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Abstract

The framework of Solomonoff prediction assigns prior probability to hypotheses inversely
proportional to their Kolmogorov complexity. There are two well-known problems. First,
the Solomonoff prior is relative to a choice of universal Turing machine. Second, the
Solomonoff prior is not computable. However, there are responses to both problems.
Different Solomonoff priors converge with more and more data. Further, there are computable
approximations to the Solomonoff prior. I argue that there is a tension between these two
responses. This is because computable approximations to Solomonoff prediction do not
always converge.

1. Introduction
We are often interested in how to make predictions on the basis of observed data. This
question is at the heart of scientific inference and statistics. It is also important for
the project of building artificial intelligence (AI) that can make inferences from
observed data and act accordingly. Thus, there are many good reasons to be con-
cerned about the right framework for predictive inference.

One way to tackle this question is the Bayesian approach, which uses a prior prob-
ability distribution over all relevant hypotheses and then updates this prior by con-
ditionalization on the observed data (Earman 1992). The resulting posterior
distribution can be used to make predictions and guide action. The Bayesian approach
gives us a unified framework for thinking about predictive inference and has been
successfully applied across many fields, from astronomy to finance. However, the
Bayesian approach requires us to start with a prior probability distribution over
all relevant hypotheses. How should we select such a prior probability distribution?
This is the problem of the priors.

A natural response to the problem of the priors is to say that we should assign a
higher prior probability to simpler hypotheses. This idea is often known as Ockham’s
razor and seems intuitively appealing to many people. However, how do we measure
the simplicity of hypotheses? A possible answer to this question is provided by the
framework of Solomonoff prediction, which formalizes the simplicity of hypotheses
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using tools from algorithmic information theory (Solomonoff 1964; Hutter 2007;
Sterkenburg 2016; Li and Vitányi 2019). The Solomonoff prior assigns a higher proba-
bility to hypotheses that are simpler in this sense. Because the Solomonoff prior is
defined for a very broad range of hypotheses, it provides a very general response
to the problem of the priors. Moreover, proponents of Solomonoff prediction argue
that the Solomonoff prior is an “objective” and “universal” prior. Thus, the frame-
work of Solomonoff prediction potentially sheds light on the foundations of scientific
inference, the problem of induction, and our prospects for building “universal AI”
(Hutter 2004).

There are two well-known problems for Solomonoff prediction. First, the
Solomonoff prior is relative to a choice of universal Turing machine, which means
that different choices of universal Turing machine lead to different priors and differ-
ent predictions. It is natural to worry that this undermines the ambition of
Solomonoff prediction to provide an “objective” and “universal” prior. Second, the
Solomonoff prior is not computable, which means that no scientist or AI system could
actually use the Solomonoff prior to make predictions.

There are well-known responses to both objections. Although it is true that the
Solomonoff prior is relative to a choice of universal Turing machine, it can be shown
that different Solomonoff priors converge with more and more data (in a sense that
will be made precise later in the article). Further, although the Solomonoff prior is not
computable, there are computable approximations to it.

I argue that there is a deep tension between these two responses. This is because
different computable approximations to Solomonoff prediction do not always con-
verge. Therefore, if we care about universal convergence, computable approximations
to Solomonoff prediction do not give us what we want. Thus, proponents of
Solomonoff prediction face a pressing dilemma. Either they have to give up universal
convergence, which leads to problems of language dependence and subjectivity, or
they have to accept that Solomonoff prediction is essentially uncomputable and so
cannot be of any help in guiding the inferences of human and artificial agents.
Therefore, Solomonoff prediction does not solve the problem of finding a universal
prior probability distribution that can be used as a foundation for scientific inference
and AI.

2. Solomonoff prediction
I start by giving a brief introduction to Solomonoff prediction (Solomonoff 1964;
Hutter 2007; Sterkenburg 2016; Li and Vitányi 2019).1

Suppose you are given this initial segment of a binary string:

00000000:::

Given this initial segment, what is your prediction for the next bit?
In a Bayesian framework, we can answer this question by consulting a prior prob-

ability measure over the set of all binary strings. To make this answer precise, we first
need to introduce some notation. Let B∞ be the set of all infinite binary strings and
B� be the set of all finite binary strings. If x 2 B� and y 2 B� [ B∞ , we write xy to

1 For more discussion, see Ortner and Leitgeb (2009), Rathmanner and Hutter (2011), Vallinder (2012),
Fulop and Chater (2013), Icard (2017), and Sterkenburg (2018).
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denote the concatenation of x and y, the (finite or infinite) binary string that starts with
x and continues with y. We say that x is a (proper) prefix of y if y � xz for some string z
(and z is not the empty string).

First, we focus on a particular kind of set of infinite binary strings:

Definition 1. For every x 2 B�, the cylinder Γx � B∞ is defined by
Γx � fxω : ω 2 B∞ g (Li and Vitányi 2019, 265).

Intuitively, a cylinder is a set of binary strings that begin with the same string and
then diverge. For example, Γ1 � f1ω : ω 2 B∞ g is the set of all binary strings that
begin with 1. We write ɛ for the empty string. Therefore, Γɛ is the set of all binary
strings that begin with the empty string, which is just the set of all binary strings. We
write C for the set of all cylinders.

With this framework in place, we can define a probability measure as follows. First,
we define:

Definition 2. A pre-measure is a function p : C ! �0; 1� such that

1. p�Γɛ� � 1; and
2. p�Γx� � p�Γx0� 	 p�Γx1� for all x 2 B�.

