-

works to predict visual saliency was introduced by Vig et al. in

2014 [28]. Their model, called eDN, consists of three individ-

ual and different shallow networks (from 1 layer to 3 layers) for

feature extraction. However, this model is inferior to some tradi-

tional unsupervised saliency models [15], [16] mainly due to the

limited depth of their networks. After that, researchers seek to

use deeper models (e.g. AlexNet [29] in [30], [31], VGGNet [32]

in [17], [24], and ResNet [33] in [18], [19].) and utilize the fully

convolutional network (FCN) [34] framework for fully lever-

aging the powerful capabilities of DCNN models in contextual

feature extraction.

Currently, DCNN models utilize some down-sampling opera-

tions (e.g. max pooling and convolutions with strides) to reduce

the computation cost and enlarge the receptive field in their sub-

sequent layers. Here, we denote the ratio of the input image spa-

tial resolution to the output resolution of DCNN by output_stride

for simplification. The more usage of down-sampling opera-

tions, the higher output_stride is. However, higher output_stride

also means the feature maps in the top layers have a relatively

smaller spatial resolution. Such limited spatial information can-

not support effective dense prediction of saliency [18], [19]. A

naive approach, presented in ML-Net [35] and MxSalNet [23],

to increase the spatial resolution in top layers is simply remov-

ing some down-sampling operations in some of the layers. But

this approach will unavoidably reduce the receptive field size

in subsequent layers. Since the size of the receptive field af-

fects the amount of contextual information which is essential

to the final saliency inference, such reduction in receptive field

size is suboptimal. Therefore, a trade-off between the spatial

resolution of feature maps and the computation cost should

be guaranteed while maintaining suitable receptive field sizes.

Therefore, several state-of-the-art deep saliency prediction mod-

els [17]–[19] adopt dilated convolution [26], [36], [37] strategy

to increase the receptive field sizes of the top layers, compensat-

ing for the reduction in receptive field size induced by removing

down-sampling operations.

Previous studies [17], [24] demonstrated that multi-scale con-

textual features are essential to the visual saliency prediction

problem. In fact, the foundation for this conclusion is from the

intuition that visual information is processed at various scales by

human eyes [25], [40]. Table I provides a comparison of recent

deep saliency models and our proposed model. The models with

multi-scale inputs will integrate multi-scale contextual features

while some models with single input still can capture these due

to their architectures, as detailed in the next section.

 



TABLE I
OVERALL COMPARISON OF RECENT DEEP SALIENCY PREDICTION MODELS

KLD: Kullback-Leibler divergence, PD: probability distribution, BCE: binary cross entropy, N/A: not available, NSS: normalized scanpath saliency, CCE: categorical cross entropy.

Fig. 1. The illustration of existing deep learning architectures to capture multi-
scale information in saliency prediction.

As for loss function, most of the existing DCNN-based

saliency models directly use the typical pixel-wise classifica-

tion or regression loss functions whereas saliency prediction

is evaluated on the whole saliency maps. In [27], Jetley et al.

propose to use loss functions based on PD distances with soft-

max normalization for training saliency models. Their results

demonstrate the improvement by considering saliency maps as

probability distributions.

Regarding the center-bias phenomenon, some of the saliency

models learn the center-bias explicitly by their designed

modules, such as the location biased convolutional layer in

DeepFix [17]. However, with the help of large-scale dataset–

SALICON [20], DCNN-based saliency models can learn this

bias implicitly and solely from the training data [27], [41].

B. Existing Multi-Scale Feature Extraction Deep

Learning Architectures

In Fig. 1, we summarize the existing deep architectures aim-

ing at capturing multi-scale contextual features in saliency pre-

diction. These models can be roughly classified into three cate-

gories: i) Image Pyramid Network; ii) Skip-layer Network; and

iii) Inception based Network.

1) Image Pyramid Network: The most straightforward way

to learn multi-scale feature representations can be found in [31],

[42]. Their idea is to apply duplicate or multiple feature extractor

networks with the multi-scale inputs, as shown in Fig. 1(a). The

outputs of this image pyramid network (IPN) are merged and fed

into the following decoder network to generate the final saliency

map. Such architectures with multi-scale inputs indeed can learn

the multi-scale contextual features. Nevertheless, training and

testing these models are not economic in both computation cost

and memory usage.

2) Skip-Layer Network: Due to the down-sampling opera-

tions in the common backbone networks, the output of each

convolutional blocks is usually in different spatial resolution.

The first several convolutional blocks learn the low-level im-

age features while the features learned from the deeper blocks

will contain semantic information and discriminative pattern

with various receptive fields [43]. Based on this principle, ar-

chitectures with skip-layers have been proposed in [24], [30],

[35]. Skip-layer network captures multi-scale contextual fea-

tures by concatenating the outputs of different layers with in-

creasingly larger receptive fields and output_stride, as illustrated

in Fig. 1(b). More importantly, the skip-layer network can effi-

ciently utilize intermediate features while the conventional way

only utilizes the topmost features. Despite the high efficiency,

a main problem in the skip-layer network is that spatial infor-

mation gradually reduced in the higher layers due to the useage

of down-sampling operations. Direct up-sampling and concate-

nating these feature maps from different layers without feature

adaptation will bring uncertainty and ambiguity into the saliency

inference.

