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A direct and systematic algorithm is proposed to find one-dimensional optimal
system for the group invariant solutions, which is attributed to the classification
of its corresponding one-dimensional Lie algebra. Since the method is based on
different values of all the invariants, the process itself can both guarantee the
comprehensiveness and demonstrate the inequivalence of the optimal system, with no
further proof. To leave the algorithm clear, we illustrate each stage with a couple of
well-known examples: the Korteweg-de Vries equation and the heat equation. Finally,
we apply our method to the Novikov equation and use the found optimal system
to investigate the corresponding invariant solutions. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4921229]

I. INTRODUCTION

Symmetry group theory built by Sophus Lie plays an important role in constructing explicit
solutions, whether the equations are integrable or not, linear or nonlinear. For any given subgroup,
an original nonlinear system can be reduced to a system with fewer independent variables, which
corresponds to group invariant solutions. As Olver1 said, since there is almost always an infinite
amount of such subgroups, it is usually not feasible to list all possible group invariant solutions to
the system. It is anticipated to find all those inequivalent group invariant solutions, that is to say,
to give them a classification. The problem of classifying the subgroups and reduction to optimal
systems takes on more importance for multidimensional partial differential equations (PDEs). Given
a group that leaves a PDE invariant, one desires to minimize the search for group-invariant solutions
to that of finding inequivalent branches of solutions, which leads to the concept of the optimal
systems. Consequently, the problem of determining the optimal system of subgroups is reduced
to the corresponding problem for subalgebras. In applications, one usually constructs the optimal
system of subalgebras, from which the optimal systems of subgroup and group invariant solutions
are reconstructed.

The adjoint representation of a Lie group on its Lie algebra was known to Lie. Its use in clas-
sifying group-invariant solutions appears in Ovsiannikov.2 Ovsiannikov demonstrated the construc-
tion of the one-dimensional optimal system for the Lie algebra, using a global matrix for the adjoint
transformation, and sketched the construction of higher-dimensional optimal systems with a simple
example. The method has received extensive development by Patera, Winternitz, and Zassenhaus,3,4

and many examples of optimal systems of subgroups for the important Lie groups of mathemat-
ical physics were obtained. In the investigation of the connections between Lie group and special
functions, Weisner5 first gave the classification of the symmetry algebra of the heat equation. For
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the higher-dimensional optimal systems of Lie algebra, Galas6 also developed Ovsiannikov’s idea
by removing equivalent subalgebras and the problem of a nonsolvable algebra was also discussed,
which is generally harder than that for a solvable algebra. Some examples of optimal systems can
also be found in Ibragimov.7,8

Here, we are concerned with the one-dimensional optimal system of subalgebras. For the
one-dimensional optimal systems, the technique of Ovsiannikov has been used until Olver gives a
slightly different and elegant technique. Olver1 constructed a table of adjoint operators to simplify
a general element in Lie algebra as much as possible and applied the technique to the Korteweg-de
Vries (KdV) equation and the heat equation. Since it only depends on fragments of the theory
of Lie algebras, Olver’s method as developed here has the feature of being very elementary.
Based on Olver’s method, we have also constructed many interesting and important invariant
solutions9–12 for a number of systems of PDEs in atmosphere and geometric field. However,
as Olver said, although some sophisticated techniques are available for Lie algebras with addi-
tional structure, in essence this problem is attacked by the naïve approach. One knows that, if
one calls a list of {ṽα}α∈A is a one-dimensional optimal system, it must satisfy two conditions:
(1) completeness—any one-dimensional subalgebra is equivalent to some ṽα; (2) inequivalence—ṽα
and ṽβ are inequivalent for distinct α and β. Despite these numerous results on finding the represen-
tatives of subalgebras, they did not illustrate that how these representatives are comprehensive and
mutually inequivalent. Recently, Chou and Qu13–16 offer many numerical invariants to address the
inequivalence among the elements in the optimal system.

The purpose of this paper is to give a systematic method for finding an optimal system of
one-dimensional Lie algebra, which can both guarantee the comprehensiveness and the inequiva-
lence. The idea is inspired by the observation that the Killing form of the Lie algebra is an invariant
for the adjoint representation.1 Olver also points out that the detection of such an invariant is impor-
tant since it places restrictions on how far one can expect to simplify the Lie algebra. In spite of the
importance of the invariants for the Lie algebra, to the best of our knowledge, there are few litera-
tures to use more common invariants except the Killing form in the process of constructing optimal
system. The purpose of this paper is to introduce a direct and valid method for providing all the
general invariants which are different from the numerical invariants appearing in Refs. 13–15, and
then make the best use of them with the adjoint matrix to classify subalgebras. We shall demonstrate
the new technique by treating three illustrative examples.

This paper is arranged as follows. In Sec. II, a direct algorithm of one-dimensional optimal
system for the general symmetry algebra is proposed. Since the realization of our new algorithm
builds on different invariants and the adjoint matrix, a valid method for computing all the invariants
is also given in this section. To leave our algorithm clear, we would illustrate each stage with a
couple of well-known examples, i.e., the KdV equation and the heat equation. In Sec. III, we apply
the new algorithm to the Novikov equation and use the optimal system to find group invariant
solutions. Conclusions and discussions are given in Sec. IV.

II. A DIRECT ALGORITHM OF ONE-DIMENSIONAL OPTIMAL SYSTEM

Consider an n-dimensional symmetry algebra G of a system of differential equations, which is
generated by the vector fields {v1, v2, . . . , vn}. The corresponding symmetry group of G is denoted

as G. Following Ovsiannikov,2 one calls two elements v =
n
i=1

aivi and w =
n
j=1

bjv j in G equivalent

if they satisfy one of the following conditions:
(1) one can find some transformation g ∈ G so that Adg(w) = v;
(2) there is v = cw with c being constant.
Here, Adg is the adjoint representation of g and Adg(w) = g−1wg. It needs to note that the

second condition is less obvious in all the references but here it will play an important role in our
method. The main tools used in our algorithm are all the invariants and the adjoint matrix. In this
section, we will first give an algorithm for the general system of differential equations stage by stage
and then illustrate each step with two known examples, the KdV and heat equations.
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A. Calculation of the invariants

A real function φ on the Lie algebra G is called an invariant if φ(Adg(v)) = φ(v) for all v ∈ G
and all g ∈ G. If two vectors v and w are equivalent under the adjoint action, it is necessary that

φ(v) = φ(w) for any invariant φ. If we let v =
n
i=1

aivi, then the invariant φ can be regarded as a

function of a1,a2, . . . ,an. As Olver said, the detection of such an invariant is important since it
places restrictions on how far we can expect to simplify v . However, it is a pity that people did not
care more invariants except the Killing form. Now we will propose a valid method to find all the
invariants of symmetry algebra and further make the best use of them to construct one-dimensional
optimal system.

