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Abstract 

One challenge when evaluating daylight distribution is dealing with the large amount of 

temporal and spatial data, visualisations and variability in illuminances that are assessed in 

buildings. Using a dimensionality reduction method based on principal component analysis, 

we identified the most representative annual daylight distributions. We modelled a 

rectangular room containing an analysis grid of 3200 illuminance sensor points and 

simulated 3285 different temporal daylight conditions using an annual occupancy schedule 

ranging from 08:00 to 17:00 with one-hour sampling intervals in two locations: Singapore 

and Oakland, California. Our approach explained 98 % of the illuminance variability with 

three daylight distributions in Singapore, and 92 % using six in Oakland, California. Our 

dimensionality reduction strategy was also generalised using a complex building geometry 

showing the utility of the method. We think this approach can be used to provide a more 

efficient and reliable method to analyse daylight performance in building practice. 

Keywords: Daylight distribution; Illuminance; Principal components analysis; Simulation; 

Statistical analysis. 
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1. Introduction 

Illumination that is received on the horizontal work surface is designed so that it meets a 

certain minimum criterion, is uniformly distributed, and does not cause visual discomfort. 

These criteria are not always met, since daylight from side-lit openings can cause significant 

changes in the light levels received on the indoor surfaces (Constantatos, 1982). Daylight 

distribution is dependent on a number of variables, for example, how light interacts with the 

geometry of the building, building façade geometry and optical properties, and changes in the 

outdoor conditions (Lee et al., 1999; Mardaljevic et al., 2009). This creates a luminous 

environment that continuously undergoes dynamic changes. 

Annual daylight metrics – commonly referred to as Climate-Based Daylight Metrics 

(CBDM) – have been developed to evaluate the performance of natural light inside buildings. 

These can be used to calculate a percentage time of the year in which daylight meets 

predefined targets based on meteorological weather data (e.g. Daylight Autonomy, Useful 

Daylight Illuminance, etc. (Nabil and Mardaljevic, 2006, 2005; Reinhart et al., 2006)). Since 

these summarise the performance of daylight into a single value, information regarding the 

distribution of daylight can be lost in these processes. Although it has been suggested that 

light distribution is an important design consideration (Boyce, 2014), there are limited 

daylight metrics that have been designed to evaluate a range of luminous effects that occur 

across the annual occupied hours of a building (Rockcastle and Andersen, 2014). 

While the introduction of daylight in buildings can be used to indirectly offset electric 

lighting usage through the use of sensors and control systems (i.e., dimmers and illuminance 

sensors) (Kamaruzzaman et al., 2015; Xue et al., 2016), this is not only dependent on 

whether the daylight can meet – and does not exceed – the design illuminance value but also 

on its spatial distribution throughout the entire occupied space. In fact, Yun et al. (Yun et al., 

2012) suggests that energy use from artificial light can be reduced by 30 % when lighting 

controls are carefully designed in relation to indoor daylight distribution levels. Although 

studies will often aim to improve daylight distribution inside the occupied space (Doulos et 

al., 2008; Freewan, 2010), these rely on the calculation of a uniformity criterion. 

There are several methods of calculating the uniformity of daylight distribution on the 

horizontal work surface. The aim of uniformity criteria is to ensure illumination is distributed 

evenly across the space (Littlefair et al., 1994). Although furniture is usually not considered 

in the analysis and uniformity calculations only take the daylight received at the horizontal 

surface at a predefined height from the floor (Ryckaert et al., 2010), the IES-LM-83-12 

(Daylight Metrics Committee, 2012) method recommends that furniture that is at least 0.91 m 

in height should be included. 

The scientific literature contains many methods of describing daylight distribution and 

there are many widely accepted approaches used to measure uniformity (Lynes, 1979). One 

such method of measuring daylight distribution that is recommended by the Society of Light 

and Lighting is to calculate the uniformity criterion by dividing the minimum and maximum 

illuminances found on the horizontal work surface (SLL, 2012). It has also been suggested 
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that uniformity can also be calculated from the minimum to average illuminance ratio (Bean, 

1975; Constantatos, 1982). The code for interior lighting (CIBSE, 1994) suggests both 

approaches of calculating uniformity. When it is believed that uniformity may be difficult to 

achieve, then the minimum to average illuminance should be the preferred criterion. 

However, recommendations of what is considered to be appropriate levels of uniformity (i.e., 

0.5-0.7) are originally based on a study in an artificially lit room masked from the influence 

of daylight (Slater and Boyce, 1990). Uniformity based on the same ratios may also be 

calculated with the room’s equivalent Daylight Factors under an overcast sky (Lynes, 1979). 

However, caution over the results has been advised since under any other sky condition, 

daylight uniformity will significantly worsen compared to an overcast sky (Dewey and 

Littlefair, 1998). These criteria of calculating uniformity are generally defined as extreme 

value based. Yao et al. (Yao et al., 2017) suggests there are two alternative methods of 

estimating uniformity, namely, statistical and pattern based. 

Mathieu (Mathieu, 1989) proposed the statistical uniformity (SU) that is calculated 

according to (1). This makes use of the standard deviation (σ) and average mean illuminances 

( ! ) on the horizontal plane. The author showed that the SU does not vary when the size of 

the analysis grid changes but does when the minimum to average illuminance ratio was used. 

Another similar proposal by Armstrong (Armstrong, 1990) divides the mean illuminance by 

the standard deviation, which gives the criterion called the coefficient of variation (CV). 