3) Inception-Based Network: As demonstrated in Fig. 1(c),

inception-based network, as discussed in the DeepFix

model [17], avoid the above problem by utilizing the dilated con-

volutions and removing some down-sampling operations in the

backbone network. Therefore, its output still has sufficient spa-

tial information to support the dense prediction. Inception mod-

ules, proposed in the well-known GoogleNet [25], are attached

to the top of the backbone network to capture multi-scale contex-

tual features. The main idea of inception module is to use convo-

lutions with multiple kernel sizes. However, existing inception

module is not very economic in both computation and optimiza-

tion. Our work is based on this type of network. Specifically,

we revise the original inception module to have more power-

ful multi-scale feature extraction capacity in a computationally-

friendly manner, as will be presented in Section III-C. It should

be noted that, in addition to the GoogleNet [25], our dilated

inception module also take the advantage of the atrous spatial

pyramid pooling (ASPP) module in the DeepLab model [26],

which has succeeded in semantic segmentation. We apply those

parallel dilated convolutional layers to form our dilated inception

module and thus obtain the state-of-the-art performance in

saliency prediction.

 



Fig. 2. The architecture of our proposed DINet saliency prediction model.

III. OUR APPROACH

In this section, we illustrate the architecture of our DCNN-

based saliency prediction model–DINet (Dilated Inception Net-

work). The whole model is depicted in Fig. 2. Our model starts

from the Dilated Residual Network (DRN) [37] which is used

as the primary feature extractor to extract dense feature maps

with relatively larger spatial resolution. We propose to attach an

effective dilated inception module to the top of DRN for cap-

turing the multi-scale features. A simple yet effective decoder

network is employed at the end for converting these features

into the saliency maps. Furthermore, since the saliency map can

be viewed as a probability distribution, we propose a set of lin-

ear normalization-based probability distribution distance met-

rics for training our DINet to better measure the gaps between

our saliency predictions and ground-truths.

A. Dilated Convolution and Dilated Residual Network

1) Dilated Convolution: The main idea of dilated convolu-

tion is to insert holes(zeros) in convolutional kernels to increase

the receptive field, thus enabling dense feature extraction in

DCNN. Since the usage of dilated convolutions is the core of

our model, we simply revisit its concept and properties here.

In general, for each spatial location i, dilated convolution is

defined as:

y[i] =
∑

l

x[i+ r · l]w[l], (1)

Fig. 3. A comparison between standard convolution (a) and dilated convolu-
tion (b).

where y[i] and x[i] denote the output and input on location i,

respectively. w is the convolutional filter and r is the dilation

rate to sample the input. Dilated convolution is implemented by

inserting r − 1 zeros between two consecutive spatial positions

in the original filter w along each spatial dimension. For a k × k

convolutional kernel, the actual size of the dilated convolutional

kernel is kd × kd, where kd = k + (k − 1) · (r − 1). It should

be noted that dilated convolution still only have k × k meaning-

ful kernel parameter. The standard convolution is a special case

of dilated convolution with r = 1. A comparison between stan-

dard convolution and dilated convolution is illustrated in Fig. 3.

It is obvious that a dilated 3× 3 convolutional kernel with r = 2
sample the feature maps like a 5× 5 standard convolutional ker-

nel, which means the receptive field of the outputs after these

two kernels is roughly the same. With this observation, we can

arbitrarily change the field-of-view of dilated convolutional ker-

nels via choosing different dilation rate under the same number

of parameters. By incorporating dilated convolutions into the

encoder network, the dilated encoder network is capable of pre-

serving the spatial resolution and compensate the receptive field

reduction caused by removing some pooling or stride convolu-

tional layers in the original encoder network.

2) Dilated Residual Network: There are two commonly used

pre-trained backbone networks for saliency prediction: VGG-16

and ResNet-50. In addition, both of these two backbone net-

works have their corresponding dilated versions. Thanks to the

residual learning introduced by He et al. in [33], the ResNet can

be trained very deeply for more comprehensive feature extrac-

tion. Existing works also support that (dilated/plain) ResNet-50

based saliency models perform better than those based on (di-

lated/plain) VGG-16. In this work, we employ the commonly

used ResNet-50 as our backbone network.

ResNet-50 backbone network has five blocks of convolutional

layers. The output_stride of the plain ResNet-50 network is 32

which will lead to some ambiguities in dense predictions. In

dilated ResNet-50 [18], [19], to obtain relatively larger spatial

resolution without too much computation cost increase, the orig-

inal three convolutional blocks are kept fixed while the Conv4

and Conv5 blocks are modified by removing down-sampling

operations and replacing the standard convolutions inside these

blocks by dilated convolutions with dilation rate of 2 and 4, re-

spectively. As a result, the output_stride of dilated ResNet-50

 



is 8 which results in a good compromise between the spatial

resolution and computation cost.

B. Decoder Network

In our framework, the DRN acts as a basic encoder net-

work. Note that a decoder network is needed to generate the

saliency map from the encoded features in DRN. One conven-

tional decoder network is built by stacking deconvolutional lay-

ers which can also help in up-sampling the coarse feature maps

into dense ones. However, up-sampling these non-dense fea-

ture maps by deconvolutions inevitably need extra heavy com-

putations and also bring some non-smoothing patterns inside

them [44]. Thanks to the DRN backbone network, the encoded

feature maps have relatively denser spatial information. There-

fore, the deconvolutional layers are no longer used in our decoder

network.

