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ABSTRACT: Some patients suffering from the

same neuropsychiatric disorder may have no overlapping

symptoms whilst others may share symptoms common to

other distinct disorders. Therefore, the Research Domain

Criteria initiative recognises the need for better charac-

terisation of the individual symptoms on which to focus

symptom-based treatment strategies. Many of the disor-

ders involve dysfunction within the prefrontal cortex

(PFC) and so the marmoset, due to their highly devel-

oped PFC and small size, is an ideal species for studying

the neurobiological basis of the behavioural dimensions

that underlie these symptoms.Here we focus on a battery

of tests that address dysfunction spanning the cognitive

(cognitive inflexibility and working memory), negative

valence (fear generalisation and negative bias) and posi-

tive valence (anhedonia) systems pertinent for under-

standing disorders such as ADHD, Schizophrenia,

Anxiety, Depression and OCD. Parsing the separable

prefrontal and striatal circuits and identifying the selec-

tive neurochemical modulation (serotonin vs dopamine)

that underlie cognitive dysfunction have revealed coun-

terparts in the clinical domain. Aspects of the negative

valence system have been explored both at individual-

(trait anxiety and genetic variation in serotonin trans-

porter) and circuit-based levels enabling the understand-

ing of generalisation processes, negative biases and

differential responsiveness to SSRIs. Within the positive

valence system, the combination of cardiovascular and

behavioural measures provides a framework for under-

standing motivational, anticipatory and consummatory

aspects of anhedonia and their neurobiological mecha-

nisms. Together, the direct comparison of experimental

findings in marmosets with clinical studies is proving an

excellent translational model to address the behavioural

dimensions and neurobiology of neuropsychiatric symp-
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ders; prefrontal cortex

INTRODUCTION

One in five people will suffer from a neuropsychiatric

disorder at some point in their life (Kessler et al.,

2009), yet the prognosis for successful treatment is

still only about 40%. Currently, a handful of pharma-

cological and psychological therapies are used to
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treat multiple psychiatric disorders, with the former

mostly targeting the widespread monoamine systems

in the forebrain (Arroll et al., 2005; Miyamoto et al.,

2005). Why is this? First, disorders such as depres-

sion and schizophrenia are broadly defined and two

individuals may be diagnosed with the same disorder

but have no overlapping symptoms, making it unlike-

ly that they will be treated successfully by the same

therapeutic strategy. Second, patients diagnosed with

different psychiatric disorders may share the same

symptom, which could explain why specific pharma-

cological therapies can be used successfully across

multiple disorders. For example, selective serotonin

reuptake blockers can be effective in treating patients

with general anxiety disorder and depression (Rein-

hold et al., 2011; Gorman et al., 2014), probably

because they target a shared symptom, such as

enhanced negative emotion or negative bias. Third,

the clinical symptoms are often poorly characterized

so two patients may exhibit similar symptoms that

actually have different underlying psychological and

neurobiological causes. For instance, anxiety may be

the result of poor learning of predictive cues signal-

ing negative consequences, causing uncertainty, a

known contributor to anxious behavior. Alternatively,

impaired attentional flexibility may promote anxiety

by making it more likely that subjects stay focused

on salient negative stimuli, unable to switch their

attention toward more positive events in the environ-

ment (Clarke et al., 2015; Shiba et al., 2016). Fourth,

even when treatments are successful there is poor

understanding of the underlying psychological and

neurobiological mechanisms, making it difficult to

match specific treatments to specific symptoms in

individual patients.

For all these reasons there is growing emphasis in

clinical and preclinical studies of therapeutic strate-

gies to target common symptoms regardless of the

disorder with which they are associated. Moreover,

improved characterization of these symptoms

requires a fundamental understanding of the psycho-

logical and neurobiological mechanisms that cause

them, as recognized by the Research Domain Criteria

[RDoc; National Institute of Mental Health, (Insel

et al., 2010)]. Although imaging studies of patients

suffering from neuropsychiatric disorders have

revealed much, both in terms of the neural circuits

that appear dysregulated in untreated patients and

reversal of this dysregulation following successful

treatment, it cannot be ascertained whether this dys-

regulation is causal or compensatory. Vital for

achieving this understanding is animal-based

research, in which experimental manipulations can

establish causal relationships and identify the com-

plex interactions between, and within, neural circuits

that underlie adaptive and maladaptive behavior.

Such research can also identify the neural circuits

upon which current therapies act in order to optimize

therapeutic targets, eliminate undesirable side effects,

and identify new therapeutic targets.

A key brain structure showing altered activity

across the range of neuropsychiatric disorders is the

prefrontal cortex (PFC) (Strakowski et al., 2005; Shin

et al., 2006; Etkin and Wager, 2007; Milad and

Rauch, 2007; Koenigs and Grafman, 2009), a multi-

modal cortical association region with the most exten-

sive reciprocal connections with the rest of the

forebrain of all cortical regions (Carmichael and

Price, 1996; Ongur and Price, 2000; Petrides and Pan-

dya, 2002; Petrides, 2005; Petrides and Pandya, 2007;

Petrides et al., 2012; Yeterian et al., 2012). It is also

the only neocortical region that has regulatory control

over the brainstem and forebrain chemically specific

arousal pathways (Arnsten and Goldman-Rakic,

1984) which, along with its direct reciprocal connec-

tions, gives this region a pervasive influence on per-

ceptual, motoric, attentional, mnemonic, language

and emotional systems of the forebrain, both directly

and indirectly. Its anatomical and functional organiza-

tion is relatively preserved across primate species

(Ongur and Price, 2000; Burman et al., 2006; Burman

and Rosa, 2009; Petrides et al., 2012) making Old

World and New World, non-human primates particu-

larly valuable for translational studies of the prefron-

tal circuits that underlie the regulation of behavior.

The marmoset, a New World monkey, is ideal for

studying the effects of interventions within prefrontal

circuits, including their modulation by the monoamine

systems. Their brains are relatively small, compared

with the much larger brained Old World monkeys,

and their cortex, lissencephalic, making it easier to tar-

get localized regions of interest cortically and sub-

cortically, either permanently, via fiber-sparing

excitotoxins (e.g., quinolinic acid) and neurochemi-

cally specific toxins (e.g., 5,7 dihydroxytryptamine),

or temporarily, by infusions of drugs through indwell-

ing cannulae. This will also prove an advantage when

applying state-of-the-art molecular and imaging tech-

niques to neural circuit analysis of cognition and emo-

tion, including optogenetics (MacDougall et al., 2016)

and pharmacogenetics. Like humans, vision and audi-

tion are dominant senses in monkeys, including the

marmoset, (in contrast to rodents in which the domi-

nant sense is olfaction), and the expansion of cortical

processing of these senses in humans is also seen in

non-human primates (Orban et al., 2004; Rauschecker

and Scott, 2009). In addition, compared with rodents,
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marmosets show distinct gene expression patterns in

the visual and prefrontal cortex despite similarities in

genetic markers in many other areas (Mashiko et al.,

2012). This makes primates ideal for translational

studies of higher-order cognitive and affective pro-

cesses using behavioral tests that rely on these domi-

nant senses. An additional advantage of marmosets is

that it is possible to maintain purpose bred colonies

within spacious accommodation at local institutions as

a consequence of their small size and their ease of

breeding in captivity. This allows for the necessary

large scale studies of neural circuits. Maintaining a

large breeding colony allows the investigation of the

interaction between genetic and behavioral traits that

are known risk factors for neuropsychiatric disorders,

for instance, the serotonin transporter polymorphism

and high trait anxiety. The onset of many neuropsychi-

atric disorders occurs during childhood and adoles-

cence (Jones, 2013) and 75% of adults suffering from

a mental disorder have an onset before the age of 25

(Kessler et al., 2005). Thus, the short 5 month gesta-

tion period of marmosets and the fact that they reach

adulthood by 2 years (Abbott and Hearn, 1978; Abbott

et al., 2003; Schultz-Darken et al., 2016) makes them

the ideal primate species in which to study the normal

and abnormal development of prefrontal circuits relat-

ed to these genetic and behavioral risk factors.

