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Abstract In this paper, we present an omnidirectional

vision-based method for object detection. We first adopt

the conventional camera approach that uses sliding win-

dows and histogram of oriented gradients (HOG) features.

Then, we describe how the feature extraction step of the

conventional approach should be modified for a theoreti-

cally correct and effective use in omnidirectional cameras.

Main steps are modification of gradient magnitudes using

Riemannian metric and conversion of gradient orientations

to form an omnidirectional sliding window. In this way,

we perform object detection directly on the omnidirectional

images without converting them to panoramic or perspective

images. Our experiments, with synthetic and real images,

compare the proposed approach with regular (unmodified)

HOG computation on both omnidirectional and panoramic

images. Results show that the proposed approach should be

preferred.

Keywords Catadioptric omnidirectional cameras · Object

detection · Human detection · Car detection · Vehicle

detection
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1 Introduction

Detecting certain objects with cameras is an important task

for many research and application areas such as visual

surveillance, ambient intelligence and traffic analysis. Last

decade has witnessed significant advances in object detection

both in terms of effectiveness and processing time. Quite a

variety of approaches have been proposed for object detec-

tion. A major group in these studies uses the sliding window

approach in which the detection task is performed via a

moving and gradually growing search window. A significant

performance improvement was obtained with this approach

by employing histogram of oriented gradients (HOG) fea-

tures. Inspired by scale invariant feature transform (SIFT)

[17], Dalal and Triggs [7] proposed to use HOG for the fea-

ture extraction step and they used support vector machines

(SVM) for the classification step. Later on, this technique

was enhanced with part-based models [10] and with pyra-

mid HOG features and intersection kernel SVM [18]. More

recently, it was shown that using combinations of features

outperforms the approaches that use a single type of feature

[24]. For a detailed summary and comparison of methods,

specific to pedestrian detection, we refer readers to [9].

Omnidirectional cameras provide 360◦ horizontal field

of view in a single image (vertical field of view varies). If

a convex mirror is placed in front of a conventional cam-

era for this purpose, then the imaging system is called a

catadioptric omnidirectional camera. An example image can

be seen in Fig. 3. Despite its enlarged view advantage, so

far omnidirectional cameras have not been widely used for

object detection. This is partly due to the resolution dis-

advantage. However, recent omnidirectional cameras have

adequate resolution to detect objects that cover a small part

of the image. Another reason is that the conventional camera

methods should be mathematically modified to be used with
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omnidirectional cameras. As described in Sect. 2, previous

studies in this direction were focused on SIFT.

In a study on object recognition with omnidirectional cam-

eras [25], a mobile robot is given the images of several objects

in the environment and it is asked to recognize these objects.

Actually, the omnidirectional image is warped into a cylindri-

cal panoramic image before matching with the images of the

objects using SIFT. In [2], objects in an indoor office environ-

ment are classified with a generative model, where the system

is first trained with annotated images from the same envi-

ronment. In [13], authors use Haar features to perform face

detection with catadioptric omnidirectional cameras. Instead

of modifying the feature extraction step, they convert the

omnidirectional images into panoramic images and directly

use the conventional (perspective) camera technique. In a

similar manner, panoramic images are used in [14] for human

detection.

A human-tracking method for omnidirectional cameras is

proposed in [23]. As a part of the proposed algorithm, HOG

features are computed. However, a rectangular rotating and

sliding window is used with no mathematical modification

for the omnidirectional camera.

In this paper, we propose a modification for the con-

ventional approach to tackle object detection directly on

catadioptric omnidirectional images. That is, our method

does not require the conversion of the omnidirectional images

to panoramic or perspective images. Apart from the advan-

tage of eliminating the image conversion step, the detection

performance of the proposed method is superior as given in

experiments section.

To our knowledge, the proposed method is the first that

mathematically modifies an object detection approach to

be effectively used for omnidirectional cameras. A second

contribution is that we construct an omnidirectional image

dataset with annotated humans, cars and vans and it can be

downloaded from our website 1. We believe this dataset will

be useful to the community for omnidirectional vision-based

object detection research.

The organization of the paper is as follows. In Sect. 2,

we explain why our approach is theoretically correct. We

adopt HOG + SVM [7] approach for object detection and as

explained in Sect. 3, we modify the HOG feature extraction

step for catadioptric omnidirectional cameras. Our experi-

ments, given in Sect. 4, were held for human, car and van

detection. Their results indicate that the adaptation of HOG

features improves the performance when compared to the

unmodified HOG computation, i.e., rotating rectangular win-

dows. We also compare our method with object detection on

panoramic images converted from omnidirectional ones and

conclude that the proposed method is superior especially for

objects with a width/height ratio <2.5.