Since these criteria do not rely on extreme illuminances values, they are not influenced by the 

minima and maxima illuminance values.  

!       

(1) 

The SU criterion can potentially take on a large range of values, which makes it difficult 

to interpret. A third statistical method of calculating uniformity given by Mahdavi (Mahdavi, 

1997) is the uniformity factor (UF), which ranges from values between zero and one (2): 

!       

(2) 

The third criteria group are pattern based. Mahdavi and Pal (Mahdavi and Pal, 1999) 

argued that a limitation of extreme value and statistical methods is that they cannot be used to 

estimate uniformity when the horizontal surface contains different spatial patterns (i.e., 

complex illuminance distributions on the horizontal surface). They proposed an entropy-

based index (EBI) that calculated the illuminance distributions from global and local areas of 

analysis grid. These can be used to calculate the topological illuminance distribution of a 

target grid area. However, it has been argued that the EDI cannot distinguish visual patterns 

the same way the human eye can (Wang et al., 2004). 

Regardless of the complexity of the uniformity criteria, we believe they provide a limited 

description of how daylight is distributed in buildings because they need to reduce it to single 

Ēx

SU =  
Ēx + σ

Ēx − σ

       − ∞ ≤ SU ≤ ∞ and SU ∈  ℝ

UF =  
Ēx

Ēx + σ

        0 ≤ UF ≤ 1 and UF ∈  ℝ
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numerical value. On the horizontal work surface, daylight causes a large variation in 

illuminance levels (Nicol et al., 2006) and understanding this behaviour, beyond uniformity, 

is crucially when describing the luminous behaviour of any building (Tregenza, 2017, 1986). 

This spread in the data is created by a high number of spatial and temporal dimensions that 

should be fully considered when the daylight distribution is evaluated. Spatial dimensions can 

be defined by the set number of analysis points used to capture illuminances on the horizontal 

surface, which can be calculated or specified according to recommended guidelines (BCA 

Green Mark, 2016; Daylight Metrics Committee, 2012; SLL, 2012). Temporal dimensions 

are those that vary across the occupied hours. While many studies evaluate daylight under a 

limited number of conditions (i.e., equinoxes or solstices (e.g., (Canziani et al., 2004; 

Freewan, 2010; Freewan et al., 2008; Sun et al., 2017; Ullah et al., 2017; Zhu et al., 2018)), 

there are an enormous number of temporal dimensions (i.e., month, days, hours, etc.). As 

time varies, there are constant in the sun position, cloud patterns, weather, etc. that can 

significantly influence the daylight conditions inside any given building (Tregenza, 1999). 

However, since there is a large number of dimensions that need to be considered, there 

are often difficulties interpreting the data or to simplify the problem only specific days and 

times are considered (solstices, equinox, etc.). Similar observations were reported when 

luminance distribution patterns were evaluated on the horizontal and vertical plane (Parpairi 

et al., 2002). Nevertheless, in many scientific domains, the collection of high dimensional 

datum is not uncommon and researchers will often use dimensional reduction to help 

interpret their data (Bouveyron et al., 2007). Dimension reduction allows the large number of 

dimensions to be reduced without losing information contained in the original data (i.e., the 

variability) (Bouveyron and Brunet-Saumard, 2014). 

We think that daylight uniformity should be evaluated by identifying the most 

representative illuminance distribution patterns on the horizontal plane across the occupied 

hours of the building. Representative daylight illuminance distribution patterns can be used to 

describe a large subset of different daylight illuminance distributions that form a statistical 

relationship with each other across a number of temporal dimensions. Since it is possible that 

two or more conditions can have the same degree of uniformity – as calculated by available 

criteria – but different daylight illuminance distributions due to temporal variation, an 

alternative method is needed to provide a better understanding of daylight performance. We 

aim to prove that a dimension reduction technique can be used to reduce the large number of 

spatial illuminance visualisations to a small number of representative patterns. 

2. Methodology 

Two different building models were used in this study. We created a rectangular 

‘shoebox’ model of dimensions 4 x 8 x 2.8 m, with a side-lit opening (Figure 1). This model 

was used as a scenario to demonstrate our approach. The opening appeared in the south 

façade of the model with dimensions of 3.74 x 1.39 m and creates a sill depth of 0.06 m. We 

used the optical properties and the simulation parameters recommendations suggested by the 
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IES LM-83-12 standard  (Daylight Metrics Committee, 2012). The internal surface 

reflectance (τ) properties of the model were, respectively, τfloor= 0.20, τwall=0.50, τsill bars= 

0.35 and τceiling= 0.80. We used a window with a visible transmittance of 65 %. 

To ensure that the proposed approach can work for a more elaborate design proposal, we 

repeated our approach when considering a complex building geometry (McCormick et al., 

2017). We used a model with multiple windows orientated in different directions (i.e., south 

and east), horizontal and vertical sill bars, and external overhangs and shading fins (Figure 1). 

The internal surface reflectance (τ) properties of the model were: τfloor= 0.20, τsill bars= 0.20, 

τwalls= 0.70, and τceiling= 0.70. The visible transmittance of the glazing was 65 %. We 

considered no exterior obstructions or interior furniture in both models. 
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Figure 1. Perspective view of the shoebox model as seen from Rhinoceros (a) and top view of 

the daylight analysis grid used to evaluate illuminance distribution patterns (b). Perspective 

view of the complex model as seen from Rhinoceros (c) and top view of the daylight analysis 

grid used to evaluate illuminance distribution patterns (d). 