In this review we will focus on a number of behav-

ioral dimensions common to a variety of neuropsy-

chiatric disorders and describe the range of cognitive

and affective tests that have been developed to study

their psychological and neurobiological bases in the

marmoset. We will include dimensions associated with

dysfunction in the cognitive (cognitive inflexibility

and working memory), negative valence (fear generali-

zation and negative bias) and positive valence (anhe-

donia) systems, as defined by RDoC (Fig. 1). Since

symptoms are core to neuropsychiatric diagnoses and

Figure 1 RDoc in the marmoset. Tasks developed in the marmoset are represented in white,

linked to the relevant behavioral dimension that is impaired across disorders (blue) and placed with-

in the appropriate system (Cognitive, Negative Valence, and Positive Valence, light blue). [Color

figure can be viewed at wileyonlinelibrary.com]
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are often the trigger for individuals to seek help and

advice from a clinic, knowledge of the relationship

between behavioral dimensions and symptomatology

is critical for progress in our understanding of the etiol-

ogy and treatment of these disorders.

COGNITIVE SYSTEM DYSFUNCTION,
COGNITIVE INFLEXIBILITY, AND
IMPAIRED WORKING MEMORY

Impairments within the cognitive systems are promi-

nent in disorders such as schizophrenia, obsessive-

compulsive disorder (OCD) and attention deficit

hyperactivity disorder (ADHD). These disorders may

share a range of cognitive impairments including def-

icits in cognitive flexibility and inhibitory response

control and aspects of working memory (Morice,

1990; Chamberlain et al., 2005; Castellanos et al.,

2006). Such deficits may also be present in affective

disorders, including anxiety and mood disorders (Air-

aksinen et al., 2005; Mantella et al., 2007; Rock

et al., 2014). Numerous behavioral tasks have been

developed to study cognitive flexibility and working

memory abilities in marmosets. Here we focus on

those tests that have been successfully translated into

clinical and pre-clinical studies in humans, and back

translated into rodents. Specifically, cognitive flexi-

bility has been measured using discrimination

reversal-learning and attentional set shifting tasks,

whilst working memory and its underlying mecha-

nisms have been studied using a spatial self-ordered

sequencing task (Fig. 1). The translational success of

these tasks for modeling the overlapping deficits in

behavioral dimensions and symptoms across disor-

ders has already provided enormous insight into the

separable prefrontal circuits and neurochemically

specific modulation that underlie such dimensions.

Cognitive flexibility is the ability to adapt mental

strategies and actions to the changing contingencies

and conditions of the environment (Ca~nas et al.,

2003). It has been suggested that cognitive inflexibili-

ty underlies the compulsions present in OCD patients

as they shift from flexible, goal directed actions to

persistent maladaptive habitual behaviors (Graybiel

and Rauch, 2000; Gillan et al., 2011). Although cog-

nitive inflexibility has also been linked to persevera-

tive thinking and the inability to perform mental

shifts in schizophrenia (Delahunty et al., 1993; Elliott

et al., 1995; Pantelis et al., 1999), it is unclear wheth-

er it underpins these symptoms or is simply a by-

product of the prefrontal dysfunction associated with

the disorder (Orfei et al., 2013; Weinberger and Ber-

man, 1996). Using the Wisconsin Card Sorting task

(WCST, Berg, 1948; Milner, 1963) a commonly used

clinical test to evaluate set-shifting ability in patients

with frontal lobe damage, some studies have shown

that OCD patients display marked impairments in

shifting attentional sets (Okasha et al., 2000; Fonte-

nelle et al., 2001; Veale et al., 2009); but see

(Abbruzzese et al., 1995, 1997; Purcell et al., 1998;

Simpson et al., 2006). In one such study the level of

the impairment correlated with the severity of the

symmetry/ordering obsessions (Lawrence et al.,

2006) suggesting that difficulties in shifting attention

may contribute to the development of these obses-

sions. Similar difficulties have also been reported not

only in patients suffering from schizophrenia (Cana-

van et al., 1989; Beatty and Monson, 1990) but also

Huntington’s disease (Malmo, 1974; Lysaker et al.,

1995; Everett et al., 2001).

In order to dissect out the underlying cognitive def-

icits that may contribute to impaired WCST perfor-

mance, which may include disrupted motivation,

attention, learning and memory, a multidimensional

discrimination task was developed for use in both

humans and marmosets (Roberts et al., 1989). The

task was based on intra-dimensional (ID) and extra-

dimensional (ED) shift studies of animal learning

(Mackintosh and Little, 1969). It required subjects to

attend to the different aspects of multidimensional

stimuli (varying in shape and lines for instance) and

either attend to the same dimension across discrimi-

nations (intra-dimensional shift) or shift attention

from one dimension to another [extra-dimensional

shifts; Dias et al., 1996a, b; Fig. 2a]; the latter is a

direct parallel of the switch from sorting cards

according to one category, to sorting them according

to another, that is at the core of the WCST. The test

also enabled direct comparison with another type of

cognitive flexibility that had commonly been studied

in primate neuropsychological studies (Jones and

Mishkin, 1972), namely reversal learning. Here, hav-

ing learned to respond to one of two stimuli in order

to receive reward, subjects had to reverse their

responding to the other, previously unrewarded stim-

ulus in order to gain reward.

By directly comparing the effects of excitotoxic

lesions of two distinct PFC regions, namely the orbi-

tofrontal cortex (OFC) and ventrolateral prefrontal

cortex (vlPFC), studies in marmosets revealed their

differential contribution to these two forms of cogni-

tive flexibility (Dias et al., 1996a,b). While OFC

lesions disrupted reversal learning but not attentional

set-shifting, vlPFC lesions disrupted attentional set-

shifting but not reversal learning [Fig. 2(b)], implicat-

ing the former in monitoring the changing affective

value of stimuli in the environment and the latter in
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Figure 2 Studying cognitive system dysfunction in the marmoset. (a) Schematic of the attentional

set shifting and reversal learning paradigm. In Intra-dimensional shifts, new exemplars, still varying

along the same two perceptual dimensions of shapes and lines are presented and the previously rele-

vant dimension for example, shape, remains relevant and animals must learn which of the two new

exemplars from that dimension is rewarded. In extra-dimensional shifts the relevant dimension is

changed (e.g., shape to line) and an exemplar from the new relevant dimension is now rewarded. In

contrast, in reversal, the exemplars and dimensions remain the same but the rewarding contingency

is reversed (e.g., shape A to shape B). (b) Number of trials required to reach criterion performance

during an extra-dimensional shift (attentional set shifting) and reversal after antOFC or vlPFC exci-

totoxic lesions. Bars represent the range of scores in each group (Dias et al., 1996a, b). (c) Schemat-

ic of the serial reversal learning paradigm, showing an example set of three trials. (d) Perseverative

errors (consecutive responses to the unrewarded exemplar, square-root transformed) made across

four reversals after excitotoxic lesions of antOFC or the medial caudate nucleus (Clarke et al.,

2008). Error bars represent SEM. (e) Depletions of 5-HT in the OFC and DA in the medial caudate

selectively impair reversal learning. (f) Schematic of the self-ordered spatial search task with 2-box

and 3-box examples. The locations of the boxes change across trials. (g) Number of perseverative

errors (consecutive responses to the same spatial location) made after antOFC or vlPFC excitotoxic

lesions (Walker et al., 2009). Error bars represent SEM. In all figures the location of the excitotoxic

lesions are shown on the diagram of the orbital (antOFC, vlPFC) or sagittal (medial caudate) view

of the brain. White bars (C) represent control group and stars (*) represent p< 0.05.



attentional control. This double dissociation was sub-

sequently replicated in human functional neuroimag-

ing studies (Hampshire and Owen, 2006) as well as

in rats (Birrell and Brown, 2000) and mice (Bisso-

nette et al., 2008), highlighting the forward and back

translatability of these findings. Further studies in the

marmoset have implicated the medial caudate nucle-

us in reversal learning (Clarke et al., 2008) with the

pattern of impairment similar to that seen following

OFC lesions. In both cases, animals displayed persev-

erative responding, whereby the previously rewarded

option is chosen repeatedly, despite the lack of

reward.