Intuitively, a pre-measure assigns probabilities to all cylinder sets. Once we have
defined probabilities for all cylinder sets, we can extend our assignment of probabili-
ties to more complicated sets. Let F be the result of closing C under complementation
and countable union. Thus, F is a σ-algebra. By Carathéodory’s extension theorem,
every pre-measure p : C ! �0; 1� determines a unique probability measure
p : F ! �0; 1� that satisfies the standard Kolmogorov axioms.2 In light of this, we will
abuse notation in what follows and sometimes refer to a pre-measure p : C ! �0; 1� as
a probability measure. If x 2 B�, we will often write p�x� to abbreviate p�Γx�.

Now, the basic idea of Solomonoff prediction is that we should assign a higher
prior probability to simpler binary strings. However, what do we mean by “simplicity”
or “complexity”? We can formalize the complexity of a string as its Kolmogorov com-
plexity: the length of the shortest program in some universal programming language
which outputs that string. We can model a universal programming language as a
monotone universal Turing machine U (Li and Vitányi 2019, 303). A monotone uni-
versal Turing machine has a one-way read-only input tape and a one-way write-only
output tape. The input tape contains a binary string that is the program to be exe-
cuted, and the output tape contains a binary string that is the output. The Turing
machine must further be universal, which means that it can emulate any computable
function. Finally, to say that the Turing machine is monotone means that the output
tape is write-only, so the machine cannot edit its previous outputs.3

2 Sterkenburg (2018, 64) sketches a more detailed version of this argument. A similar application of
Carathéodory’s extension theorem is discussed by Earman (1992, 61).

3 The focus on monotone machines is to ensure, via Kraft’s inequality, that the sum in equation (1) is
less than or equal to 1 (Li and Vitányi 2019, 275). See also definition 2 in Wood et al. (2013).

290 Sven Neth

https://doi.org/10.1017/psa.2022.72 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2022.72


Then, we define the Solomonoff prior, which assigns prior “probability” to binary
strings inversely proportional to their Kolmogorov complexity. For every finite
binary string b 2 B�, we have:

λU�b� �
X
ρ2DU;b

2
‘�ρ�; (1)

where DU;b is the set of minimal programs that lead U to output a string starting with
b, and ‘�ρ� is the length of program ρ. To say that DU;b is the set of minimal programs
that lead U to output a string starting with bmeans that (i) upon reading any program
in DU;b, U will output a string starting with b, and (ii) no proper prefix of any program
in DU;b leads U to output a string starting with b.4 As a rough heuristic, we can think of
λU�b� as the “probability” of producing the string b by feeding random bits to the
universal Turing machine U on its input tape. (As we will see in a moment, the
Solomonoff prior is not a probability measure, so this is not quite correct.)

As a simple example, consider a binary string that consists of a very long sequence
of zeros:

000000000:::

Here, DU;b is the set of minimal programs that output a very long sequence of zeros. In
Python, one of these might be the following program ρ:5

while True:
print(0)

In this example, ‘�ρ� is the Kolmogorov complexity of our string because it is the
length of one of the minimal programs that outputs our string. To find the Solomonoff
prior of our string, we start by computing 2
‘�ρ�. However, there might be more than
one minimal program that outputs our string. To take this into account, we take the
sum over all such minimal programs, resulting in the formula in equation (1). As this
example shows, there are two assumptions built into this framework. First, strings
that are produced by simpler programs should get a higher prior probability.
Second, strings that are produced by more programs should get a higher prior
probability.

Each Solomonoff prior λU��� induces a Solomonoff predictor, which we can write as
follows for every x 2 B�:

λU�x1 j x� � λU�x1�
λU�x�

; λU�x0 j x� � 1 
 λU�x1 j x�: (2)

Intuitively, λU�x1 j x� tells us the probability that the next bit is 1, given that we
observed a string starting with x. So if we fix a universal Turing machine U, this
answers our earlier question of what we should predict about the next bit after seeing
some initial sequence. The hope is that we can encode all real-world inference prob-
lems as problems about predicting the next bit of a binary sequence. If this is possible,
we can use the Solomonoff predictor to predict any kind of real-word event: the

4 See Li and Vitányi (2019, 307), Sterkenburg (2016, 466), and Wood et al. (2013, definition 5).
5 Both here and later in the article, I do not claim that these are actually minimal programs but merely

use them as simple toy examples.
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probability that the sun will rise tomorrow, the probability that the stock market will
go up next month, and so on.6

As suggested earlier, the Solomonoff prior is not a pre-measure on C. In particular,
we only have

1. λU�ɛ� � 1; and
2. λU�x�  λU�x0� 	 λU�x1�

for x 2 B�. However, sometimes these inequalities will be strict (Wood et al. 2013,
lemma 15). Therefore, the Solomonoff prior is only a semi-measure, which we can think
of as a “defective” probability measure. This is a problem because there are good rea-
sons to think that rationality requires adherence to the axioms of probability. There
are dutch book arguments, going back to de Finetti (1937), showing that probabilistically
incoherent credences lead agents to accept a sequence of bets that are jointly guaran-
teed to yield a sure loss. Further, there are accuracy dominance arguments showing that
probabilistically incoherent credences are guaranteed to be less accurate than some
probabilistically coherent credences.7 Therefore, from a Bayesian point of view, the
Solomonoff prior is arguably a nonstarter if it does not satisfy the axioms of proba-
bility. Call this the semi-measure problem.

