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A DIMENSION INEQUALITY FOR COHEN-MACAULAY RINGS

SEAN SATHER-WAGSTAFF

Abstract. The recent work of Kurano and Roberts on Serre’s positivity con-
jecture suggests the following dimension inequality: for prime ideals p and
q in a local, Cohen-Macaulay ring (A, n) such that e(Ap) = e(A) we have
dim(A/p) + dim(A/q) ≤ dim(A). We establish this dimension inequality for
excellent, local, Cohen-Macaulay rings which contain a field, for certain low-
dimensional cases and when R/p is regular.

1. Introduction

Let (R,m) be a local Noetherian ring of dimension d, and let M and N be finitely
generated R-modules such that M has finite projective dimension and M ⊗R N is
a module of finite length. Serre [13] defined the intersection multiplicity of M and
N to be

χ(M,N) =
n∑
i=0

(−1)ilength(TorRi (M,N))

and conjectured that χ(M,N) satisfies the following properties when R is regular:
1. dim(M) + dim(N) ≤ dim(R).
2. (Nonnegativity) χ(M,N) ≥ 0.
3. (Vanishing) If dim(M) + dim(N) < dim(R), then χ(M,N) = 0.
4. (Positivity) If dim(M) + dim(N) = dim(R), then χ(M,N) > 0.

Serre was able to verify the first statement for any regular local ring and the others
in the case when R is unramified. Since χ(M,N) has many of the characteristics
we desire from an intersection multiplicity (for example, Bézout’s Theorem holds),
it was reasonable to suppose that these further properties are satisfied over an
arbitrary regular local ring. The results were left unproved for ramified rings.

The vanishing conjecture was proved about ten years ago by Gillet and Soulé [3]
and independently by Roberts [11] using K-theoretic methods. Gabber proved the
nonnegativity conjecture recently [1, 6, 12] using a theorem of de Jong [2]. Kurano
and Roberts have proved the following using methods introduced by Gabber.

Theorem 1.1 ([7] Theorem 3.2). Assume that (R,m) is a regular local ring which
either contains a field or is ramified. Also, assume that p and q are prime ideals in
R such that

√
p + q = m and dim(R/p) + dim(R/q) = dimR. If χ(R/p, R/q) > 0

then

p(n) ∩ q ⊆ mn+1 for all n > 0.(1.1)

Received by the editors December 20, 1999 and, in revised form, March 1, 2000.
2000 Mathematics Subject Classification. Primary 13H15, 13C15; Secondary 13H05, 13D22.
Key words and phrases. Intersection dimension, intersection multiplicities, multiplicities.

c©2001 American Mathematical Society

993

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



994 SEAN SATHER-WAGSTAFF

As a result, they conjectured that (1.1) should hold for all regular local rings.
More specifically,

Conjecture 1.2. Assume that (R,m) is a regular local ring and that p and q are
prime ideals in R such that

√
p + q = m and dim(R/p) + dim(R/q) = dimR. Then

p(n) ∩ q ⊆ mn+1 for all n > 0.

We study Conjecture 1.2, as a verification of this conjecture could introduce new
tools to apply to the positivity conjecture.

For any local ring (A, n) let e(A) denote the Samuel multiplicity of A with respect
to n (see Section 2 for the precise definition). It is straightforward to verify that,
if R is a regular local ring with prime ideal p and 0 6= f ∈ p, then e(Rp/(f)) = m

if and only if f ∈ p(m) r p(m+1). Thus, Conjecture 1.2 may be rephrased as the
following.

Conjecture 1.2′. Assume that (R,m) is a regular local ring and that p and q are
prime ideals in R such that p + q is m-primary. If there exists 0 6= f ∈ p ∩ q such
that e(Rp/(f)) = e(R/(f)), then dim(R/p) + dim(R/q) ≤ dim(R)− 1.

Conjecture 1.2′ motivates the following generalization.

Conjecture 1.3. Assume that (R,m) is a quasi-unmixed local ring and that p and
q are prime ideals in R such that

√
p + q = m and e(Rp) = e(R). Then dim(R/p)+

dim(R/q) ≤ dim(R).

Below, we present examples to show that our assumptions in Conjectures 1.2
and 1.3 are necessary.

As we noted above, Serre proved this conjecture in the case where R is regular
(where the condition e(Rp) = e(R) holds automatically). The following is a famous
conjecture which is rather similar to Conjecture 1.3.

Conjecture 1.4 (Peskine and Szpiro [10]). Assume that (R,m) is a local ring and
p and q are prime ideals in R such that p has finite projective dimension and√

p + q = m. Then dim(R/p) + dim(R/q) ≤ dim(R).