Marked differences in the underlying monoaminer-

gic modulation of these circuits have also been

revealed. Reductions in dopamine, but not serotonin

affect higher-order attentional selection in the vlPFC

(Roberts et al., 1994; Clarke et al., 2005). In contrast,

reductions of serotonin, but not dopamine, within the

OFC mimic the perseverative effects of excitotoxic

OFC lesions on reversal learning (Clarke et al., 2004,

2005, 2007). The converse, however, is the case at

the level of the caudate nucleus where reversal learn-

ing is impaired following reductions in dopamine but

not serotonin (Clarke et al., 2011). Thus, distinct neu-

rochemical systems at the level of the striatum and

OFC regulate reversal learning, and although both

serotonin and dopamine pathways richly innervate

the PFC, their contributions differ with respect to the

different forms of cognitive flexibility [Clarke et al.,

2008; Fig. 2(e)].

Together these findings provide considerable

insight into the specific fronto-striatal circuitry sub-

serving cognitive flexibility and are beginning to

reveal how these different forms of cognitive flexibil-

ity contribute to disorders such as schizophrenia and

OCD. For example, ED shifting, as assessed in the

CANTAB (Cambridge Neuropsychological Test

Automated Battery), generally shows a significant

impairment in OCD patients (Watkins et al., 2005;

Chamberlain et al., 2006). This deficit appears to be

pre-symptomatic as it is also present in their healthy,

first degree relatives (Chamberlain et al., 2007). This

may implicate altered functioning in vlPFC in OCD

patients and a recent report specifically links atten-

tional set-shifting performance and vlPFC function.

Specifically, decreased functional connectivity

between vlPFC and caudate at resting state was

linked to impairments in attentional set-shifting per-

formance and predicted greater number of errors dur-

ing ED shifts (Vaghi et al., 2016). In contrast, OCD

patients display mild or no detectable impairment in

reversal learning. However, they do show a speed-

for-accuracy trade off that has been correlated to the

severity of compulsions (Chamberlain et al., 2007,

2008; Valerius et al., 2008). Moreover, at the level of

underlying brain circuitry, OCD patients and their

unaffected first-degree relatives display decreased

recruitment of the OFC during reversal learning

(Chamberlain et al., 2007; Remijnse et al., 2013) and

symptom provocation (Morgiève et al., 2014) and

abnormalities in resting state activity in this region

(Menzies et al., 2008). A meta-analysis of imaging

studies highlights not only the OFC but also vlPFC

regions as areas with increased likelihood of activa-

tion in response to symptom provocation (Rotge

et al., 2008). Thus, altered activity in both OFC and

vlPFC circuitry involved in response reversal and

rule shifting, respectively, may underlie the impair-

ments in cognitive flexibility in OCD and contribute

to the compulsions and obsessions, respectively.

Similarly, patients with schizophrenia also show

marked deficits in shifting attentional sets (Elliott

et al., 1995; Morris et al., 1999; Pantelis et al., 1999;

McKirdy et al., 2009) and in reversal learning

(Thoma et al., 2007; Waltz and Gold, 2007; Leeson

et al., 2009). Performance on the latter is related to

the severity of the negative symptoms (Pantelis et al.,

1999; Leeson et al., 2009), which if they persisted

were linked to greater impairment in set shifting at

follow-up (Leeson et al., 2009). This pattern of

impairments also implicates dysfunctional OFC and

vlPFC circuits in the cognitive inflexibility associated

with schizophrenia, similar to that proposed for

OCD. However, the specific neural basis of these def-

icits across the disorders remains to be determined,

given that, for example, similar perseverative

responding in reversal learning is associated with dis-

rupted OFC or medial striatal activity (Dias et al.,

1996a; Clarke et al., 2008).

In schizophrenia, support for dysfunction within

the medial striatum is provided by evidence for dis-

turbances in activation and connectivity within this

region (Vink et al., 2006; Rolland et al., 2015) and

the finding that reduced functional activity within the

ventral striatum is associated specifically with

impaired reversal performance in unmedicated

patients compared with controls (Schlagenhauf et al.,

2014). This can be contrasted with the decreased

recruitment of the OFC during reversal learning in

OCD patients described above. It can be argued that

given vlPFC and OFC form part of a neural network

to control attentional set-shifting and reversal learn-

ing respectively, dysregulation at any node within the

network will disrupt its overall functioning. Howev-

er, identifying the underlying cause of that disruption

has important implications for the development of

therapeutic strategies for the two disorders. For
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example, studies in the marmoset have revealed that

the OFC and striatal mechanisms that underlie rever-

sal learning in the marmoset are differentially modu-

lated by serotonin and dopamine, respectively. Thus,

the improvement in OFC function and symptoms in

OCD patients following administration of selective

serotonin reuptake inhibitors (SSRIs) (Nakao et al.,

2005; Saxena et al., 2009) would be predicted by the

selective actions of serotonin on reversal learning

within the marmoset OFC. It may also explain why

medicated OCD patients do not show errors in rever-

sal performance as the boosting of serotonin with

SSRI treatment may alleviate their reversal perfor-

mance deficits. In contrast, pharmacotherapies target-

ing the dopamine system (rather than SSRIs) would

be predicted to alleviate the striatal-related reversal

deficits in schizophrenia. Although both typical

(Michara and Goldberg, 2004) and atypical (Keefe

et al., 1999) antipsychotics primarily targeting dopa-

minergic function have been linked to general

improvements in cognitive function, whether schizo-

phrenia patients specifically benefit from antipsychot-

ic medication in terms of improvements in striatal

based cognitive flexibility remains to be determined.

Within the domain of cognitive symptoms, schizo-

phrenia patients also display impairments in working

memory (Green, 1996), which are also a core symp-

tom of attention deficit/hyperactivity disorder

(ADHD) (Westerberg et al., 2004; Lee and Park,

2005; Martinussen et al., 2005). Working memory is

the ability to hold information “on-line” in memory,

to update that information across time and to use that

information to guide responding. A variety of tests

has been used to study working memory including

delayed response tasks (Pontecorvo et al., 1996),

multi-arm mazes (commonly used in rodents; Dud-

chenko et al., 2013) and self-ordered search tasks

(Petrides, 1995a,b). An example of the latter devel-

oped in the marmoset is conceptually very similar to

the CANTAB self-ordered spatial search task used to

study working memory in patients (Owen et al.,

1990; Manes et al., 2002; Luciana, 2003; Chase et al.,

2008) It requires a combination of working memory,

response inhibition and strategy implementation abil-

ities [Fig. 2(f)]. Marmosets are presented with squares

simultaneously placed in two, three, or four spatial

locations (out of eight possible combinations) on a

touch-sensitive computer screen. On all trials, mar-

mosets are required to respond once only to each

square in a self-ordered sequence in order to receive

reward (Collins et al., 1998; Walker et al., 2009). In

the marmoset, excitotoxic lesions of the vlPFC, but

not OFC, dramatically impair performance [Walker

et al., 2009; Fig. 2(g)]. Marmosets are unable to attain

pre-lesion levels of performance and exhibit high

numbers of perseverative responses, as they touch the

same square repeatedly, failing to move on to the

next, previously untouched square. However, perfor-

mance can be rescued by removing the previously

touched square from the touchscreen until another

response has been made, thereby preventing persever-

ation of the immediately preceding response. This

suggests that the inability to solve this task stems

from a tendency to repeat previous responses.

In the human version of the task, patients with

schizophrenia and ADHD patients exhibit similar

impairments. Both adults (Dowson et al., 2004) and

children (Fried et al., 2015) with ADHD exhibit a pro-

found impairment in this task. Moreover, schizophre-

nia patients in particular fail to adopt a systematic

strategy and make numerous between-search errors,

performing worse than frontal lobe patients (Pantelis

et al., 1999; Badcock et al., 2005) and being impaired

even at first-episode psychosis (Joyce, 2002; Joyce

et al., 2005). This was evident even when controlling

for low visuo-spatial memory span, suggesting that

impaired executive function and strategy implementa-

tion are at the core of the working memory problem.