Instead, our decoder network is very simple since it only

consists of three stacked standard convolutional layers with

one bilinear up-sampling operation in the end. This number

of convolutional layers is determined by our experiments in

Section IV-F2. The first two layers have 256 3× 3 convolutional

kernels with the ReLU activation. The last convolutional layer is

the prediction layer. It has only one 3× 3 convolutional kernel

with the sigmoid activation to generate the down-sampled ver-

sion of the saliency map. The reason for using sigmoid activation

function in this layer is related to the range of saliency value

where each pixel belongs to [0, 1]. The outputs can be rescaled

into this target interval by this function. After these three convo-

lutions, the resolution of the outputs is still lower than the inputs

since no up-sampling operations are involved. We simply apply a

bilinear up-sampling operation in the end to reduce the computa-

tion cost. Compared to the existing efforts, our decoder network

is simple yet effective. The baseline model for this paper is the

combination of DRN and this decoder network. In fact, we insert

a 2048× 1× 1× 256 convolutional layer between the DRN

and decoder network to reduce the number of parameters in this

baseline model. To our surprise, the performance of our baseline

model has no visible change with such modification. When

constructing the DINet, we replace this newly inserted layer by

our dilated inception module, as presented in the next section.

C. Proposed Dilated Inception Module

The proposed module is derived from the inception module

which intends to capture the multi-scale contextual information

from the inputs [25]. The principal idea of the original inception

module is to utilize multiple convolutional layers with differ-

ent kernel sizes working as multi-scale feature extractors with

various receptive field sizes, as shown in Fig. 4(a). Unlike the

well-known GoogLeNet [25] which is stacked by several cus-

tomized inception modules with carefully designed topologies,

inception module acts as a single plug-in module in our model

to diversify the receptive fields of those encoded features from

the output of DRN.

The filter numbers in our inception modules are all fixed to

256. By inserting the inception module between the DRN and

decoder network, the performance of our new model is improved

Fig. 4. The inception module with its variations and the ASPP module. Module
(a) is the original inception module [25]. Module (b), (c), and (d) are three vari-
ants. Module (e) is our final proposed dilated inception module (DIM). Module
(f) is the DeepLab-ASPP module [26]. The yellow 1× 1 convolutional blocks
have the ability of dimensionality reduction.

obviously with acceptable extra parameters and computations.

However, we find that the branch of 1× 1 convolutional block

has limited influence on final results. Besides, we replace the

max-pooling branch by one 7× 7 convolutional layer after

one 1× 1 convolutional layer to only investigate and explore

the convolutional layers within inception module, as shown

in Fig. 4(b). With the help of 7× 7 convolutional block, the

modified inception module can extract more diverse and wider

field-of-view (FOV) features. For simplification, we denote

the parameters number of a 256× 1× 1× 256 convolutional

layer (without bias term) as W . Therefore, 7× 7 convolutional

layer in inception module (b) has 72 W = 49W parameters

to be determined, which is much more than 5× 5 convolution

(25W parameters) and 3× 3 convolution (9W parameters).

The total number of parameters in the modified inception model

needs an additional 32W parameters compared to the original

inception model, which result in larger computation cost and

longer inference time.

Recall the dilated convolutions introduced in Section III-A,

dilated convolutions can be used to replace the large kernel stan-

dard convolutions under the same receptive field, as shown in

Fig. 4(c). 7× 7 and 5× 5 convolutions in the modified incep-

tion module can be replaced by 3× 3 dilated convolutions with

dilation rate of 3 and 2, respectively. After this replacement,

the dilated inception module (DIM) can perform the similar

 



TABLE II
THE COMPARISON OF THE BASELINE MODEL AND OTHER MODELS WITH DIFFERENT MULTI-SCALE CONTEXT FEATURE EXTRACTION MODULES.

THE MODEL (BASELINE + INCEPTION(E)) IN BOLD IS OUR FINAL PROPOSED DINET MODEL

or even better results as the modified inception module with

(72 + 52 − 2× 32)W = 56W parameters less. It is worth not-

ing that dilated convolutions in DRN are used in a cascaded way

to preserve the spatial resolution and compensate the reduction

in receptive fields. While in DIM, dilated convolutions are used

in a parallel way to enhance the encoded features with diverse

and comprehensive field-of-views.

Furthermore, the dilation rate of these three parallel dilated

convolutions can be arbitrarily changed, as denoted by [α, β, γ].
Considering that the last convolutional block of the DRN has

set the dilation rate equal to 4, our DIM can be viewed as an ex-

tended convolutional block of the DRN with a combination of

three parallel dilated convolutions inside. In our experiments, we

set [α, β, γ] = [4, 8, 16] which show a great improvement from

the primary dilated or original inception module. The receptive

fields of the outputs after our dilated inception module are di-

verse and relatively large which contribute to incorporate various

contextual information at different scales. This DIM with larger

FOV is depicted in Fig. 4(d). We further reduce the computa-

tional complexity of our model by building a bottleneck type

of DIM, as shown in Fig. 4(e). On the one hand, we use one

single 1× 1 convolutional layer in the top to replace the exist-

ing individual ones in the different branches for dimensionality

reduction. On the other hand, the filter concatenation is replaced

by sum-fusion (element-wise addition) which can also help in

dimensionality reduction and efficient computation. As a result,

this final DIM only brings an additional 27W parameters which

indicate only three extra 3× 3 convolutional layers are added,

compared to the baseline model. Furthermore, with the help of

this computationally-friendly module, our proposed DINet can

reach more than 50 FPS inference time for input images of size

240× 320.

