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Abstract. For a polyhedral subdivision A of a region in Euclidean d-space, we 
consider the vector space C[(A) consisting of all C" piecewise polynomial functions 
over A of degree at most k. We consider the formal power series ~_,k~O dimR C~,(A) 2k, 
and show, under mild conditions on A, that this always has the form P(2)/(1 - 2) a+ 1, 
where P(2) is a polynomial in 2 with integral coefficients which satisfies P(0)=  1, 
P(1) = f~(A), and P'(1) = (r + 1)f~_ I(A). We discuss how the polynomial P(2) and 
bases for the spaces C[(A) can be effectively calculated by use of Gr6bner basis 
techniques of computational commutative algebra. A further application is given to 
the theory of hyperptane arrangements. 

1. Introduction 

The concept  of a piecewise polynomial  function over a polyhedral  subdivision of  a 

region in Euclidean space is a fundamental  one, rich with connections to many  

areas of mathematics,  from very pure to extremely practical. By their very 

definition, the study of such functions involves both  algebra and geometry, and, 

when smoothness conditions are imposed, also a suggestion of  analysis. Perhaps 

the most  important  aspect involved in dealing with these objects is the interplay 

between the underlying combinatorics and geometry of  the subdivision and the 

algebraic properties of the resulting set of functions. This interplay has received 

attention only recently [6-1, [7], [20,1. 

The  simplest form of this idea, that  of a piecewise linear function over a 

simplicial subdivision, is well unders tood and much  used, as is the case of general 
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smooth piecewise polynomials over subdivisions in the line. The case of general 
continuous piecewise polynomials over higher-dimensional simplicial subdivisions 

can be successfully treated using a variety of methods (see [6-1, for example). 
However, serious difficulties already begin to arise in the case of planar simplicial 
subdivisions when we require global smoothness conditions on the functions. This 

case has only been attacked with a great deal of success in recent years [2], [3], [7]. 
Perhaps surprisingly, serious difficulties also arise in the continuous case, with 
general polyhedral subdivisions in two dimensions [11], [32]. 

Piecewise polynomial functions turn up in a variety of contexts. They are also 
called multivariate splines. They have for some time been used to approximate 

general smooth functions in the solution of partial differential equations by the so- 
called finite element method, as well as to interpolate scattered multidimensional 
data. More recently, they have come into play in computer-aided geometric design, 

computer graphics, and robotics as a means of providing an effective description of 
a surface for purposes of display and control. Current practice makes results even 

for two and three dimensions and low orders of smoothness to be of serious 
interest. At the current time, extremely little is known about the case of first-order 

smoothness in three dimensions [1-1. 
For a (finite) polyhedral complex A, let Cr(A) denote the set of all piecewise 

polynomial functions over A which are globally smooth of order r. If C~,(A) denotes 

the subset of C'(A) consisting of functions involving only polynomials of degree at 
most k, then C~,(A) is a finite-dimensional vector space over the reals, and a 
fundamental problem in this area is to determine the dimension of this vector space 

as a function of known information about the subdivision A. Of considerable 
practical interest is the associated problem of determining a basis for this space. 

A serious difficulty with this problem is that the dimension of the space C~,(A) 

can depend not just on the combinatorics of the subdivision, but also on its 
"geometry," that is, how it is embedded in space. For  example, triangulating a 

rectangle with two crossing diagonals results in the dimension of C2~(A) being one 
higher than the combinatoriaUy identical triangulation in which the central point is 
not the intersection of the diagonals. (See [7] for a discussion of such "nongeneric" 
behavior and for further references.) 

In light of this, then, what can we hope to say in general about the dimension of 
C~,(A) when only the combinatorial properties of A are considered? Surprisingly, 

perhaps, there is a great deal of invariance remaining if we consider the dimensions 
of all the C~,(A)'s as a whole. We study in this paper the generating function of the 

numbers dima C~,(A), k = 0, 1, 2 . . . .  ; that is, we consider the formal power series 

dimr C~,(A)2 k. 
k>O 

We show (under mild restrictions on the subdivision A) that this series (considered 

as an element of the ring of formal power series in ). over 7/) always has the form 

~(~) 
(1  - 2 )  ~§  1, 
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where P(~.) is a polynomial in 2. with integral coefficients and d = dim(A). From 

this, it follows that, for large k, dimn C~,(A) is given by a polynomial function of k. 

We further show that the polynomial P(2) always satisfies P(0) = 1, P(1) = fd, and 

P'(1) = (r + 1)f~_ 1, where fn is the number of d-cells in the subdivision A and ~ _  1 

is the number of interior (d - 1)-cells, both combinatorial invariants of A. Thus 

while the individual numbers dim~ C[,(A) may change with changes in the geometry 

of A (in ways not yet well understood), the collection as a whole is rather more 

controlled; although the polynomial P may vary as the embedding is changed, the 

three evaluations P(0) P(I), and P'(1) will be unchanged. Except for [6], [7], and 

[20], the idea of considering all the spaces C]',(A) at once seems to have arisen only 

in [28] and [29]. 
A side benefit of this result is the observation that the entire series, being of the 

form P(2)/(I - 2) 2+ 1, is determined by the polynomial P(2) and therefore can be 

calculated if P()d can be calculated. This in fact can be done using Gr6bner  basis 

techniques of computational commutative algebra. We discuss this briefly here; a 

more extensive discussion can be found in [8]. 

To obtain the result described above, we make use of the fact that C'(A), in 

addition to being a vector space, has the structure of a commutative ring under 

pointwise multiplication of functions, and so forms a module over the subring R of 

global polynomial functions (i.e., those being given by the same polynomial on 

each cell of A). In the remainder of this section we discuss this algebraic structure, 

and derive a completely algebraic criterion for a piecewise polynomial function to 

be r-fold smooth. In Section 2 we reduce the problem to the case in which each 

maximal cell of A contains the origin in R d. In this case, the resulting module is 

graded, and the series we are interested in is essentially the Hilbert series of this 

graded module. This gives us the form of the series as a rational function of 2, as 

well as the corollary that, for large values of k, the function D(k) = dim R C~,(A) is 

given by a polynomial in k of degree d with leading coefficient fa/d!. In section 3 we 

consider, in a general setting, certain graded modules defined as the kernels of maps 

between free modules, and we derive some properties of their Hilbert functions. In 

Section 4, we apply these results to the dimension series of the multivariate spline 

module, as well as to the Hilbert series of the Terao module (module of derivations) 

of a central arrangement of hyperplanes in a general vector space [18], [24], [35-1. 

Finally, in Section 5, we discuss briefly the issue of computing the power series for 

the general modules defined in Section 3, as well as the required vector space bases. 

Throughout this paper we use many basic results from commutative algebra. 

Good  references for this material are [4] and [17]. 

We now introduce some preliminary notions. Let A be a polyhedral complex in 

~d, that is, a finite union of convex polytopes in ~d such that every face of a 

polytope in A is a face of the complex, and the intersection of any two faces of the 

complex is a face of each. Recall that, for a convex polytope P, a face F v~ P is the 

intersection of P with a hyperplane which does not meet the interior of P. Any such 

hyperplane will be called a supporting hyperplane for F. (See [12] for more details 

about polytopes and polyhedral complexes.) If A is any complex, the dimension of A 

is the maximum dimension of an element of A. We say A c •d is pure if all maximal 
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faces are of  the same dimension. A special case of  a polyhedral  complex is a finite 

simplicial complex, where each face of  A is a simplex. 

By d-complex we will mean a pure d-dimensional polyhedral  complex embedded 

in R g. In this case we may  think of A as a parti t ion of  a region in R ~ into finitely 

many  d-polytopes. For  a d-complex A and i < d, we denote the set of/-dimensional  

faces of A by A i, and the set of / -dimensional  interior faces of A by A~. Similarly, 

fi(A) denotes the number  of / -d imens ional  faces of  A, and f~(A) the number  of 

/-dimensional interior faces of  A. 