For an n-dimensional symmetry algebra G, we first compute the commutation relations between
all the vector fields vi and v j, which can be shown in a table, the entry in row i and column j repre-

senting [vi, v j] = viv j − v jvi. Then taking any subgroup g = ew(w = n
j=1

bjv j) to act on v , we have

Adexp(ϵw)(v) = e−ϵwveϵw

= v − ϵ[w,v] + 1
2!
ϵ2[w, [w,v]] − · · · (1)

= (a1v1 + · · · + anvn) − ϵ[b1v1 + · · · + bnvn,a1v1 + · · · + anvn]
+O(ϵ2)
= (a1v1 + · · · + anvn) − ϵ(Θ1v1 + · · · + Θnvn) +O(ϵ2),

where Θi ≡ Θi(a1, . . . ,an,b1, . . . ,bn) can be easily obtained from the commutator table.
Equivalently, omitting, vi we can rewrite (1) as

(a1,a2, . . . ,an) −→ (a1 − ϵΘ1,a2 − ϵΘ2, . . . ,an − ϵΘn) +O(ϵ2). (2)

To determine the invariant φ, we expand the right hand side of (2) as

φ(a1 − ϵΘ1 +O(ϵ2), . . . ,an − ϵΘn +O(ϵ2)) = φ(a1,a2, . . . ,an) − ϵ(Θ1
∂φ

∂a1

+ · · · + Θn
∂φ

∂an
) +O(ϵ2) (3)

and require

Θ1
∂φ

∂a1
+ · · · + Θn

∂φ

∂an
= 0 for any bi. (4)

In Eq. (4), extracting the coefficients of all bi, N(N ≤ n) linear differential equations of φ are
obtained. By solving these equations, all the invariants can be found.

1. Invariants of the KdV equation

The KdV equation reads as

ut + uxxx + uux = 0, (5)

which arises in the theory of long waves in shallow water and other physical systems in which both
nonlinear and dispersive effects are relevant. Using the classical Lie group method, one can obtain
the symmetry algebra of (5), i.e.,

v1 = ∂x, v2 = ∂t, v3 = t∂x + ∂u, v4 = x∂x + 3t∂t − 2u∂u. (6)

For four-dimensional Lie algebra (6), the commutation relations are given in Table I.

Substituting v =
4

i=1
aivi and w =

4
j=1

bjv j into (1), we have

Adexp(ϵw)(v) = (a1v1 + · · · + a4v4) − ϵ(Θ1v1 + · · · + Θ4v4) +O(ϵ2),
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded
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TABLE I. Commutator table of the KdV equation.

v1 v2 v3 v4

v1 0 0 0 v1

v2 0 0 v1 3v2

v3 0 −v1 0 −2v3

v4 −v1 −3v2 2v3 0

with

Θ1 = b1a4 + b2a3 − b3a2 − b4a1, Θ2 = 3b2a4 − 3b4a2, (7)
Θ3 = −2b3a4 + 2b4a3, Θ4 = 0.

For any bi(i = 1 · · · 4), it requires

Θ1
∂φ

∂a1
+ · · · + Θ4

∂φ

∂a4
= 0. (8)

Extracting the coefficients of all bi in Eq. (8), four differential equations about φ(a1,a2,a3,a4) are
directly obtained as




a4
∂φ

∂a1
= 0,

a3
∂φ

∂a1
+ 3a4

∂φ

∂a2
= 0,

a2
∂φ

∂a1
+ 2a4

∂φ

∂a3
= 0,

a1
∂φ

∂a1
+ 3a2

∂φ

∂a2
− 2a3

∂φ

∂a3
= 0.

(9)

By solving Eq. (9), we can obtain φ(a1,a2,a3,a4) = F(a4), where F is an arbitrary function of a4.
Here, the KdV equation has only one basic invariant a4, and a4 is just the Killing form given by
Olver.1

2. Invariants of the heat equation

The equation for the conduction of heat in a one-dimensional road is written as

ut = uxx. (10)

The Lie algebra of infinitesimal symmetries for this equation is spanned by six vector fields

v1 = ∂x, v2 = ∂t, v3 = u∂u, v4 = x∂x + 2t∂t,

v5 = 2t∂x − xu∂u, v6 = 4t x∂x + 4t2∂t − (x2 + 2t)u∂u, (11)

and the infinitesimal subalgebra

vh = h(x, t)∂u,
where h(x, t) is an arbitrary solution of the heat equation. Since the infinite-dimensional subalge-
bra ⟨vh⟩ does not lead to group invariant solutions, it will not be considered in the classification
problem.

Consider the six-dimensional symmetry algebra G generated by {v1, v2, . . . , v6} in (11) and the

commutator table is given in Table II. Substituting v =
6

i=1
aivi and w =

6
j=1

bjv j into (1) leads to

Adexp(ϵw)(v) = (a1v1 + · · · + a6v6) − ϵ(Θ1v1 + · · · + Θ6v6) +O(ϵ2),
with

Θ1 = −b4a1 − 2b5a2 + b1a4 + 2b2a5, Θ2 = −2b4a2 + 2b2a4,

Θ3 = b5a1 + 2b6a2 − b1a5 − 2b2a6, Θ4 = −4b6a2 + 4b2a6,

Θ5 = −2b6a1 − b5a4 + b4a5 + 2b1a6, Θ6 = −2b6a4 + 2b4a6.

(12)
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TABLE II. Commutator table of the heat equation.

v1 v2 v3 v4 v5 v6

v1 0 0 0 v1 −v3 2v5

v2 0 0 0 2v2 2v1 4v4−2v3

v3 0 0 0 0 0 0
v4 −v1 −2v2 0 0 v5 2v6

v5 v3 −2v1 0 −v5 0 0
v6 −2v5 2v3−4v4 0 −2v6 0 0

Substituting (12) into Eq. (4) and extracting the coefficients of all bi, five linear differential equa-
tions about φ(a1,a2, . . . ,a6) are directly obtained as




a4
∂φ

∂a1
− a5

∂φ

∂a3
+ 2a6

∂φ

∂a5
= 0,

a4
∂φ

∂a2
+ a5

∂φ

∂a1
+ a6(2 ∂φ

∂a4
− ∂φ

∂a3
) = 0,

−a1
∂φ

∂a1
− 2a2

∂φ

∂a2
+ a5

∂φ

∂a5
+ 2a6

∂φ

∂a6
= 0,

a1
∂φ

∂a3
− 2a2

∂φ

∂a1
− a4

∂φ

∂a5
= 0,

−a1
∂φ

∂a5
+ a2( ∂φ

∂a3
− 2

∂φ

∂a4
) − a4

∂φ

∂a6
= 0.