To fix this problem, we can define the normalized Solomonoff prior ΛU as follows (Li
and Vitányi 2019, 308). We have ΛU�ɛ� � 1, and for every x 2 B�, we recursively
define:

ΛU�x1� � ΛU�x�
λU�x1�

λU�x0� 	 λU�x1�
� �

;ΛU�x0� � 1 
ΛU�x1�: (3)

ΛU is a pre-measure on C and so determines a unique probability measure on F.8

Alternatively, we can interpret the (unnormalized) Solomonoff prior λU as a prob-
ability measure on the set of infinite and finite binary strings (Sterkenburg 2019, 641).
From this perspective, cases in which λU�x� > λU�x0� 	 λU�x1� represent a situation
in which λU assigns positive probability to the possibility that the binary string ends
after the initial segment x.

Does it matter which of these strategies we pick? It turns out that there is an inter-
esting connection between normalization and the approximation reply, to be dis-
cussed later in the article. In particular, normalizing the Solomonoff prior makes
it harder to maintain the approximation reply. But the point of this article is that
there is a tension between the approximation reply and the convergence reply,

6 In any concrete application, our predictions will depend not only on the Solomonoff prior but also on
how we encode a given real-world inference problem as a binary sequence. There are many different
ways to represent, say, the state of the stock market as a binary sequence. Thus, there is a worry about
language dependence here. However, I will bracket this worry because it turns out that there is another,
more direct worry about language dependence, to be discussed in section 3.

7 Standard accuracy arguments are formulated in a setting with a finite algebra of events (Predd et al.
2009; Pettigrew 2016). However, there are extensions of these arguments to infinite algebras (Kelley,
forthcoming).

8 There are different ways to normalize λU , which is a potential source of subjectivity and arbitrari-
ness. I will not pursue this line of criticism here. Li and Vitányi (2019, sec. 4.7) provide a great historical
overview of the different approaches to the semi-measure problem by Solomonoff, Levin, and others.
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and this tension will arise no matter how we deal with the semi-measure problem.
Therefore, my main argument is not much affected by this choice.

3. Relativity and convergence
We have defined the Solomonoff prior with reference to a universal Turing machine
U. Because there are infinitely many universal Turing machines, there are infinitely
many Solomonoff priors. Furthermore, these priors will often disagree in their ver-
dicts. How much of a problem is this? Let us take a closer look.

Consider our previous example. Suppose you are given the initial segment of a
binary string:

0000000000:::

Given this initial segment, what is your prediction for the next bit?
You might hope that Solomonoff prediction can vindicate the intuitive verdict that

the next bit is likely to be a zero. There is an intuitive sense in which a string con-
sisting entirely of zeros is “simple,” and you might hope that our formal framework
captures this intuition. After all, it seems like the shortest program that outputs a
string of all zeros is shorter than the shortest program that outputs a string of
ten zeros followed by ones.

In Python, for example, one of the shortest programs to output a string of all zeros
might be the following:

while True:
print(0)

In contrast, one of the shortest programs to output a string of ten zeros followed by
ones might be the following more complicated program:

i= 0
while True:

while i <= 9:
print(0)
i= i	 1

print(1)

Thus, it seems reasonable to expect that our Solomonoff predictor should assign a
high probability to the next bit being zero.

If you find this kind of reasoning compelling, you might also hope that Solomonoff
prediction helps us to handle the “new riddle of induction” and tells us why, after
observing a number of green emeralds, we should predict that the next emerald will
be green rather than grue (either green and already observed, or blue and not yet
observed) (Goodman 1955).9 Both the hypothesis that all emeralds are green and
the hypothesis that all emeralds are grue fit our data equally well, but perhaps
the all-green hypothesis is simpler and so should get a higher prior probability.10

9 See Elgin (1997) for a collection of classic papers on the “new riddle of induction.”
10 A similar line of argument is suggested by Vallinder (2012, 42).
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However, such hopes are quickly disappointed. This is because different universal
Turing machines differ in how they measure the Kolmogorov complexity of strings.
Relative to a “natural” universal Turing machine, a string with all zeros is simpler
than a string with some zeros first and ones after. However, relative to a “gruesome”
universal Turing machine, a string with some zeros first and ones afterward is sim-
pler. If we think about the issue in terms of programming languages, this is quite
obvious—it all depends on which operations in our programming language are taken
to be primitive. Thus, different Solomonoff priors will license different predictions:
some will predict that a sequence of zeros will continue with a zero, whereas others
will predict that a sequence of zeros will continue with a one. Thus, if we use one of
the Solomonoff priors, there is no guarantee whatsoever that after observing a long
sequence of zeros, we assign a high probability to the next bit being zero.

The argument just sketched is a variant of the familiar point that simplicity is lan-
guage dependent. Therefore, different choices of language (universal Turing machine)
will lead to different priors.11 Without a principled reason for why a “natural” uni-
versal Turing machine should be preferred over a “gruesome” universal Turing
machine, the framework of Solomonoff prediction does not give us any reason for
why, given an initial sequence of zeros, we should predict that the next bit is a zero
rather than a one. Therefore, it does not look like the framework of Solomonoff pre-
diction is any help in distinguishing “normal” and “gruesome” inductive behavior. As
a consequence, it does not look like the framework of Solomonoff prediction gives a
satisfying solution to the problem of the priors.