1 http://cvrg.iyte.edu.tr/.

This paper is an extended version of our previous work [6],

which included experiments with a limited image dataset and

considered only human detection.

2 Processing of omnidirectional images

Due to their nonlinear imaging geometry, working with

omnidirectional cameras requires geometric transforma-

tions. At first sight, converting an omnidirectional image to

a panoramic or several perspective images may seem to be a

practical solution. However, it has two major drawbacks: the

conversion, which is a nonlinear warping, can be computa-

tionally expensive for large video frames especially when an

omnidirectional image is converted to numerous perspective

images to properly fit sliding windows. More importantly,

the interpolation required by the image warping introduces

artifacts that affect the detection performance.

Among a small number of omnidirectional object detec-

tion studies (cf. Sect. 1), none of them developed a method

peculiar to omnidirectional cameras. On the other hand, last

decade witnessed some effort on computing SIFT features in

omnidirectional images. Starting from [8], researchers tried

to avoid warping omnidirectional images, and instead, they

assumed a unitary sphere S2 as the underlying domain of the

image function. When these studies (which consider the con-

volution step of SIFT) are examined, several approaches can

be observed. Below, we describe these approaches briefly.

1. The simplest approach would be backprojecting the

image onto a sphere surface S2 and convolving it with a

spherical Gaussian function GS [5]. Since this approach

requires resampling of the whole image, authors in

[8] project the kernel GS into image plane instead of

backprojecting the image onto S2, and the convolu-

tion is carried directly on the image plane. This avoids

image resampling but since the mapped Gaussian kernel

changes at every image location, it leads to an adaptive

filtering. This computational complexity makes the solu-

tion unsuitable.

2. Another approach processes omnidirectional images on

the sphere after an inverse stereographic projection [12].

Scale space is computed with Gaussian kernels on the

sphere, while the convolution is performed using the

spherical Fourier transform. It was stated in [3] and [16]

that this operation leads to aliasing issues due to band-

width limitations.

3. The processing on the sphere is achieved through a suit-

able differential operator that adapts to the non-uniform

resolution, while using the original image pixel values. In

[4], scale space representation is computed using the heat

diffusion equation and differential operators (Laplace–

Beltrami operators) on the non-Euclidean (Riemannian)
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manifolds. Moreover, authors in [3] tested this approach

by evaluating the matching performance of SIFT. Lastly,

authors in [20] compared the original SIFT with the

version modified by Laplace–Beltrami operators on the

Riemannian manifolds and observed that the modified

version has a better performance. Later, this approach

was extended to radially distorted images as well [16]

and also generalized to any camera to produce camera

invariant features [22].

Exploiting the experience gained by the summarized work,

we compute the gradients on Riemannian manifolds (as in [3]

and [4]) and adapt the gradient magnitude computation step

(Sect. 3.1) of our algorithm accordingly. Since our study aims

object detection, we also modify the gradient orientations to

form an omnidirectional sliding window (Sect. 3.2).

3 The proposed HOG computation

In the sliding window-based object detection approach, a

window is moved horizontally and vertically on different

scales of an image. No rotation is applied since there is an

assumed orientation of the object, for instance pedestrians

should be upright. In a similar manner, to detect objects in

omnidirectional images, we rotate the sliding window around

the image center. In addition, to achieve a mathematically

correct detection method, we modify the image gradients.

The operations that we perform can be divided into two steps:

1. Modification of gradient magnitudes using Riemannian

metric.

2. Conversion of gradient orientations to form an omnidi-

rectional (non-rectangular) sliding window.

3.1 Modification of gradient magnitudes using the

Riemannian metric

3.1.1 Sphere camera model

We use the sphere camera model [11] which was introduced

to model central catadioptric cameras. The model comprises

a unit sphere and a perspective camera. The projection of 3D

points can be performed in two steps (Fig. 1). The first one is

the projection of point Q in 3D space onto a unitary sphere,

resulting in point r, and the second one is a perspective pro-

jection from the sphere surface to the image plane, resulting

in point q. This model covers all central catadioptric cameras

with varying ξ .