Researchers often evaluate the performance of daylighting systems (i.e. light-shelves, 

light-pipes, etc.) under different climatic conditions (Kurtay and Esen, 2017; Sun et al., 2017; 

Tsang et al., 2018), while designers may be interested in how daylight varies according to the 

available building parameters (i.e., window orientation, glass type, shading strategy, window 

size, etc.). We repeated our analyses to evaluate the daylight illuminance distributions when: 

(1) Considering two climates, Singapore (1.35o N) and Oakland, California (38o N) and (2) 

when three different side-lit orientations were selected (south, east and west, respectively). 

Simulations were repeated using the same temporal conditions, each time collecting 3200 

illuminance data points. Only Singapore was considered in the second analysis.  

We performed annual climate-based simulations using the Department of Energy weather 

data files for Singapore and Oakland, California. We used the occupancy schedule to simulate 

annual daylight performance metrics in Singapore (BCA Green Mark, 2016), which performs 

daylight calculations at one hour intervals from 08:00 to 17:00 every day of the week and 

excludes daylight savings. Although countries have different occupancy schedules for the 

same building typology, we used a single schedule to provide a direct comparison across the 

two climates. 

To simulate illuminances on a horizontal surface, we used the software DIVA (version 

4.1.0.8) for Grasshopper (version 0.9.0076) to perform annual climate daylight analyses on 

our computer model and then to extract the hourly illuminance data based on the occupancy 

schedule. This gave us 3285 different temporal conditions. While DIVA is a plug-in for the 

modelling software Rhinoceros (Jakubiec and  

, 2011), Radiance is the simulation engine that uses of method of backwards raytracing to 

calculate the light levels (Ward and Shakespeare, 1998). We used the following Radiance 

simulation parameters: Ambient bounces= 7, ambient divisions= 4096, ambient resolution= 

512, ambient super-samples= 1 024, ambient accuracy= 0.1, and limit weight= 0.001. No 

artificial lighting was considered. 

For both models considered (Figure 1), we used an illuminance grid spacing between 

each node of 0.1 m, giving a higher resolution of daylight distribution than recommended 

standards (BCA Green Mark, 2016; Daylight Metrics Committee, 2012). The simulation grid 

was the area of the model floor and was elevated to a distance of 0.75 m to act as the working 

desk surface. When testing other grid size spaces (e.g., 0.3 m and 0.6 m) this produced 

similar findings when applying our analysis. 

2.1. Principal components analysis 

Principal Components Analysis (PCA) was used to reduce a large number of correlated 

variables (i.e., dimensions) into smaller linearly related components, which are strongly 
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correlated with each other (Field, 2013). The components would give a compact description 

of the original data (Liang et al., 2002), thereby allowing complex high dimensional data to 

be more easily interpreted (Lever et al., 2017). In our study, the principal components are 

groups of daylight illuminance distributions from different temporal conditions which are 

linear related to each other. Each principal component is independent from others and are 

derived from important simulation parameters (i.e., the building model dimensions and 

properties, time conditions, and climate data). 

PCA has many applications in different fields of engineering research including lighting 

(Nayar and Murase, 1994). Ramamoorthi (Ramamoorthi, 2002) use PCA to evaluate light 

variability on a set of images that were exposed to different conditions. He showed that light 

variability could be explained with five components and this explained up to 96 % of the 

variance from high-dimensional data with large variations in illumination. Lee et al. (Lee et 

al., 2005) showed that PCA could be used to analyse a large set of images under a wide of 

lighting conditions to be used for facial recognition. Zhao and Yang (Zhao and Yang, 1999) 

showed how a PCA could be used to account for changes in the light source type, its 

intensity, photometric properties, and reflections both diffusive and specular. 

We used PCA to determine how much illuminance variability can be explained when the 

total amount of variance in the data is reduced into a smaller number of linearly separable 

components. We created a Python script to export the annual illuminance values from 

Grasshopper to a comma-separated file using a data format which was ready to be analysed. 

The formatting organised the temporal conditions into 3285 columns (i.e., nine hourly time-

steps each day multiplied by the 365 days during the year), and each column contained rows 

of illuminance data from the individual grid sensors. To perform a PCA, we used the 

‘prcomp’ package for the software R (version 3.4.4) (Hothorn and Everitt, 2009). 

Common to most methods of PCA are processes of centring and scaling. Centring is 

performed by subtracting the arithmetic mean average of all illuminances for each scenario 

with each of its individual illuminances, which are then plotted linearly as a vector that is 

centred on a value of zero (Smith, 2002). Since scenarios with higher variances will naturally 

explain more variability in the data, PCA will also apply scaling. Since the spread in our data 

(i.e., the distribution of the illuminance points across the different temporal conditions) may 

not be equal, scaling attempts to normalise the original variables by plotting them onto a new 

scale of a constant length (Wentzell and Hou, 2012). 

To derive the most representative illuminance distribution for each principal component, 

we used the temporal condition containing the highest correlation coefficient. Since the 

correlation coefficients are standardised values (Jolliffe and Cadima, 2016), they directly 

compare the strength of the relationship across two or more temporal conditions. Hence, we 

used the illuminance distribution that had the highest degree of correlation with all other 

daylight patterns from the temporal conditions that loaded into the same principal component. 