(13)

Solving Eq. (13), one can obtain two basic common invariants

∆1 ≡ φ1(a1,a2, . . . ,a6) = a2
4 − 4a2a6 (14)

and

∆2 ≡ φ2(a1,a2, . . . ,a6) = a3
4 + 2a3a2

4 − 4a4a2a6 + 2a4a1a5 − 8a2a3a6 (15)

−2a2a2
5 − 2a2

1a6.

Here, ∆1 is just the famous Killing form shown in Ref. 1 while ∆2 is a completely new invariant of
(11) which is never addressed before.

B. Calculation of the adjoint transformation matrix

The second task is the construction of the general adjoint transformation matrix A, which is the
product of the matrices of the separate adjoint actions A1, A2, . . . , An. For further details, one can
refer to Ref. 17, in which three methods of constructing A are shown. Here, before constructing the
matrix A, one is able to draw a table for convenience, where the (i, j)th entry gives Adexp(ϵvi)(v j).

First, applying the adjoint action of v1 to v =
n
i=1

aivi and with the help of adjoint representation

table, we have

Adexp(ϵ1v1)(a1v1 + a2v2 + · · · + anvn)
= a1Adexp(ϵ1v1)v1 + a2Adexp(ϵ1v1)v2 + · · · + anAdexp(ϵ1v1)vn (16)

= R1v1 + R2v2 + · · · + Rnvn,

with Ri ≡ Ri(a1,a2, . . . ,an, ϵ1), i = 1 · · · n. To be intuitive, formula (16) can be rewritten into the
following matrix form:

v � (a1,a2, . . . ,an) −→ (R1,R2, . . . ,Rn) = (a1,a2, . . . ,an)A1. (17)
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Similarly, we can construct the matrices A2, A3, . . . , An of the separate adjoint actions of v2, v3,
. . . , vn, respectively. Then the general adjoint transformation matrix A is the product of A1, . . . , An

taken in any order

A ≡ A(ϵ1, ϵ2, . . . , ϵn) = A1A2 · · · An. (18)

That is to say, applying the most general adjoint action Adexp(ϵnvn) · · · Adexp(ϵ2v2)Adexp(ϵ1v1) to v , we
have

v � (a1,a2, . . . ,an) −→ (ã1, ã2, . . . , ãn) = (a1,a2, . . . ,an)A. (19)

Remark 1: On the one hand, the orders of the product shown in (18) are not important because
only the existence of the element of the group is needed in the algorithm. On the other hand, the

equivalence of
n
i=1

aivi and
n
i=1

ãivi can be shown by the following n algebraic equations with respect

to ϵ1, . . . , ϵn:

(ã1, ã2, . . . , ãn) = (a1,a2, . . . ,an)A (20)
(or (a1,a2, . . . ,an) = (ã1, ã2, . . . , ãn)A ). (21)

If Eq. (20) (or Eq. (21)) has the solution, it means that
n
i=1

aivi must be equivalent to
n
i=1

ãivi under

the adjoint action.

1. Adjoint matrix of the KdV equation

The adjoint representation table of (6) is given in Table III. Applying the adjoint action of v1 to

v = a1v1 + a2v2 + a3v3 + a4v4, (22)

we have

Adexp(ϵ1v1)v = (a1 − a4ϵ1)v1 + a2v2 + a3v3 + a4v4

= (a1,a2,a3,a4) · A1 · (v1, v2, v3, v4)T, (23)

with

A1 =

*.....
,

1 0 0 0
0 1 0 0
0 0 1 0
−ϵ1 0 0 1

+/////
-

. (24)

Similarly, one can obtain A2, A3, and A4,

A2 =

*.....
,

1 0 0 0
0 1 0 0
−ϵ2 0 1 0
0 −3ϵ2 0 1

+/////
-

, A3 =

*.....
,

1 0 0 0
ϵ3 1 0 0
0 0 1 0
0 0 2ϵ3 1

+/////
-

, A4 =

*.....
,

eϵ4 0 0 0
0 e3ϵ4 0 0
0 0 e−2ϵ4 0
0 0 0 1

+/////
-

.

TABLE III. Adjoint representation table of the KdV equation.

Ad v1 v2 v3 v4

v1 v1 v2 v3 v4−ϵv1

v2 v1 v2 v3−ϵv1 v4−3ϵv2

v3 v1 v2+ϵv1 v3 v4+2ϵv3

v4 eϵv1 e3ϵv2 e−2ϵv3 v4
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Then the general adjoint transformation matrix A is constructed by

A = A1A2A3A4 =

*.....
,

eϵ4 0 0 0
ϵ3eϵ4 e3ϵ4 0 0
−ϵ2eϵ4 0 e−2ϵ4 0

(−ϵ1 − 3ϵ2ϵ3)eϵ4 −3ϵ2e3ϵ4 2ϵ3e−2ϵ4 1

+/////
-

. (25)

2. Adjoint matrix of the heat equation

For the heat equation, the adjoint representation table is given in Table IV. Applying the adjoint
action of v1 to

v = a1v1 + a2v2 + a3v3 + a4v4 + a5v5 + a6v6, (26)

there is

Adexp(ϵ1v1)(a1v1 + a2v2 + a3v3 + a4v4 + a5v5 + a6v6)
= (a1 − a4ϵ1)v1 + a2v2 + (a3 + a5ϵ1 − a6ϵ

2
1)v3 + a4v4 (27)

+(a5 − 2ϵ1a6)v5 + a6v6

= (a1,a2, . . . ,a6) · A1 · (v1, v2, . . . , v6)T.
It is easy to give

A1 =

*...........
,

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−ϵ1 0 0 1 0 0
0 0 ϵ1 0 1 0
0 0 −ϵ2

1 0 −2ϵ1 1

+///////////
-

. (28)

Similarly, A2, . . . , A6 are found to be

A2 =

*...........
,

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −2ϵ2 0 1 0 0
−2ϵ2 0 0 0 1 0

0 4ϵ2
2 2ϵ2 −4ϵ2 0 1

+///////////
-

, A4 =

*...........
,

eϵ4 0 0 0 0 0
0 e2ϵ4 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 e−ϵ4 0
0 0 0 0 0 e−2ϵ4

+///////////
-

, (29)

TABLE IV. The adjoint representation table of the heat equation.