A point on the sphere r = (X, Y, Z) can also be repre-

sented by two angles (θ, ϕ), the former is the vertical angle

and the latter is the azimuth (Fig. 2a). In para-catadioptric

camera (the ones using a paraboloidal mirror) ξ = 1. If we

place the image plane at the south pole (which only differs

Fig. 1 Projection of a 3D point onto the image plane in the sphere

camera model

Fig. 2 a A 3D point on the sphere is represented by two angles (θ, ϕ).

b Consider the unitary sphere (r = 1). Image plane is placed at the south

pole ( f = 2). A 3D point is first projected onto the sphere surface and

then projected onto the image plane, where in this case ξ = 1

the scale), f = 2r = 2 and the perspective projection within

the sphere model corresponds to the stereographic projection

(Fig. 2b).

There are several methods to perform sphere camera

model calibration [19,21]. We used [19] since a MATLAB

toolbox is provided with it. In our experiments, we used a

para-catadioptric camera (ξ = 1). Focal length f is the dis-

tance to the image plane. For a para-catadioptric camera, this

is also equal to the distance between image center and any

point that is at the same horizontal level with the camera cen-

ter. Along with ξ and f , image center coordinates (cx , cy)

are used to modify the gradient magnitudes as explained in

Sect. 3.1.2.

3.1.2 Differential operators on Riemannian manifolds

Let us briefly describe how the differential operators on the

Riemannian manifolds are defined. Suppose M denotes a

parametric surface on ℜ3 and gi j denotes the Riemannian

metric that encodes the geometrical properties of the mani-

fold. In a local system of coordinates x i on M, the components

of the gradient are given by

∇ i = gi j ∂

∂x j
(1)

where gi j is the inverse of gi j .
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A similar reasoning is used in [3] and [20] to obtain

the Laplace–Beltrami operator, which is the second-order

differential operator defined on and used for scale space rep-

resentation for SIFT. In this paper, we are working on the first

derivatives. Let us briefly go over the para-catadioptric case

and derive the metric that allows us to compute the derivatives

on the sphere directly using the image coordinates.

Consider the unitary sphere S2 with radius=1 (Fig. 2a). A

point on S2 is represented in Cartesian and polar coordinates

as

(X, Y, Z) = (sin θ sin ϕ, sin θ cos ϕ, cos θ) (2)

The Euclidean line element in Cartesian coordinates, dl, can

be expressed in polar coordinates as

dl2 = dX2 + dY 2 + dZ2 = dθ2 + sin2 θdϕ2 (3)

The stereographic projection of the sphere model sends a

point on the sphere (θ, ϕ) to a point in polar coordinates

(R, ϕ) in the image plane (plane ℜ2), for which ϕ remains

the same and θ = 2 tan−1(R/2) in a para-catadioptric system

(Fig. 2b).

Using the identities, R =
√

x2 + y2, ϕ = tan−1(y/x) the

line element reads

dl2 =
16

(4 + x2 + y2)2
(dx2 + dy2) (4)

giving the Riemannian inverse metric

gi j =
(4 + x2 + y2)2

16
(5)

With this metric, we can compute the differential operators

on the sphere using the pixels in the omnidirectional images.

In particular, norm of the gradient reads

|∇S2 I |2 =
(4 + x2 + y2)2

16
|∇ℜ2 I |2 (6)

We see that the para-catadioptric gradients are just the scaled

versions of the gradients in Euclidean domain. Therefore, we

multiply our gradients with metric gi j .

At the center of the omnidirectional image, (x, y) =

(0, 0), Riemannian and Euclidean gradients are the same. At

an image location where
√

x2 + y2 = 2, which corresponds

to a 3D point at the same horizontal level with the sphere

center (mirror focal point), the Riemannian metric is equal

to 4. Therefore, the gradients are magnified as we move from

the center to the periphery of the omnidirectional image.

The Riemannian metric for other catadioptric systems

(with varying ξ ) are derived in [20].

3.2 Conversion of gradient orientations for

omnidirectional sliding window

After the image gradients are obtained with Riemannian

metric, we convert the gradient orientations to form an omni-

directional (non-rectangular) sliding window. The shape of

the omnidirectional sliding window varies according to the

size and location of the object in the omnidirectional image.

As depicted in Fig. 3, a car close to the camera is severely

bent. However, a window covering the car at a distance is

close to a rectangle. The difference cannot be represented

with a scale ratio; therefore, we are not able to train one

object model for detection in omnidirectional images. Since

it did not seem plausible to train many omnidirectional HOG

models, we chose to train our object models with perspective

image datasets. Gradients in the sliding window should be

computed as if a perspective camera is looking from the same

viewpoint.