Deficits in spatial working memory extend to the

healthy monozygotic twins of patients (Pirkola et al.,

2005) or first degree relatives (Wood et al., 2003).

This would suggest that the working memory impair-

ment is an endophenotype of schizophrenia.

Whilst evidence from the clinical literature sup-

ports global prefrontal impairment in ADHD (Lenar-

towicz et al., 2014; Arai et al., 2015; Mattfeld et al.,

2015) and schizophrenia patients (Manoach, 2003;

Orfei et al., 2013; Pu et al., 2013; Marumo et al., 2014;

Buchy et al., 2015), the identification of the vlPFC as

critical for self-ordered spatial memory in marmosets

specifically implicates vlPFC impairment in this work-

ing memory deficit in patients. This is supported by the

accompanying profound dysfunction in attentional set

shifting, which also is associated with vlPFC dysfunc-

tion. Similarly, children (Kempton et al., 1999) and

adult (Clark et al., 2007) ADHD patients that exhibit

marked impairment in the self-ordered spatial search

task also show impaired response inhibition. Such defi-

cits in working memory can be ameliorated by either

domain specific cognitive training or psychostimulant

medication (Kempton et al., 1999; Bedard et al., 2004;

Mehta et al., 2004; Klingberg et al., 2002, 2005; see

Del Campo et al., 2011), the latter implicating the dopa-

mine or noradrenaline systems. In support of the dopa-

mine system, administration of a D1 agonist improves a

ketamine-induced deficit on the spatial-order search

task in marmosets (Nakako et al., 2013) suggesting that

the working memory processes in this task are under

334 Oikonomidis et al.

Developmental Neurobiology



dopaminergic modulation. However, given that striatal

dysfunction is also implicated in these disorders (Dur-

ston et al., 2003; Cubillo et al., 2012 for a review) it

remains to be determined whether the improvements

are due to the actions of drugs at the level of the PFC or

striatum (see, e.g., Clatworthy et al., 2009).

In summary, the marmoset is proving an excellent

model in which to parse the neural circuitry and neuro-

chemical pathways that underlie the cognitive symp-

tomatology associated with a range of neuropsychiatric

disorders including OCD, schizophrenia, and ADHD.

This is an important first step toward stratification of

specific symptoms both within, as well as between, dis-

orders. Moreover, identification of the level within a

particular circuit from which a cognitive impairment

may arise, for example, PFC or striatum, and the spe-

cificity of the neurochemical modulation of that level

within the circuit, for example, dopamine or serotonin,

has important implications for targeting current thera-

pies more effectively. Future studies employing viral

mediated vectors to target specific pathways using

optogenetics or pharmacogenetics can further delineate

the circuit and the marmoset is an ideal model for such

studies with a highly differentiated prefrontal cortex

but a relatively small and lissencephalic brain.

DYSREGULATION OF NEGATIVE
VALENCE SYSTEMS, ATTENTIONAL
BIASES, AND FEAR GENERALIZATION

Although there are evolutionary advantages to fear

and anxiety (they can act as a protective defense

mechanism in dangerous situations), they can easily

become maladaptive and deleterious once left unreg-

ulated. Pathological anxiety, affecting more than

28% of the general population (Kessler et al., 2009),

specific phobias, PTSD, abnormally low mood in

depression and disturbances of emotion in schizo-

phrenia (Staring et al., 2009) are all a result of a dys-

regulated negative valence system. In generalized

anxiety disorder, patients exhibit pathological worry

and apprehension over long periods of time about sit-

uations that are normally causing no distress to the

healthy population (Tyrer and Baldwin, 2006; Craske

et al., 2009). In specific phobias and PTSD the worry

and distress are focused on, and triggered by, a single

event, situation or stimulus (Kessler et al., 2009;

Pacella et al., 2013).

A particularly prominent symptom in patients suf-

fering from all types of anxiety and depression is fear

over-generalization, whereby they indiscriminately

develop fearful responses to threatening and non-

threatening stimuli alike (Lissek et al., 2008; Craske

et al., 2009; Lissek et al., 2014). They also tend to

develop negative biases, not only within the affective

domain but also extending into the cognitive domain,

and influencing attention and memory (Murphy et al.,

1999; Gotlib et al., 2004; Mogg and Bradley, 2005;

Bar-Haim et al., 2007). It is still unclear whether fear

generalization and negative biases are causal to the

development of the disorder, or constitute underlying

symptoms that appear in its presence and contribute

to its maintenance. Evidence for the former comes

from the study of individuals within the healthy pop-

ulation who display quite dramatic differences in

anxiety. This variation in anxiety is recognized as a

stable personality trait. Individuals at the extreme

high end of this trait can be more at risk of develop-

ing pathological anxiety and, like individuals suffer-

ing from clinical anxiety, have a tendency to over-

generalize in fear provoking situations and display

mild negative biases (Sexton et al., 2010; Arnaudova

et al., 2013). Such behavioral traits are the product of

interactions between genes and early life experiences

(Nugent et al., 2011). Life experiences that may trig-

ger the development of these traits include physical

and psychological stressors, which impact on the

development of brain circuits underlying emotion.

Indeed, affective disorders commonly emerge during

childhood and adolescence (Jones, 2013), making the

study of gene–environmental interactions and brain

development important for our understanding of

emotion dysregulation.

The common marmoset, like humans, displays

marked individual responsivity to anxiety provoking

situations that appears stable across time and thus

trait-like in character. This makes the marmoset an

ideal species for studying emotion regulation and

dysregulation. Consequently, a range of specific tasks

have been developed to formally characterize their

anxious temperament and to measure fear over-

generalization and negative biases (Fig. 1). An

important aim in developing these tasks has been to

bridge the gap between existing studies of negative

emotion in rodents, monkeys and humans. The neural

mechanisms underlying fear and anxiety have been

extensively studied in rodents (LeDoux, 2000;

Maren, 2001; Davis et al., 2010; Tovote et al., 2015),

primarily using Pavlovian fear conditioning para-

digms (acute and sustained fear) and tests of innate

anxiety, such as the open field and elevated plus

maze (Belzung and Griebel, 2001). In contrast, spe-

cific tests of innate fear (responsivity to snakes) and

anxiety (responsivity to unknown humans) have been

more commonly used in non-human primates

(Izquierdo et al., 2005; Rudebeck et al., 2006; Kalin

et al., 2007; Machado and Bachevalier, 2008) making
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cross-species comparison and translation difficult.

Moreover, although fear conditioning has been used

to test both humans and rodents alike, the metric of

emotion differs between the two species; a behavioral

freezing response is commonly measured in rodents

contrasted to an autonomic and/or self-reported state

used in humans. Since an emotional state is the prod-

uct of changes across the range of outputs, both

behavioral and physiological, it is important to mea-

sure multiple aspects of the response in order to

Figure 3.
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determine the neural circuits that regulate emotional

states. This is particularly important since there are

strong brain-body-brain pathways resulting in

patients with anxiety and mood disorders being more

likely to suffer cardiovascular disease and vice versa

(Khawaja et al., 2009; Stapelberg et al., 2012).

A test commonly used to measure an anxious tem-

perament in macaque monkeys is the human intruder

test, whereby the experimental animal encounters an

unfamiliar human (Kalin and Shelton, 1989). The

unfamiliar intruder could be a potential “friend,” for

instance bringing food, or they could be a threat.

Hence, the ambiguity of the situation creates a state

of anxiety, with subjects varying in the extent to

which they approach the intruder. In the marmoset

version of the task, the level of anxiety is measured

based upon a component score that includes the dis-

tance the animal chooses to maintain between them-

selves and the intruder, their behavioral reactivity in

the form of calls made, and other attentive behaviors

such as body and head bobbing. This test is relatively

quick to perform, as it is based in the home cage,

requires no training and thus is ideal for screening

large numbers of animals. Another paradigm to

assess emotional reactivity in marmosets is based on

the response to a snake, which is a stimulus that pri-

mates find inherently fearful [Shiba et al., 2014a, b;

Fig. 3(a)]. Although the human intruder and snake

test measures are somewhat independent of one

another [see significant but weak correlation in Fig.