Ad v1 v2 v3 v4 v5 v6

v1 v1 v2 v3 v4−ϵv1 v5+ϵv3 v6−2ϵv5−ϵ2v3

v2 v1 v2 v3 v4−2ϵv2 v5−2ϵv1 v6−4ϵv4+2ϵv3+4ϵ2v2

v3 v1 v2 v3 v4 v5 v6

v4 eϵv1 e2ϵv2 v3 v4 e−ϵv5 e−2ϵv6

v5 v1−ϵv3 v2+2ϵv1−ϵ2v3 v3 v4+ϵv5 v5 v6

v6 v1+2ϵv5 v2−2ϵv3+4ϵv4+4ϵ2v6 v3 v4+2ϵv6 v5 v6
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A5 =

*...........
,

1 0 −ϵ5 0 0 0
2ϵ5 1 −ϵ2

5 0 0 0
0 0 1 0 0 0
0 0 0 1 ϵ5 0
0 0 0 0 1 0
0 0 0 0 0 1

+///////////
-

, A6 =

*...........
,

1 0 0 0 2ϵ6 0
0 1 −2ϵ6 4ϵ6 0 4ϵ2

6

0 0 1 0 0 0
0 0 0 1 0 2ϵ6

0 0 0 0 1 0
0 0 0 0 0 1

+///////////
-

, (30)

with A3 = E being the identity matrix.
Hence, the general adjoint transformation matrix A can be taken as

A = A4A5A3A1A2A6 (31)

=

*...........
,

eϵ4 0 −ϵ5eϵ4 0 2ϵ6eϵ4 0
2ϵ5eϵ4 e2ϵ4 −(ϵ2

5 + 2ϵ6)e2ϵ4 4ϵ6e2ϵ4 4ϵ5ϵ6e2ϵ4 4ϵ2
6e2ϵ4

0 0 1 0 0 0
−ϵ1 − 2ϵ2ϵ5 −2ϵ2 ϵ1ϵ5 + 4ϵ2ϵ6 1 − 8ϵ2ϵ6 −2ϵ1ϵ6 − ϵ5Ξ −2ϵ6Ξ

−2ϵ2e−ϵ4 0 ϵ1e−ϵ4 0 −Ξe−ϵ4 0
4ϵ1ϵ2e−2ϵ4 4ϵ2

2e−2ϵ4 −(ϵ2
1 + 2ϵ2Ξ)e−2ϵ4 4ϵ2Ξe−2ϵ4 2ϵ1Ξe−2ϵ4 Ξ

2e−2ϵ4

+///////////
-

,

with Ξ = 4ϵ2ϵ6 − 1.

C. Classification of the finite-dimensional Lie algebra G

Based on the invariants and adjoint transformation matrix A, we give out the algorithm for
constructing one-dimensional optimal system of the finite-dimensional Lie algebra.

(1) The first step: scale the invariants.
If two vectors v and w are adjoint equivalent, it is necessary that φ(v) = φ(w) for any invariant

φ. However, if v = cw, where v and w are also equivalent, their corresponding invariants satisfy
φ(v) = c′φ(w) and it is usually φ(v) , φ(w). To avoid the latter case, we first make a scale to the
invariant by adjusting the coefficients of generators. Without loss of generality, one just needs to
consider the values of the invariants to be 1, −1, and 0. To illustrate this point more clearly, we give
three remarks.

Remark 2: If the degree of the invariant is odd, we obtain φ(v) = c2k+1φ(w) with v = cw, then
the right c can be selected to transform the positive (negative) invariant into the negative (positive)
one. Now, we just need to consider two cases: φ = 0 and φ , 0 (for simplicity, scaling it to 1 or −1).

Remark 3: If the degree of the invariant is even (excluding zero), there is φ(v) = c2kφ(w) with
v = cw, then we cannot choose the right c to transform the positive (negative) invariant into the
negative (positive) one. Now one needs to consider three cases: φ = 0, φ > 0, and φ < 0. Without
loss of generality, we let φ = 0, φ = 1, and φ = −1, respectively.

Remark 4: Once one of the invariants is scaled (not zero), the other invariants (if any) cannot be
adjusted.

Take the KdV equation and heat equations, for example. Since the invariant for the KdV equa-
tion is a4, the degree of which is one, we just need to talk about a4 = 1 and a4 = 0. For the heat
equation, it has two invariants ∆1 and ∆2, the degrees of which are two and three. Now one can
consider four cases,

{∆1 = 1,∆2 = c}; {∆1 = −1,∆2 = c};
{∆1 = 0,∆2 = 1}; {∆1 = 0,∆2 = 0}.

(2) The second step: select the representative elements according to “Remark 1.”
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In terms of different values of the invariants given in step 1, select the corresponding repre-

sentative elements in the simplest form named ṽ =
n
i=1

ãivi. Then solve the adjoint transformation

equation (20) (or (21)). If Eq. (20) (or Eq. (21)) has the solution with respect to ϵ1, . . . ϵn, it signifies
that the selected representative element is right. If the chosen representative element makes Eq. (20)
(or Eq. (21)) be incompatible, we need to adopt a new proper one. Repeat the process until all the
cases in step 1 are finished. To leave it clear, this process will be illustrated with the KdV and heat
equations.

1. One-dimensional optimal system of the KdV equation

Adjoint transformation equation (20) for the KdV equation is

(ã1, ã2, ã3, ã4) = (a1,a2,a3,a4)A, (32)

where the adjoint matrix A is displayed in (25).
Case 1: a4 = 1.
Select a representative element ṽ = v4. Substituting ã1 = ã2 = ã3 = 0, ã4 = 1, and a4 = 1 into

Eq. (32), we obtain the solution

ϵ1 = a1 −
1
3

a2a3, ϵ2 =
1
3

a2, ϵ3 = −
1
2

a3.

That is to say, all the v4 + a1v1 + a2v2 + a3v3 are equivalent to v4.
Case 2: a4 = 0.
Substituting a4 = 0 into Eq. (9) yields to a new invariant φ(a1,a2,a3) = a2

2a3
3. In terms of

“Remark 2,” there are also two cases: a2
2a3

3 = 1 and a2
2a3

3 = 0.
Case 2.1: a2

2a3
3 = 1.

Adopt two representative elements ṽ = v2 + v3 and ṽ = −v2 + v3.
For a2 > 0 and ṽ = v2 + v3, Eq. (32) with a2

2a3
3 = 1 has the solutions

ϵ2 = 0, ϵ3 = −
a1

a2
, ϵ4 = −

1
3

ln(a2).
For a2 < 0 and ṽ = −v2 + v3, Eq. (32) with a2

2a3
3 = 1 has the solutions

ϵ2 = 0, ϵ3 = −
a1

a2
, ϵ4 = −

1
3

ln(−a2).
Case 2.2: a2

2a3
3 = 0.