By utilising this method to derive the representative daylight distributions, this allows 

designers to relate the results of the PCA back to the original illuminance data. 
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3. Results 

3.1. Correlation approach 

At the basis of our approach, we assume that at each individual illuminance grid point is 

statistically related with the same grid point at a different time. When generalising this to all 

grid points across two conditions, the illuminances would be correlated. To show this, we 

plotted three conditions against each other using the shoebox model. We used 09.00 on the 

21st January as the reference condition, and 09.00 on 21st February and June as comparative 

cases. Simulations were ran at each of these conditions and the 3200 illuminance points were 

plotted against each other in Figure 2.  

To show this, we plotted three conditions against each other. We used 09.00 on the 21st 

January as the reference condition, and 09.00 on 21st February and June as comparative cases. 

Simulations were ran at each of these conditions and the 3200 illuminance points were 

plotted against each other in Figure 2. The sky conditions described in the EnergyPlus 

weather file for Singapore and the temporal conditions were, respectively, predominantly 

clear on January 21st at 09:00 and partially covered by clouds or other obscuring phenomena 

in the sky (e.g. fog, mist or smoke) on February and June 21st at 09:00. 

  

Figure 2. Graphs to show the comparison between the 3200 illuminance sensors across two 

conditions in Singapore: (blue) 09.00 21st January vs. 09.00 21st June and (red) 09.00 21st 

January vs. 09.00 21st February. 

The figure plots generally show linear relationships. We also produced several matrix 

scatters plots – selecting several random scenarios – to determine whether the assumption of 
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linearity had been met in other cases. We used the Pearson’s correlation coefficient, r to 

measure the strength of association between the variables plotted in the figures.  

High correlation coefficients were found for comparisons between January and June and 

January and February (r= 0.94 and r= 0.96, respectively). This shows that in both cases, the 

illuminances on the same grid points measured are linearly correlated with each other at 

different time intervals. The correlation coefficients – when expressed as the proportion of 

variance explained (r2) – can be used to show that 88 % (0.942 x 100) and 92 % (0.962 x 100) 

of the variability in illuminance is determined by the linear relationship between the two 

variables. Although the illuminances across the two conditions are strongly correlated to each 

other, the slope of the linear regression lines are different. This suggests that there are 

different illuminance distribution patterns on the horizontal surface. 

3.2.  Global horizontal illuminances 

To help interpret the PCA, we plot the global horizontal illuminance data found in the 

EnergyPlus weather files for Singapore and Oakland, California. Figure 3 shows the mean 

average global horizontal illuminance values (i.e., total direct and diffused daylight received 

on a horizontal surface) for each month. As expected, the cumulative illuminance values for 

Singapore remain relatively constant across the year due to its close proximity to the equator. 

For Oakland, California, the illuminance values vary considerably more, whereby the lowest 

mean illuminances occur around December and peak in June. This indicates that daylight 

levels vary more across the year in Oakland, California compared to the variability in 

illuminances in Singapore.  

  

Figure 3. Cumulative plots showing the global horizontal illuminance (total direct and 

diffused) received on a horizontal surface in Oakland, California and Singapore. Note: the 

illuminances are expressed in Mega-lux. 
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3.3.  Representative spatial daylight distributions: Shoebox model 

Table 1 presents, the proportion of variance and cumulative variance each component 

can explain according to the first six components extracted from our PCA for both Singapore 

and Oakland California. Since Singapore is located near the equator, there is less annual 

variability in daylight levels compared to Oakland California. We anticipated that few 

components would have been needed to explain the annual variability in illuminance 

distribution on the horizontal surface. In fact, the cumulative variance for principal 

component 1 in Singapore could explain the same amount of variability as the cumulative 

variance from the first five principal components for Oakland, California. When considering 

the cumulative variance explained for two principal components in Singapore, more principal 

components – than those displayed in Table 1 – would be needed to arrive at the same 

amount of variance that can be explained for Oakland, California. 

Table 1. Proportion and cumulative variance that can be explained for each component for 

Singapore and Oakland, California. 

Component

Singapore Oakland, California

Proportion of 
variance 

explained (%)

Cumulative 
variance explained 

(%)

Proportion of 
variance explained 

(%)

Cumulative 
variance explained 

(%)

1 93 93 61 61

2 3 96 17 78

3 3 99 8 86

4 0 99 5 90

5 0 99 3 93

6 0 99 1 94
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Figure 4. The representative illuminance distributions derived from the PCA in Singapore. 

Principal component 1: January 26th at 09:00 (left), component 2: December 5th at 17:00 

(centre), and component 3: February 16th at 13:00 (right).  

The distributions shown in Figure 4 display the three principal components that are 

highly correlated to a larger group of daylight patterns, which represent 99 % of the 

illuminance variability (Table 1). While there are a range of illuminance conditions 

throughout the year, our approach identifies some of the most typical temporal and spatial 

daylighting conditions for designers to review. To compare the representative daylight 

distributions that were derived from the PCA (Figure 4) with existing uniformity criteria, we 

calculated the minima, maxima, mean averages and standard deviations of the illuminances, 

different illuminance ratios, the SU, CV, and UF (Table 2). 

Table 2. Summary of uniformity criteria used to describe the representative illuminance 

distributions (as presented in Figure 4) for Singapore.  