We discuss connections between Conjectures 1.3 and 1.4 below.
In Section 2 we prove Conjecture 1.3 in the case where R is excellent and contains

a field. In Section 3 we establish the Conjecture 1.3 for some low-dimensional cases
and for the case where R/p is regular. In Section 4 we present a number of examples.

I would like to express my gratitude to P. Roberts, A. Singh and the referee for
their comments and suggestions.

2. The Equicharacteristic Case

All rings are assumed to be commutative and Noetherian with identity, and all
modules are assumed to be unital.

The goal of this section is to prove the following theorem.

Theorem 2.1. Assume that (R,m) is an excellent local Cohen-Macaulay ring which
contains a field. Also, assume that P and Q are prime ideals of R such that√
P +Q = m and e(RP ) = e(R). Then dim(R/P ) + dim(R/Q) ≤ dim(R).

We accomplish this in steps. First, we fix some notation and definitions and prove
Theorem 2.1 in the case where R is complete with infinite residue field. Then, we
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A DIMENSION INEQUALITY FOR COHEN-MACAULAY RINGS 995

establish some results on the behavior of the Samuel multiplicity and reduce the
case where R is excellent to the the case where our ring is complete.

The Samuel multiplicity shall play a central role in our work. For the sake
of clarity we specify which multiplicity we are considering. Assume that (R,m)
is a local ring of dimension d with an ideal a such that

√
a = m. For n � 0

the Hilbert function Ha(n) = len(R/an+1) is a polynomial in n of degree d with
rational coefficients. If ed is the leading coefficient of this polynomial, then the
Samuel multiplicity of a on R is e(a, R) = d!ed. We denote e(m, R) by e(R). Recall
that the Samuel multiplicity satisfies the Associativity Formula

e(R) =
∑

p

len(Rp)e(R/p)

where the sum is taken over all prime ideals p of R such that dim(R/p) = d.
We first prove Theorem 2.1 for the case where R is a complete, Cohen-Macaulay

ring with infinite residue field K. In this case we can find a system of param-
eters y1, . . . , yn which form part of a minimal set of generators of m such that
len(R/(y1, . . . , yn)) = e(R) (see Matsumura [9] Theorem 14.14). Since R is as-
sumed complete, R is a finite extension of the power series ring K[[Y1, . . . , Yn]], and
since R is Cohen-Macaulay, it is a free module over this subring of rank e(R).

The main result used in proving Theorem 2.1 is the following:

Theorem 2.2. Assume that B is a Cohen-Macaulay ring and (A,m) a regular local
subring such that B is a finite free A-module. Assume that P is a prime ideal of
B with P ∩A = p and e(BP ) = rankA(B). Then P is the unique prime ideal of B
which contracts to p in A, and BP /PP ∼= Ap/pp.

Proof. First, we reduce to the case where p is the maximal ideal of A. Any local-
ization of a Cohen-Macaulay ring is Cohen-Macaulay, so Bp = B ⊗A Ap is Cohen-
Macaulay. The ring Ap is regular and Ap is a subring of Bp. If r = rankA(B) then
B ∼= Ar and so Bp

∼= Arp is finite and free over Ap. Furthermore, Pp is a prime
ideal of Bp which contracts to the maximal ideal of Ap and e((Bp)P ) = e(BP ) =
rankA(B) = r = rankAp

(Bp). Thus, the rings Bp and Ap satisfy the hypotheses of
the theorem and we may assume that P ∩A = m.

By the finiteness of the extension A → B, the prime ideal P is maximal. The
ring B/mB is Artinian because any prime ideal of B which contains mB must
contract to m in A and therefore must be maximal. In particular, a regular system
of parameters of A passes to a system of parameters of BP (and since BP is Cohen-
Macaulay, a maximal BP -regular sequence). Let K = A/m, L = B/P and P̂ =
P/mB. By the finiteness of the extension A → B, the extension K → L is finite.
Since B/mB is a finite-dimensional vector space over K, B/mB has finite length
as an A-module. By the structure theorem for Artinian rings, B/mB has a finite
number of maximal ideals, P̂ = P̂1, P̂2, . . . , P̂l, and B/mB ∼=

∏
i(B/mB)P̂i . In

particular, each (B/mB)P̂i is finitely generated over A and has finite length as an
A-module. It is straightforward to verify that

lenBP (BP /mBP ) = lenA(BP /mBP )/ dimK(L).
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By [9] Theorem 14.9, e(BP ) ≤ e(BP /mBP ) since m is generated by a BP -regular
sequence. Our assumptions imply that∑

i

dimK((B/mB)P̂i) = dimK(B/mB) = rankA(B) = e(BP ) ≤ e(BP /mBP )

= lenBP (BP /mBP ) = lenA(BP /mBP )/ dimK(L)

= dimK(BP /mBP )/ dimK(L) ≤ dimK(BP /mBP )

≤
∑
i

dimK((B/mB)P̂i)

so we must have equality. This can only happen if (i) P̂ is the unique prime ideal
of B/mB and (ii) dimK(L) = 1. These are the desired results.