(1) a3 , 0 and a2 = 0.
Adopt two representative elements v3 and −v3. Then {a1v1 + a3v3} with a3 > 0 is equivalent to

v3, where the solution for Eq. (32) is {ϵ2 =
a1
a3
, ϵ4 =

1
2 ln(a3)}, while {a1v1 + a3v3} with a3 < 0 is

equivalent to −v3, where the solution for Eq. (32) is {ϵ2 =
a1
a3
, ϵ4 =

1
2 ln(−a3)}. Essentially, v3 and

−v3 are equivalent.
(2) a3 = 0 : a2 , 0 and a2 = 0.
When a2 , 0, similar to case (1), a2v2 + a1v1 is equivalent to v2 and −v2.
When a2 = 0, a1v1 is equivalent to v1.
Recapitulating, a one-dimensional optimal system of symmetry algebra (6) contains

v4; v3 + v2; v3 − v2; v3; v2; v1. (33)

The optimal system given by (33) is just the same to that found by Olver.1

2. One-dimensional optimal system of the heat equation

For the heat equation, the adjoint transformation equations read

(ã1, ã2, ã3, ã4, ã5, ã6) = (a1,a2,a3,a4,a5,a6)A, (34)

where the adjoint matrix A is shown by (31).
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Case 1: ∆1 = a2
4 − 4a2a6 = 1, ∆2 = c.

Here, c is an arbitrary real constant. Under ∆1 = 1 and ∆2 = c, choose a representative element,
for example, select ṽ = v4 +

c−1
2 v3 (i.e., ã4 = 1, ã3 =

c−1
2 ).

From ∆1 = a2
4 − 4a2a6 = 1, one knows that a2,a4,a6 cannot be all zeros simultaneously. With-

out loss of generality, we just consider a6 , 0. For a6 = 0 (a2 , 0 or a4 , 0), one can transform it
into the case of a6 , 0 by selecting the appropriate ϵ i (i = 1 · · · 6) which are shown in Eq. (34).

For a6 , 0, the conditions ∆1 = 1 and ∆2 = c can be expressed as

a2 =
a2

4 − 1
4a6

, a3 = a2
1a6 − a1a4a5 −

1
2

a4 +
c
2
−

a2
4 − 1
4a6

a2
5, (35)

where a1,a4,a5,a6 are arbitrary real constants. According to Eq. (34), six algebraic equations about
ϵ i are proposed. After substituting ã4 = 1, ã3 =

c−1
2 , ã1 = ã2 = ã5 = ã6 = 0 with (35) into these

equations, one can find the solutions

ϵ1 =
a5 + 2a1a4a6 − a2

4a5

2a6
eϵ4, ϵ2 =

a4 − 1
4a6

e2ϵ4, ϵ5 = (2a1a6 − a4a5)e−ϵ4, ϵ6 = −
1
2

a6e−2ϵ4.

Case 2: ∆1 = a2
4 − 4a2a6 ≡ −1, ∆2 = c.

From ∆1 = −1, it illustrates a6 , 0. Now the relation among ai reads as

a2 =
a2

4 + 1
4a6

, a3 = −a2
1a6 + a1a4a5 −

1
2

a4 −
c
2
−

a2
4 + 1
4a6

a2
5. (36)

When a6 > 0 and a6 < 0, take the representative element ṽ = 1
2 (v2 + v6 − cv3) and ṽ = 1

2 (−v2 −
v6 − cv3), respectively. Then Eq. (34) with (36) is separately proved solvable with the solutions

ϵ1 = −
√

2
2

2a1a4a6 − a5 − a2
4a5

√
a6

, ϵ2 =
1
2

a4, ϵ4 =
1
2

ln(2a6), ϵ5 = −
√

2
2

2a1a6 − a4a5√
a6

, ϵ6 = 0

and

ϵ1 = −
1
2

√
−2a6(2a1a4a6 − a5 − a2

4a5)
a6

, ϵ2 = −
1
2

a4, ϵ4 =
1
2

ln(−2a6),

ϵ5 =
1
2

√
−2a6(2a1a6 − a4a5)

a6
, ϵ6 = 0.

In this case, general one-dimensional Lie algebra (26) is equivalent to v2 + v6 + βv3 with β
being arbitrary.

Case 3: ∆1 = 0.
Notice that ∆2 itself is an odd polynomial with respect to ai, so one just needs consider ∆2 = 1

and ∆2 = 0 according to “Remark 2.”
Case 3.1: ∆1 = 0, ∆2 = 1.
Due to ∆2 = 1, one knows that not all a2,a4, and a6 are zeros. Without loss of generality, we let

a6 , 0. Select a representative element ṽ = −v2 −
√

2
2 v5.

When a6 , 0, there must be a6 < 0 for the identity 2a6 = −(2a1a6 − a4a5)2 solved by ∆1 = 0
and ∆2 = 1. Under the restriction of invariants, we have

a2 =
a2

4

4a6
, a1 =

a4a5 ±
√
−2a6

2a6
. (37)

Then after choosing

ϵ1 =

√
2

4
· eϵ4

a6
(√2a5 + eϵ4 +

√
2a4ϵ5eϵ4), ϵ2 =

eϵ4

4a6
(∓2
√
−a6 + a4eϵ4),

ϵ5 = ±
√

2
8
· e−ϵ4

√
−a6

(4a4a6 + 2a2
5 + 8a3a6 + e2ϵ4), ϵ6 = ±

1
2
√
−a6e−ϵ4,

one can transform (26) with (37) into ṽ = −v2 −
√

2
2 v5.
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Case 3.2: ∆1 = 0, ∆2 = 0.
Case 3.2.1: Not all a2,a4, and a6 are zeros.
For the same reason, we just need consider a6 , 0. Substituting ∆1 = 0 and ∆2 = 0 into

Eq. (13), we obtain a new invariant

∆3 = 4a3 + 2a4 +
a2

5

a6
. (38)

Then there are two cases, depending on the sign of the invariant ∆3,
(1) ∆3 = 1. In terms of {∆1 = 0,∆2 = 0,∆3 = 1}, we have

a1 =
a4a5

2a6
, a2 =

a2
4

4a6
, a3 =

a6 − a2
5 − 2a4a6

4a6
. (39)

When a6 > 0, choose the representative element ṽ = 1
4 v3 + v6, then Eq. (34) with (39) has the

solutions

ϵ1 =
a5
√

a6 + a4a6ϵ5

2a6
, ϵ2 =

a4

4
, ϵ4 =

1
2

ln a6. (40)

When a6 < 0, the representative element is taken as ṽ = 1
4 v3 − v6. It is easy to see that Eq. (34)

holds with

ϵ1 =
a5
√
−a6 − a4a6ϵ5

2a6
, ϵ2 = −

a4

4
, ϵ4 =

1
2

ln(−a6). (41)

Further, it is noted that 1
4 v3 + v6 and 1

4 v3 − v6 are inequivalent.
(2) ∆3 = 0. Now we have

a1 =
a4a5

2a6
, a2 =

a2
4

4a6
. (42)

It can be easily proved that via same adjoint transformations (40) and (41), Lie algebra (26) is
converted into v6 and −v6, respectively.