Component One Two Three

Loading: Month/day and time 01/26 at 09:00 12/05 at 17:00 02/16 at 13:00

Minimum illuminance (lux) 160 256 232

Maximum illuminance (lux) 4392 9400 33300

Mean average illuminance (lux) 689 1898 2020

Standard deviation (lux) 690 2455 5405
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The three representative daylight distributions occurred at different times of the day: 

Morning (component 1), evening (component 2), and afternoon (component 3). We 

anticipated this finding as there is little seasonal variability in Singapore due to its close 

proximity to the  equator. Notably, the date and months of the three principal components do 

not coincide with the annual equinoxes or solstices. This is a clear indication that the 

common practice of using these days are not representative of a wider range of annual 

daylight distributions. The uniformity criteria for each of the three components show 

differences in the distribution of daylight on the horizontal surface. Specifically, that there are 

decreasing levels of uniformity from principal component 1 to 3. Although this suggests that 

uniformity criteria can distinguish different daylight distributions, we repeated the same 

evaluations for Oakland, California to test the same uniformity criteria in another climate that 

has more seasonal variability. 

To illustrate the representative illuminance distributions from each principal component 

in Oakland, we again used the temporal conditions with the highest correlation coefficients 

from each component (Figure 5). Unlike the illuminance distributions in Singapore, the 

daylight levels in Oakland are much more dependent on seasonal variability. These can be 

seen in the figure images as higher daylight levels reach deeper into the room from the side-

lit opening. Although this created more illuminance variability on the horizontal plane, PCA 

explained 94 % of the variance in our data from six principal components. 

Minimum to maximum ratio 0.04 0.03 0.01

Minimum to average ratio 0.23 0.13 0.11

SU -1379 -7.81 -2.19

CV 1.00 0.77 0.38

UF 0.50 0.44 0.27
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Figure 5. The representative illuminance distributions derived from the PCA in Oakland 

California. Principal component 1: July 5th at 14:00 (top-left), component 2: November 18th at 

15:00 (top-centre), component 3: September 6th at 10:00 (top-right), component 4: November 
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22nd at 10:00 (bottom-left), component 5: September 5th at 16:00 (bottom-centre), and 

component 6: June 24th at 16:00 (bottom-right). 

In Table 3 we report the uniformity levels describing the daylight distribution using 

existing criteria for the illuminances presented in Figure 5. Generally, the extrema-based 

criteria show similar values in uniformity across the six principal components meaning that 

they are not able to distinguish between different conditions. The uniformity criteria could 

not differentiate between the representative daylight distributions (i.e., the principal 

components in Table 3). The extreme value based criteria (i.e., minimum to maximum and 

minimum to average ratios) generally show similar values of uniformity for principal 

components 1, 2, 3 and 5. The statistical based criteria (i.e. SU, CV and UF) show relatively 

similar values for principal components 1, 3 and 5. Comparing these values for the principal 

components to the visualisations shown in Figure 5 reveals that the daylight distributions are 

in fact significantly different for each of the representative conditions. Therefore, our results 

show that existing uniformity criteria provide a poor evaluation of daylight distribution. 

Table 3. Summary of uniformity criteria used to describe the representative illuminance 

distributions (as presented in Figure 5) for Oakland, California.  

To determine how well the daylight distributions represented each principal component, 

we plot 150 temporal conditions for each climate on a scatter plot matrix using the Pearson’s 

correlation coefficient, r (Figure 6). This plots the first 50 temporal conditions that load into 

each of the first three principal components against each other for both Singapore (a) and 

Oakland, California (b). Figure 6 shows that within each principal component, the temporal 

conditions (including the representative case) generally have a very strong degree of 

association with each other (r≥0.90). When comparing the correlation coefficients across the 

principal components, a much lower degree of association can be found (i.e., they are 

independent from each other). Although we only include the first 50 temporal conditions for 

each principal component to demonstrate the relationships, it is important to highlight that 

Component One Two Three Four Five Six

Loading: Month/day 07/05 11/18 09/06 11/22 09/05 06/24

Loading: Time 14:00 15:00 10:00 10:00 16:00 16:00

Minimum illuminance (lux) 200 544 280 240 810 132

Maximum illuminance (lux) 29216 27228 28976 5664 22520 5424

Mean average illuminance (lux) 1767 5233 2370 1245 2178 500

Standard deviation (lux) 4985 7652 4968 1306 4283 696

Minimum to maximum ratio 0.01 0.02 0.01 0.04 0.01 0.02

Minimum to average ratio 0.11 0.10 0.12 0.19 0.08 0.26

SU -2.10 -5.33 -2.82 -42 -3.07 -6.08

CV 0.35 0.68 0.48 0.95 0.51 0.72

UF 0.26 0.41 0.32 0.49 0.34 0.42
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many more temporal conditions load into the principal components with high correlation 

coefficients. Nevertheless, this shows that the representative distributions identified can be 

generalized across the other temporal conditions found in the same principal component. 

Since Figure 6 can only be used to visualize the first 50 temporal conditions that load 

into the first three components for each climate, it is important to understand the relationship 

of the representative daylight distributions with all other scenarios that were considered. If 

some cases selected do not represent the principal component well, some important daylight 

distributions may not be evaluated. 

  

Figure 6. Scatterplot matrix showing the Pearson’s correlation coefficients, r for the first 50 

temporal conditions that load into the first three principal components for Singapore (a) and 

Oakland, California (b). 

Table 4 presents the correlation coefficients, r for the 3285 temporal conditions 

considered, which are organized according to their degree of association with each principal 

component. To interpret the outcome we used the recommendations given by Ferguson 

(Ferguson, 2009), whereby thresholds for “small”, “moderate” and “large” (r≥0.20, 0.50 and 

0.80, respectively) are given. 