If  A is simplicial, we can identify a e A with its set of vertices. Then ~ ~ a will 

correspond to the union of the vertex sets of  T and a. If A is simplicial, we define the 

link of a in A by lkA a = {T~A:  z u a e  A,~ c~ a = ~ } ,  and the star of a in A by 

sta a --- {z w z': z e lka a, ~' ~ a}. For  arbitrary complexes we define the star of a in 

A by 

st a a - {T ~ A : 3z' e A such that z ~ ~' and tr ~ z'}. 

In other words, st a a is the smallest subcomplex of A containing all faces which 

contain a. If  the complex A is understood,  we will write st tr or lk a. 

For  a d-complex A, we consider the graph G(A) with vertices corresponding to 

the elements of  A d and edges defined as follows: if v, v' are vertices of G(A) 

corresponding to a, a ' e A a ,  then {v,v'} is an edge of  G(A) if and only if 

tr n a '  ~ A a_ 1. A is said to be strongly connected if the graph G(A) is connected. A 

connected complex A is said to be hereditary if, for all a e A - {~} ,  st a is strongly 

connected. (If A is simplicial, this is equivalent to the property that, for all 

a ~ A - {~} ,  lk tr is strongly connected.) F rom this condit ion it follows that A itself 

is strongly connected. 
Let A be a d-complex and let R = ~ [ x l , . . . ,  xa], the polynomial  ring over R in d 

variables. We now define Cr(A) more  explicitly and give an algebraic condit ion for 

smoothness.  

Definition. If r e ~ and A is a d-complex, then Cr(A) is the set of functions 

F : A --* R such that:  

(i) For  all a e A n, F[ ,  is given by a polynomial  in R = R[x 1 . . . . .  xa]. 
(ii) F is cont inuously differentiable of  order  r. 

In this definition, F will be differentiable of order  r at a point p in A if, for all 

a e Ad containing p, all partial derivatives of FI ,  up to order r agree at p. Note  that 

since a is d-dimensional, the polynomial  FI~ is uniquely determined. We will see 

that  the differentiability condi t ion on F translates into a purely algebraic condi- 

tion. This condit ion is used extensively in our  study of  C'(A). We write F~ for F I,- 

For  a e A, let afftr denote the affine span of points in a, and, for f l  . . . . .  f ,  in R, let 

( f l  . . . . .  f , )  denote the ideal that  they generate. If  T c R is any set of  polynomials,  

we define the zero set of T, Z (T )  - {p e R a : f (p)  = 0 for all f e T}. If X c R n is 

any set, we define the ideal of X,  I (X)  - { f  ~ R : f (p)  = 0 for all p e X}. Notice that  

I and Z are inclusion reversing, i.e. X c Y implies I (Y)  c I(X),  and T c S implies 

Z(S) c Z(T).  We will need the following easily verified properties of I and Z. 
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Proposition 1.1. 

(a) Let  A be an affine subspace o f ~  d o f  codimension c and let A = H 1 n . . .  n H~, 

where H i are hyperplanes in ~d, and I i are affine f o rms  such that H i = Z(li). 

Then I ( A )  = (l 1 . . . . .  l~). 

(b) I f  a is a convex  poly tope in Ee, then I (a)  = / ( a f t  o-) and Z ( I (a ) )  = aft a. 

Recall  tha t  for an  ideal  I, F is the ideal genera ted  by all r-fold p roduc t s  of 

e lements  of I. 

Proposition 1.2 (Algebra ic  Cr i ter ion) .  Let  A be a d-complex  and let F: A ~ ~ be a 

piecewise polynomial  funct ion.  Then F �9 C~(A) /f and only if, f o r  every pair o f  faces  

a t ,  a2 in A d, F,~ - F~,~ lies in I (6  x c~ 0"2) r+ 1 

P r o o f  Suppose  F �9 C*(A). Then ,  for every pai r  of faces a 1, a 2 in A d, all par t ia l  

der ivat ives  up  to order  r o f h  - F , ,  - F,2 van i sh  o n  a t n a2. T h e n  each of these lie 

in I (a  t n a2). If a~ n a 2 has c o d i m e n s i o n  c, then  by P r o p o s i t i o n  1.1(a) there  are c 

hype rp lanes  def ined by c i n d e p e n d e n t  affine forms l 1 . . . . .  l c such tha t  I (a  1 n a2) = 

(ll . . . . .  It). By a n  affine change  of coord ina tes ,  we m a y  a s sume  li = xi.  Since 

h �9 l ( a ,  n a2), we m a y  write h = r l x  1 + . . .  + r~c  where each r i E R. Let i _< c. 

T h e n  c~h/c~xi = ~ rj(c?xj/c~xi) + ~(c~r/c~xi)x s where j = 1 . . . . .  c. Since 

c3h /Ox i �9  n a2) a n d  the second  s u m is also in I ( a  1 n a2), we get tha t  

2 r j ( ~ x J / ( ~ x i )  �9 I (a l  n a2). Since i _< c, this s u m  is j u s t  r i. T h u s  each r i �9 l (ax n az),  

which shows h � 9  2 . We  then  can  write h = ~ r i j x i x  j where i , j < C .  

T a k i n g  second par t ia l s  we show in the same way as before tha t  h �9 l ( a l  n a2) 3. 

C o n t i n u i n g  this process we f inal ly get tha t  h �9 I(a~ c~ a2) '+~, as desired. 

Converse ly ,  suppose  that ,  for every pai r  of  faces a~, az in A n , F , , -  

F,~ �9 l ( a t  n 02)  r + t .  Let p �9 A. I f p  lies in a l  a n d  a 2, then,  i fh  = F~, - F~: ,  we have  

h(p) = 0, since h �9 I(a~ c~ a 2 y  + 1. We  m u s t  show tha t  all par t ia l  der ivat ives  of h up  

to order  r also van i sh  on  p. As above  we m a y  as sume  I (a  I n a2) = ( x l  . . . . .  xc) 

where c is the c o d i m e n s i o n  of a 1 n a 2. T h e n  l ( a t  n a2) ~+ t is genera ted  over  E by  

m o n o m i a l s  x] . . . .  x,~ ~ where  a~ + a2 + ""  + a~ > r + 1. The  ith par t ia l  der iva t ive  

of any  m o n o m i a l  of this form is e i ther  0 or  is the s u m  of te rms  of form cxb~ . . . .  x~ ~ 

where  c � 9  E a n d  bl  + b 2 + .-- + b~ > r + 1 - i. This  will van i sh  at p as long  as 

r +  l - i >  1 , 0 r i < r ,  so the same  is t rue for h. [ ]  

R e m a r k  and Nota t ion .  If a l  n a 2 = z �9 A d_ 1, then  l ( a t  n 0"2) = I (z )  is p r inc ipa l  

and  genera ted  by an  affine form, which  we deno te  112 or  l~. If a �9 Aa, no te  tha t  

P r o p o s i t i o n  1.1(b) impl ies  I (a )  = (0) since ~ is infinite.  

The  idea of the p ro o f  of P r o p o s i t i o n  1.2 comes  f rom L e m m a  2.7 of [10].  We  use 

this c r i te r ion  as the def in i t ion  of Cr(A) in all tha t  follows. The  fo l lowing coro l la ry  

can  also be foun d  in [7].  

Coro l la ry  1.3. l f  A is hereditary,  then F �9 C'(A) i f  and only if, f o r  every  pair o f faces  

a 1, a 2 in Ad which meet  in a d - l f ace  z, F~I - F~2 � 9  r+l = (1~+1). 