Proof of Theorem 2.1 when R is complete with infinite residue field. As noted pre-
viously, we may choose a system of parameters y1, . . . , yn of R such that (i) the
yi form part of a minimal generating set of m and (ii) e(R) = len(R/(y1, . . . , yd)).
Fix z1, . . . , zq ∈ m such that y1, . . . , yn, z1, . . . , zq form a minimal generating set
for m. The natural map K[[Y1, . . . , Yn]] → R given by Yi 7→ yi is injective since R
is complete, and R is module finite over A = K[[Y1, . . . , Yn]] (cf., [9] §29), and the
fact that R is local Cohen-Macaulay implies that R is free over A of finite rank r.
Furthermore, the natural map ρ : K[[Y1, . . . , Yn, Z1, . . . , Zq]]→ R given by Yi 7→ yi
and Zj 7→ zj is surjective. Let A′ = K[[Y1, . . . , Yn, Z1, . . . , Zq]] with maximal ideal
m′ and I = ker(ρ). The constructions show that we have a natural commuting
diagram:

A
φ

//

ψ
  

@@@@@@@@ A′

ρ

��

R

Let p = P ∩A. Since the extension A→ R is finite and free, both the going-up and
going-down properties hold so that ht (p) = ht (P ) and dim(A/p) = dim(R/P ). If
we can show that

√
pA′ + ρ−1(Q) = m′, then it follows that

dim(R/P ) + dim(R/Q) = dim(A/p) + dim(A′/ρ−1(Q))

= dim(A′/pA′)− q + dim(A′/ρ−1(Q))

≤ dim(A′)− q = n = dim(R)

where the final inequality follows from the fact that Theorem 2.1 holds for regular
local rings.

For an ideal a of A′, let Z(a) ⊆ Spec(A′) denote the closed subscheme determined
by a. In order to show that

√
pA′ + ρ−1(Q) = m′, it suffices to show that

Z(pA′ + ρ−1(Q)) = Z(ρ−1(P ) + ρ−1(Q))

as the surjectivity of ρ implies that
√
ρ−1(P ) + ρ−1(Q) = m′. Since pA′+ρ−1(Q) ⊆

ρ−1(P ) + ρ−1(Q), the inclusion Z(pA′ + ρ−1(Q)) ⊇ Z(ρ−1(P ) + ρ−1(Q)) is clear.
For the other inclusion we note that, since I ⊆ ρ−1(Q),

pA′ + ρ−1(Q) = (pA′ + I) + ρ−1(Q)
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so that

Z(pA′ + ρ−1(Q)) = Z((pA′ + I) + ρ−1(Q)) = Z(pA′ + I) ∩ Z(ρ−1(Q)).

Since Z(ρ−1(P ) + ρ−1(Q)) = Z(ρ−1(P )) ∩ Z(ρ−1(Q)) it then suffices to show that
Z(pA′ + I) ⊆ Z(ρ−1(P )). It suffices to show that ρ−1(P ) determines the unique
minimal prime ideal of A′/(pA′ + I). By our commuting diagram, the (minimal)
primes of pA′ + I are in bijection with the (minimal) primes of pR = ρ(pA′ + I).
Thus, it suffices to show that P is the unique minimal prime of pR. By Lemma 2.3
below, every minimal prime P ′ of pR contracts to p in A, so it suffices to show that
P is the unique prime ideal of R such that P ∩ A = p. By assumption P ∩ A = p

and e(RP ) = e(R). So, if we can show that e(R) = rankA(R), then Theorem 2.2
supplies the necessary uniqueness. Our assumptions imply that

e(R) = len(R/(y)R) = dimK(R/(y)R) = dimK(R⊗A A/(y)A)

= dimK(R ⊗A K) = dimK(Ar ⊗A K) = dimK(Kr) = r = rankA(R)

and this completes the proof.

Lemma 2.3. Assume that R → R̃ is a flat local homomorphism of local rings
(R,m) and (R̃, m̃).

1. If mR̃ is m̃-primary, then dim(R̃) = dim(R).
2. If mR̃ is m̃-primary and R is Cohen-Macaulay, then R̃ is Cohen-Macaulay.
3. If p is a prime ideal of R and P is a prime ideal of R̃ which is minimal over

pR̃, then P ∩R = p and ht (P ) = ht (p).