In the literature, the atrous spatial pyramid pooling (ASPP)

module [26] also utilize parallel dilated convolutions for learn-

ing multi-scale feature representations, as shown in Fig. 4(f). In

this module, the features extracted at different dilation rates are

further processed in separate branches and sum-fused to gener-

ate the final results. In contrast, our DIM is just a single plug-in

module and its outputs are still features, rather than the final re-

sults. Since these two modules share the same idea of using the

parallel dilated convolutions, it is also reasonable to use ASPP

module to replace our DIM and its followed decoder network

for saliency prediction. Directly insert this ASPP module on

the top of DRN cannot guarantee that every pixel in the final

results is in the range of [0,1]. We add an extra linear scaling

operation after sum-fusion to solve this. ASPP module has two

variants: ASPP-S and ASPP-L. The only difference in these

two is the setting of dilation rates. ASPP-S has smaller dila-

tion rates ([α, β, γ, θ] = [2, 4, 8, 12]) while ASPP-L has larger

rates ([6,12,18,24]). The information of these two ASPP-based

saliency models is reported in the last two rows in Table II. As

observed from this table, with the help of huge extra parameters,

model (DRN+ASPP-S) can obtain a similar performance to our

DINet. Compared to the ASPP module, our DIM only need one

decoder network to generate the saliency predictions since we

have the sum-fusion before the decoder rather than after it. An-

other reason for longer inference time in the ASPP-based model

is that our DIM performs the 1× 1 convolution before the di-

lated convolutions for dimension reduction while ASPP directly

uses dilated convolutions to process these features from DRN.

Specifically, the difference between the dilated convolutions part

of ASPP and our DIM in #parameters is 8× 32 × 4 = 288W
versus 8 + 32 × 3 = 35W .

Besides, we also investigate other existing multi-scale context

feature extraction frameworks, such as image pyramid network

(IPN) with shared backbone network and skip-layer network,

into our baseline model. The overall comparison among these

models is listed in Table II. Extra params (%) term indicates

the percentage of the number of additional parameters involved

when using this model compared to the baseline model. The best

validation loss term means that the smallest loss results of the

models on SALICON validation dataset [20]. The loss function

used in here is the linear normalization-based total variation dis-

tance, as discussed in the next section. The detailed evaluation

results corresponding to these loss values are reported in Ta-

ble V. Average inference time term is the average time of these

models for predicting 5,000 validation images with 5 repeats un-

der the same experimental conditions. Among these models in

Table II, our DINet achieves a relatively good trade-off between

the validation performance and inference speed.

D. Loss Function

Most saliency models directly predict saliency maps via

optimizing loss functions designed for pixel-wise regression/

classification. However, saliency map can be viewed as a

 



probability distribution (PD) of human fixations over the whole

image [27]. Pixel-wise prediction, where each pixel is predicted

individually, may suffer from the global inconsistency problem

as it ignores the inter-pixel relationship. Therefore, it is reason-

able to use off-the-shelf PD distance metrics as loss functions. In

order to convert the predicted saliency map and its correspond-

ing ground-truth into probability distributions, a normalization

method should be applied first. Here, we improve the existing

method [27] by replacing their softmax normalization with a

simple linear regularization.

Base on the validation experimental results, we select the total

variation distance as the loss function. Besides, the unnormal-

ized version of total variation distance is the ℓ1-norm which is a

commonly used regression loss. Due to these two factors, we use

this loss function as an example to illustrate the differences be-

tween our proposed linear normalization-based loss function and

the existing two types. The total variation distance or ℓ1-norm

can be broadly formulated by the following equation:

L(p, g) =
∑

i

|pi − gi|, (2)

where p is the predicted result and g is the ground-truth. The

definitions of these two terms are different in each loss function,

as listed in the following:

In ℓ1-norm (unnormalized loss function),

pi = x
p
i , gi = x

g
i . (3)

In softmax normalization-based loss function,

pi =
exp(xp

i )∑N
i=1 exp(x

p
i )
, gi =

exp(xg
i )∑N

i=1 exp(x
g
i )
. (4)

In linear normalization-based loss function,

pi =
x
p
i∑N

i=1 x
p
i

, gi =
x
g
i∑N

i=1 x
g
i

, (5)

where x = (x1, . . ., xi, . . ., xN ) is the set of unnormalized

saliency response values for either the predicted saliency map

(xp) and the ground-truth saliency map (xg).

The experiments in Section IV-D illustrate that proposed lin-

ear normalization-based loss functions perform better than both

softmax normalization-based and unnormalized ones. The target

output in saliency prediction is an array x
g ∈ [0, 1]N . Accord-

ing to the following theorem, for an array whose values between

0 and 1, the softmax will de-emphasize the maximum values

among them [45] while the linear normalization still maintains

their initial proportion. Therefore, the existing loss functions

coupled with softmax normalization cannot measure the gaps be-

tween the predicted probability distribution and its correspond-

ing ground-truth very well.

Theorem 1: Given an array x ∈ [0, 1]N , using Equation (4)

and Equation (5) to normalize this array separately, denote the

range of the elements of this two normalized arrays as [as, bs]
and [al, bl], respectively. Then, we have:

[as, bs] ⊂ [al, bl].