112 L. J, Billera and L. L. Rose 

Proo f  Let a and a '  be in A d. Since A is hereditary, the star of a n a '  is strongly 

connected. This means there is a sequence a = a t . . . . .  a ,  = a '  in Ad where 

a~ ~ az+ 1 = r~ ~ Ad- 1 and each ai is in the star of a c~ a', and so contains a n a'. 

Then each ri also contains a c~ a'. (It is possible that a c~ a ' =  ~ . )  We know 

l (r)  ~ l (a)  whenever a = r. Then l(ri) = l (a  c~ a') which implies 

F,,  - F . . . .  e l(ri) "+1 c l (a  c~ a') "+1 

and so 

F,, - F,,, = F,,, - F~. = (F,,, - F,,~) + ... + (F . . . .  - Fo. ) 

lies in l (a  c~ a') ~ + 1. [] 

We now describe some important  properties of C'(A). Given an ordering 

a l , . . . ,  at of the d-simplices of A, F ~ C'(A) can be represented as a t-tuple of 

polynomials  in R, i.e., F = (f l  . . . . .  ft), where each f~ is just F,, .  In this way we see 

that C'(A) is a submodule  of  R d, the free R-module  of rank d. The R-algebra 

structure of Cr(A) is given by 

( f ,  . . . . .  f , )  + ( g ,  . . . . .  g,)  = ( f ,  + g l  . . . . .  f ,  + g,),  

g ( f ~  . . . . .  f t )  = (gJ~  . . . .  , gJ~), 

( f l  . . . . .  f t ) ' ( g ,  . . . . .  g,)  = ( f ~ g ,  . . . . .  f t g , ) ,  

where g ~ R and (f l  . . . . .  f ) ,  (gx . . . . .  gt) lie in C'(A). To see, for example, that 

( fxgx . . . . .  ftg,) is again an element of C'(A), note that, for faces a~ and a), 

which lies in l (ai  c~ aj) '+1 by Proposi t ion 1.2. 

Recall that  the rank of a module  M over R is the dimension of M | F as a 

vector space of F, the quotient  field of R, i.e., F = ~ ( x l  . . . . .  xa), the field of rational 

functions in d variables over R. The rank of  M is also the minimal number  of R- 

linearly independent elements in M. (See 1-17].) C'(A) has the following structure as 

an R-module.  

Proposition 1.4. Le t  A be a d-complex. Then  C'(A) is a f ini te ly  generated torsion 

free R-module  with rank = fd(A). 

P r o o f  Let t = fa(A). The first two properties follow from the fact that  C'(A) c R'  

and R is a Noether ian integral domain.  Fo r  the rank, we note that there exists a 

nonzero  q in R with the proper ty  that  qR t ~ C'(A). We can construct  such a q as 

follows. For  each nonmaximal  z e A, let q~ be any nonzero  element of  I(z) '  + 1. Now 

let q = 1F-[ q~. It is easy to verify that  this q works by using the algebraic criterion for 
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C'(A). We also have the inclusion C'(A) c R t. Let F be the quotient field of R. Since 

tensoring with F is exact, the inclusions will yield injections of vector spaces over F, 

q R ' |  ~ C'(A) |  

which become 

F' ~ C'(A) |  

and C'(A) | F --* R' | F 

and C'(A) |  ~ F '  

using properties of tensor products. Since these are both injections, we must have 

dimF(C~(A) |  F) = t. []  

2. Reduction to the Central Case 

Let A be a d-complex (a pure d-dimensional polyhedral complex embedded in Rn). 

Let D(k) denote the dimension of C~(A) as a vector space over E. Consider 

dimR C~,(A)2 k, 
k_>O 

the generating function of D(k). In this section we will see that this series has the 

form of a polynomial of degree d. We do this by showing that D(k) is the Hilbert 
function of a graded algebra, namely C'(/~), where ,~ c lt~ n +1 is the homogenization 

of A. (For an introduction to the theory of generating functions, see 1-27].) 

Let A c ~n and R = R[x 1 . . . . .  xn]. We define ~ ~ R n+ 1, the homogenization of  

A, in the following manner. Embed A in R n+l by sending (al . . . . .  an) to 

(al . . . . .  an, 1). Let v = (0 . . . . .  0) in R n+ 1. Then let ,~ = A. v, the join of  A with v, 
which we define to be the complex A w {# : a e A}, where # denotes the convex hull 

of a and {v}. See Fig. 1. Let/~ = R[z]. Then C'(A) is module over/~. If f E R, we 

define the homogenization h f  e R of f by 

h f ( x l  . . . . .  Xd, Z) = ZO'r f ( x l / z  . . . . .  Xa/Z), 

where Of denotes the total degree of f .  Similarly, if F e R t, we can define the 

homogenization o fF ,  hF, in/~ '  by 

hF(xl . . . . .  xn, z) = z~ . . . . .  Xd/Z). 

A 

Fig. I 
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If  F = ( f i  . . . . .  f ) ,  then OF denotes the m a x i m u m  of  the Ofi's. It follows f rom the 
definitions that  

hF = " ( L , . . . ,  f , )  = ( z O e - ~ f ' P L )  . . . . .  z~176 

Conversely,  if h e R, we set h(1) = h(x 1 . . . . .  x d, i), and  if H = (h i . . . . .  hi) E/~', then 

H(1) = (ha(l)  . . . . .  ht(1)). Let I be an ideal in R. We define hl, the homogenization of  

I, to be the ideal in /] generated by { h f : f  E I}. The following propert ies  of 

homogeniza t ion  can be found in Section 5 of  Chap te r  VII  of [33]. 

Proposit ion 2.1. Let F, G be in R t, and let I and J be any ideals in R. 

(a) h(FG) = (hF)(hG). 
(b) zOF+OGh(F + G) = zO~F+~)(zOGhF + zOFhG). 

(C) hE(l) = F. 
(d) h(IJ)  = hlhj. 

L e m m a  2.2. Let  I = I(a) and 7 = l(d). Then: 

(1) (hl)r = h(F) for  any r in ~ .  
(2) .f = hi. 

Proof  (1) Follows from (d) above.  F o r  (2), we first note that  if a f t ( a ) =  

Z(l l  . . . . .  lc) in R a, then a f t ( d ) =  Z(hll . . . . .  hlr in R a+l. Then  I =  (hl 1 . . . . .  h/c) is 

clearly conta ined in hi. NOW let f ~ I and p e #. Then  p = a(q, 1) + (1 - a)(0, 0) in 

R d x R, where q e a and 0 _< a < 1. If  a # 0, h f (p)  = hf (aq  ' a) = aOIf(q) = 0, since 

f ~ I. If  a = 0, then p is the origin and since h f  is a noncons tan t  homogeneous  
polynomia l  (since I # R), h f (p)  = 0. This shows h f  E L [ ]  

L e m m a  2.3. I f  F ~ C'(A), then hF E C'(A). 

Proof  Let a 1 . . . . .  a, be an ordering of A n, where t = fd(A). Let F = ( f l  . . . . .  ft) 
with respect to this ordering. By definition, 

hF = h(fx . . . . .  f 0  = ( z ee -o f ' ( h fo  . . . . .  zeF-eI '(hf)) .  