Table 4. Cumulative number of temporal conditions that load into the first three principal 

components for the two climates: Singapore and Oakland, California. The loadings are 

organized according to their degree of association with the principal component based on the 

threshold of “small”, “moderate” and “large”, respectively. 

Correlation coefficients, 

r

Principal components: Singapore Principal components: Oakland

1 2 3 1 2 3

Strong (r≥0.70) 1000 886 234 598 508 301

Moderate (0.50≤r<0.70) 1629 1689 549 442 609 920
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When more temporal conditions have a “strong” associations, this shows that the 

representative daylight distribution selected will provide a better representation of the 

principal component. In other words, there is a higher degree of similarity between the 

distribution of the representative case with other temporal conditions that have strong 

correlation coefficients. This degree of similarity decreases when the correlation coefficients 

in the same principal component also decrease. Because Singapore generally contains more 

temporal conditions that have correlations of a “moderate” or “strong” magnitude, we are 

able to determine that the first three representative daylight distributions represent the 

principal components and the data better than those for Oakland, California. To minimise the 

risk of excluding important daylight distributions in the data, more principal components 

should be evaluated for Oakland, California. 

3.4.  Principal Component Analysis plots 

We plot the illuminance data using new scaled axes (Figure 7). The x-axis shows the 

scale belonging to principal component 1 and the y-axis corresponding to principal 

component 2. This type of plot allows two important aspects to be visualised when varying 

the location and window orientation for the first two principal components: (1) the direction 

in which the maximum variation in the data (i.e. the eigenvectors) can be explained when 

considering the 3658 daylight illuminances distributions; and (2) the amount of variance that 

can be explained (i.e. the eigenvalues). Regardless of the sign of the values (i.e. positive or 

negative), the x- and y-axes are the unit-less eigenvectors and show the magnitude of 

variance that can be explained in a certain direction by the principal components. 

 We used a 95 % confidence interval to draw two ellipses to mark the position of the data 

points belonging to either group (i.e. Singapore or Oakland, California) across the principal 

components. These utilise the data points to construct an ellipse based on the mean average of 

their distributed within a confidence level of 95 %. Because the ellipses demarcate the 

location of the groups, they show how much variability can be explained along each axis 

(Husson et al., 2005). While PCA will scale the illuminances of the temporal cases from each 

climate so that they are approximately equal, we found that the range in illuminances across 

the two conditions were still different. To help ensure the variances are more equally spread 

across the variable length for both climates, we used a common procedure to PCA, which is 

to logarithmically transformed the data (Baxter, 1995). In both figure plots, the illuminance 

values are centred about zero and have been scaled so that data for each group variable have 

variances that are of approximately equal length. 

Since Oakland, California naturally has more variation in daylight levels due to seasonal 

variability, there is a larger spread in the data points and as a result, more variance in the data 

can be explained by principal component 2 (i.e., the length of the ellipse is larger across the 

y-axis than for Singapore (Figure 7(a))). In fact, 17 % of the variability can be explained by 

Small (0.20≤r<0.50) 599 666 2501 989 1016 1216

Negligible (r<0.20) 57 44 1 1256 1152 848
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principal component 2 in Oakland, California (see Table 1) and only 3 % in Singapore. 

However, not all the data points for Oakland, California are captured by principal 

components 1 and 2. Hence, more principal components are needed to capture additional 

variability that remains within the data. 

While the general shape of the illuminance data points for each climate are relatively 

similar (Figure 7(a)), this was to be expected since we used the same physical geometry for 

our model. Another aspect to consider is how daylight distribution for the same climate will 

vary when changing a physical parameter (Figure 7(b)). Along the y-axis (principal 

component 2), the eigenvalues for the west window orientation are positive, but are negative 

for the east window orientation. For the southern window orientation, the values are a 

mixture of both positive and negative. To help interpret the eigenvectors in Figure 7 plot (b), 

we evaluated the correlation coefficients for the 3658 temporal conditions when considering 

the first two principal components and the three different window orientations (i.e., how well 

a daylight illuminance distribution for one temporal condition correlates with all others in the 

same principal component). The strongest relationships occur at different times during the 

occupancy schedule in Singapore. For the east orientated window these generally occur at 

midday (principal component 1) and early morning (principal component 2), for the west 

orientated window in the late afternoon (principal component 1) and early afternoon 

(principal component 2), and for the south orientated window in the early morning (principal 

component 1) and late afternoon (principal component 2). While the temporal condition with 

the strongest correlation coefficient was used as the representative daylight illuminance 

distribution for each principal component, similar temporal conditions found in the same 

principal component also share a strong statistical relationship with each other. 

Although the same data is used in Figure 7 plot (a) for Singapore and (b) for the southern 

window orientation, the eigenvalues are not the same. This is largely due to the fact that the 

PCA takes into account the direction in which the maximum variance can be explained when 

also considering the other group variables and how these relate to the data from the southern 

window orientation in Singapore. 
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Figure 7. Plot to show principal component 1 and principal component 2 when they are 

categorized by a grouping variable: (a) according to our two locations: Singapore and 
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Oakland, California and (b) according to three window orientations: South, east and west in 

Singapore. 

We believe the PCA plots allow others to gain more insights into the daylight 

performance of their building proposal. Because the plots directly compare two or more 

groups, they are also able to show how much variability there is in the annual daylight 

illuminance distributions for each for each condition (e.g. location or window orientation). 