Proof. 1. Let d = dim(R). By flatness, the extension R → R̃ satisfies the going-
down property. In particular, d ≤ dim(R̃). Let x1, . . . , xd ∈ m be a system of
parameters for R and let a = (x)R. Then

√
a = m so that

√
aR̃ = m̃. Thus, aR̃ is

m̃-primary and generated by d elements, so that d ≥ dim(R̃).
2. The system of parameters x is a regular sequence on R of length d. By flatness

x is a regular sequence on R̃ of length dim(R̃).
3. Suppose that P ∩ R 6= p. Since P ∩ R ) p, the going-down property implies

that P contains a prime ideal Q which contracts to p. But then pR̃ ⊆ Q ( P ,
contradicting the minimality of P . The fact that ht (P ) = ht (p) is proved in [4]
Lemma 18.10.

The remainder of this section is devoted to proving that we can reduce Theo-
rem 2.1 to the case where R is complete.

For technical reasons, we must restrict our attention to certain classes of rings.
We recall the definitions here. A ring R is equidimensional if dim(R/p) = dim(R)
for all minimal prime ideals p of R. A local ring R is quasi-unmixed if its completion
is equidimensional. A ring R is Nagata if, for every prime ideal p of R and every
finite extension field L of the quotient field of R/p, the integral closure of R/p in
L is module-finite over R/p.

Every Cohen-Macaulay ring is equidimensional. Every excellent ring1 is Nagata.
Furthermore, the class of Nagata rings is closed under finite ring extensions, lo-
calizations and quotients. Also, every localization of a ring of polynomials over a

1For a complete definition of “excellent”, see Matsumura [9] Section 32. It is important to note
that the class of excellent rings contains all fields, complete local rings and the ring of integers,
and is closed under finite ring extensions, localizations and quotients.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



998 SEAN SATHER-WAGSTAFF

quasi-unmixed ring is quasi-unmixed. Furthermore, a quasi-unmixed local ring is
equidimensional and universally catenary (see Hermann, Ikeda and Orbanz [4] Sec-
tion 18). One of the advantages of working with Nagata rings is that multiplicities
are well-behaved with respect to localization. The following is a special case of a
theorem of Lech [8].

Lemma 2.4. Assume that (R,m) is a local, quasi-unmixed, Nagata ring with prime
ideal p. Then e(Rp) ≤ e(R).

Proof. Because R is equidimensional and catenary, ht p + dim(R/p) = dim(R).
BecauseR is Nagata, for every pair of primes q ⊂ q′, the integral closure of Rq′/qRq′

is module-finite over Rq′/qRq′ . As noted by Lech ([8] comments following Theorem
1) this now implies that e(Rp) ≤ e(R).

Lech conjectured that Lemma 2.4 should hold for any local, equidimensional
ring. Below, we indicate an example which shows that we must assume that R is at
least equidimensional in order for the inequality e(Rp) ≤ e(R) to hold for all prime
ideals p of R.

In the following two lemmas, we collect facts that show that multiplicities do not
change under certain ring extensions. We will use these facts to reduce our general
question to the situation where R is complete with infinite residue field and R/p is
normal. For a finitely generated module M , let µ(M) denote the minimal number
of generators of M .

Lemma 2.5. Assume that R → R̃ is a flat local homomorphism of Noetherian
local rings (R,m) and (R̃, m̃) and that a is an ideal of R.

1. µ(a) = µ(aR̃).
2. If, in addition, mR̃ = m̃ then lenR(mn/mn+1) = lenR̃(m̃n/m̃n+1). In particu-

lar, e(R) = e(R̃).

Proof. Part 1 is proved by Herzog [5] Lemma 2.3. Part 2 follows from part 1 by
the following computation

lenR(mn/mn+1) = µ(mn) = µ(mnR̃) = µ(m̃n) = lenR̃(m̃n/m̃n+1)

and the definitions of e(R) and e(R̃).

Lemma 2.6. Let (R,m) be a quasi-unmixed local ring and S = R[X1, . . . , Xn]
a polynomial ring over R. Let P be a prime ideal of S and p = P ∩ R. Then
e(Rp) = e(SP ).

Proof. By induction, we may assume that n = 1, and the result follows in this case
by [8] Lemma 2.

The following theorem allows us to reduce Conjecture 1.3 to the case where the
quotient R/p is a normal domain. This will be a key step in our reduction of
Theorem 2.1 to the case where R is complete.

Theorem 2.7. Let (R,m) be a Nagata, Cohen-Macaulay local ring, and suppose
that, for every ring (S,M) which is a localization at a maximal ideal of a polynomial
ring over R, the following holds: for all prime ideals P and Q such that

√
P +Q =

M , e(SP ) = e(S) and S/P is a normal domain,

dim(S/P ) + dim(S/Q) ≤ dim(S).
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Then, for all prime ideals p and q of R such that
√

p + q = m and e(Rp) = e(R),

dim(R/p) + dim(R/q) ≤ dim(R).