3(b)] and may measure overlapping but also distinct

aspects of negative emotion, for example, innate fear

versus uncertainty, they both reflect the general anx-

ious temperament of the animal. High scores in both

tests on repeated occasions indicate a high-anxious

phenotype in the marmoset. They have been linked to

structural alterations in the dorsal Anterior Cingulate

Cortex (dACC) [Fig. 3(c)] as measured by MRI and

reductions in serotonin release in the amygdala in

response to an acute dose of an SSRI, as measured by

in vivo microdialysis (Mikheenko et al., 2015). In

addition, microPET analysis of the 5-HTT has also

revealed lowered binding in the dACC related to

social anxiety in marmosets (Yokoyama et al., 2013).

The translational potential of this anxiety pheno-

type has been determined by studying an individual

marmoset’s ability to display discriminative fear con-

ditioning, and their responsivity to an uncertain or

ambiguous stimulus. The tendency to generalize

between threatening and non-threatening cues and

contexts, and the negative appraisal of neutral or

ambiguous cues (Hirsch and Mathews, 1997;

Constans et al., 1999), is characteristic of high trait-

anxious humans (Craske et al., 2009; Lissek, 2012;

Dymond et al., 2015) and rats (Duvarci et al., 2009).

Thus, it would be predicted that high anxious marmo-

sets would show a similar phenotype. Consequently,

Pavlovian discriminative fear conditioning has been

Figure 3 Dysregulation of negative valence systems. (a) Human intruder and snake tests are con-

ducted in the home-cage, with the animal separated from their cage mate in one quadrant of the

cage for a brief period. (b) The negative emotional response to the snake, as measured by the com-

ponent 1 (“Anxiety”) score in the Principal Component Analysis (PCA), is positively correlated

with the negative emotional response to the human intruder. AntOFC (red) and vlPFC (blue) excito-

toxic lesions increase negative emotion relative to controls (gray) but the lesioned animals remain

within the normal variation of trait anxiety within the colony (Agust�ın-Pav�on et al., 2012). (c) Two

clusters (dACC, labeled, and posterior cingulate cortex) identified by tensor based morphometry

analysis were negatively correlated with high anxiety in the human intruder test. (d) Schematic of

discriminative fear conditioning apparatus. The CS1 is paired with an aversive loud noise (300–

600 ms car siren at 118 dB), whereas the CS2 is paired with a neutral event (0.5 s of darkness). (e)

Example of conditioned behavioral (vigilant scanning, time in seconds) and cardiovascular (heart

rate, beats/min) responses. “Vigilant scanning” includes attentive visual search of surroundings in

combination with forward extension of body/head and rearing. A conditioned heart rate rise is

observed for the CS1 (blue) but not for the CS2 (gray) indicating successful discrimination

between the two stimuli. (f) Correlation between component 1 score (“Anxiety”) and performance

in discriminative fear conditioning. High scoring in component 1 was associated with failure to

achieve discriminative conditioned cardiovascular responses to CS1 and CS2. (g) Schematic rep-

resentation of the marmoset SLC6A4 promoter region showing 32 repeats. Third, fourth, and 23rd

repeats containing the double and the two single-nucleotide polymorphisms, respectively, are shad-

ed in gray. (h) Comparison of component 1 (“Anxiety”) behavioral scores derived from the PCA of

the HIT performance. Error bars represent SEM. (i) The human intruder test was used to assess anx-

iety levels in response to vehicle and to a single dose of 2.5 mg/kg or 10 mg/kg citalopram, 25 min

prior to the intruder phase. Effects on average distance (cm) are shown (Santangelo et al., 2016).

Error bars represent SEM, stars (*) represent p< 0.05.
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developed for marmosets based on paradigms used

effectively in humans (Lau et al., 2008; Lissek et al.,

2008) and rodents (Herry et al., 2008). It involves the

presentation of two distinct auditory cues, one of

which is paired with a mildly aversive loud noise

[300–600 ms car siren at 118 dB; the specific param-

eters are adjusted for each individual animal based on

their performance; Fig. 3(d)]. Successful discrimina-

tive conditioning is demonstrated by the development

of conditioned attentional orienting/vigilant scanning

responses and heightened heart rate [Fig. 3(e)] in

response to the stimulus paired with the loud noise

but not the alternative stimulus paired with a neutral

event, (0.5 s period of darkness). Animals that had

shown higher anxiety and avoidance of the rubber

snake were unable to successfully learn such a dis-

crimination and their conditioned autonomic and

behavioral responses generalized to the safety cue or

to the context [Shiba et al., 2014b; Fig. 3(f)], much

like high trait anxious humans who tend to generalize

from threatening, aversive, and negative stimuli to

neutral ones. Importantly, marmosets that failed to

learn discriminative fear conditioning were perfectly

successful in learning an appetitive Pavlovian dis-

crimination paradigm by discriminating the same

auditory cues when they were predictive of reward.

High anxious marmosets also displayed high levels

of behavioral vigilance when presented with a novel,

neutral cue in a threatening context (Mikheenko

et al., 2015). This is a form of pseudo-conditioning as

the aversive loud noise and a neutral stimulus were

presented within the same test session but were not

correlated with one another, yet high anxious marmo-

sets still developed conditioned responses to the neu-

tral stimulus.

High anxious marmosets and humans not only dis-

play a similar behavioral phenotype but that pheno-

type may also share common genetic influences. In

humans, variation within the serotonin transporter

gene (SLC6A4) that results in reduced gene expres-

sion has been linked to a high trait anxiety phenotype

(Lesch et al., 1996; Canli and Lesch, 2007; Caspi

et al., 2010) and marked changes in the activity of

emotion circuits in the brain (Brown and Hariri,

2006; Murphy et al., 2013); although meta-analyses

have called into question the gene-behavior associa-

tion (Munaf�o et al., 2009; Risch et al., 2009). Recent-

ly, genetic variation in the SLC6A4 upstream repeat

region of the marmoset has also been linked to differ-

ential SLC6A4 gene expression, with lower gene

expression being associated with heightened anxiety

on the human intruder test [Santangelo et al., 2016;

Fig. 3(g,h)]. This gene–behavioral association in the

marmoset highlights the potential advantage to

studying such relationships in a purpose-bred primate

colony. The relatively controlled environment dra-

matically reduces the impact of variation in life expe-

riences on an individual’s behavior, allowing gene–

behavior relationships to be more easily revealed

compared with that of humans.

Further exploration of the phenotype has revealed

that genetic variation in the SLC6A4 gene is related

to opposing effects of an acute dose of a selective

serotonin reuptake inhibitor (SSRI) on anxious

behavior. The low gene expressing, high trait anxious

marmosets displayed an anxiogenic response in con-

trast to the anxiolytic response of the high gene

expressing, low trait anxious marmosets [Santangelo

et al., 2016; Fig. 3(i)]. These results bridge the gap

between the findings in humans that report reduced

responsivity to the therapeutic effects of chronic

SSRI treatment in low expressing carriers with anxi-

ety disorders (Perna et al., 2005) and depression

(Keers et al., 2011; Porcelli et al., 2012), and the indi-

vidual differences in sensitivity to the anxiogenic

effect of acute SSRIs (Harmer and Cowen, 2013).

This finding implicates SCL6A4 genetic variation in

the latter (Harmer et al., 2006; Murphy et al., 2009)

which may provide insight into the underlying brain

mechanisms that account for the later improvement

of the clinical symptoms observed in high expressing

carriers. The marmoset model therefore has enor-

mous potential for revealing the interactions between

the SCL6A4 gene and functional activity in the sero-

tonin system in the control of behavior.