However, proponents of Solomonoff predictions can respond to this argument.
According to them, the relativity of the Solomonoff prior to a choice of universal
Turing machine is not too worrying because one can prove that all Solomonoff priors
eventually converge toward the same verdicts when given more and more data. Thus,
although different choices of universal Turing machine lead to different predictions
in the short run, these differences “wash out” eventually. So although there is an
element of subjectivity in the choice of universal Turing machine, this subjective
element disappears in the limit. Call this the convergence reply.12

Why is it true that different Solomonoff priors converge in their verdicts? To show
this, we can invoke a standard convergence result from Bayesian statistics. To get this
result on the table, we first need to introduce a bit more notation. Let p and p0 be two
probability measures on F. We define:

Definition 3. p is absolutely continuous with respect to p0 if for all A 2 F,

p�A� > 0⇒ p0�A� > 0:

We now need a way of measuring the difference between two probability func-
tions. Let p and p0 be two probability functions on F. We define:

11 Readers familiar with Goodman (1955) will recognize that a version of this argument was leveled by
Goodman against the idea that “green” is more simple than “grue”—it all depends on your choice of
primitives.

12 This reply is discussed by Rathmanner and Hutter (2011, 1133), Vallinder (2012, 32), and
Sterkenburg (2016, 473).
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Definition 4. The total variational distance between p and p0 is

supA2F j p�A� 
 p0�A� j :

Intuitively, the total variational distance between two probability functions
defined on the same domain is the “maximal disagreement” between them. We
are interested in what happens after learning more and more data. To capture this,
we define:

Definition 5. En : B∞ ! C is the function that, given an infinite binary string
b 2 B∞ , outputs the cylinder set of strings that agree with b in the first n places.

Intuitively, En is a random variable that tells us the first n digits of the string we are
observing.13 We further define:

Definition 6. A probability function p : F ! �0; 1� is open-minded if p�Γx� > 0 for
all x 2 B�.

This captures the class of probability functions that do not rule out any finite ini-
tial sequence by assigning a probability of zero to it.

We want to talk about arbitrary probability functions p : F ! �0; 1�, so we write
Δ�F� for the set of all probability functions on F. Now we define:

Definition 7. For any open-minded probability function p : F ! �0; 1�,
p�� j En� : B∞ ! Δ�F� is the function that outputs p�� j En�b�� for each b 2 B∞ .

So p�� j En� is the result of conditionalizing p��� on the first n digits of the observed
sequence. To make sure that p�� j En� is always well defined, we restrict our attention
to open-minded probability functions.

Now we can invoke the following well-known result in Bayesian statistics
(Blackwell and Dubin 1962):14

Theorem 1. Let p and p0 be two open-minded probability functions on F such that p
is absolutely continuous with respect to p0. Then, we have

lim
n!∞

supA2F j p�A j En� 
 p0�A j En� j� 0;

p-almost surely. Therefore, p-almost surely, the total variational distance between p
and p0 goes to zero as n ! ∞ .

Let me briefly comment on this result. First, to say that the equality holds
“p-almost surely” means that it holds for all binary sequences except perhaps a

13 One can prove the Bayesian convergence result in a considerably more general setting, working
with an abstract probability space and modeling evidence as a sequence of increasingly fine-grained
finite partitions (or sub-σ-algebras). However, it is sufficient for our purposes to work with the measur-
able space hB∞ ;Fi introduced earlier.

14 This and related results are discussed extensively by Earman (1992), Huttegger (2015), and Nielsen
and Stewart (2018, 2019).
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set to which p assigns a probability of zero. Second, as a direct corollary, if p is abso-
lutely continuous with respect to p0, and vice versa—so p and p0 agree on which
events have a prior probability of zero—then p and p0 will also agree that, almost
surely, their maximal disagreement will converge to zero as they observe more
and more data. This captures a natural sense of what it means for p and p0 to converge
in their verdicts.

With this result in place, the (almost sure) asymptotic equivalence of all
Solomonoff priors follows straightforwardly.15 Let λU and λU0 be two Solomonoff pri-
ors defined relative to two universal Turing machines U and U0. Now λU0 is absolutely
continuous with respect to λU because λU dominates λU0 , which means that there is a
constant c, depending on U and U0, such that for all x 2 B�, we have λU�x�  cλU0 �x�
(Sterkenburg 2018, 71–72). This is because the shortest programs producing a given
string relative to two different universal Turing machines cannot differ by more than
a constant, as stated by the invariance theorem (Li and Vitányi 2019, 105). Because λU
and λU0 were arbitrary, it follows that all Solomonoff priors are absolutely continuous
with respect to each other.

Furthermore, each Solomonoff prior is open-minded. This is because it assigns pos-
itive probability to all computable sequences, and every finite sequence is comput-
able. (In the worst case, we can just hard-code the sequence into our program.)
Therefore, by Theorem 1, we have

lim
n!∞

supA2F j λU�A j En� 
 λU0 �A j En� j� 0;

almost surely, so λU and λU0 converge toward the same verdict. Thus, all the infinitely
many Solomonoff priors are (almost surely) asymptotically equivalent.16

As another consequence, we can show that any Solomonoff prior converges
(almost surely) to optimal predictions on any sequence that is generated by some
computable stochastic process (Sterkenburg 2016, 467). This means that we can think
about the Solomonoff prior as a “universal pattern detector” that makes asymptoti-
cally optimal predictions on the minimal assumption that the data we are observing is
generated by some computable process.