Let f = f~, g = fj,  and I = I(a i c~ a j). By the algebraic criterion for Cr(A) (Proposi-  
t ion 1.2), f - g  ~ I r+l. Then  

zOe-Oy(h f )  _ zeF-ag(hg)  = zOF-eY-Og(ZOg(h f )  __ zey(hg)) 

= g O F - O ( f + o ) h ( f  _ g )  ~ h(lr+ 1) = (hi)r+ 1 ~--. p + l  

by Propos i t ion  2.1(b) and L e m m a  2.2, since f - g  e 1 '+1. N o w  by the algebraic 
criterion for C'(A), this implies that  hF ~ C'(A). []  

Let  A be a graded R-algebra.  Then A = A o ~ A 1 ~ - - . ,  where A o = R, and 

AiA j c Ai+j. We will show that  C'(,~) is a graded algebra,  and that  C~,(A) is 
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isomorphic,  as a vector  space, to [C'(~,)] k. More  generally, we make  the following 

definition. 

Definition 2.4. Let A be a d-complex. We say A is central  if there is some vertex Vo 

in A such that  every a in A d contains v o. (Note  that  ~ is always central.) 

L e m m a  2.5. Let  A be a central  d-complex.  Then C'(A) is a graded R-algebra. 

Proof. Let v o be the vertex which lies on every face of A d. Without  loss of 

generality, we may  assume that  v o is the origin. Then, for any  a in A, I (a )  and 

l(tr) "§ are both  homogeneous  ideals, since l(tr) is generated by afline forms (see 

Proposi t ion 1.1(a)) which must  vanish at the origin. 

Let F = ( f l , . . . ,  ft) be in C'(A) and let g k = ( f l k  . . . . .  f t k )  be the homogeneous  
componen t  of  F of degree k. To  show C'(A) is graded it is sufficient to show that  F k 

is in C'(A). Let Iij = I(tr i c~ t r y  § 1. Recall that  if F is in C'(A), then, for all i and j, 

f i  - f j  e lij  which is homogeneous .  Then all homogeneous  componen t s  of f / -  f j  

lie in lij ,  so flk -- fig = (f l  -- fj)k ~ Ii~" Thus  F k ~. C ' ( A ) .  [] 

Theorem 2.6. [C'(,~)] k - C~,(A) as R-vec tor  spaces. 

Proof. Define a m a p  

to: [ c ' ( s  , c~,(a) 

by t0(H) = H(1). to is clearly R-linear. Let H = (h i, h 2 , . . .  , ht)  , where hi ~ R[z] ,  

t = fd(A), and tr 1 . . . . .  tr, is an ordering o fA  d. Let I o = I(tr i n %),+1. We must  show 

that  to is well defined and is an i somorphism of vector  spaces over  R. 

to(H) e C~(A): If H = (hi, h 2 . . . . .  ht) ~ [C' (A)]k  and hi - hj ~ hIij , then hi(l) - 
h j(1) = (hi - hi)(1) which lies in lij by Proposi t ion  2.1(c), so H(1) ~ C~,(A). 

to is injective: If  H(1) _= 0, then hi(1 ) -= 0 for all i. This implies z - 1 divides hi for 

all i. Then hi - 0 for all i, since each hi is homogeneous .  This implies H - 0. 

to is surjective: Let F e C~,(A) have degree n < k. By L e m m a  2.3, hF ~ C'(~).  hF 
has degree n, so zk -" (hF)  will be in [C ' (~)]k ,  and (zk-n(hF))(1)  = F using Proposi -  

t ion l(c). This proves  surjectivity and the theorem. [ ]  

We now define Hilber t  series for graded modules  and relate this to the central 

hereditary case. By Theorem 2.6, it follows that  ~ '  dim R C~,(A)2 k is the Hilber t  series 

of C'(,~) so we can apply  the general theory abou t  Hilber t  series to the dimension 

series above.  

Let R = R[x  1 . . . . .  Xd]. If R i consists of all homogeneous  polynomials  of degree i, 

then R = R o ~ R 1 ~ ...  is a graded R-algebra. Let  M be a finitely generated 

N-graded R-module ,  i.e., M = ~ M i where R i M j  = Mi+j .  Since R is a po lynomia l  

ring, (Krull)  d im R = d, the number  of  variables. Recall that  d im M = dim R/ I ,  

where I = ann  M, the annihilator of M. The codimension of M, codim M - =  

d-dim M. The Hilber t  func t ion  of M is defined by H ( M ,  i) = d ima  Mi .  Since M is 

finitely generated and R is finitely generated as an R-algebra,  this function will take 
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values in [~. The Hilbert series of M, which we denote o,~-(M, 2), is the power series 
H(M, i))` i in ~[[).]] .  If M is a finitely generated graded R-module, then, for 

sufficiently large i, H(M, i) is given by a polynomial with rational coefficients of 
degree (dim M) - 1. This polynomial is called the Hilbert polynomial of M. (See 
Theorem 7.5 of [13] or [26].) 

The next proposition follows from Theorem 11 and Corollary 11.2 of [4]. 

Proposition 2.7. I f  M is finitely generated then: 

(a) ~ ( M ,  )`) has the forms: 
(i) P(M, 2)/(1 - 2) 2 where P(M, 2) e 7/[2] and d = dim R. 

(ii) Q(M, 2 ) / ( 1 -  2) s where Q(M, 2)e  7/[).] and s = dim M. In this case, 
(l - )`) does not divide Q. 

(b) Let Q(M, 2) = ~-~dcgQ a )`J Then the Hilbert polynomial of M is /_.~./= o j �9 

Since C'(A) is torsion free (by Proposition 1.4), its annihilator is zero, so the 

Krull dimension of C'(~) is d + 1. The above together with Theorem 2.6 gives 

Theorem 2.8. For any d-complex, we always have 

dim R C~,(A)2 k = P(2)/(1 - 2) d+ 1, 
k > 0  

where P(2) = P(C'(A), 2) is a polynomial in 2 with integer coefficients. Further, if 
D(k) = dim R C~,(A), then, for large k, D(k) is a polynomial of degree d with rational 
coefficients; in fac t , / fP(2)  Vdege = ~ =  o a y ,  then, for large k, 

O(k) = ~ a; 
j=0 d 

Note that the leading coefficient of D(k) is P(1)/d!. For hereditary complexes, it 

will follow from Theorem 4.5 that this leading coefficient is fa/d!. 

3. Modules Defined by Maps Between Free Modules 

In this section R = K[x 1 . . . . .  xa], the polynomial ring over K in d variables, where 
K is any field. We investigate the Hilbert series of M, where M is a graded R- 

module which arises as the kernel of a map between free R-modules. In particular, 
we study the polynomial P(M, 2) from the previous section in the case of modules 

defined by maps between free modules. In Section 4 we will apply these results to 

splines and hyperplane arrangements. 

If M is any finitely generated graded R-module and s e [~, we define M( - s), M 

shifted by s, to be equal to M as an R-module, but with grading [ M ( - s ) ]  i = Ml-s  
where we set Mj = 0 ifj  < 0. If M is graded by •, then so is M ( -  s). It follows that 
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H ( M ( - s ) ,  i )=  H(M, i - s ) ,  so multiplying by 2 i and summing over i we get 

~ - ( M ( -  s), 2) = ).s~'(M, 2). Notice that ~-(M n, 2) = n ~ ( M ,  2). 

If M and N are graded R-modules, then ~o: M ---, N is a homogeneous map (of 

degree 0) if ~o is an R-linear map and q~(M~) c N~ for all i. It is easy to see that the 

kernel and image of a homogeneous  map are also graded with grading (ker q~)~ = 

Mi c~ ker ~0, and (lm ~o)g = ~0(M~). The cokernel of ~0 is also graded with grading 

(coker tp)i = NJq~(Mi). If 

0 ~ M,  ~ - "  , M1 ~ Mo , 0 

is an exact sequence of graded R-modules and homogeneous  maps, then for any 

i ~  

0 , [ M , ] ,  , . . .  ' [ M 1 ] i  , [ M o ]  i , 0 

is an exact sequence of vector spaces over K, so 

H(Mo, i) - H(MI,  i) + ... + ( -  1)"H(M,, i) --- 0. 