Proof: It is obvious that both these normalization func-

tions are monotonic increasing functions. We also note that

x ∈ [0, 1]N . So, we get the minimum normalized response when

xi = 0 and get the maximum when xi = 1. Considering that

we have as =
exp(0)∑
i
exp(xi)

= 1∑
i
exi

> 0 = 0∑
i
xi

= al. Now we

only need to prove bl ≥ bs. In fact, we have:

bl − bs =
1∑
i xi

−
e∑
i e

xi

=

∑
i(e

xi − exi)∑
i xi

∑
i e

xi

.

Recall that xi ∈ [0, 1], it is easy to prove that exi − exi ≥ 0 for

every xi ∈ [0, 1]. So we have bl ≥ bs. �

IV. EXPERIMENTS

In this section, we apply our proposed DINet for saliency

prediction and report its experimental results on several public

saliency benchmark datasets. The effectiveness and efficiency

of our model is validated qualitatively and quantitatively.

A. Saliency Benchmark Datasets

For evaluating the saliency prediction model, we adopt three

popular saliency benchmark datasets with different image con-

tents and experimental settings.

1) SALICON [20]: It contains 10,000 training images, 5,000

validation images, and 5,000 testing images, taken from the Mi-

crosoft COCO dataset [46]. The spatial resolution of each image

in this dataset is 480× 640. At present, it is the largest public

dataset for visual saliency prediction. The ground-truths of train-

ing and validation datasets are available while the ground-truths

of test dataset are held out. For evaluation on its test dataset,

researchers need to submit their results on the SALICON chal-

lenge website.2 Besides, the evaluation protocols and codes are

available in the website.3

2) MIT1003 [21]: It contains 1,003 images collected from

Flickr and LabelMe. The ground-truths for this dataset are cre-

ated from eye-tracking data of 15 users. The evaluation codes

for this dataset are available in the MIT Saliency Benchmark

website.4

3) MIT300 [22]: It contains 300 images, including both in-

door and outdoor scenarios. The ground-truths for this entire

dataset are held out. Researchers can only submit the results of

their models to the MIT Saliency Benchmark website4 for eval-

uation. Currently, the MIT1003 dataset is usually used as the

training and validation sets for this dataset.

B. Evaluation Metrics for Saliency Prediction

There exists a large variety of metrics to measure the agree-

ment between model predictions and human eye fixations. Fol-

lowing existing works [47], [48], we conduct our quantitative

experiments by adopting four widely used saliency evaluation

metrics, including AUC, shuffled AUC (sAUC), Normalized

Scanpath Saliency (NSS), and Linear Correlation Coefficient

(CC). For the sake of simplification, we denote the predicted

saliency map as P, the ground-truth saliency map as G, and the

2[Online]. Available: https://competitions.codalab.org/competitions/3791
3[Online]. Available: https://github.com/NUS-VIP/salicon-evaluation
4[Online]. Available: http://saliency.mit.edu/

 



TABLE III
SALIENCY EVALUATION METRICS

ground-truth fixation map as Q. The saliency evaluation metrics

are listed in Table III according to their characteristics.

1) AUC and sAUC: AUC means the Area Under the ROC

curve. This metric evaluates the binary classification perfor-

mance of the predicted saliency map P, where fixation and

non-fixation points in its corresponding Q are divided into the

positive set and negative set, respectively. By using a threshold,

P can be binary classified into the salient and non-salient regions.

ROC curve will be obtained by varying this threshold from 0 to

1. Finally, the AUC metric can be calculated by using this ROC

curve. Shuffled AUC (sAUC) is introduced to alleviate the influ-

ence of center-bias. Differ in AUC, the fixation points of other

images in this dataset is used as the negative set in computing

sAUC values. However, these two AUC-based metrics have the

limitation in penalizing false positives, as reported in [17]–[19].

2) NSS: Normalized Scanpath Saliency (NSS) is a specific

value-based saliency evaluation metric. This metric is computed

by taking the mean of P̄ at the human eye fixations Q:

NSS =
1

N

N∑

i=1

P̄ (i)×Q(i), (6)

where N is the total number of human eye fixations, P̄ is the

unit normalized saliency map P .

3) CC: The Linear Correlation Coefficient (CC) is a statis-

tical metric for measuring the linear correlation between two

random variables. For saliency prediction evaluation, the pre-

dicted saliency maps (P) and ground-truth density maps (G) are

treated as two random variables. Then, CC is calculated by the

following equation:

CC =
cov(P,G)

σ(P )× σ(G)
, (7)

where cov(·, ·) and σ(·) refer to the covariance and standard

deviation, respectively.

C. Implementation Details

Our proposed DINet is implemented by Keras with Tensor-

Flow backend [49], [50]. During training, the weights in Dilated

ResNet-50 Network (DRN) are initialized from the ImageNet-

pretrained ResNet-50 Network. The weights of remaining layers

are initialized by the default setting of Keras. The whole model

is trained with widely used Adam optimizer [51] with an initial

learning rate of 10−4. This learning rate will be scaled down by a

factor of 0.1 after every two epochs. A mini-batch of 10 images

is used in each iteration.