Case 3.2.2: a2 = a4 = a6 = 0. Substituting a2 = a4 = a6 = 0 into (34), we find that it can also be
divided into two cases:

(1) Not all a1 and a5 are zeros. Here, we suppose a5 , 0.
In this case, choose a representative element v1. One can see that Eq. (34) with a2 = a4 = a6 = 0

has a solutions

ϵ1 =
eϵ4(eϵ4ϵ5a1 − a3)

a5
, ϵ2 =

1
2

eϵ4(eϵ4a1 − 1)
a5

, ϵ6 = −
1
2

a5e−ϵ4.

(2) a1 = a5 = 0. Now we have a1 = a2 = a4 = a5 = a6 = 0 and general Lie algebra (26) be-
comes v3.

In summary, an optimal system of one-dimensional subalgebras of the heat equation is found to
be those spanned by

ω1(α) = v4 + αv3 (α ∈ R), ω2(β) = v2 + v6 + βv3 (β ∈ R), ω3 = v2 +

√
2

2
v5,

ω4 =
1
4
v3 + v6, ω5 =

1
4
v3 − v6, ω6 = v6, ω7 = v1, ω8 = v3. (43)

Resulting optimal system (43) of the heat equation is really optimal and completely equivalent
to that given in Ref. 13, which is a further reduction to the result of Olver.1 In Ref. 1, Olver uses
the Killing form (that is, ∆1 here) to classify the one-dimensional subalgebras and construct the
following optimal system:

(a)v4 + av3; (b)v2 + v6 + av3; (c1)v2 − v5; (44)

(c2)v2 + v5; (d)v2 + av3; (e)v1; ( f )v3.
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Obviously, the differences between (44) and (43) lie in cases (c1), (c2), and (d). In fact, cases (c1)
and (c2), and ω3 are all equivalent and this equivalence can be reflected by our adjoint transforma-
tion equation (34),

v2 − v5 ∼ v2 + 2v4 − v5 + v6 (ϵ1 = −1, ϵ6 =
1
2
, ϵ2 = ϵ3 = ϵ4 = ϵ5 = 0) (45)

∼ v2 + v5 (ϵ1 = −2, ϵ2 = ϵ5 = 1, ϵ3 = ϵ4 = 0, ϵ6 =
1
2
) (46)

∼ 1
3√2

(v2 + v5) (47)

∼ v2 +

√
2

2
v5 (ϵ4 =

1
6

ln 2, ϵ1 = ϵ2 = ϵ3 = ϵ5 = ϵ6 = 0). (48)

For case (d), one can use Ad(exp(ϵv3)) for suitable ϵ to turn v2 + av3 into either 1
4 v3 + v2, 1

4 v3 − v2, or
v2, which is shown, respectively, equivalent to ω4, ω5, and ω6 of (43) for the solution of Eq. (34),

ϵ2 = ϵ6 =
1
2
, ϵ1 = ϵ3 = ϵ4 = ϵ5 = 0.

Remark 5: The key point of our new method is to solve some algebraic equations which are
embedded in (20) (or (21)) and it can easily be carried out by Maple.

III. ONE-DIMENSIONAL OPTIMAL SYSTEM AND GROUP INVARIANT SOLUTIONS OF
THE NOVIKOV EQUATION

In this section, we will apply the new method to the Novikov equation

ut − ut xx + 4u2ux − 3uuxuxx − u2uxxx = 0, (49)

which was discovered by Novikov in a recent communication18 and can be considered as a type
of generalization of the known Camassa-Holm equation. Equation (49) has attracted attention of
different researchers; see Refs. 19–26 and references therein. In Ref. 26, the authors give out a
five-dimensional Lie algebra of Eq. (49), which is spanned by the following basis:

v1 = ∂t, v2 = ∂x, v3 = e2x∂x + e2xu∂u,

v4 = e−2x∂x − e−2xu∂u, v5 = −2t∂t + u∂u. (50)

Now we use the new algorithm to construct the one-dimensional optimal system of five-
dimensional Lie algebra (50), which has not been found so far, and use the optimal system to find
corresponding group invariant solutions.

A. Construction of one-dimensional optimal system

To begin with, one can easily propose the commutator and adjoint representation relations of
(50), which are shown by Tables V and VI.

TABLE V. Commutator table of the Novikov equation.

v1 v2 v3 v4 v5

v1 0 0 0 0 −2v1

v2 0 0 2v3 −2v4 0
v3 0 −2v3 0 −4v2 0
v4 0 2v4 4v2 0 0
v5 2v1 0 0 0 0
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TABLE VI. Adjoint representation table of the Novikov equation.

Ad v1 v2 v3 v4 v5

v1 v1 v2 v3 v4 v5+2ϵv1

v2 v1 v2 e−2ϵv3 e2ϵv4 v5

v3 v1 v2+2ϵv3 v3 v4+4ϵv2+4ϵ2v3 v5

v4 v1 v2−2ϵv4 v3−4ϵv2+4ϵ2v4 v4 v5

v5 e−2ϵv1 v2 v3 v4 v5

Applying w =
5
j=1

bjv j to v =
5

i=1
aivi, we have

Adexp(ϵw)(v) = (a1v1 + · · · + a5v5) − ϵ(Θ1v1 + · · · + Θ5v5) +O(ϵ2),
with

Θ1 = 2a1b5 − 2b1a5, Θ2 = 4a3b4 − 4b3a4, (51)
Θ3 = −2a2b3 + 2b2a3, Θ4 = −2a4b2 + 2b4a2, Θ5 = 0.