There is much more to say about the convergence reply. In particular, worries
about subjectivity in the short run remain unaffected by long-run convergence results
of the kind just explained (Elga 2016, 314). We still have no argument for why, after
observing a finite number of green emeralds, it is more reasonable to predict that the
next emerald will be green rather than grue. However, for the sake of argument, I am
happy to grant that long-run convergence endows Solomonoff prediction with
some kind of desirable objectivity. The focus of my argument is how the emphasis
on long-run convergence interacts with another problematic feature of

15 For the purpose of stating the convergence result, I will assume that the Solomonoff priors are
normalized to be probability measures on F. It is possible to obtain convergence results with the weaker
assumption that Solomonoff priors are semi-measures, but there are difficulties in interpreting these
results (Sterkenburg 2018, 200), so to simplify our discussion, I’ll stick with probability measures.

16 The “almost sure” qualification matters: it is not true that different Solomonoff priors are asymp-
totically equivalent on all sequences, as shown by Sterkenburg (2018, 95), drawing on Hutter and Muchnik
(2007). However, this is generally true of Bayesian convergence theorems and no particular problem
affecting Solomonoff prediction. For this reason, I will continue to say that different Solomonoff priors
are “asymptotically equivalent” and sometimes drop the qualifier “almost surely.”

296 Sven Neth

https://doi.org/10.1017/psa.2022.72 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2022.72


Solomonoff prediction: the fact that the Solomonoff priors are themselves not
computable.

4. Computability and approximation
There is a second problem for Solomonoff prediction: the infinitely many Solomonoff
priors are all uncomputable. This means that there is no possible algorithm that will
tell us, after finitely many steps, what the Solomonoff prior of a particular binary
sequence is—even if we have fixed a choice of universal Turing machine.

Let us first define what it means for a pre-measure p : C ! �0; 1� to be computable,
following Li and Vitányi (2019, 365):

Definition 8. p : C ! �0; 1� is computable if there exists a computable function
g�x; k� : C × N ! Q such that for any Γx 2 C and k 2 N,

j p�Γx� 
 g�Γx; k� j <
1
k
:

This means that a pre-measure p : C ! �0; 1� is computable if there is an algorithm
that we can use to approximate p�Γx� to any desired degree of precision for any
cylinder set Γx 2 C.

Then, we have the following:

Theorem 2. For any universal Turing machine U, λU is not computable (Li and
Vitányi 2019, 303).

Leike and Hutter (2018) discuss further results on the computability of Solomonoff
prediction and related frameworks.

Because it seems plausible that we can only use computable inductive methods,
this looks like a big problem. It is impossible for anyone to actually use
Solomonoff prediction for inference or decision making. The lack of computability
also seems to undermine the intended application of Solomonoff prediction as a foun-
dation for AI because it is impossible to build an AI system that uses Solomonoff pre-
diction. One might worry that for this reason, Solomonoff prediction is completely
useless as a practical guide for assigning prior probabilities. Further, the lack of com-
putability might cut even deeper. It is unclear whether it is even possible for us, or
any AI agent we might build, to “adopt” one of the uncomputable Solomonoff priors. I
will return to this issue later in the article.

Again, proponents of Solomonoff prediction can respond to this argument.
Although it is true that Solomonoff prediction is not computable, it is semi-computable,
which means that there are algorithms that get closer to λU�x� at each step. This
means that there are algorithms that approximate the Solomonoff prior in some sense.
Call this the approximation reply.17

To see how such approximations could work, let me first explain in a bit more
detail why the Solomonoff prior is not computable. Recall that the Solomonoff prior
of a binary string b is inversely proportional to the Kolmogorov complexity of b: the
length of the shortest program that outputs b, given some universal Turing machine.

17 This reply is discussed by Solomonoff (1964, 11; 2009, 8–9).
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However, Kolmogorov complexity is not computable.18 There is no possible algorithm
that, given an arbitrary binary string, outputs the Kolmogorov complexity of that
string. As a consequence, the Solomonoff prior is not computable.

However, although Kolmogorov complexity is not computable, there are comput-
able approximations to it. To simplify drastically, we can approximate the
Kolmogorov complexity of a given string by stopping the search for the shortest pro-
gram that outputs that string after a fixed time and considering the shortest program
so far that outputs the string. Call this bounded Kolmogorov complexity.19 We can define a
prior that assigns probability inversely proportional to bounded Kolmogorov
complexity. As we let the search time go to infinity, we recover the original
Kolmogorov complexity of our string.20

Given such approximations, one might hope that Solomonoff prediction is still a
useful constraint on priors. It provides an ideal for the prior probabilities of a com-
putationally unbounded reasoner, and in practice, we should do our best to approxi-
mate this ideal using our finite computational resources. This attitude is expressed,
for example, when Solomonoff (1997, 83) writes that “despite its incomputability,
algorithmic probability can serve as a kind of ‘gold standard’ for induction systems.”

As before, there is much more to say about this argument, which raises interesting
questions about “ideal theorizing” and the value of approximation.21 However, for the
sake of argument, I am happy to grant that there may be something valuable about an
ideal theory that can never be implemented but only approximated.

There are some messy details that I’m ignoring here. First, it turns out that the
Solomonoff predictor is not even semi-computable (Sterkenburg 2019, 651).
Furthermore, the normalized Solomonoff prior is not even semi-computable (Leike
and Hutter 2018). Both only satisfy the weaker requirement of limit computability:
there is an algorithm that will converge to the correct probability value in the limit,
but it is not guaranteed to get closer at each step. These messy details make it harder
to maintain the convergence reply because they make it harder to see how we could
have any sensible method for approximating Solomonoff prediction. However, the
point I will discuss next is an additional problem, even if these messy details can some-
how be cleaned up.