Proof. Fix prime ideals p and q of R such that
√

p + q = m and e(Rp) = e(R). Let
B be the integral closure of R/p. Since R is Nagata, B is module-finite over R/p
and in particular, dim(B) = dim(R/p). Because B is module finite over R/p, there
is a surjection T = R[X1, . . . , Xn] → B. Let K denote the kernel of this map so
that T/K = B. The commutative diagram

R
β

//

��

R/p

��

T
φ

// B

shows that K∩R = p. Let n ⊂ B be a maximal ideal. Since the extension R/p→ B
is finite, we know that n ∩ R/p is maximal in R/p, that is, n ∩ R/p = m/p. Also,
there are no prime ideals of B which are properly contained in n and contract to
m/p in R/p. It follows that

√
qBn =

√
(m/p)Bn = nn.

Let N = φ−1(n), so that T/N ∼= B/n. Then, K ⊆ N and since m = β−1(n) =
R ∩ φ−1(n) = R ∩N , we see that L = qT ⊆ N . We claim that

√
KN + LN = NN .

Since K + L ⊇ K = ker(φ) we see that K + L = φ−1(φ(K + L)) = φ−1(qB).
Let φ denote the map TN → Bn. If x ∈ NN , then φ(x) ∈ n so that for some n,
φ(xn) = φ(x)n ∈ qBn. Then xn ∈ φ−1(qBn) = (K+L)N so that NN ⊆

√
KN + LN

as desired.
By Lemma 2.6, we see that e(TN) = e(R) = e(Rp) = e(TK). By construction,

TN/KN is a normal domain. Thus, if we know that

dim(TN/KN) + dim(TN/LN) ≤ dim(TN ),

then it follows that

dim(R/p) + dim(R/q) = dim(TN/KN) + dim(TN/LN)− n
≤ dim(TN )− n = dim(R)

as desired. This gives the desired reduction.

It is clear that, in the statement of Theorem 2.7, “Cohen-Macaulay” may be re-
placed by either “quasi-unmixed”, “Gorenstein” or “compete intersection (of codi-
mension c)”. The same is true of the statement of Theorem 2.8 below. Below, we
indicate an example which shows that we must assume that our ring is at least
equidimensional for Conjecture 1.3 to hold.

The following theorem is the result which will allow us to reduce Conjecture 1.3
to the case where R is complete.

Theorem 2.8. Let (R,m) be an excellent, Cohen-Macaulay local ring. Assume the
following for every ring (S,M) which is the localization of a polynomial ring over
R at a maximal ideal: for all prime ideals P̂ , Q̂ of the completion Ŝ such that√
P̂ + Q̂ = M̂ , e(ŜP̂ ) = e(Ŝ) and Ŝ/P̂ is a normal domain, we have

dim(Ŝ/P̂ ) + dim(Ŝ/Q̂) ≤ dim(Ŝ).

Then, for all prime ideals p and q of R such that
√

p + q = m and e(Rp) = e(R),

dim(R/p) + dim(R/q) ≤ dim(R).
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Proof. By Theorem 2.7 it suffices to show that for every ring (S,M) which is a
localization at a maximal ideal of a polynomial ring over R, the following holds:
for all prime ideals P and Q such that

√
P +Q = M , e(SP ) = e(S) and S/P is a

normal domain,

dim(S/P ) + dim(S/Q) ≤ dim(S).

Let S,M,P,Q satisfy these hypotheses. The ring S is excellent, which implies that
S/P is also excellent (cf., [9] §32). By [9] Theorem 32.2, Ŝ/P = Ŝ/P Ŝ is normal, in
particular, P̂ = PŜ is a prime ideal of Ŝ such that Ŝ/P̂ is a normal domain. Since
the map S → Ŝ is faithfully flat, P̂ ∩S = P . Thus, by Lemma 2.3, ht (P̂ ) = ht (P ).
By [4] Theorem 18.13 (d), dim(Ŝ/P̂ ) = dim(S/P ). Let Q̂ be a minimal prime ideal
containing QŜ such that dim(Ŝ/Q̂) = dim(Ŝ/QŜ). The extension SP → ŜP̂ is
faithfully flat and PP ŜP̂ = P̂P̂ so that, by Lemma 2.5

e(ŜP̂ ) = e(SP ) = e(S) = e(Ŝ).

Thus, by assumption

dim(S/P ) + dim(S/Q) = dim(Ŝ/P̂ ) + dim(Ŝ/Q̂) ≤ dim(Ŝ) = dim(S)

as desired.

Now, we complete the proof of Theorem 2.1.