Multiplying by 2 i and summing with respect to i we get 

~ ( M o ,  2) - ~-(M1, 2) + ... + ( -  1)"~-(M,, 2) = 0. 

We now state some preliminary results. Let S be an arbitrary Noether ian ring. 

The height of an ideal I is defined to be the min imum of the heights of the prime 

ideals containing 1. The next lemma follows easily from the definitions. 

Lemma 3.1. Let S be a Noetherian ring and let I be any ideal in S. Then 

height I + dim(S/I) < dim S. 

If  M is a module  over a Noether ian ring S, then 01 . . . . .  Ok in S is an M-regular 

sequence (or M-sequence) if (01 . . . . .  Ok)M # M and, for 1 _< i < k, 01 is not  a zero 

divisor on M/(01, . . . ,  0 i_ 1)M. If M = S, we say 01 . . . . .  Ok is a reguar sequence (or 

S-sequence). The grade of an ideal I is the maximal length of  an S-sequence 

contained in 1. The following is Theorem 132 in [14]. 

Proposition 3.2. Let S be a Noetherian ring and let I an ideal in S. Then height 
I >_ grade I. 

The next lemma follows immediately from Lemma 3.1 and Proposi t ion 3.2. 

Lemma 3.3. Let S be a Noetherian ring, let N be any S-module, and let I -- ann N. 

Then codim N _> grade I. 
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Recall that  R = K[xl  . . . . .  Xd]. Let n and t be in ~ ,  where n > 2. We will consider 

maps from R t+" to R" given by n x (t + n) matrices of  the form 

A = (BIG) 

satisfying the following condit ions:  

(i) B is an n x t matrix with entries in K. 

(ii) C is an n x n diagonal matrix whose diagonal  entries, f~ (i = 1 . . . . .  n), are 

powers of  homogeneous,  (nonzero) irreducible polynomials,  l i (i = 

1 . . . . .  n), at least two of which are distinct. 

(iii) For  all i, there is a column B(i) in B whose ith entry is nonzero  and, for 

every j  ~ i such that  {f~, fi} are not  relatively prime, the j th  entry is equal to 

0. 

Let M = kernel of A, N = cokernel of  A, and I = ann N. Then we have an exact 

sequence: 

A 
0 ~ M ~ R t+n ~ R n ~ N , O. 

The main result of this section is that  under these conditions, P'(M, 1) is 

completely determined by the degrees of f l , . - - ,  fk, where P '  denotes the derivative 

of  P with respect to 2. Recall that  the rank of a module  M over R is dimv M | F, 

where F is the quotient  field of  R. As before, by localizing the above sequence at (0), 

we can show that M has rank t. 

Proposition 3.4. Under the conditions outlined above, M and N are graded R- 
modules, and P( M, 1) = t, P( N, 1) = O. 

Proof Let dj = degree of  f~. Then the first t columns of A lie in K" = (R0)", and 

column t + j lies in (R(-dr) )" ,  for 1 _< j < n, so we can view A as a homogeneous  

map  of degree 0 from R' ~ ( ~ ~= x R ( -  dr) ) to R". Then M and N are graded with 

gradings ment ioned above. We now have an exact sequence of graded modules and 

degree 0 maps  

/ M  \ 

' N ' 0 ,  
\ - -  , / j = 1  

and so 

(3.5) ~-(M,  2) + n. ~-(R, 2) = t. ~-(R, 2) + ~ .~(R( - di), 2) + ~-(N, 2). 

d -  1 d -  1 is the number  of mono-  

mials in K[x  1 . . . . .  x.] of degree i and also the dimension of  R i over K, we see that 
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~-(R, 2) = 1/(1 - 2) d and ~ ( R ( - d j ) ,  2) = 2d J/(1 - 2) d. Using this and mult iplying 

both  sides of  (3.5) by (1 - 2) d, we get 

P(M, 2 ) = t - n +  ~ 2 n ' + P ( N , 2 ) ,  
.i=1 

where P is as in Propos i t ion  2.7. 

N o w  det C is a nonzero element of  I = ann N, which implies that  grade I > 1 

since R is a domain ,  and so, by L e m m a  3.3, codim N > 1. By Propos i t ion  2.7, this 

implies 1 - 2 divides P(N, 2). Substi tut ing 1 for 2 in the equat ion  above,  we get 
P(M, 1) = t. [ ]  

Remark .  In fact, if M is any finitely generated graded R-module ,  P(1) = rank M. 

However ,  the benefit of  the preceding p roof  is that  we have a formula  connect ing 

the Hilbert  series of M and N. We state this in a corollary. 

Corollary 3.6. Let dj = deg f~. Then P(M, 2) = t - n + ~'~= 1 2nJ + P(N, 2). [ ]  

In Section 5 we will discuss methods  of comput ing  the Hilbert  series of  M. Using 

this corollary,  we reduce the p rob lem to that  of  comput ing  the Hilber t  series of  N. 

In fact, since N = R"/ Im A, it is sufficient to compute  the Hilbert  series of Im A, the 

submodule  of R" generated by the columns of A. 

The following l emma is the crux of the p roof  of  Theorem 3.9. 

Lemma 3.7. I f  d >_ 2, then codim N > 2. 

Proof By L e m m a  3.3, it is sufficient to show that  grade I >_ 2, where I = ann N. 

To  show this, we must  find an R-sequence (regular sequence) of  length 2 in I. 

Not ice  that  

(3.8) r �9 I if and only if re~ �9 Im A for all 1 < i < n. 

Here e~ . . . . .  e, are the s tandard  basis vectors for R". In particular,  f~e~ e Im A since 

it is a column of A. Let Q be the least c o m m o n  multiple of the f~'s. Let 

F c {fl ,  f2 . . . . .  f,} be a set of minimal  cardinali ty with the proper ty  that  Q = 

1-Ir~r f .  Such a set exists by condit ion (ii) above.  Not ice  that, for any pair  f~, f~ in F 

with i # j, f~ and f j  are relatively prime. 

Claim 1. Q/ f �9 I for all f �9 F. 

Proof. Let f e F. By (3.8), we must  show that  (Q/f)e~elm A for all i. By 

condit ion (iii), for any i there is a co lumn B(i) = (bl . . . . .  b,) T in B such that  b~ # 0 

and if j  # i and g c d ( f ,  fj) # 1, bj = 0. Recall that  bi ~ K so B(i)/b~ ~ Im A. Thus  we 

may  assume wi thout  loss of generali ty that  b~ = 1. If  f and f~ are relatively prime, 
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then fl divides Q / f  and so (Q/f)e i = (Q/ffi)(fiei) e Im A. If  gcd( f ,  f/) ~ 1, we may 
write 

(O/f)ei = roB(i) + ~ rj(f~ej), 
j ~ i  

where r 0 = Q/ f  and rj = - b:(Q/ff~). Clearly, r o e R. Suppose j  4: i. We must show 

that  rj e R. If gcd(fi, fj) 4: 1, then b~ = 0, so rj = 0 e R. Suppose gcd(fl, fj) = 1. 

Then if I is the irreducible polynomial  corresponding to f ,  condit ion (ii) implies 

Ii ~ clj for any c in K. We have I = cli for some c 4 : 0  in K, since gcd( f ,  f~) 4: 1. This 

implies l r clj for any c, and so gcd( f ,  fj) = 1. Then Q / f f j  ~ R, so rj e R, proving 

the claim. [ ]  

Let 

Q, = • (Q/f). 
f ~ F  

Claim 2. I f  QR + Q*R 4: R, then Q and Q' form an R-sequence in I. 