5. A dilemma
When pressed on the relativity of the Solomonoff prior to a universal Turingmachine, it
is natural to appeal to asymptotic convergence. When pressed on the uncomputability
of the Solomonoff prior, it is natural to appeal to computable approximations. However,
there is a deep tension between the convergence reply and the approximation reply.

The tension arises for the following reason. Suppose we accept the approximation
reply. We hold that although Solomonoff prediction is not computable, we can use

18 Chaitin, Arslanov, and Calude (1995) provide a direct proof of this fact by reducing the problem of
computing Kolmogorov complexity to the halting problem.

19 See Li and Vitányi (2019, chap. 7) for a rich discussion.
20 Veness et al. (2011) provide a concrete approximation to Solomonoff prediction. Also see

Schmidhuber (2002).
21 See Staffel (2019) and Carr (forthcoming) for recent discussions of “ideal” versus “nonideal” theo-

rizing in epistemology and the value of approximation.
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some computable approximation of Solomonoff prediction to guide our inductive rea-
soning and construct AI systems. However, this response undercuts the convergence
reply because, for reasons I will explain in a moment, different computable approxima-
tions to Solomonoff prediction are not necessarily asymptotically equivalent. Therefore, we
can no longer respond to the worry about language dependence by invoking long-run
convergence.

To see why different computable approximations to Solomonoff prediction are not
guaranteed to converge, recall first that different Solomonoff priors do converge
because they are absolutely continuous with respect to each other. Now consider
some computable approximation to Solomonoff prediction. There are different ways
to spell out what it means to “approximate” the Solomonoff prior, but for my argu-
ment, the details of how we think about our “approximation strategy” will be largely
irrelevant. As explained earlier, there are considerable difficulties in whether we can
make sense of such an approximation strategy for the Solomonoff predictor and nor-
malized Solomonoff prior because they are only limit computable. I will sidestep these
difficulties by treating the approximation strategy as a black box—what matters is
just that our computable approximation to the Solomonoff prior is some computable
probability measure.

Why should it be a probability measure, as opposed to a semi-measure? For stan-
dard Bayesian reasons: to avoid dutch books and accuracy dominance. Why should it
be computable? Because the whole point of the approximation reply is that we can
actually use the approximation to make inferences and guide decisions, so we should
be able to compute, in a finite time, what the probability of a given event is.
Otherwise, the approximation reply seems like a nonstarter.

So let us consider some approximation to Solomonoff prediction, which is some
computable probability measure. I claim that this computable approximation must
assign probability zero to some computable sequence. This is because every computable
probability measure assigns probability zero to some computable sequence:

Theorem 3. Let p : F ! �0; 1� be a computable probability measure. Then, there is
some computable b 2 B∞ such that p�b� � 0.

This result is originally by Putnam (1963), who gives a beautiful “diagonal argu-
ment” for it.22 Consider some computable prior p. Here is how to construct a “diagonal
sequence” D for our prior p, where Di denotes the ith bit of D, and En denotes the first n
bits of D:

D1 � 0

Dn	1 � 1 if p�1 j En� < 1
2

0 if p�1 j En� ≥ 1
2 :

�

We arbitrarily start our sequence with a zero. To determine the next digit, we first
check what our prior p predicts after observing a zero. Then, we do the opposite.

22 For a wide-ranging discussion of Putnam’s argument, see Earman (1992, chap. 9). In statistics, a
similar result was shown by Oakes (1985), which is explicitly connected to Putnam’s argument by
Dawid (1985). See also Schervish (1985).
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We iterate this procedure infinitely many times, and our binary sequence D is fin-
ished. Because we have assumed that p is computable, D must be computable as well.

Now, why must p assign probability zero to D? Because by construction,
p�Dn	1 j En� can never go above 1=2. Therefore, even though the sequence we are
observing is generated by a deterministic computable process, our computable prior
cannot predict the next bit better than random guessing. However, if p�D� were
greater than zero, then p�Dn	1 j En� would eventually climb above 1=2, which contra-
dicts our assumption.

Sterkenburg (2019) discusses the relationship between Solomonoff prediction and
Putnam’s diagonal argument and concludes that “Putnam’s argument stands”
(Sterkenburg 2019, 653). In particular, Putnam’s argument provides an alternative
way to prove that the Solomonoff prior is not computable.23 My argument here is
different because my point is that we can use Putnam’s argument to highlight a deep
tension between the approximation reply and the convergence reply. Although this
tension is a relatively straightforward consequence of Putnam’s diagonal argument,
this particular point has not received any attention in the debate surrounding
Solomonoff prediction. I conjecture that this is because the convergence reply and
the approximation reply are often discussed separately, and not enough attention
is paid to how they interact with each other. The convergence reply inhabits the
realm of “ideal theorizing,” where we don’t really care about the constraints of com-
putability, whereas the approximation reply tries to connect ideal theory to the real
world. However, it is important to pay close attention to how these different features
of our theory interact. With this article, I hope to take some steps to remedy this
cognitive fragmentation.

Now that I’ve clarified what this article aims to accomplish, let’s get into the argu-
ment. Suppose we use a computable approximation to Solomonoff prediction. The key
point is that we face a choice between different approximations that are not guaranteed to be
asymptotically equivalent.