Proof of Theorem 2.1. If the residue field of R is finite, let X be an indeterminate
over R and R(X) = R[X ]m[X] which is an excellent, Cohen-Macaulay local ring
that contains a field. The prime ideals P = pR(X) and Q = qR(X) satisfy the
following properties:

√
P +Q = mR(X), R(X)/P = R/p(X), R(X)/Q = R/q(X)

and (by Lemma 2.6) e(R(X)P ) = e(Rp) = e(R) = e(R(X)). Thus, if the theorem
holds for R(X), then

dim(R/p) + dim(R/q) = dim(R(X)/P ) + dim(R(X)/Q)

≤ dim(R(X)) = dim(R)

and the theorem holds for R. Since the residue field of R(X) is K(X), we may
assume that the residue field of R is infinite. By Theorems 2.7 and 2.8 we may pass
to the completion of the localization of a polynomial ring over R. In particular,
we may assume that R is a complete local Cohen-Macaulay ring which contains a
field, and by our previous remarks this completes the proof.

3. Other Cases

A number of low dimensional cases of Conjecture 1.3 can be dealt with rather
easily using Lemma 2.4 and the Associativity Formula for multiplicities.

Proposition 3.1. Assume that (R,m) is an equidimensional local ring of dimen-
sion d with prime ideals p and q such that

√
p + q = m and e(Rp) = e(R).

1. If p is a minimal prime ideal of R then q = m.
2. If dim(R/q) = 1 then dim(R/p) < d.
3. If R is Nagata and q is a minimal prime ideal of R then p = m.
4. If R is Nagata and dim(R/p) = 1 then dim(R/q) < d.

In particular, Conjecture 1.3 holds when R is Nagata and one of the following holds:
dim(R/p) = 1, dim(R/p) = d, dim(R/q) = 1, or dim(R/q) = d.
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Proof. We prove part 1 here. The remaining parts are proved similarly. Our as-
sumptions imply that

len(Rp) = e(Rp) = e(R)

and the Associativity Formula implies that

len(Rp) = e(R) =
∑

r

len(Rr)e(R/r)

where the sum is taken over all prime ideals r of R such that dim(R/r) = d. Since
each e(R/r) > 0, it follows that len(Rp)e(R/p) is the only term in the sum. Since
R is equidimensional, this implies that p is the unique minimal prime ideal of R.
In particular, q ⊇

√
(0) = p. The fact that q is prime implies that m =

√
p + q =√

q = q, as desired.

The proof of Proposition 3.1 shows that, for minimal prime ideals p, the assump-
tion e(Rp) = e(R) is quite strong. In fact, we have the following.

Proposition 3.2. Assume that (R,m) is an equidimensional local ring with mini-
mal prime ideal p, and consider the following statements.

1. e(R/p) = 1.
2. e(Rp) = e(R).
3. p is the unique minimal prime of R.

(a) Any two of these conditions imply the third.
(b) If R/p is unmixed (that is, if every associated prime p′ of the completion R′ of
R/p satisfies the condition dim(R′/p′) = dim(R′)) then condition 1 may be replaced
by “R/p is regular”.

Proof. (a) If e(R/p) = 1 and e(Rp) = e(R), then

len(Rp) = e(Rp) = e(R) =
∑

r

len(Rr)e(R/r)

≥ len(Rp)e(R/p) = len(Rp)

where the sum is taken over all prime ideals r of R such that dim(R/r) = dim(R). It
follows that the only term in the sum is len(Rp)e(R/p). Since R is equidimensional,
this implies that p is the unique minimal prime of R.

If e(R/p) = 1 and p is the unique minimal prime of R

e(R) =
∑

r

len(Rr)e(R/r) = len(Rp)e(R/p) = len(Rp) = e(Rp)

where the sum is taken over all prime ideals r of R such that dim(R/r) = dim(R). If
e(Rp) = e(R) and p is the unique minimal prime of R, then a similar computation
shows that e(R/p) = 1.

(b) If R/p is unmixed, then [4] Theorem 6.8 implies that e(R/p) = 1 if and only
if R/p is regular.

A second indication that the condition e(Rp) = e(R) is rather strong is supplied
by the following lemma. First, we recall several notions. If a and b are ideals such
that b ⊆ a, then b is a reduction of a if there exists a positive integer n such that
an+1 = ban. In this case, b is a minimal reduction of a if it is minimal among all
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reductions of a with respect to inclusion. If (R,m) is a Noetherian local ring with
an ideal a, the Rees algebra of a is the graded ring

R[at] =
∞⊕
n=0

a
nt.

The special fibre of the Rees algebra R[at] is the ring

F (a) = R[at]⊗R R/m.