We train our model on the training set of SALICON [20] with

10,000 training images and use its validation datasets (5,000

validation images) to validate the model. For the MIT1003

TABLE IV
PERFORMANCE COMPARISON OF THE BASELINE MODELS WITH DIFFERENT

LOSS FUNCTIONS ON SALICON VALIDATION DATASET [20]

dataset [21], we directly use the model trained on the SALI-

CON dataset to evaluate the generalization performance of our

model on this dataset. For testing on the MIT300 dataset [22],

we fine-tune our model in the MIT1003 dataset with the same

evaluation protocol in [18], [19]. The fine-tuned results of the

MIT1003 dataset are also presented. For the latter two datasets,

the input images are all resized to 320× 480 with zero padding

to keep the original content aspect ratio. This input image size is

decided by our validation experiments on SALICON dataset. It

is worth mentioning that our model can achieve processing speed

as little as 0.02 s and 0.03 s for one input image of size 240× 320
and 320× 480, respectively, by using one single GTX 1080 Ti

GPU.

D. Loss Function Analysis

We compare the performance of our baseline models trained

by our proposed probability distribution (PD) distance metrics

with linear normalization to those trained on standard regres-

sion loss functions and existing softmax normalization based

statistical distances.

Table IV presents the experimental results for each loss func-

tion, as measured by the overall performance with respect to

four aforementioned evaluation metrics on SALICON validation

dataset. These results support that: (i) generally, the loss func-

tions based on PD distance metrics perform better than standard

regression loss functions, such as BCE, ℓ1-norm, and ℓ2-norm

in our experiments; (ii) for a specific statistical distance based

loss function, our proposed linear normalization method is more

compatible than the softmax normalization as it can measure the

distance between the predicted PD and its target in a more proper

way; (iii) Using NSS loss function alone can obtain an extremely

high NSS score while this loss function is not very good at other

three evaluation metrics.

The first two conclusions have been discussed in section III-D.

The reason for (iii) can be illustrated by Table III. NSS is a

value-based saliency evaluation metric since it is computed by

the average of the normalized saliency values at eye fixation lo-

cations. In other words, a saliency map with a higher NSS score

is more like a fixation map which is not similar to the fixation



Fig. 5. The influence of each dilated convolutional branch in the DIM to
visual saliency. In each col, images are the saliency prediction results by using
the features captured from the above indicated branch. GT: Ground Truth.

density map, i.e. saliency map. Conversely, another three evalu-

ation metrics (CC, AUC, sAUC) prefer the latter one. Therefore,

it is difficult to use one single loss function to train the DCNN

model for obtaining a promising result on both NSS and other

evaluation metrics.

E. Model Visualization

We verify the effectiveness of DIM by individually visual-

izing the responses of each dilated convolutional branch. This

visualization experiment is realized by adding an additional de-

coder network without non-linear activation at the end of our

DIM. Both of this additional decoder and the original decoder

are jointly trained with the same loss and the same inputs from

the DIM. Since the additional decoder is a linear operator applied

to input feature maps, the joint decoded output in this decoder

can be decoupled into a linear combination of the outputs com-

ing from individual branches. Moreover, the input dimension

of our decoder is the same as the output dimension of every

branch in our DIM (all are equal to 256). The responses of each

branch can be easily obtained by feeding this additional decoder

with the features learned in this specific branch. By visualizing

both joint and individual saliency prediction results, we can an-

alyze the contribution of these dilated convolutional branches in

our DIM.

Fig. 5 demonstrates the saliency prediction results of five val-

idation images. The first three columns show the saliency maps

independently predicted by branch −α, −β and −γ, and the

fourth column shows the final saliency maps by sum-fusing the

outputs produced by mentioned branches. All of these predicted

saliency maps are generally consistent with the ground-truth. As

demonstrated in the second and the third rows, branches with dif-

ferent receptive fields learn to focus on different parts of an input

image. Specifically, the branch γ, i.e. bγ , with the largest dila-

tion rate, learns the center-bias implicitly without any additional

TABLE V
MODEL ABLATION ANALYSIS ON SALICON VALIDATION DATASET [20]

TABLE VI
DILATED INCEPTION MODULE ABLATION ANALYSIS WITHIN A TRAINED

DINET WITH TWO DECODERS ON SALICON VALIDATION DATASET [20]

supervision. These learned center-bias patterns compensate the

negligence on the center salient regions from other two branches,

bα and bβ , and produce a more accurate saliency prediction re-

sult. On the other hand, bγ sometimes generates false alarms in

the center regions with low confidence. In this case, as shown in

the last two rows of Fig. 5, the previous two branches bα and bβ
can help in reducing this unwanted side-effect on the final fusion

results. These three branches in our DIM work in a collaborative

manner. The results by using the features from a single branch

are no need to be perfect for all possible cases. These incom-

plete predictions will be ensembled by the sum-fusion to become

more comprehensive and reliable final results, which can be also

supported by our ablation analysis in Table VI.

F. Model Ablation Analysis

In this section, we conduct ablation analysis for our DINet on

the SALICON validation dataset. The complete ablation results

are presented in Table V. It should be noted that all of models in



this table are trained by the proposed linear normalization-based

total variation distance loss function.

1) Influence of the Backbone Network: Our baseline model is

built on DRN where the output_stride is equal to 8. As mentioned

in Section II-A, the output_stride of original ResNet is 32 which

means that less spatial information are included in the output

of this backbone network and thus leads to the unsatisfactory

performance. To verify this statement, we compare our baseline

model (DRN + decoder) with a more basic model (ResNet +
decoder). From the first part of Table V, we can conclude that

output_stride is one of the key elements for the dense prediction

tasks. There is a significant performance gain by replacing the

original ResNet with DRN.