Proof Since Q / f  ~ I for all f ~ F, Q and Q* both lie in I. Q va 0 by construction, 

and, since R is a domain,  this means Q is not  a zero-divisor in R. Let 9 in R be such 

that Q*g = 0 in R/(Q). This means there exists h ~ R such that Q*g = hQ. Let 

f ~ F. Then f l Q  so fIQ*9. We also have f l (Q/ f i )  whenever fi E F - {f}.  This 

implies f l(Q/f)g, but f and Q / f  are relatively prime so f ig .  This implies Q Ig and 
hence g = 0. This shows Q* is not  a zero divisor mod  Q. Finally, since by 

hypothesis QR + Q*R 4: R, Q and Q* form an R-sequence in I. [ ]  

If  Q R + Q * R = R ,  then Q, Q ' e l  implies that  I = R .  In this case, since 

R = K[xl  . . . . .  Xa] and d > 2, xl  and x 2 form an R-sequence of length 2. This 

proves the lemma. [ ]  

Note. We did not  use the condit ion d > 2 until the end of the previous proof, so in 

particular, Claim 2 is true when d = 1. 

We are now ready to prove the theorem. 

Theorem 3.9. I f  A is a matrix satisfying (i)-(iii) and M = ker A, then 

P'(M, 1) = ~ deg(f/). 
j = l  

Proof We have the formula 

P(M, 2) = t - n + ~ 2aj + P(N, 2), 
j = l  
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where dj = deg(fi). By L e m m a  3.7, if d > 2, then codim N > 2, which means  that  

(1 - 2) 2 divides P(N, 2). Taking  the first derivative and evaluat ing at 1, we get 

P'(M, I) = ~ dj. I f d  = 1, grade I = 1 so I cannot  contain an R-sequence of length 

2. Then Claim 2 from the proof  of L e m m a  3.7 implies that  QR + Q*R = R, and, 

since Q, Q* ~ I, we must  have I = R. Then N must  be 0, so P(N, 2) = 0. [ ]  

Remark .  We have shown that  if d = 1 (or A is surjective), then 

P(M, 2 ) = t - n +  ~ 2 d~. 
j = l  

4. Hilbert  Series of Splines and of Hyperplane Arrangements 

We now apply the results of the previous section to splines and hyperplane  

arrangements .  We show that  for both  of these applications, the modules  studied 

can be realized as the kernel of  a m a p  between free modules  which satisfies 

condit ions (i)-(iii) from Section 3. In the case of  splines, we must  restrict ourselves 

to hereditary complexes. 

We first define a matr ix  which we can associate to Cr(A) when A is hereditary. 

This matr ix  will be a useful tool in the study of C'(A). 

If A is hereditary d-complex, we can view Cr(A) as the kernel of a m a p  between 

free R-modules.  We show this as follows. Recall the definition of the graph G(A), 

with vertices and edges corresponding to elements of A d and A~_ 1, respectively. 

(See Section I.) 

Definition 4.1. Given an ordering of A n and A~_ 1, we define the boundary matrix of 
A, 0(A), to be the t ranspose  of the node-arc  incidence matr ix  of  G(A), i.e., 

c~(A) = ( % )  = 

1 

- 1  

0 

/fvj is the smaller vertex of el, 

ifvj is the larger vertex of el, 

otherwise. 

Definition 4.2. If A is hereditary,  we define the matrix associated to Cr(A), A(A, r), 

to be 

[ 0 71 "'. 

where 0 = c~(A), n = f~_  1, and, if cr i e A~_ 1, li is the form defining a i and li = l~. + 1. 
(Note  that  the r ight-hand section is a d iagonal  matrix.) Let M(A, r) denote the 

kernel of A(A, r). It is clear that  M(A, r) does not  depend on the ordering of A,]_ 1. 

Proposition 4.3. I f  A is hereditary, then, for any ordering of Ad, C'(A) ~ M(A, r). 
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Fig. 2 

Proof Let t = fd and n = f d - 1 .  Then A(A,r)  is an n x (t + n) matr ix  so 
M(A, r) c R t+". Let a l , . . . ,  tr t be an ordering of A n. Then F in C'(A) can be writ ten 

(f~ . . . . .  f )  with respect to this ordering. If  dim(al  c~ trj) = d - 1, let l~i be the affine 

form which defines aft(a/c~ trj). Then  

F is in C'(A) r whenever  dim(ai  c~ a j) = d - 1, fl - f i  e (T~j) 
(by Corol la ry  1.3) 

r whenever  dim(a~ c~ a j) = d - 1, there exists he e R 

where z = tr i c~ a j, such that  f / -  f j  + h~llj = 0 

( f l  . . . . .  f ,  h . . . . . . .  h,,) e M(A, r), where zl . . . . .  ~, is an 

ordering of A~_ 1. [ ]  

Example .  Let A be the t r iangulated 

F ~ C'(A) as ( f l ,  f2,  f3, f4) as shown. 
A(A, r) is the following matr ix,  where 

square shown in Fig. 2. We m a y  write 

Then  /12 = 134 = x and /23 = 114 = Y, so 
= x ~+1 and ~ = y ,+ l ;  

1 - 1  0 0 

0 1 - 1  0 

0 0 1 - 1  

- 1  0 0 1 

0 y 0 

0 0 

0 0 0 

Let A be the homogeniza t ion  of A as defined in Section 2. Recall that, for tr in A, 

# denotes the convex hull of  a and v denotes the vertex joined to A. 

L e m m a  4.4. I f  A c R n is hereditary, then ~ c R n+l is also hereditary and 

A(/~, r) = hA(A, r), the homogenization of the matrix A(A, r). 

Proof I t  is immedia te  that  G ( A ) =  G(A) and so 0 ( A ) =  a(A). Further ,  since 

st~(t~) = Stx(tr) = st~(a).v,  we have that  ~ is hereditary.  

The  columns of 0 ( ~ ) =  a(A) are homogeneous ,  so to show that  A(,~, r ) =  

hA(A, r) we must  show that  if 1 is the affine form in R defining a e A~_ 1, then hi is the 

(linear) form in R[z] defining #. But this follows f rom L e m m a  2.2. [ ]  
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If A is a hereditary d-complex, the i somorphism from M(J~, r) to C'(A) will be a 

graded i somorphism since the m a p  is just the restriction of the project ion m a p  on 

R '§ to M(A, r). Then P(C'(~) ,  2) = P(M,  2) where M = M(,~, r), and we have the 

following from Theorem 2.8 and the results of  Section 3. 

Theorem 4.5. Let A be a hereditary d-complex. Let r be in N. I f  

dim~ C~',(A)2 k = P(2)/( l  - 2) d+ 1, 

where P(2) is a polynomial in 2 with integer coefficients, then 

(a) P(1) = f~(A), 
(b) P'(1) = (r + 1)f~_l(A),  and 

(c) P(2) = t + f~_ l (A)2  '+1 - P ( lm  A(A, r), 2). 

Proof. Let A denote the homogeniza t ion  of A. Then P(2) = P(C'(A),  2), and we 

must  show that  A(,~, r) satisfies condit ions (i)-(iii) f rom Section 3. Recall that  

A(A, r) is the matr ix  

[ 0 71 " .  

It is immediate  that  A(A, r) satisfies condit ions (i) and (ii). To  see that  it also 

satisfies (iii), recall that  the columns of O(A) correspond to d-faces of  A and the rows 

correspond to interior (d - 1)-faces of A. Suppose l~ = lj and both  a~ and aj  in A~_ 1 

lie on some a in Ad. Since a is a polytope,  Z(l~) and Z(li) are support ing hyperplanes  

for ai and a t in a, i.e., Z(ll)c~ a = ai and Z ( l i ) ~  a = aj. But I i = l~ implies 

Z(li) = Z(lj) so we must  have ai = aj. Let c~(A)= (alk). We have shown that  if 

a~k ~ O, and if I i = I j, then ajk = 0 i f j  :F- i. Finally, since A is pure, for every i there is 

some k such that  alk is nonzero.  The  kth co lumn will be B(i) as in (iii). The  p roof  

now follows from Proposi t ion  3.4, Corol la ry  3.6, and Theorem 3.9. []  

Example.  Fo r  the t r iangulated square  in Fig. 2, we get P(2) = 1 + 2). "+ 1 + 22,+ 2. 