By dealing with

φ(a1 − ϵΘ1 +O(ϵ2), . . . , a5 − ϵΘ5 +O(ϵ2)) = φ(a1, . . . , a5) − ϵ(Θ1
∂φ

∂a1
+ · · · + Θ5

∂φ

∂a5
) +O(ϵ2), (52)

two basic invariants of (50) are obtained as

∆1 = a5, ∆2 = a2
2 − 4a3a4. (53)

Then, the matrices of the separate adjoint actions A1, . . . A5 are found to be

A1 =

*........
,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

2ϵ1 0 0 0 1

+////////
-

, A2 =

*........
,

1 0 0 0 0
0 1 0 0 0
0 0 e−2ϵ2 0 0
0 0 0 e2ϵ2 0
0 0 0 0 1

+////////
-

, A3 =

*........
,

1 0 0 0 0
0 1 2ϵ3 0 0
0 0 1 0 0
0 4ϵ3 4ϵ2

3 1 0
0 0 0 0 1

+////////
-

,

A4 =

*........
,

1 0 0 0 0
0 1 0 −2ϵ4 0
0 −4ϵ4 1 4ϵ2

4 0
0 0 0 1 0
0 0 0 0 1

+////////
-

, A5 =

*........
,

e−2ϵ5 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

+////////
-

.

The matrix A is the product of all these taken in any order

A = A1A2A3A4A5 (54)

=

*........
,

e−2ϵ5 0 0 0 0
0 1 − 8ϵ3ϵ4 2ϵ3 2ϵ4(4ϵ3ϵ4 − 1) 0
0 −4ϵ4e−2ϵ2 e−2ϵ2 4ϵ2

4e−2ϵ2 0
0 4ϵ3e2ϵ2(1 − 4ϵ3ϵ4) 4ϵ2

3e2ϵ2 e2ϵ2(1 − 4ϵ3ϵ4)2 0
2ϵ1e−2ϵ5 0 0 0 1

+////////
-

,

which determines the adjoint transformation equations in the form of

(ã1, ã2, ã3, ã4, ã5) = (a1,a2,a3,a4,a5)A. (55)

According to the degree of invariant (53), we concentrate on four cases,

{∆1 = 1,∆2 = c}; {∆1 = 0,∆2 = 1};
{∆1 = 0,∆2 = −1}; {∆1 = 0,∆2 = 0}.
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Case 1: ∆1 = 1, ∆2 = c.
(1) Not all a2,a3, and a4 are zeros. Without loss of generality, take a3 , 0.
When a3 > 0, select a representative element ṽ = v3 − c

4 v4 + v5 and Eq. (55) has the solutions

ϵ1 = −
1
2

a1, ϵ2 =
1
2

ln(a3), ϵ3 = 0, ϵ4 =
1
4

a2.

When a3 < 0, select a representative element ṽ = −v3 +
c
4 v4 + v5 and Eq. (55) has the solutions

ϵ1 = −
1
2

a1, ϵ2 =
1
2

ln(−a3), ϵ3 = 0, ϵ4 = −
1
4

a2.

Further, when c > 0, we can verify that v3 − c
4 v4 + v5 is equivalent to −v3 +

c
4 v4 + v5 for the

solutions

ϵ1 = ϵ2 = 0, ϵ3 =


c
2
, ϵ4 =

1
4

c


c
2

;

But unluckily, when c ≤ 0, the vector v3 − c
4 v4 + v5 is inequivalent to −v3 +

c
4 v4 + v5.

In this case, the general one-dimensional Lie algebra is equivalent to v3 − c
4 v4 + v5 (c being

arbitrary constant) and −v3 +
c
4 v4 + v5 (c ≤ 0).

(2) a2 = a3 = a4 = 0.
Now the general algebra becomes a1v1 + v5 and it can be easily converted into v5 for the

solution {ϵ1 = − 1
2 a1} of Eq. (55).

Case 2: ∆1 = 0, ∆2 = 1.
Because of ∆2 = 1, a2,a3, and a4 cannot be all zeros. Here, we also let a3 , 0.
(1) a1 = 0.
When a3 > 0, choose ṽ = v3 − 1

4 v4 and Eq. (55) easily holds for

ϵ2 =
1
2

ln a3, ϵ3 = 0, ϵ4 =
1
4

a2.

When a3 < 0, choose ṽ = −v3 +
1
4 v4 and Eq. (55) easily holds for

ϵ2 =
1
2

ln(−a3), ϵ3 = 0, ϵ4 = −
1
4

a2.

It is very clear that v3 − 1
4 v4 and −v3 +

1
4 v4 are equivalent to each other.

(2) a1 , 0.
For a1 > 0, the general algebra with a3 > 0 can be converted into ṽ = v1 + v3 − 1

4 v4 with

ϵ2 =
1
2

ln a3, ϵ3 = 0, ϵ4 =
1
4

a2, ϵ5 =
1
2

ln a1.

Meanwhile, the case of a3 < 0 is equivalent to ṽ = v1 − v3 +
1
4 v4 for

ϵ2 =
1
2

ln(−a3), ϵ3 = 0, ϵ4 = −
1
4

a2, ϵ5 =
1
2

ln a1.

Luckily, v1 + v3 − 1
4 v4 can be transformed into v1 − v3 +

1
4 v4 for the solutions

ϵ2 = ϵ5 = 0, ϵ3 =
√

2, ϵ4 =
1
4

√
2.

In the same way, the case of a1 < 0 is equivalent to −v1 + v3 − 1
4 v4 (or −v1 − v3 +

1
4 v4), which is just

the opposite situation of a1 > 0.
Hence, all the general algebra with a1 , 0 can be equivalent to v1 + v3 − 1

4 v4.
Case 3: ∆1 = 0, ∆2 = −1.
In this case, the selection of the representative elements is exactly similar to “case 2,” so the

process is not repeated here and we just provide the final results,

v3 +
1
4
v4; v1 + v3 +

1
4
v4; v1 − v3 −

1
4
v4.

Case 4: ∆1 = 0, ∆2 = 0.
(1) Not all a2,a3, and a4 are zeros. Without loss of generality, let a3 , 0. There are three cases

to be considered: a1 = 0, a1 > 0, and a1 < 0.
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When a1 = 0, adopt ṽ = v3 (and ṽ = −v3). Then Eq. (55) is solvable with

ϵ2 =
1
2

ln a3, ϵ3 = 0, ϵ4 =
1
4

a2

(and ϵ2 =
1
2

ln(−a3), ϵ3 = 0, ϵ4 = −
1
4

a2).
When a1 > 0, select two inequivalent representative elements ṽ = v1 + v3 and ṽ = v1 − v3. Cor-

respondingly, Eq. (55) has the solutions

ϵ2 =
1
2

ln a3, ϵ3 = 0, ϵ4 =
1
4

a2, ϵ5 =
1
2

ln a1,

and

ϵ2 =
1
2

ln(−a3), ϵ3 = 0, ϵ4 = −
1
4

a2, ϵ5 =
1
2

ln a1.

When a1 < 0, one can choose ṽ = −v1 + v3 and ṽ = −v1 − v3, which are obviously equivalent to
the results of a1 > 0.