2) Influence of the Decoder Network: In our baseline model,

our designed decoder network is just three convolutional layers

plus sigmoid activation in the end. The reason for using three

layers is determined by the experiments. We have tried to use

different number of convolutional or deconvolutional layers be-

fore the prediction layer (one convolutional layer followed by

a sigmoid activation) to form other decoder networks. Their re-

sults are reported in the second part of Table V. As we can see

that the models with these decoders cannot get good results as

our original decoder, i.e. Decoder(3 conv layers).

3) Effectiveness of Multi-Scale Features: DINet uses the pro-

posed DIM to capture multi-scale contextual features. To support

the conclusions in [17], [18], [31] that integrating multi-scale

features can further improve saliency detection performance,

we incorporate existing alternative multi-scale feature extrac-

tion modules, including IPN, skip-layer, inception and ASPP,

into our baseline or backbone network. From the third part of

Table V, we can observe that the saliency prediction performance

indeed boosted by incorporating the multi-scale features. Espe-

cially, when the backbone network is not DRN, the multi-scale

features can compensate the performance drop significantly, by

comparing two models with the plain ResNet backbone net-

work. In all these multi-scale saliency prediction framework, our

proposed inception(d) and (e) obtain the optimal results among

them. For the reason that inception(e) is more efficient in terms

of #parameters and inference time, as illustrated by Table II, we

pick this DIM to form our DINet.

4) Ablation Analysis on DIM: We further verify the effective-

ness of our DIM by conducting two quantitative experiments.

In the first experiment, we evaluate the performance of a trained

DINet with two decoders mentioned in the visualization experi-

ment to investigate the contribution of each dilated convolutional

branch in our DIM respectively. In the second experiment, we

make a comparison among a set of variants of DINet to explore

the impact of the number of parallel dilated convolutional layers.

Table VI shows the results of the first experiment. Each row in

this table represents the evaluation results by using the outputs

from the indicated branch(es) as the input to a trained decoder.

As we can see that, 1 branch type of DIM will learn different

bias under its specific receptive fields to help in predicting visual

saliency. Specifically, bα prefers the results with higher sAUC

score, while bβ is more interested in the NSS metric. By com-

paring the results between the row of 3 branches-sum and the

rows in 2 branches-sum type on the first part of this table, we can

TABLE VII
DILATED INCEPTION MODULE ABLATION ANALYSIS WITH INDIVIDUAL

TRAINED VARIANTS OF DINET ON SALICON VALIDATION DATASET [20]

observe that the performance drop dramatically with the absence

of any one branch, which means every branch in our DIM has its

irreplaceable impact on the final results. These three branches

in our DIM work in a collaborative manner. Even if the perfor-

mance by using any individual branch is not comparable to the

performance of our baseline model, their fused results can deal

with the diverse images with different patterns of salient regions.

Moreover, the results on the last row show that the features used

in the additional decoder can still be decoded by our original de-

coder with only a little bit performance drop in the NSS metric.

It can guarantee the generality of the above conclusions.

Table VII compares the performance of several variants of

DINet. Each row in this table means the evaluation results by

testing the individual trained variant which has the indicated

branch(es). Especially, the model in 3 branches-sum type is the

proposed DINet, while the model in 0 branch type is our base-

line model. This table shows that using more branches (from 0 to

3), which means using more comprehensive features, will lead

to a higher performance on evaluation metrics. Besides, in the

1 branch type of DINet, using dilated convolution with larger

dilation rate before the decoder network can achieve a better

performance than using a smaller one. It can be credited to the

larger size of receptive fields which represent the longer range

of dependencies in captured features. Moreover, using concate-

nation to replace our element-wise addition has a limited impact

on the final results, as presented in the last two rows in this table.

Mathematically, element-wise addition followed by a convolu-

tion layer is a special case of concatenation followed by another

convolution layer [52], which can be used to explain this lim-

ited difference on evaluation results. In summary, both of these

two experiments can verify that the performance gain of our

DIM is realized by the corporation of these three parallel dilated

convolutional branches.

5) Influence of Training Image Size: The previous experi-

mental results on SALICON validation dataset are all obtained

from 240× 320 images, whose size is the half resolution

of the original SALICON images. Here we want to see the

performance of our DINet models which are trained by images

with different spatial resolution. From Table V, we find that the

DINet trained by input images of size 320× 480 can obtain the

best performance among these three models. This model will

be directly fine-tuned in the MIT1003 dataset for the evaluation

of the MIT300 dataset. Note that these evaluation results are the

average scores, there are some validation images which perform

better in other DINets (240× 320 or 480× 640). In order to



TABLE VIII
PERFORMANCE COMPARISON OF OUR DINET MODELS WITH DIFFERENT LOSS

FUNCTIONS ON SALICON VALIDATION DATASET [20]

TABLE IX
COMPARISON RESULTS ON THE SALICON TEST DATASET [20]

characterize this phenomenon, we adopt a simple ensemble

learning metric, i.e. average voting, to further improve the

performance of our model. By using the average results from

these three different models, this ensemble model obtain the

best scores in our model ablation analysis.

6) Ensemble Learning for Improving NSS: However, our best

model, which is trained by a single total variation distance loss

function, still cannot beat two state-of-the-art models [18], [19]

in NSS metrics, as shown in Table VIII. These two models use

the NSS itself as one of the loss functions for training. To fur-

ther improve our performance on NSS metrics, we use the same

ensemble learning method as above to combine the results of

two DINet models which are trained by using two different loss

function (total variation distance with linear normalization and

NSS) separately. The last ensemble model in this table is our final

submission to the SALICON test dataset which results in a good

comprise between NSS and another three evaluation metrics.