If the edge lying on the positive y axis is per turbed somewhat ,  then, for r = 1, 
P(2) = 1 + 22 + 223. This shows that  P"(1) is not given by combina tor ia l  data. See 

[8] for more  examples.  

The next appl icat ion will be to modules  arising f rom ar rangements  of  hyper-  

planes. Let K be an arb i t ra ry  field. A hyperplane arrangement is a set of hyperplanes  

in K d containing the origin, i.e., l inear subspaces of  codimension one. Let 

X = {H 1 . . . . .  H,} be a hyperp lane  a r rangement  and let 11 . . . . .  In denote  linear 

forms defining H1 . . . . .  Hn. We can define 

Der (X)  = {F E Rd: lilt j o F for all t < i < n}, 
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where F is thought of as a polynomial map from K d to K ~ and o denotes the 

composition of maps. Der(X) becomes an R-module in the obvious way. More 
generally, a multiarranyement X is a multiset {HI ~, . . . .  Hk, "} where k~ e N. Let l'i 

denote l~'. We define 

Der()7) - {F e R n : 7~11~ o F for all 1 < i < n}. 

An arrangement .~ is free if Der(~)  is a free R-module. The study of free 
arrangements was initiated in [22] and [31]. For  a more algebraic and combina- 

torial approach see [34] or [36], where multiarrangements were first considered. It 
turns out that Der(X) is isomorphic (as a graded R-module) to the kernel of the 
map A(~): R d+" ~ R" given by the matrix 

B 7, "" 7.]' 

where B is the matrix with entries bii where li = ~ bljxj. Since the l~'s are distinct, it 
is easy to see that A()7) satisfies conditions (i), (ii), and (iii). Condition (iii) is 

trivially satisfied in this case. We can now apply Proposition 3.4, Corollary 3.6, and 

Theorem 3.9 to get the following result. 

Theorem 4.6. Let X = { H]', . . . .  Hk, "} be a multiarrangement of hyperplanes. Then 
Der()~) has rank d and if P(2) = P(Der()~), 2), we have 

(a) P(1) = d, 

(b) P'(1) = ~ '=  1 kl, and 
(c) P(),) = t + ~ = x  2 dj - P(Im A(,~), 2). [] 

Again P"(1) is not given by combinatorial data [34, Example 4.2.7]. However, 

for simple arrangements (each k i = 1) P"(1) is a combinatorial invariant [21]. In 

the case where Der()7) is a free R-module, the proof of (b) is simpler. (See [22] and 

[36].) 

5. Computational Techniques 

In this section we give a summary of the concept of G r tb n e r  bases for ideals and 

modules over polynomial rings. These "bases" are generating sets which have 

properties useful for computation. The algorithm for constructing Gr6bner bases, 
due to Buchberger (see, for example, [9]), is a generalization of the division 

algorithm for polynomials of one variable. In particular, using Gr fbne r  bases we 

can solve systems of polynomial equations, i.e., we can do linear algebra over 

polynomial rings. For  example, let R = K[x  1 . . . . .  xa] where K is a field and let A 
be an m x t matrix with entries in R. The technique of Gr6bner bases can be used 

to find all t-tuples f = (f l  . . . . .  ft) in R t so that A f  = 0. This means we can compute 
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a generating set for the kernel of A, viewed as a map from R'  to R". But this is 

precisely what  we want in the case of splines. Recall from Section 3 that C'(A) is 

isomorphic to M = M(A, r) where M was the kernel of the map A = A(A, r). 

We now describe the theory of Gr6bner  bases and show how it can be used to 

compute  dimensions of the R-spaces C~,(A) as well as explicit bases for these vector 

spaces over ~. 

In order to compute  effectively in polynomial  rings we need a linear ordering of 

the monomials  which refiness the usual partial order (ordering by divisibility). Let 

R = K[x~  . . . . .  x,]  be the polynomial  ring in n variables over K, where K is a field. 

Let T be the set of all monomials  in R. 

Definition. A mult ipl icat ive order > on R is a total order on T such that: 

(i) m > 1 for all monomials  m in T. 

(ii) If m, n e T and m > n, then, for all a e T, am > an. 

The 9raded lex icoyraphic  order is a multiplicative order which we will find most  

a. xb, b. if and only if a~ + + a, > bl + useful. It is defined by x~ . . . .  x ,  > . . . x ,  . . .  

-.. + b, or a~ + ... + a, = b~ + . . .b ,  and al > bl for the smallest i such that 

ai :~ bl. For  more about  multiplicative orderings (also called term orderings), see 

[19]. 

Given an ordering > and an element f in R, we define the initial term of f ,  

In ( f ) ,  to be the largest monomia l  under > which appears in f .  Let S c R be any 

set. We define the initial ideal of S, In(S), to be the ideal generated by the initial 

terms of elements of S. 

We can extend this not ion to free modules over R of finite rank t, viewed as t- 

tuples of elements in R. A monomial  in R t has the form me i where m is a monomial  

in R and e/ is the ith s tandard basis vector of R'. We can also write 

(0 . . . . .  0, m, 0 . . . . .  0) where the m is in the ith place. The ordering here will be 

defined by reel > nej if and only if i > j  or  i = j and m > n under the given 

multiplicative ordering on R. If  S c R t, then In(S) will be the submodule  of R'  

generated by the initial terms of elements of S. 

Proposition 5.1. Le t  M be a submodule o f  R t. ( I f  t = 1, this is j u s t  an ideal.) A set 

G = {G1 . . . . .  Gk} in M is called a Gr6bner  basis f o r  M i f  any  o f  the fo l lowin9  

equivalent  condit ions hold: 

(1) In(G) = In(M). 

(2) l f  F is in M ,  then there ex is t  r l . . . . .  rk in R so that  F = ~,~= 1 riGi, and f o r  all i, 

In(riGi) <_ In(F). 
(3) The  set F = {mGi : m is a monomial  in x l  . . . . .  x d, and In(Gj) does not divide 

In(mGi)  f o r  all j < i} is a vector space basis f o r  M over K.  

The equivalence of these conditions can be found in 1-30], who credit Bayer [5] 

and Lazard  [15]. It follows from (2) that  G generates M. We will see that when M is 

graded, the first characterization is useful for comput ing  Hilbert series and the 

third for finding vector space bases for the ith graded piece, M i, over K. 
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We now describe how the theory of Gr6bner  bases relates to the spline modules 

C'(A). To do this we restrict ourselves to hereditary complexes in order to use the 

characterization of C'(A) from Section 4. If we have a Gr6bner  basis for C'(A), and 

F is as in (3) in the above proposition, then the set F k = {~ E F : degree 7 < k} will 

be an R-basis for C~,(A). This will be true because of the graded nature of the 

ordering we have chosen. 

Let A be a hereditary complex. Recall the setup from Section 3. We have the 

exact sequence 

A 
0 ~ M ~ R t+" ' R n ~ N ~ 0, 

where N is the cokernel of A. Then M consists of all syzygies of the columns of A. 