Consider two different computable priors p and p0 that approximate Solomonoff
prediction in some sense. Note that this could mean two different things: it could
mean that we fix a given Solomonoff prior λU and use two different “approximation
strategies.” Alternatively, it could mean that we fix an “approximation strategy” and
apply it to two different Solomonoff priors λU and λU0 based on different universal
Turing machines. The second possibility is closely related to the kind of language
dependence discussed earlier—we might face the choice between a “natural” and
a “gruesome” universal Turing machine. The first possibility seems a bit different;
it is best characterized as a kind of “approximation dependence.” My argument will
work with either of these options.

So we have two computable approximations p and p0. This means, as I have argued
earlier, that both p and p0 are computable probability measures. By Putnam’s argu-
ment, both p and p0 assign a probability of zero to some computable sequences. Call
these sequences D and D0. Note, first, that both p and p0 rule out some computable
hypotheses and so seem to make substantive assumptions about the world beyond
computability. For those who hold that Solomonoff prediction gives us a “universal

23 Further, Sterkenburg (2019, 651) points out that we can use Putnam’s argument to show that the
Solomonoff predictor is not semi-computable but only limit-computable.
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pattern detector” that can find any computable pattern, this is already a problem
because the approximations p and p0 cannot find every computable pattern. This is
a first hint that the asymptotic properties that make Solomonoff prediction great
are not preserved in computable approximations to Solomonoff prediction.

Now, the key point for my argument is that if p and p0 are different, then D and D0

might be different as well. So pmight assign a positive probability to D0. Conversely, p0

might assign a positive probability to D. The crucial observation is that although each
prior p is forced to assign probability zero to its “own” diagonal sequence D on pain of
inconsistency, no inconsistency arises when some prior p assigns positive probability
to the diagonal sequence D0 for some other prior p0.24

In the case just discussed, p and p0 fail to be absolutely continuous with respect to
each other because they differ in what events are assigned a probability of zero.
Therefore, it is not guaranteed that p and p0 are (almost surely) asymptotically equiv-
alent. They might yield different verdicts forever. This means that if there is a sub-
jective element in the choice between p and p0, this subjective element is not
guaranteed to “wash out” in the long run.

To bring this out more clearly, we can draw on a recent result by Nielsen and
Stewart (2018). They relax the assumption of absolute continuity and study what hap-
pens to Bayesian convergence results in this more general setting. What they show is
the following: if prior p is not absolutely continuous with respect to prior p0, then p
must assign some positive probability to the event that p and p0 polarize, which means
that the total variational distance between them converges to 1 as they learn an
increasing sequence of shared evidence.25 So if two priors fail to be absolutely con-
tinuous with respect to each other, they must assign positive probability to the event
that learning shared evidence drives them toward maximal disagreement.

I have argued earlier that two computable approximations of the Solomonoff prior
might fail to be absolutely continuous with respect to each other. In combination with
the result by Nielsen and Stewart (2018), this means that two computable approxi-
mations of the Solomonoff prior might assign positive probability to polarization
in the limit: further evidence drives them toward maximal disagreement. This gives
us a clear sense in which, when we consider computable approximations to the
Solomonoff prior, subjectivity is not guaranteed to “wash out” as we observe more
evidence. This, in turn, means that the choice between our two approximations intro-
duces a significant subjective element that is not guaranteed to wash out but might,
with positive probability, persist indefinitely. This looks like bad news for the conver-
gence reply.

Let me add an important clarification. My argument shows that for two comput-
able approximations p and p0 of the Solomonoff prior, it is not guaranteed that p and p0

will converge without making further assumptions. We might add additional require-
ments on “acceptable approximations” that rule out such cases by forcing all

24 Here is a simple example. Let p0 be generated by the uniformmeasure that assigns probability 2
n to
each binary sequence of length n. Applying Putnam’s construction, the diagonal sequence D0 for this prior
is the sequence s0 consisting of all zeros. However, we can easily find another (computable) prior p that
assigns positive probability to s0: just let p�fs0g� � 1.

25 See their theorem 3, which generalizes the classic merging-of-opinion results by Blackwell and
Dubin (1962).
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computable approximations to the Solomonoff prior to be absolutely continuous with
respect to each other. However, any such strategy faces a deep problem. Because each
computable prior must assign a probability of zero to some computable sequence, this
would mean that our set of approximations to the Solomonoff prior rules out some
computable sequences a priori. However, this looks incompatible with the motivation
behind Solomonoff prediction. The Solomonoff prior is supposed to be a “universal
pattern detector” that can learn any computable pattern. So the price for forcing
asymptotic agreement among different approximations to the Solomonoff prior
would be to make substantive assumptions beyond computability, which is exactly
what Solomonoff prediction was designed to avoid.

Thus, there is a deep tension between the convergence reply and the approxima-
tion reply. If we accept the approximation reply, this means that we should use some
computable approximation to the Solomonoff prior to guide our inductive reasoning.
However, the move to computable approximations undercuts the convergence reply
because different computable approximations are not necessarily asymptotically
equivalent. They might, with positive probability, yield different verdicts forever
and never converge to the same predictions. Therefore, we can no longer dismiss
the worry about language dependence by invoking long-run convergence. For exam-
ple, if two different approximations arise from two different universal Turing
machines, the difference between “natural” and “gruesome” universal Turing
machines is not guaranteed to wash out in the long run but might stay with us forever.
Therefore, we better come up with some good reasons for why we should use a
“natural” rather than a “gruesome” universal Turing machine.26 More generally,
we have to face the problem of subjectivity in the choice of universal Turing machine
head-on and cannot downplay the significance of this choice by invoking asymptotic
convergence. In fact, the situation is even more bleak: even if we find convincing
arguments for why some universal Turing machine is the “correct” or “natural”
one, we might still face the choice between different “approximation strategies,”
which introduces a persistent subjective element. So when we consider computable
approximations to Solomonoff prediction, both language dependence and approxima-
tion dependence introduce subjective elements that are not guaranteed to wash out.