G. Comparison With State-of-the-Arts

To demonstrate the effectiveness of our proposed DINet

model in predicting visual saliency, we quantitatively com-

pare our method with state-of-the-art models on SALICON,

MIT1003, and MIT300 datasets.

Table IX shows the evaluation results on the SALICON

dataset. The results of other models come from their papers or

the leaderboard of this dataset. In this table, the results in bold

indicate the best performance method on each evaluation metric.

As it can be observed, our DINet outperforms all competitors on

CC, AUC, and NSS three metrics. The DeepGazeII [38] model

get the best sAUC score and relatively lower scores on other

metrics. The saliency maps generated by this model actually are

very blurred/hazy and visually different from the ground-truth,

as shown in the left part of Fig. 6x. This is because AUC-based

metrics mainly relied on true positives without significantly pe-

nalizing false positives [17], [19].

TABLE X
COMPARISON RESULTS ON THE MIT1003 DATASET [21]

TABLE XI
COMPARISON RESULTS ON THE MIT1003 VALIDATION DATASET [21]

TABLE XII
COMPARISON RESULTS ON THE MIT300 DATASET [22]

The results on MIT1003 are reported in Table X. We directly

use the DINet trained on the SALICON dataset to evaluate the

generalization performance of our model on the whole MIT1003

dataset, as the DVA model [24]. Our model also achieves promis-

ing results on this dataset which verifies its robustness and gen-

erality. Qualitative comparison results of our model with other

state-of-the-art saliency models on SALICON validation and

MIT1003 datasets can be found in Fig. 6. This figure can also

support that our results match the ground-truth saliency maps

best among all the compared models in both two datasets.

In order to evaluate the MIT300 dataset, we fine-tune our

DINet on the MIT1003 dataset. The fine-tuned results are shown

in Table XI, As we can see that, the performance of our model

improves significantly after fine-tuning which can also outper-

form other existing fine-tuned models. The results on MIT300

dataset are presented in Table XII. Different in the previous

two datasets, our DINet can not outperform the DSCLRCN

model [18]. Our model may over-fitted on the MIT1003 dataset

which leads to lower generalization performance on MIT300

dataset. Both DSCLRCN model and our DINet use multi-scale



Fig. 6. Qualitative comparison results on two datasets. Left images are from SALICON validation dataset [20], while right images are from MIT1003 dataset [21].
GT: Ground Truth.

TABLE XIII
COMPREHENSIVE COMPARISON WITH THE STATE-OF-THE-ARTS

a: The codes for these models are from the authors’ github website. We test its inference time in our experimental environment.

b: This model has many customized operations which is hard to count their trainable parameters completely and reimplement in the Keras framework. 0.27 s is adopted from their paper.

It is certain that this model need more parameters and longer inference time than our method.

c: This model is reimplemented by ours and tested in our experimental environment. Its deconvolutions-based decoder network slow down the whole model and thus it has similar

inference time as our model.

features to further improve saliency prediction performance. Be-

sides, DSCLRCN model incorporates the global context and

scene context by using spatial LSTM [57] method and addi-

tional Places-CNN [58] backbone network to achieve this per-

formance. Consequently, their model is more complex and much

slower than our method. When testing one image with size

480× 640, the DSCLRCN model needs 0.27 s while our DINet

needs only 0.06 s.

A comprehensive summary of our model and other three

state-of-the-art competitors, i.e. SAM [19], DSCLRCN [18], and

DVA [24], are listed in Table XIII. Apart from achieving supe-

rior performance on the SALICON and MIT1003 datasets, our

model also has the obvious advantages in terms of both #param-

eters and inference time compared to the SAM and DSCLRCN

models.

However, despite the good results, there are still a small num-

ber of failure cases, as shown in Fig. 7. These bad cases are

caused by the fact that so many objects are cumulated in a sin-

gle image. Within them, the relative importance of these ob-

jects cannot be fully learned by simply utilizing the multi-scale

contextual features without higher level visual understanding.

Therefore, some non-salient regions are highlighted (like the

first row) or some salient regions are missed, as shown in the

second row. Note that SAM and DSCLRCN models suffer from

Fig. 7. Some failure cases of our DINet and two state-of-the-arts. Images are
from SALICON validation dataset [20].

the same problem as ours. It can be concluded that even the

state-of-the-art saliency models still cannot fully understand the

relative importance of image regions in such semantically rich

scenes. To further approach human-level performance, saliency

models will need to discover increasingly higher-level concepts

in images for determining an appropriate amount of visual at-

tention on a certain image region.

V. CONCLUSION

We have proposed a dilated inception network for visual

saliency prediction. The multi-scale saliency-influential factors

are captured by an efficient and effective dilated inception



module. The whole model works in a fully convolutional

encoder-decoder architecture, which is trained end-to-end and

lightweight for time-efficiency. Furthermore, we adopted a set

of linear normalization-based probability distribution distance

metrics as loss functions to formulate the saliency prediction

problem as a probability distribution prediction task. With

such loss functions, our models can perform better than those

trained by using either standard regression loss functions or

existing softmax normalization-based probability distribution

distance metrics. Experimental results on the challenging

saliency benchmark datasets have demonstrated the outstanding

performance of our model with respect to other relevant saliency

prediction methods.
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