This means that if F~ . . . . .  Ft+,  are the columns of A, then (gx . . . . .  gt+n) e M (we 

may think of M as sitting inside of R '+~) if and only if F~gl + F292 + "" + 
Ft+,gt+ , = 0 in R ~. Using algorithms due to Spear [25], Schreyer [-23], and 

Buchberger [9], we can construct a G r r b n e r  basis for M. (See also Proposition 2.11 

of [5].) For  further discussion of these algorithms and specific examples, see [8]. 
Now we discuss a method for computing Hilbert series without computing any 

syzygy modules. In Section 1 we saw that if we can compute the Hilbert series of 

Cr(~), this will give us the dimensions of the C~,(A)'s as R-vector spaces for all k. It 

turns out that we can compute the Hilbert series of C'(A) (which is exactly the 

dimension series for C~,(A)), without actually finding a Gr rbne r  basis for C'(~). 

From Corollary 3.6 we have the formula 

P(2) = fd(A) + f~_ 1(A)2 "+'  - P( Im A(A, r), 2), 

where the Hilbert series of Cr(,~) (and thus the dimension series of C[(A)) has the 
form P(2)/(1 - 2) d+ 1. We have now reduced the original problem to finding the 

Hilbert series of the image of A(A, r). But we know a generating set for this module, 

namely the columns of A(A, r), so we can compute a Gr6bner  basis for it. The 

following proposition, originally proved for ideals in [16], allows us to reduce the 

problem to an even simpler situation. 

P r o p o s i t i o n  5.2. I f  G is a Grfbner basis for a module N and H denotes the Hilbert 

function of N, then H(N) = H(In(N)). 

By (1) of Proposition 5.1, this gives H(N) = H(In  G). We have thus reduced the 

problem to that of computing the Hilbert series of a monomial  module, In(G). This 

is basically an inclusion-exclusion calculation. 

For  more details about  the nature of these computations, see [8]. 

A c k n o w l e d g m e n t s  

The authors are grateful to Michael Stillman for pointing out an error in a 

preliminary version of this work, and to Bernd Sturmfels and GiJnter Ziegler for 

many constructive suggestions. 



A Dimension Series for Multivariate Splines 127 

References 

1. P. Alfeld, On the dimension of multivariate piecewise polynomial functions, in Proceedings of the 
Biennial Dundee Conference on Numerical Analysis, Pitman, London, 1985. 

2. P. Alfeld, B. Piper, and L. L. Schumaker, An explicit basis for C 1 quartic bivariate splines, SIAM J. 
Numer. Anal. 24 (1987), 891-911. 

3. P. Alfeld and L. L. Schumaker, The dimension of bivariate spline spaces of smoothness r for degree 
d >_ 4r + 1, Constr. Approx. 3 (1987), 189 197. 

4. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 
Reading, MA, 1969. 

5. D. A. Bayer, The Division Algorithm and the Hilbert Scheme, Ph.D. Dissertation, Harvard 
University, 1982. 

6. L J. Billera, The algebra of continuous piecewise polynomials, Adv. in Math. 76 (1989), 170-183. 
7. L. J. Billera, Homology of smooth splines: generic triangulations and a conjecture of Strang, Trans. 

Amer. Math. Soc. 310 (1988) 325-340. 
8. L.J. Billera and L. L Rose, Grfbner basis methods for multivariate splines, in Mathematical Methods 

in Computer Aided Geometric Design, T. Lyche and L. L. Schumaker, eds., Academic Press, New 
York, 1989, pp. 93 104. 

9. B. Buchberger, Gr6bner bases: An algorithmic method in polynomial ideal theory, in Multidimen- 
sional Systems Theory, N. K. Bose, ed., Reidel, Dordrecht, 1985, pp. 184 232. 

10. C. K. Chui and R. H. Wang, On smooth multivariate spline functions, Math. Comp. 41 (1983), 
131-142. 

11. H. Crapo and J. Ryan, Spatial realizations of linear scenes, Structural Topology 13 (1986), 33-68. 
12. B. Griinbaum, Convex Polytopes, Wiley-Interscience, London, 1967. 
13. R. Hartshorne, Algebraic Geometry, Spring-Verlag, New York, 1977. 
14. I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago, IL, 1974. 
15. D. Lazard, Gr6bner bases, Gaussian elimination, and resolution of systems of algebraic equations, 

in Computer Algebra, Proceedings EUROCAL '83, J. A. van Hulzen, ed., Lecture Notes in Computer 
Science, Vol. 162, Springer-Verlag, New York, 1983, pp. 146-156. 

16. F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London 

Math. Soc. 26 (1927), 531-555. 
17. H. Matsumura, Commutative Algebra, Second Edition, Benjamin, London, 1980. 
18. P. Orlik, Introduction to Arrangements, CBMS Regional Research Conference Series, No. 72, 

American Mathematical Society, Providence, RI, 1989. 
19. L. Robbiano, Term orderings on the polynomial ring, Proceedings of EUROCAL 85, Lecture Notes 

in Computer Science, Vol. 204, Spring-Verlag, New York, 1985, pp. 513 517. 
20. L. L. Rose, The Structure of Modules of Splines over Polynomial Rings, Ph.D. Thesis, Cornell 

University, Ithaca, NY, January, 1988. 
21. L. L. Rose and H. Terao, Hilbert polynomials and geometric lattices, Adv. in Math. (to appear). 
22. K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. 

Tokyo Sect. IA 27 (1980), 265-291. 
23. F.O. Schreyer, Die Berechnung von Syzygien mit dem verallgemeinerten WeierstraBschen Division- 

satz und eine Anwendung auf analytische Cohen-Macaulay, Stellenalgebren minimaler Multiplizi- 
t~it, Diplomarbeit am Fachbereich Mathematik der Universitat Hamburg, 1980. 

24. L. Solomon and H. Terao, A formula for the characteristic polynomial of an arrangement, Adv. in 

Math. 64 (1987), 305 325. 
25. D. A. Spear, A constructive approach to commutative ring theory, Proceedings of the 1977 

MACSYMA Users' Conference, NASA CP-2012, National Technical Information Service, 
Springfield, VA, 1977, pp. 369--376. 

26. R. P. Stanley, Combinatorics and Commutative Algebra, Birkhauser, Boston, 1983. 
27. R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth & Brooks/Cole, Monterey, CA, 1986. 
28. P. F. Stiller, Certain reflexive sheaves on P~ and a problem in approximation theory, Trans. Amer. 

Math. Soc. 279 (1983), 125-142. 
29. P. F. Stiller, Vector bundles on complex projective spaces and systems of partial differential 

equations, I, Trans. Amer. Math. Soc. 298 (1986), 537-548. 



128 L.J. Billera and L. L. Rose 

30. B. Sturmfels and N. White, Gr6bner bases and invariant theory, Adv. in Math. 76 (1989), 245-259. 
31. H. Terao, Arrangements of hyperplanes and their freeness, I, J. Fac. Sci. Univ. Tokyo Sect. IA 27 

(1980), 293-312. 
32. W. Whiteley, Realizability of polyhedra, Structural Topology 1 (1979), 46-58. 
33. O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Van Nostrand, Princeton, NJ, 1960; 

Springer-Verlag, New York, 1975. 
34. G. M. Ziegler, Algebraic Combinatorics of Hyperplane Arrangements, Ph.D. Thesis, Massachusetts 

Institute of Technology, Cambridge, MA, May, 1987. 
35. G. M. Ziegler, Combinatorial construction of logarithmic differential forms, Adv. in Math. 76 (1989), 

116-154. 
36. G. M. Ziegler, Multiarrangements of hyperplanes and their freeness, in Proceedings, International 

Conference on Singularities, Iowa City, Iowa, 1986, R. Randell, ed., Contemporary Mathematics, 
Vol. 90, American Mathematical Society, Providence, RI, 1989. 

Received August 16, 1988, and in revised form May 24, 1989. 