Changes in activity of brain networks that are asso-

ciated with heightened anxiety and dysregulated neg-

ative emotion, upon which serotonin may act, have

been reported by functional neuroimaging studies of

high trait anxious individuals in the healthy popula-

tion (Killgore and Yurgelun-Todd, 2005, Bishop,

2007) as well as in adults (Etkin and Wager, 2007;

Milad and Rauch, 2007, Price & Drevets, 2010), chil-

dren and adolescents (Monk et al., 2006; Guyer et al.,

2008; Strawn et al., 2012) with specific anxiety disor-

ders. These implicate a number of prefrontal subre-

gions including the OFC and vlPFC. However,

whether those changes are causal to the phenotype or

merely compensatory cannot be determined in

humans.

Such cause and effect has been established in mar-

mosets, by studying the effects of selective excito-

toxic lesions of the anterior OFC (antOFC) and

vlPFC on fear and anxiety. At face value, the effects

of both lesions seemed almost identical, increasing

anxiety as measured by the human intruder test,

increasing innate fear in response to a snake stimulus

[Fig. 3(b)] and inducing inflexible conditioned
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cardiovascular and behavioral fear responses follow-

ing acute alterations in the pairing of a stimulus with

aversive loud noise (Agust�ın-Pav�on et al., 2012;

Shiba et al., 2014a). This resembles the robust pattern

of conditioned fear found in anxiety patients who dis-

play stronger responses to conditioned cues during

extinction and are delayed in extinguishing responses

compared with controls (Wessa and Flor, 2007; Duits

et al., 2015). Whilst the effects of OFC lesions on

tests of anxiety and innate fear have been somewhat

variable in macaque monkeys (Izquierdo et al., 2005;

Rudebeck et al., 2006; Kalin et al., 2007; Machado

and Bachevalier, 2008) the reasons for these discrep-

ancies have been attributed mostly to differences in

lesion methodology, lesion extent and task sensitivity

(for a thorough discussion on the issue see Shiba

et al., 2016). The anxiety phenotype induced by

antOFC and vlPFC lesions in marmosets altered the

entire repertoire of behaviors that contributed to the

high anxiety trait, including all aspects of behavior,

coping strategy and emotionality. The finding that the

lesion-induced heightened anxiety remained within

the “normal” range of such behavior displayed by

marmosets within the colony [Fig. 3(b)] highlights

the important role that both regions play in determin-

ing levels of trait anxiety. Moreover, the apparently

similar symptomatology associated with lesions to

two distinct regions of PFC illustrates the multivari-

ate nature of anxiety.

The question remains as to what is the distinct con-

tribution of these two prefrontal regions to the anxi-

ety phenotype, the answer of which will help to

stratify anxiety disorders and develop targeted treat-

ments. Besides the failure to regulate negative emo-

tions, patients with anxiety and depression often

make poor decisions. Because they are particularly

sensitive to negative information, they tend to per-

ceive threat with increased intensity and are more

risk averse (Murphy et al., 2003; Dickson, 2006;

Smoski et al., 2008; Mueller et al., 2010) and thus

display negative biases when making decisions

(Bradley et al., 1998; Murphy et al., 1999; Mogg

et al., 2000; Williams et al., 2007; Peckham et al.,

2010). Indeed, reductions in serotonin within the

OFC of marmosets have been implicated in such neg-

ative biases (Rygula et al., 2015) as identified in a

probabilistic discrimination task similar to that used

to reveal altered activity in prefronto-amygdala cir-

cuitry related to negative biases in depressed patients

(Taylor Tavares et al., 2008).

To compare the impact of antOFC and vlPFC inac-

tivation in marmosets on decision making we devel-

oped an approach-avoidance instrumental decision-

making task. In this task, animals optimize their

reward by responding equally to two, equivalently

rewarded left and right locations on a touch-sensitive

computer screen. In occasional probe sessions, super-

imposed over the reward schedule, an aversive loud

noise, a form of punishment, is associated with

responding at one of the two locations. This results in

a conflict at that location between responding to gain

reward, and avoiding responding due to the punish-

ment. However, animals normally maintain respond-

ing to both stimuli, choosing to optimize reward,

despite the occasional punishment. However, tran-

sient pharmacological inactivation of the antOFC and

vlPFC alters performance in distinct ways. Inactiva-

tion of the vlPFC has no impact on overall levels of

responding but causes the animal to avoid making the

punished response, resulting in many more responses

being made to the side on which responding only

receives reward. Hence, the cost-benefit balance of

responding for reward in the face of punishment is

switched from a positive approach response to a neg-

ative avoidance response. In contrast, inactivation of

antOFC has no effect on the day of receiving punish-

ment, but it acts to bias responding away from the

punished side the following day, presumably as a

consequence of its effects on memory consolidation

(Clarke et al., 2015).

The vlPFC has been implicated in attentional proc-

essing and specifically the shifting of higher-order

attentional sets as described in the cognitive section

above. Thus, a parsimonious account of the on-line

negative bias induced by inactivation of the vlPFC is

that the marmoset is unable to shift attention away

from the intrinsically salient aversive loud noise and

toward the rewarding aspects of the context in order

to perform a cost-benefit analysis. Consequently, this

prolonged attention to the aversive stimulus leads to

the negative bias. This hypothesis is also consistent

with the contribution of the vlPFC to cognitive re-

appraisal, whereby individuals explicitly shift their

attention from a salient negative interpretation of a

context to a more positive interpretation (Buhle et al.,

2014), and down-regulation of emotion during con-

flict and acceptance of unfair outcomes (Tabibnia

et al., 2008; Feng et al., 2015). Consequently, it is

proposed that a compromised vlPFC induces anxiety

because subjects fail to switch their attention away

from negative events.

On the other hand, the antOFC inactivation-

induced negative bias is not linked to the online

appraisal and processing of the negative stimulus but

rather to its memory. The OFC has been linked to the

development of stimulus-reward associations and the

ability to predict outcomes, particularly within proba-

bilistic contexts (Schoenbaum and Roesch, 2005;
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Schoenbaum et al., 2007; Balleine et al., 2011; Wal-

ton et al., 2011; Rudebeck and Murray, 2014). There-

fore, it can be argued that a compromised OFC

makes the punishment no longer predictable. This

learned state of uncertainty leads to establishment of

a stronger punishment memory that underlies the

negative bias and avoidance behavior upon its

retrieval the next day. This is consistent with the role

of uncertain environments in the development of anx-

ious responses (Grupe and Nitschke, 2013). The neg-

ative bias is abolished by inactivation of either the

amygdala or the hippocampus on the day of retrieval,

or disconnection of the two, implicating an OFC-

amygdala-hippocampal network that drives the

expression of such negative biases. This account of

the symptoms of anxiety and depression induced by

compromised OFC function differs from that pro-

posed above for vlPFC dysfunction. Instead of an

inability to down-regulate responses on-line, a dys-

functional OFC may leave the system unregulated

and result in the learning of maladaptive negative

associations due to a failure to predict aversive out-

comes, supporting the negative cognitions prevalent

in anxiety and depression.

In summary, the marmoset model has allowed the

investigation of regulation and dysregulation within

the negative valence system (Fig. 1) at both the indi-

vidual- (trait anxiety and genetic variation in the

serotonin transporter gene) and circuit-based levels

(prefronto-amygdala-hippocampal manipulations).

The finding of an interaction between the serotonin

transporter gene and the effects of acute SSRI treat-

ment on anxious behavior has implications for the

individual targeting of treatments. On the other hand,

the proposed roles of vlPFC and antOFC, respective-

ly, in attentional processing and in the prediction of

negative outcomes, provide an important framework

for the stratification of anxiety disorders. Future stud-

ies will focus on the contributions of other regions of

PFC that have been implicated in the regulation of

negative emotion, including primate dorsolateral PFC

(Buhle et al., 2014) and peri- and sub-genual anterior

cingulate cortex (Drevets et al., 2008; Etkin et al.,

2011). While numerous studies have implicated the

prelimbic and infralimbic regions of ACC in rodents,

respectively, in the expression and extinction of

freezing to a conditioned fear stimulus, their putative

homology to primate peri-and subgenual ACC

remains unclear (for a critical review see Myers-

Schulz and Koenigs, 2012). This further emphasizes

the importance of the marmoset primate model in

parsing out the distinct cognitive functions of, and

interactions between, these prefrontal brain regions

and their downstream targets, in the control of

negative emotion. It will also provide the basis by

which we can determine the neurobiological and psy-

chological mechanisms underlying the action of cur-

rent pharmacotherapies that target the serotonin (e.g.,

SSRIs), noradrenaline (selective noradrenergic reup-

take inhibitors) and glutamatergic (e.g., ketamine)

systems in the treatment of dysregulated emotions.