We believe the plots can also be used to help improve annual daylight illuminance 

uniformity, which could be used to prevent daylight glare and ensure adequate levels of room 

lighting. For example, plot (a) shows that Singapore has less variability in the daylight 

illuminance distributions when using the same occupancy schedule. While this different 

occurs because of difference in the location, a designer may want to install a daylighting 

strategy to minimize the spread in the data points for Oakland, California. With less 

variability present in the data, fewer representative illuminance distributions would be needed 

to understand the annual performance of daylight inside the space. 

3.5.  Representative spatial daylight distributions: Complex model 

Of the 3285 variables considered, PCA could explain 98 % of the illuminance variability 

with six principal components in Singapore and 88 % in Oakland, California (Table 5). The 

results our similar to our initial analyses (Table 1), which also shows that more variability can 

be explained in Singapore with few principal components when the same model is evaluated. 

More principal components would be needed for Oakland, California. 

Table 5. Proportion and cumulative variance that can be explained for each component for 

our alternative model in Singapore and Oakland, California. 

When evaluating the representative daylight distributions for the first two principal 

components in Singapore (Table 5), these occurred on: 30th May at 15:00 (component 1) and 

2nd February at 10:00 (component 2). The two principal components can explain 93 % of the 

annual variability in illuminance on the horizontal surface for our alternative model used. For 

Oakland, California, the first two principal components occurred on: 9th December at 10:00 

Component

Singapore Oakland, California

Proportion of 
variance 

explained (%)

Cumulative 
variance explained 

(%)

Proportion of 
variance explained 

(%)

Cumulative 
variance explained 

(%)

1 83 83 67 67

2 10 93 8 76

3 2 95 5 81

4 1 96 3 84

5 1 97 2 86

6 1 98 2 88

Journal of Building Performance Simulation, January 2020, Volume 13     !                 https://doi.org/10.1080/19401493.2019.1711456 19
https://escholarship.org/uc/item/04x6v86j 



(component 1) and 19th April at 13:00, respectively. These were based on the temporal 

conditions that had the highest correlation coefficients for each principal component. 

From these further analyses using an the building shown in Figure 1, the findings show 

that our approach can still be applied when adding more complexity to the daylight 

simulation. Therefore, we believe that the PCA approach can be applied more widely for any 

given design proposal to obtain the representative daylight illuminance distributions. 

Although it is difficult to directly compare our approach to what would otherwise be 

used in common practice, we compared the illuminance distribution indicators from the 

solstices and spring equinox at three-hour intervals to those calculated from the first three 

principal components for the complex model in Oakland, California (Table 6). 

Depending on which criteria of daylight performance is selected, the interpretation given 

would vary considerably. However, the same criterion provides a relatively similar 

description of how the daylight performs across both approaches (i.e., common practice and 

PCA). For example, the minimum to maximum ratio generally shows that daylight 

illuminance is widely distributed across the horizontal surface of the room, while the 

minimum to average ratio shows that there is a higher degree of daylight uniformity in the 

same space. The statistical based criteria (i.e., SU, CV and UF) also show relatively similar 

values across both approaches. While it needs to be acknowledged that these criteria may not 

necessarily provide a good indicator of daylight distribution, our approach may give results 

that are comparable to common design practice. However, our approach also gives the 

designer additional information. From these three distributions, they would know that they 

are evaluating 81 % of the total annual variability caused by daylight.  

Table 6. Summary of uniformity criteria used to describe the illuminance distributions based 

on common practice (i.e., spring equinox and the solstices and at 09:00, 12:00 and 15:00) and 

for the first three principal components based on our approach for Oakland, California. 

Common practice

Loading: Month/day 03/21 (spring equinox) 06/21 (summer solstice) 12/21 (winter solstice)

Loading: Time 09:00 12:00 15:00 09:00 12:00 15:00 09:00 12:00 15:00

Minimum illuminance (lux) 253 192 120 189 157 113 415 275 114

Maximum illuminance (lux) 17933 26065 1306 24719 1894 1066 9934 16547 10330

Mean average illuminance (lux) 3370 1752 406 2628 603 388 2653 3406 483

Standard deviation (lux) 5750 5051 283 6469 438 250 2535 5798 973

Minimum to maximum ratio 0.01 0.01 0.09 0.01 0.08 0.11 0.04 0.02 0.01

Minimum to average ratio 0.08 0.11 0.30 0.07 0.26 0.29 0.16 0.08 0.24

SU -4 -2 -6 -2 6 5 44 -4 -3

CV 0.59 0.35 1.44 0.41 1.38 1.55 1.05 0.59 0.50

UF 0.37 0.26 0.59 0.29 0.58 0.61 0.51 0.37 0.33

PCA approach

Component One Two Three
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While we defined common practice by the nine daylight distributions derived from a 

clear sky condition (Table 6), the LEED ver.4 daylight credit option 2 specifies a more 

limited scope of temporal scenarios for designers to evaluate. The United States Green 

Building Council recommend that illuminance calculations are performed at 09:00 and 15:00 

that are within 15 days of the spring or autumn equinox, which represent the clearest sky 

condition (USGBC, 2019). Alternatively, our approach shows the designer the daylight 

distributions that should be evaluated, which considers a much wider range of temporal and 

sky conditions that are contained within the climate weather file. Lastly. Using only three 

principal components (i.e., daylight distributions), our approach arrived at the same 

conclusions a designer would have using nine. The proposed dimensionality reduction 

method is able to select the most representative visualizations, this may lead to better 

daylighting analysis and design.  