Figure 4a shows a half of a synthetic para-catadioptric

omnidirectional image (400 × 400 pixels) where the walls

of a room are covered with rectangular black and white tiles.

Conventional HOG result of the marked region (128 × 196

pixels) in this image is given in Fig. 4b where the gradient

orientations are in accordance with the image. However, since

these are vertical and horizontal edges in real world, we need

to obtain vertical and horizontal gradients. Figure 4d shows

converted gradients for the region marked in Fig. 4c, which

is an example of the proposed HOG computation.

To obtain the gradients in Fig. 4d from the image in Fig. 4c,

we performed a transformation from polar to Cartesian coor-

dinates without using any camera calibration information.

Fig. 3 Two cars in the omnidirectional image are indicated with black

frames. The one close to the camera covers a larger area, and it should

be searched with a more bent sliding window, and the other one is far

away and it should be searched with a more straight sliding window
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Fig. 4 Description of how the gradients are modified for an omnidi-

rectional sliding window. Result in (b) is the regular HOG computed

for the region marked with dashed lines in (a). Modified HOG compu-

tation gives the result in (d) for the region marked in (c). Vertical and

horizontal edges in real world produce vertical and horizontal gradients

in the modified version

Both gradient orientations and gradient magnitudes in the

proposed HOG window are computed from the omnidi-

rectional image using bilinear interpolation with backward

mapping. While transforming coordinates, the height and

width of rectangular area in Fig. 4d are kept equal to the

thickness and center arc length of the doughnut slice marked

in Fig. 4c, respectively.

4 Experiments

Our experiments consider the detection of standing humans,

cars and vans. For human detection, we trained a 128 × 64

model using INRIA person dataset as described in [7]. For car

detection, we trained a 40 × 100 model using UIUC [1] and

Darmstadt [15] sets together totalling 602 car side views. The

model trained for van detection is 40 × 100 as well. For this

object type, we constructed a database of 107 images contain-

ing vans viewed from either side. While training all object

models, the number of the negative samples in the dataset

were increased by collecting so-called hard-negatives. These

are the false-positive detections of the initial model that was

trained with the original positive and negative samples.

4.1 Evaluation of the proposed HOG computation using

synthetic omnidirectional images

Let us first compare the results of the proposed and the regular

(unmodified) HOG computation. Since the computed HOG

features are given to an SVM trained with an image dataset

of corresponding object type, we aim to obtain higher SVM

scores with the proposed omnidirectional HOG computation.

We artificially created 210 omnidirectional images con-

taining humans, following an approach similar to [12].

Images in INRIA person dataset are projected to omnidi-

Fig. 5 Depiction of the regular HOG window (green rectangle) and

the proposed window (red doughnut slice) on an omnidirectional image

artificially created by projecting a perspective image from INRIA person

dataset

Table 1 Comparison of the regular and proposed HOG window by

their SVM scores for human detection

Min.

score

Lower

quart.

Mean

score

Upper

quart.

Max.

score

Regular HOG −1.01 1.16 1.69 2.20 3.21

Proposed HOG −0.42 1.51 1.93 2.45 3.64

Table 2 Comparison of the regular and proposed HOG window by

their SVM scores for car detection

Min.

score

Lower

quart.

Mean

score

Upper

quart.

Max.

score

Regular HOG −1.81 −0.38 −0.09 0.24 1.17

Proposed HOG −1.55 −0.17 0.19 0.55 1.79

rectional images using certain projection angle and distance

parameters. Figure 5 shows an example omnidirectional

image, where the regular HOG window (rectangular, 128×64

pixels) and the proposed omnidirectional HOG window (non-

rectangular) are shown. The HOG features computed with the

two window types are compared with their resultant SVM

scores. Since the locations of projections in these images are

known, no search is needed for this experiment. However,

vertical position of the window affects the result. For both

approaches, we chose the position that gives the highest mean

SVM score. Table 1 summarizes the result of the comparison,

where we see that the mean score (also minimum, maximum

and quartiles) for the proposed approach is higher than that

of regular HOG window.

For synthetic car images, 602 perspective car images from

UIUC [1] and Darmstadt [15] datasets are projected to omni-

directional images. 40×100 pixel regular HOG computation

and the proposed non-rectangular HOG window are com-

pared in Table 2. The result is in accordance with the human

detection experiment: mean SVM score, together with mini-

mum, maximum and lower/upper quartiles, for the proposed

approach is higher than the regular method.
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4.2 Experiments of human detection in real images

In this subsection, we present the results for a set of images

taken with our catadioptric omnidirectional camera. We com-

pared the proposed HOG computation not only with the

regular HOG window, but also with the approach that first

converts the omnidirectional image to a panoramic image

and then performs regular HOG computation. Although it

was explained in Sect. 2 that working on panoramic images

is not a theoretically correct approach, if the performance of

detection on panoramic image is high, it can still be consid-

ered as an option for practical applications.