Only then can these treatments be targeted appropri-

ately to the individual.

IMPAIRED POSITIVE VALENCE:
MODELING ANHEDONIA

Positive valence systems, as defined by the RDoC

framework, are responsible for responding to positive

situations and contexts, including reward seeking,

consummatory behaviors and reward/habit learning.

Dysfunction within these systems occurs in a number

of major psychiatric disorders. One specific example

of a clinical symptom involving disturbed positive

valence is anhedonia (Fig. 1). Anhedonia is defined

according to the DSM (I–V) as “decreased interest or

pleasure in most activities, most of each day” and is

prevalent in about 37% of depressed patients (Kessler

et al., 2009). Indeed, for a patient to be diagnosed

with depression they must suffer from one or other

form of anhedonia or depressed mood (DSM V).

Besides depression, anhedonia constitutes one of the

primary negative symptoms of schizophrenia, being

present in half of the patients (Pelizza and Ferrari,

2009), is present in eating disorders (Davis and

Woodside, 2002) and is associated with withdrawal

in drug abuse (Markou and Koob, 1991). It has also

been reported in a number of neurodegenerative dis-

orders, including Parkinson’s Disease (Isella et al.,

2003) and Alzheimer’s disease (Starkstein et al.,

2005).

Clinically, it has been identified by self-report

measures of hedonic experiences using a variety of

questionnaires, such as the Snaith Hamilton (Snaith

et al., 1995) and Fawcett–Clark Pleasure scales (Faw-

cett et al., 1983). The majority of the questions on

these scales focus on the consummatory aspects of

positive experiences such as “one food tastes as good

as another to me.” As a consequence, pre-clinical

models of depression have tended to use the sucrose

consumption test as the primary measure of anhedo-

nia (Slattery et al., 2007) when investigating novel

pharmacotherapies. However, preclinical neurobio-

logical studies of positive valence systems have rec-

ognized motivational, reinforcing, decision making

and consummatory components [see Treadway and

Zald (2011) for a comprehensive review], all of
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which can be parsed at the level of neural circuits and

neurochemistry. Thus, anhedonia could arise from a

lack of the ability not only to experience pleasure

(consummatory anhedonia) but also to anticipate

pleasure (anticipatory anhedonia). Indeed, a failure to

anticipate pleasure has a major impact on an individ-

ual’s motivation to seek out pleasure (motivational

anhedonia). Treadway and Zald (2011) further pro-

posed the concept of decisional anhedonia to include

the effects of anhedonia on decision making in the

context of reward.

Recently, distinctions between these different

types of anhedonia have begun to emerge in clinical

research. For example, patients with depression show

anticipatory (McFarland and Klein, 2009) as opposed

to consummatory anhedonia (Dichter et al., 2010).

On the other hand, schizophrenia patients show intact

anticipation of reward but deficits in motivational/

effortful responding for reward, a form of apathy

(Gard et al., 2009, 2014). Another distinction to have

arisen is that between self-report measures of pleasur-

able experiences retrospectively and experiencing

pleasure per se. In particular, patients with schizo-

phrenia and depression do not show reductions in

their hedonic response to different sucrose solutions

compared with controls, despite scoring high on the

Chapman and Fawcett anhedonia questionnaires

(Amsterdam et al., 1987; Berlin et al., 1998).

Moreover, self-reported affective flattening and anhe-

donia in schizophrenia, as measured by question-

naires, is actually associated with an almost normal

experience of emotion as measured by hedonic rat-

ings during the experience of pleasant stimuli, includ-

ing pictures, films, words, or faces (Burbridge and

Barch, 2007; Heerey and Gold, 2007; Tr�emeau et al.,

2010). This inconsistency between retrospective self-

reports of anhedonia and the actual on-line experi-

ence may well be a consequence of the reliance of

clinical questionnaires on the ability of patients to

“represent” hedonic experience, as opposed to the

hedonic experience per se. This ability to “represent”

consummatory pleasure is also a major component of

anticipatory and motivational hedonic processes and

thus illustrates the difficulty in interpreting self-

report questionnaires in the clinical population.

Considerable insight into the distinct consummato-

ry, anticipatory and motivational components of

reward processing has been gained from neurobiolog-

ical and neurochemical studies at the level of the stri-

atum and amygdala of both rodents (Cardinal et al.,

2002; Wassum and Izquierdo, 2015) and monkeys

(Schultz et al., 2000; Schultz, 2004; Murray, 2007;

Bermudez and Schultz, 2010). The anhedonia associ-

ated with depression, however, is linked to altered

activity within the ventromedial PFC (Keedwell

et al., 2005). This is a complex region in humans

Figure 4 Parsing consummatory and anticipatory aspects of positive valence in the marmoset. (a)

Schematic of discriminative appetitive conditioning apparatus. CS1 resulted in opening of the door

revealing food box with reward (e.g., right), whereas CS2 resulted in presentation of empty food

box (e.g., left). The anticipatory period entails viewing the full food box and is followed by the con-

summatory period, when marmosets are allowed access to the reward. (b) Conditioned behavioral

response during the anticipatory phase is measured by the number of orienting head movements

(head jerks) toward the food box. Consummatory behavior is measured by the latency to eat the

reward (“L”, seconds) and the amount of reward eaten (grams). A conditioned systolic blood pres-

sure rise is observed for the CS1 (Light red for anticipatory period, dark red for consummatory

period) but not for the CS2 (gray). (c) Systolic blood pressure response during the CS1 after exci-

totoxic lesions of the amygdala (lined bars) presented for the anticipatory (Light red) and the con-

summatory (Dark red) periods compared with controls (empty bars) (Braesicke et al., 2005). Error

bars represent SEM, stars (*) represent p< 0.05.
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composed of a number of discrete cytoarchitectonic

areas, including Brodmann’s areas 10, 14, 25, and 32,

and their contribution to the regulation of reward

processing and their interaction with striatal and

amygdala reward systems is unknown. This again

highlights the need for studies in a primate in which

the organization of ventromedial PFC appears far

similar to humans than that of rodents (Myers-Schulz

and Koenigs, 2012).

We have developed a paradigm in the marmoset

that distinguishes between the consummatory and

anticipatory aspects of pleasure and uses independent

measures of the behavioral and autonomic arousal

(cardiovascular) components. The latter is seldom

measured in studies of reward processing in animals

(but see Rudebeck et al., 2014) but can be an impor-

tant component of positive emotional responses, as it

is for negative emotions, and is often the metric used

in humans, alongside self-report questionnaires.

Using a Pavlovian procedure [Fig. 4(a)], one version

of the paradigm used the “sight of the food” viewed

through a transparent door of a food box as the condi-

tioned stimulus. This constitutes the anticipatory

period and was followed by the consummatory period

when the door opened, resulting in access to the

reward. With training, a conditioned rise in systolic

blood pressure accompanied by approach behavior

toward the food box developed during the anticipato-

ry period, as the animals learned that the presentation

of the food box was predictive of subsequent reward

[Fig. 4(b)]. In contrast, the rise in blood pressure that

accompanied the consummatory period was present

from the beginning. The consummatory arousal was,

nevertheless, motivational in nature since it was only

seen in the context of the marmosets gaining access

to their preferred, high incentive reward and not the

food pellets that they received daily (Braesicke et al.,

2005). Consistent with the role of the amygdala in

appetitive conditioning, excitotoxic lesions of the

amygdala in the marmoset reduced anticipatory

behavioral responses directed toward the conditioned

stimulus, as shown previously in rodents (Holland,

1999) and also reduced the conditioned cardiovascu-

lar arousal. In contrast there was no effect on the

food box approach response or the cardiovascular

arousal during the consummatory period. Thus, dam-

age to the amygdala induced anticipatory but not con-

summatory anhedonia [Fig. 4(c)].