The Krull dimension of F (a) is the analytic spread of a and is denoted s(a). If the
residue field of R is infinite, then s(a) is the least number of elements required to
generate a reduction ideal of a.

Lemma 3.3 ([4] Theorem 20.9). Let R be a quasi-unmixed local ring and let p be
a prime ideal of R for which R/p is regular. Then the following conditions are
equivalent.

1. e(R) = e(Rp),
2. ht (p) = s(p).

Below, we indicate examples which show that the assumption “R/p is regular”
is essential for both implications.

Proposition 3.4. Assume that (R,m) is a quasi-unmixed local ring of dimension d
with prime ideals p and q such that

√
p + q = m, R/p is regular and e(Rp) = e(R).

Then dim(R/p) + dim(R/q) ≤ d.

Proof. As in the proof of Theorem 2.1, we may assume that R has infinite residue
field by passing to the ring R(X) = R[X ]m[X]. We note that R(X) is quasi-unmixed
and R(X)/pR(X) is regular.

By Lemma 3.3, our assumptions imply that s(p) = ht (p). Since the residue
field of R is infinite, p contains a sequence y1, . . . , yi which generate a minimal
reduction of p where i = ht (p). Since

√
p + q = m, we see that q is an ideal of

definition for R/p and therefore q contains a system of parameters z1, . . . , zj for
R/p. In particular j = dim(R/p). We claim that y1, . . . , yi, z1, . . . , zj is a system of
parameters for R. Since i+ j = ht (p) + dim(R/p) = dim(R), the sequence has the
correct length and we need only check that the sequence generates an m-primary
ideal. We compute√

(y, z)R =
√√

(y)R +
√

(z)R =
√

p +
√

(z)R.

The fact that z is a system of parameters for R/p implies that the only prime ideal
of R containing p and z is m, as desired.

To prove the result, it suffices to show that i ≥ dim(R/q), as this will show that
dim(R) = i+ j ≥ dim(R/q) + dim(R/p). In the ring R/q, the images of y generate
an ideal which is primary to m/q since

√
(y)R = p. Since dim(R/q) is the least

integer l such that an ideal primary to the maximal ideal of R/q can be generated
by l elements, we are done.

This result may be more interesting than it appears, as we hope to use de Jong’s
theory of regular alterations to reduce a number of general cases to the case where
R/p is regular.
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4. Examples

The following examples show that many of the assumptions we place on the local
ring R and the prime ideals p and q in Conjectures 1.2 and 1.3 may not be relaxed.

Example 4.1. If we do not require R to be regular, then Conjecture 1.2 does not
hold. Let k be a field and let R = k[[X,Y, Z]]/(X2 − Y Z) = k[[x, y, z]]. Then R is
a complete intersection of dimension 2, but is not regular. Let p = (x, z) and q =
(x, y) which are prime ideals in R such that p+ q = m and dim(R/p) + dim(R/q) =
2 = dim(R). However, X ∈ p∩ q so that p∩ q 6⊆ m2. It is straightforward to verify
that p(2) = (z) so that p(2) ∩ q = (xz, yz).

Example 4.2. If we do not require
√

p + q = m, then Conjecture 1.2 does not hold.
Let R = k[[X,Y ]] and p = q = (X). Then R is regular and dim(R/p) + dim(R/q) =
2 = dim(R). However, p ∩ q = (X) 6⊆ m2.

Example 4.3. If we do not require that dim(R/p) + dim(R/q) = dim(R), then
Conjecture 1.2 does not hold. Let R = k[[X ]] and p = q = (X). Then R is regular
and p + q = m. However, p ∩ q = (X) 6⊆ m2.

Example 4.4. If we do not require that e(Rp) = e(R), then Conjecture 1.3 does
not hold. Let k be a field, R = k[[X,Y, Z,W ]]/(XY − ZW ) = k[[x, y, z, w]] with
p = (x, z)R and q = (y, w)R. Then e(R) = 2 > 1 = e(Rp) and dim(R/p) +
dim(R/q) = 4 > 3 = dim(R).

Example 4.5. If we do not require that
√

p + q = m, then Conjecture 1.3 does
not hold. Let R = k[[X ]] and p = q = (0). Then e(Rp) = e(R) and dim(R/p) +
dim(R/q) = 2 > dim(R).

Example 4.6. If we do not require that R is at least equidimensional, then Con-
jecture 1.3 does not hold. Let R = k[[X ]]×k k[[Y, Z]]. That is, in the diagram

k[[X ]]× k[[Y, Z]] //

��

k[[X ]]

β

��

k[[Y, Z]] α // k

R = {(a, b) ∈ A×B : α(a) = β(b)}. Let p = ((X, 0))R and q = ((0, Y ), (0, Z))R. It
is straightforward to verify the following facts: (i) R is a local ring with maximal
ideal m = (X) × (Y, Z); (ii) dim(R) = 2; (iii) e(Rp) = e(Rq) = e(R) = 1; and
(iv) p + q = m. However, dim(R/p) + dim(R/q) = 3 > 2 = dim(R). We should
note, as this pertains to Conjecture 1.4, that both p and q have infinite projective
dimension.