4. Discussion 

We present here a novel method to evaluate spatial daylight illuminance distributions on 

the horizontal work surface using PCA. Our findings show that daylight illuminance 

distributions from 3285 different hourly occupied intervals can be reduced into a smaller 

number of representative cases. We used two climates (i.e., Singapore and Oakland, 

California) and two building models of varying complexity to show how this works. Our 

approach was able to reduce 3285 temporal conditions into a much smaller number (usually 

less than six) of representative daylight visualizations, while explaining an high degree of 

annual illuminance variability (usually more than 90 %).  

One aspect of this work that may need further consideration would be the number of 

representative daylight distributions to retain for further evaluation. While the analysis shows 

how much illuminance variability can be explained on the horizontal surface, it does not 

provide much indication of how much is an acceptable level. Based on our work, we have 

provided some recommendations to help others interpret their own work when using PCA. 

Loading: Month/day 12/09 04/19 08/01

Loading: Time 10:00 13:00 11:00

Minimum illuminance (lux) 260 204 264

Maximum illuminance (lux) 5192 30248 20944

Mean average illuminance (lux) 1556 1105 1816

Standard deviation (lux) 1125 3012 3393

Minimum to maximum ratio 0.05 0.01 0.01

Minimum to average ratio 0.17 0.18 0.14

SU 6.22 -2.16 -3.30

CV 1.38 0.37 0.54

UF 0.58 0.27 0.35

Journal of Building Performance Simulation, January 2020, Volume 13     !                 https://doi.org/10.1080/19401493.2019.1711456 21
https://escholarship.org/uc/item/04x6v86j 



When using a simple model (i.e., Figure 1) and less seasonal variation (i.e., a Singaporean 

climate), we recommend that at least 95 % of the illuminance variability should be explained 

by the principal components. When considering a complex geometry (Figure 1) and more 

seasonal variation (i.e., a Californian climate), we recommend that at least 90 % of the 

illuminance variability should be explained by PCA. The basis of these thresholds are derived 

from Table 1 (Singapore) and Table 3 (Oakland, California). Nevertheless, some further 

interpretation may still be needed by the designer to ensure enough representative 

distributions are retained to explain the variability in daylight.   

Our results also show that while two principal components may have the same degree of 

uniformity – as calculated by recommended criteria, the daylight distribution inside the room 

can significantly vary. This was apparent when we tested uniformity criteria for different 

representative daylight distributions in Oakland, California (Figure 5, Table 3). However, 

because Singapore required a smaller number of principal components to explain the same 

amount of illuminance variability (Figure 4, Table 1), it is less likely that uniformity criteria 

would have given the same values from a smaller number of cases considered. This finding 

raises some important questions to whether uniformity criteria should be used to evaluate 

daylight illuminance distributions on the horizontal surface. Studies that have used 

uniformity criteria to obtain energy savings from daylight responsive sensors (i.e. (Doulos et 

al., 2008)), may find that their design strategy is not operating at an optimal level of 

performance. 

We believe our approach in daylighting practice has many applications, for example: (1) 

Following climate-based simulations used to evaluate annual metrics (i.e., daylight 

autonomy, useful daylight illuminance, etc.), designers may then run simulations targeting 

specific periods during the year. Typically, standardised point-in-time simulations (i.e., 

equinoxes and solstices at predetermined hourly intervals) would be applied across any given 

design proposal. Our approach gives the designer more representative time periods to 

evaluate, which are based on the climate, physical geometry, and other related parameters 

that may influence the distribution of daylight. (2) Time-dependent design strategies (i.e., 

light-pipes or light-shelves) are typically evaluated using uniformity criteria. Our findings 

show these can provide misleading results and designers need an alternative approach to 

counter such problems. By extracting the representative daylight distributions, designers can 

carefully evaluate the illuminance data and visualisations to make more informed decisions. 

(3) PCA plots allows daylight distribution from more than one proposal to be directly 

compared (Figure 7). This may also be useful when comparing multiple analysis grids. For 

example, several grids placed in the same room (i.e., different desk surfaces), the same 

building (i.e., several rooms with different orientations on different floors), or when 

introducing shading devices. 

We think that the proposed dimensionality reduction method using PCA should be added 

within DIVA and Grasshopper, whereby illuminance data can be easily produced and readily 

evaluated. This will automatically generate the representative daylight distributions for the 

users, which they can interpret alongside the PCA analysis. Following the completion of the 
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annual simulation, it is also important to highlight that our approach requires a relatively 

short period of time to derive the representative daylight distributions (i.e., minutes based on 

the models used in our article). 

5. Conclusions 

We used principal component analysis to find the most representative spatial daylight 

distribution patterns. Our new approached showed that we were able to reduce a larger 

number of illuminance distributions into a smaller of representative patterns. To assess this 

dimensionality reduction approach, we evaluated climate-based hourly illuminance intervals 

across a 08:00 to 17:00 occupied schedule to describe the performance of 3285 daylight 

illuminance distributions on the horizontal surface using climate data for Singapore and 

Oakland, California. We showed that this approach can be used to help designers and 

researchers to drastically reduce the number daylight illuminance distributions to be 

analysed. 

Our findings have also shown that existing uniformity criteria do not provide an 

informative description of how daylight is distributed on the horizontal surface. Although 

uniformity criteria can show how evenly daylight is distributed across the horizontal surface, 

they cannot distinguish that one illuminance distribution is significantly different from 

another. We think further research may be needed to evaluate how the use of these uniformity 

criteria influence the performance of daylight dimming sensors. 
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