A revised version of the Pavlovian paradigm has

since been developed to identify the brain mecha-

nisms underlying the ability of marmosets to adapt

their anticipatory hedonic responses to changes in

environmental contingencies. Animals were condi-

tioned to discriminate between two auditory stimuli,

either predicting reward (CS1) or an empty food box

(CS2). Changes in behavioral and cardiovascular

arousal during the CSs were assessed both after a sin-

gle extinction session, in which the decline in condi-

tioned cardiovascular arousal was measured

following omission of the expected reward and after

reversal of the reinforcing contingencies, in which

the previous CS2 became the CS1, and vice versa.

So far this revised version has been used to study the

contribution of the antOFC to the regulation of appe-

titive Pavlovian conditioning. Marmosets with exci-

totoxic lesions of the antOFC failed to show the

normal decline in the conditioned systolic blood pres-

sure response after reward omission, instead showing

a prolonged arousal response. Moreover, upon rever-

sal, antOFC lesioned animals were much slower to

reverse their blood pressure response. Significantly,

even when the cardiovascular response was success-

fully reversed, conditioned behavior was not (Reekie

et al., 2008). This was in marked contrast to controls

in which there was strong coupling between the rate

of reversal learning of the conditioned behavioral and

cardiovascular responses. Thus, antOFC lesions

caused uncoupling of cardiovascular and behavioral

responses. This is particularly relevant for the

motivational-anticipatory distinction in anhedonia, as

a patient may display cardiovascular anticipatory

arousal, but due to uncoupling this may fail to result

in motivated behavior.

Future studies in marmosets are ideally placed to

focus on the contribution of the distinct regions of the

ventromedial PFC in the regulation of striatal and

amygdala reward processing, including their modula-

tion of the monoamine systems. Downregulation of

striatal activity (Heller et al., 2009; Robinson et al.,

2012) and of striatal dopamine receptors in particular

(Cannon et al., 2009), has been reported in depressed

subjects, along with reductions in amygdala respon-

sivity to happy faces (Beesdo et al., 2009), the latter

being correlated with symptoms of anhedonia (Stuhr-

mann et al., 2013). An understanding of the relation-

ship between these cortical and subcortical changes

and their causal role in the anhedonic symptoms will

inform treatment strategies since the symptom of

anhedonia appears particularly resistant to current

pharmacotherapies. It is largely unresponsive to SSRI

based treatments of depression (Shelton and Tom-

arken, 2001; Dunlop and Nemeroff, 2007) and simi-

larly fails to improve when SSRI administration is

used as an add-on therapy in schizophrenia (Sepehry

et al., 2007). Whilst drugs that target the dopamine

system are successful in alleviating many symptoms

of depression and schizophrenia, reports of the direct

effects of such drugs on anhedonic symptoms are
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mixed (Nutt et al., 2007). This may not be surprising

since evidence from psychopharmacological experi-

ments in animals implicates dopamine primarily in

motivational and reward prediction processes rather

than pleasure per se (Robbins and Everitt, 1992; Sala-

mone, 1997; Berridge and Robinson, 1998; Denk

et al., 2005; Schultz et al., 2015). Thus, depending

upon what type of anhedonia a patient is displaying,

for example, consummatory, anticipatory, or motiva-

tional, the neurochemical target for alleviating anhe-

donia may differ.

UTILITY OF THE MARMOSET IN FUTURE
INVESTIGATIONS OF NEURAL AND
COGNITIVE DEVELOPMENT RELEVANT
TO MENTAL HEALTH

Seventy five per cent of patients with a mental disor-

der will have shown neuropsychiatric symptoms by

age 25 (Kessler et al., 2005), making the first years of

life extremely important for understanding the devel-

opment of neuropsychiatric disorders and their

behavioral dimensions. The marmoset has distinct

but, relatively, short duration developmental stages,

compared with old world monkeys, lasting just a few

months each, until they reach adulthood and sexual

maturity at approximately 18-20 months (Abbott

et al., 2003; see Schultz-Darken et al., 2016 for a

comprehensive review). These developmental stages

have been well characterized in terms of typical

behaviors observed, including social interactions

(Chalmers and Locke-Haydon, 1984), vocalizations

(Pistorio et al., 2006; Braun et al., 2015), and sensori-

motor abilities (Piper et al., 1992; Kaplan and Rog-

ers, 2006; Izumi et al., 2012). Moreover, the impact

of early life experiences, such as maternal depriva-

tion and infant isolation, on some of these behavioral

outcomes, as well as on levels of cortisol, adrenaline

and noradrenaline are already known (Dettling et al.,

2002; Pryce et al., 2004; Dettling et al., 2007). This

research provides the community with a useful tool-

box to study gene-environment interactions and the

effects of early life experiences on cognitive and

affective development and pinpoints the different

milestones of physical ability according to age. As

Schultz-Darken et al. (2016) highlight, marmosets

pose the great advantage of primarily breeding twins,

which allows the direct comparison of subjects with

the same genetic background after being placed in

different experimental conditions. What remains to

be studied is how cognitive functions are acquired in

the marmoset in relation to brain development in

order to inform our understanding of the emergence

of neuropsychiatric disorders.

In humans, the development of cognitive func-

tions, including reversal learning and attentional set-

shifting occur at different ages (Luciana, 2003;

Davidson et al., 2006) and are affected by early life

experiences and the home environment (Sarsour

et al., 2011). Unraveling the genetic and environmen-

tal contribution to this development is difficult in

humans because of the complexity of, and the lack of

experimental control over, their environment. In the

marmoset, the relationship between the development

of these cognitive processes and their underlying neu-

ral circuit can be determined in a highly controlled

environment. Taking advantage of their quick pro-

gression from infancy to adulthood, the common

problem of high attrition rates in human studies of

development (Barnett, 1995) and the impossibility of

following subjects over a period of twenty years can

be overcome. Young marmosets can be assessed with

CANTAB tasks using a home-cage apparatus that

allows testing in a relaxed environment (Crofts et al.,

1999; Takemoto et al., 2011) while neuroimaging

will be used to determine brain alterations across the

different developmental stages. These aspects of

development can also be studied as predictors of anx-

ious phenotypes in adulthood in conjunction with

genetic variations, which would provide a rich data-

set for studying the development of neuropsychiatric

disorders.

CONCLUSIONS

In conclusion, the marmoset is proving a valuable

species in which to study many of the symptoms of

neuropsychiatric disorders associated with dysfunc-

tion within cognitive, negative and positive valence

systems (Fig. 1). In the marmoset, a range of tests

have been developed which are designed to dissect

out the behavioral dimensions that underlie these

symptoms. Some of these dimensions are already

being successfully mapped on to specific prefrontal

circuits and neurochemical pathways within the mar-

moset using a range of neurobiological techniques

including temporary or permanent brain manipula-

tions, microdialysis, microPET, and structural MRI.

The new generation of viral mediated tools for target-

ing chemically specific neural pathways, including

opto- and pharmacogenetics, in combination with flu-

orodeoxyglucose and receptor ligand based micro-

PET and high field MRI for measuring functional and

resting state activity will reveal interactions between

and within cognitive and emotional circuits. While
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marmosets may not replace Old World macaques for

studying certain aspects of higher-order executive

functioning, their compact, but highly developed pri-

mate brains, small body size and thus ease of keeping

large groups of marmosets in spacious accommoda-

tion make them the ideal primate for large scale

research programs investigating cortical–subcortical

circuit interactions. Moreover, their relatively short 5

month gestation and 2 year period of development

provides a major opportunity to determine the effects

of genetic and behavioral risk factors for neuropsy-

chiatric disorders on the development of these neuro-

cognitive circuits and neurochemical modulatory

pathways across childhood and adolescence, in order

to understand their impact on complex cognitive and

emotional behaviors.
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