With Conjectures 1.3 and 1.4 in mind, one might hope that there is a nice relation
between the conditions “e(Ap) = e(A)” and “p has finite projective dimension”.
The following examples show that neither of these conditions implies the other.

Example 4.7. Let R = k[[X,Y, Z,W ]]/(X2−Y Z) = k[[x, y, z, w]] with p = (x, y, z).
Then p has infinite projective dimension and e(R) = 2 = e(Rp). Notice that R is a
domain and R/p is regular.

Example 4.8. Let R = k[[X,Y, Z,W ]]/(X2 − Y Z) with p = (0). Then R/p is free
(and therefore has finite projective dimension) and e(R) = 2 > 1 = e(Rp).
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We notice that Example 4.8 is not as satisfying as Example 4.7, in the sense that
R/p is not regular. We were attempting to find a complete local domain R with
prime ideal p satisfying the following conditions: (i) R/p is regular, (ii) p has finite
projective dimension, and (iii) e(R) > e(Rp). We have already seen that these
conditions are quite restrictive. In fact, such an example does not exist, as we see
in the following.

Lemma 4.9. Let (R,m) be a local ring and M a finitely generated R-module. Let
F• → M be an R-free resolution of M and assume that x = x1, . . . , xi ∈ R is a
sequence which is regular on M . Let K• = K•(x) denote the Koszul complex of x
on R. Then F• ⊗R K• is a free resolution of M/xM .

Proof. The fact that K•(x1, . . . , xi) = K•(x1)⊗K•(x2, . . . , xi) allows us to assume
that i = 1. In this case, K• is exactly

0→ R
·x→ R→ 0

We apply the mapping cone and the long exact sequence of homology to give the
desired result.

Lemma 4.10. Assume that (R,m) is a local Noetherian ring with prime ideal p

of finite projective dimension. Then Rp is a regular local ring. In particular, p is
locally a complete intersection.

Proof. A finite free resolution of R/p over R localizes to a finite free resolution of
(R/p)p over Rp. Now apply the theorem of Auslander, Buchsbaum and Serre to
see that Rp is regular.

Proposition 4.11. Let (R,m) be a local ring of dimension d with prime ideal p

such that p has finite projective dimension and let R̂ denote the completion of R.
Assume that one of the following holds:

1. R/p is regular.
2. R is unmixed and e(Rp) = e(R).

Then R is regular. (In particular, e(Rp) = 1 = e(R) and every prime ideal has
finite projective dimension.)

Proof. 1. Assume that (R,m) is a local ring with prime ideal p such that R/p is
regular and p has finite projective dimension. Let F• → R/p be a minimal, finite
R-free resolution of R/p. Since R/p is regular, let x = x1, . . . , xi ∈ R be a sequence
which forms a regular system of parameters of R/p. Let K• = K•(x) denote the
Koszul complex of x on R, so that, by Lemma 4.9, F• ⊗R K• is a finite, R-free
resolution of (R/p)/(xR/p) = R/m. The theorem of Auslander, Buchsbaum and
Serre implies that R is regular.

2. Under our assumptions, R is regular if and only if e(R) = 1. By Lemma 4.10,
Rp is regular so that e(R) = e(Rp) = 1, as desired.

The following example shows that the requirement of equidimensionality in nec-
essary for the inequality e(Rp) ≤ e(R) to hold.

Example 4.12. Let k be a field and R = k[[X ]]×k k[[Y ]]/(Y n) where n > 1, as in
Example 4.6. Then R is a local ring with maximal ideal m = (X)×(Y ), dim(R) = 1,
e(R) = 1, and the ideal p = (0)× (Y ) is a prime such that e(Rp) = n > 1 = e(R).

The following examples show that if R/p is not regular, neither implication of
Lemma 3.3 holds. Note that each example is quasi-unmixed.
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Example 4.13. Let R = k[[X,Y, Z, U, V,W ]] and p be the prime ideal generated
by the size two minors of the generic matrix(

X Y Z
U V W

)
.

Since R is regular, e(R) = 1 = e(Rp). However, ht (p) = 2 and s(p) = 3.

Example 4.14. Let R = k[[X,Y, Z,W ]]/(XY −ZW ) with p = (0)R. Then ht (p) =
0 = s(p). However, e(R) = 2 and e(Rp) = 1.
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