(2) a2 = a3 = a4 = 0. It leaves only the vector v1.
In summary, the one-dimensional optimal system of five-dimensional Lie algebra (50) is found

to be

r1 = v3 −
1
4
αv4 + v5 (α ∈ R), r2 = −v3 +

1
4
αv4 + v5 (α ≤ 0),

r3 = v5, r4 = v3 −
1
4
v4, r5 = v3 +

1
4
v4, r6 = v1 + v3 −

1
4
v4, (56)

r7 = v1 + v3 +
1
4
v4, r8 = v1 − v3 −

1
4
v4, r9 = v1 + v3,

r10 = v1 − v3, r11 = v3, r12 = v1.

B. Invariant solutions

By virtue of the one-dimensional optimal system, one can reduce the Novikov equation to
kinds of ordinary differential equations (ODEs) which may further generate inequivalent group
invariant solutions. The corresponding invariant solutions of v1, v3, and v5 have been investigated in
Ref. 26 and the rest classical solutions corresponding to optimal system (56) are all presented in this
section.
(1) For r1 and r2, we have the following three cases according to the sign of α.

When α > 0 in r1, make the transformation

u = e−x(2e2x −
√
α)t 1

2 (
√
α−1)ψ(X), X =

√
α + 2e2x

√
α − 2e2x

· t−
√
α, (57)

and it leads Novikov equation (49) to

48
√
αψψ ′ψ ′′ − (3√α + 1)ψ ′′ + 16

√
αψ2ψ ′′′ − 2

√
αXψ ′′′ = 0. (58)

When α < 0 in r1 and r2 , substituting

u =
√

1 + δ2e4xe−x±
δ
2 arctan(δe2x)ψ(X), X = ln(t) ± δ arctan(δe2x) (59)

into Eq. (49), we obtain

4eXψ[6(ψ ′)2 + 6ψ ′ψ ′′ + (6 − 2α)ψψ ′ + 6ψψ ′′ + 2ψψ ′′′

+(1 − α)ψ2] ± 1
4
(α2 − α)ψ ′ ∓ α(ψ ′′ + ψ ′′′) = 0. (60)

Here, we denote α = − 4
δ2 in (59) for simplicity.

When α = 0 in r1 and r2, applying

u =
ex

√
t
ψ(X), X = e−2x ∓ ln t (61)
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to Eq. (49), we have

12ψψ ′ψ ′′ + ψ ′′ ± 2ψ ′′′ + 4ψ2ψ ′′′ = 0. (62)

(2) For r4 and r5, one can easily give out the corresponding invariant solutions

u = c0e−x
√

4e4x ∓ 1. (63)

(3) For r6, we take

u =

√
2

4
e−x+t(2e2x + 1)ψ(X), X =

2e2x − 1
2e2x + 1

· e−2t (64)

into Eq. (49) and it yields

3ψψ ′ψ ′′ − 3ψ ′′ − 2Xψ ′′′ + ψ2ψ ′′′ = 0. (65)

(4) For r7 and r8, let

u = e−x
√

1 + 4e4xψ(X), X = arctan(2e2x) ∓ t (66)

and we have

12ψψ ′ψ ′′ ∓ ψ ′ + 4ψ2ψ ′′′ + 16ψ2ψ ′ − ψ ′′′ = 0. (67)

A special solution to Eq. (67) is ψ = sin(X + c0), which leads the invariant solutions to the
Novikov equation,

u = (2c1ex ± c2e−x) cos(t) + (2c2ex ∓ c2e−x) sin(t). (68)

(5) For r9 and r10, we have

u = exψ(X), X = e−2x ± 2t, (69)

which can transform Eq. (49) into

3ψψ ′ψ ′′ + ψ2ψ ′′′ ∓ ψ ′′′ = 0. (70)

Different types of ODEs shown by (58), (60), (62), (65), (67), and (70) are successfully proposed
and these abundant reduced equations with their solutions remain to be investigated thoroughly.

IV. CONCLUSION AND DISCUSSIONS

Group invariant solutions have been used to great effect in the description of the asymptotic
behavior of much more general solutions to systems of PDEs. These group invariant solutions
are characterized by their invariance under some symmetry group of the PDEs. Since there are
almost always an infinite number of different symmetry groups, one might employ to find group
invariant solutions; a means of determining which groups give fundamentally different types of
invariant solutions is essential for gaining a complete understanding of the solutions which might be
available. This classification problem can be solved by looking at the adjoint representation of the
symmetry group on its Lie algebra, which first used by Ovsiannikov. The one-dimensional classi-
fication of the symmetry algebras of the KdV equation and the heat equation are demonstrated by
Olver with an easy-to-operate method in detail, which only depends on the fragments of the theory
of Lie algebras. However, as Olver said, in essence, this problem is attacked by the naïve approach
of taking a general element in Lie algebra and subjecting it to various adjoint transformations so as
to “simplify” it as much as possible. To make up this problem and ensure the comprehensiveness
with inequivalence, we develop a direct and systemic algorithm for the one-dimensional optimal
system. The new approach is very natural and every element in the optimal system can be found step
by step.

Our method introduced in this paper, which is essentially new, only depends on the commutator
and adjoint representative relations among the generators of Lie algebras. The main work includes
the following.

(1) A valid method is proposed to compute all the general invariants of the one-dimensional Lie
algebra, which include the well-known Killing form.
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(2) A criterion is introduced to scale the invariants, which appears in “Remark 2,” “Remark 3,”
and “Remark 4.”

(3) For two one-dimensional subalgebras v and ṽ , we introduce an algebraic system of Eq. (20)
(or (21)) to determine their equivalences in the sense of adjoint transformation.

(4) Based on all the scaled invariants, we put forward a direct and effective algorithm to
construct one-dimensional optimal system. With the new approach, every element in the optimal
system can be found step by step.

Since all the representative elements are attached to different values of the invariants, it en-
sures the optimality of the optimal system. From the process of the operation in our method, one
can easily see that how these representatives are mutually inequivalent. It shows that the designed
algorithm in this paper essentially starts from a finite dimensional symmetry Lie (sub)algebra of the
system of differential equations rather than the system itself. Hence, although the given examples in
this paper are all in the form of single partial differential equation, the method can also be applied
to ODEs and systems of differential equations. Due to the one-dimensional optimal system of the
symmetry Lie algebra, the original (1 + 1)-dimensional system of differential equations would be
reduced to inequivalent ODEs and then the corresponding group invariant solutions can be recov-
ered. Furthermore, how to apply all the invariants to construct r-parameter (r ≥ 2) optimal systems
is in our consideration. Since the algorithm is very systemic, we believe that it will provide a very
good manner for the mechanization.
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