Suppose, on the other hand, that we are convinced by the convergence reply. In
this case, we think that what makes Solomonoff prediction great is that different
choices of universal Turing machine lead to priors that are (almost surely) asymptot-
ically equivalent and that assign positive probability to all computable sequences.
However, in this case, we have to embrace that Solomonoff prediction is essentially
uncomputable. This is because there is no computable prior that assigns positive
probability to all computable sequences, so the emphasis on convergence undercuts
the approximation reply. From this perspective, what makes Solomonoff prediction
great is its asymptotic behavior. However, no computable approximation to Solomonoff pre-
diction preserves this great asymptotic behavior. Therefore, it is not clear why there is any
point in using a computable approximation to Solomonoff prediction to guide our
inductive inferences or as a foundation for AI.

26 Rathmanner and Hutter (2011, 1113) inconclusively explore the issue of whether some universal
Turing machines might be more “natural” than others.
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You might object to my argument as follows: “Suppose I adopt the Solomonoff
prior. In response to the charge that it is not objective, I invoke convergence. In
response to the charge that the Solomonoff prior is not computable, I invoke approx-
imation. In response to the charge that these computable approximations need not
themselves converge, I simply deny that there is any problem. The computable
approximations are not my probabilities; they are just useful computational tools that
I can use to calculate and report my (approximate) probabilities.”27

Let me reply to this objection by making clear what the target of my argument is.
I grant that if one can really “adopt” one of the Solomonoff priors and use computable
approximations merely as a tool to report one’s probabilities, this gets around the
problem. But is it really possible for us, or an AI agent we build, to adopt an incom-
putable probability function as a prior? This depends on what makes it the case that
an agent has a particular prior, which is a difficult question I cannot fully discuss here.
But it seems plausible that any physically implemented agent can only represent and
act according to a computable prior. Therefore, it is unclear whether we can really
“adopt” an uncomputable prior. The same reasoning holds for any AI system that we
might construct. The best we can do is to adopt some approximation to the
Solomonoff prior, and my point is that we face some difficult choices in choosing such
an approximation.

6. Convergence for subjective Bayesians
Let me finish by briefly discussing how my argument relates to broader questions in
Bayesian epistemology. As we have seen at the beginning, one of the big questions for
Bayesians is how to choose a prior—the problem of the priors. Solomonoff prediction
is an attempt to solve this problem by specifying a “universal” prior. But as I have
argued, this ambition ultimately fails because we lose guaranteed convergence if
we use computable approximations to the Solomonoff prior.

One might wonder whether this argument poses problems for Bayesian conver-
gence arguments more generally. Bayesians often argue that the choice of prior is
not very significant because, given “mild” assumptions, different priors converge
as more data are observed.28 However, the key assumption is absolute continuity: dif-
ferent priors must assign positive probability to the same events. And Putnam’s argu-
ment shows that every computable prior must assign a probability of zero to some
computable hypothesis. Taken together, this suggests that we can only hope for con-
vergence if we agree on substantive assumptions about the world—beyond comput-
ability. So the scope of Bayesian convergence arguments is more limited than one
might have hoped.29

This should not come as a surprise to subjective Bayesians who hold that the choice
of prior embodies substantive assumptions that reflect the personal beliefs of an
agent. Consider, for example, the following passage in Savage (1972) that defends
a “personalistic” (subjective Bayesian) view of probability: “The criteria incorporated
in the personalistic view do not guarantee agreement on all questions among all

27 Thanks to an anonymous referee for pressing this objection.
28 See, for example, the classic discussion by Earman (1992, chap. 6).
29 This is also the conclusion of Nielsen and Stewart (2018), who argue that Bayesian rationality is

compatible with persistent disagreement after learning shared evidence.
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honest and freely communicating people, even in principle. That incompleteness, if
one will call it such, does not distress me, for I think that at least some of the dis-
agreement we see around us is due neither to dishonesty, to errors in reasoning,
nor to friction in communication” (Savage 1972, 67–68).

If you agree that the choice of prior embodies a subjective element, then the fact
that we cannot guarantee convergence without shared substantive assumptions
should not come as a shock. Thus, my argument does not raise new problems for sub-
jective Bayesians. However, it raises problems for any attempt to define a “universal”
or “objective” prior that does not embody substantive assumptions about the world.

7. Conclusion
Proponents of Solomonoff prediction face a dilemma. They cannot simultaneously
respond to worries about language dependence by invoking asymptotic conver-
gence while responding to worries about uncomputability by invoking computable
approximations. This is because, for very general reasons, no computable approxi-
mation to Solomonoff prediction has the same asymptotic behavior as the
Solomonoff priors.

In the absence of principled criteria for choosing a universal Turing machine, it
looks like Solomonoff prediction is either subject to thorny problems of subjectivity
and language dependence or else essentially uncomputable and therefore useless as a
guide to scientific inference and the design of optimal artificial agents.
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