Figure 6 shows the results for one of the images in the

dataset. Positive detections, after non-maximum suppres-

sion, are superimposed on the images with the proposed HOG

window, the regular HOG window on omnidirectional image

and HOG after panoramic conversion. The corresponding

SVM score of each window is given at the upper left corner.

Since a fixed size object (128 × 64) is searched in gradu-

ally resized versions of the original image, different sizes of

detection windows seen in the figure correspond to detected

objects in different scales. Since the feet of the body is very

close to the blind spot of the camera and 128 × 64 human

object model has a 16-pixel margin around the body, the best

scoring windows usually exceed to the blind spot. The motion

of the omnidirectional sliding window is based on polar coor-

dinates. Each time, it turns by a fixed angle around the center

and when the circle is completed, radius is changed. For the

proposed HOG window, 64 is the length of the center arc and

Fig. 6 Human detection results on an omnidirectional image with

SVM scores (at upper left corners) greater than 1. a Proposed sliding

windows. b Regular sliding and rotating windows. c Regular sliding

windows on panoramic image

Fig. 7 Precision–recall curves to compare the proposed HOG com-

putation, the regular HOG and HOG after panoramic conversion

approaches for human detection. The data points in the curve corre-

spond to the varying threshold values for the SVM score, which change

from 0 to 5. As the threshold increases, all approaches reach preci-

sion=1

128 is the thickness of the doughnut slice. For a fair com-

parison, the number of windows checked is equalized for all

three approaches.

For the humans in Fig. 6, the average SVM scores for the

proposed HOG, the regular HOG and HOG on panoramic

image approaches are 2.94, 2.11 and 2.41, respectively. To

evaluate the overall performance of these three approaches,

we plot precision–recall curves for the whole dataset which

consists of 30 real omnidirectional images taken in different

scenes including indoor and outdoor environments (Fig. 7).

A total of 66 humans were annotated in these images. The

larger the area under the curve, the better the performance of

the algorithm. One can observe that the performance of the

proposed HOG computation is better than the others. Only for

a limited range, regular HOG performs better. When recall

>0.5, the proposed approach is distinctively superior.

A detection window is considered to be a true-positive if

it overlaps an annotation by 50 % (following the advice in

[9]), where the overlap is computed as

O =
area (detection window ∩ annotation)

area (detection window ∪ annotation)
(7)

For a fair comparison, the annotations are separately pre-

pared for the mentioned three methods. Annotations of the

proposed HOG approach are doughnut slices (e.g., Fig. 6a),

annotations of the regular HOG approach are rectangles rotat-

ing around the omnidirectional image center and annotations

of HOG on panoramic image approach are upright rectangles.

While annotating, a margin is left around the object to be in

accordance with the training set images.

4.3 Experiments of car detection in real images

We repeated the comparisons between the evaluated methods

for car detection. Figure 8 shows the results for a single image
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Fig. 8 Results of car detection on an omnidirectional image with SVM

scores (at upper left corners) greater than −0.5. a Proposed sliding win-

dows. b Regular sliding/rotating windows. c Regular sliding windows

on panoramic image

Fig. 9 Precision-recall curves to compare the proposed HOG computa-

tion, the regular HOG and HOG after panoramic conversion approaches

for car detection. The data points in the curve correspond to the varying

threshold values for the SVM score, which change from −1.0 to 1.5

as an example. For the overall performance comparison of the

proposed HOG computation, the regular HOG computation

and HOG after panoramic conversion approaches, we plot

precision-recall curves (Fig. 9) for our dataset that includes

50 real images containing a total of 65 annotated cars.

When we compare the results in Fig. 9 with the ones

in Fig. 7, one observation would be that now the proposed

method is better than the regular HOG everywhere. This is

due to the fact that car is a wider object than human. The reg-

ular HOG computation is affected more as the width/height

ratio of the object model increases because it tries to fit a

rectangle to the object in the omnidirectional image, which

is bent more.

A second observation would be the increased performance

of detection on panoramic image. It is now comparable to the

Fig. 10 Results of van detection on an omnidirectional image with

SVM scores (at upper left corners) greater than −0.5. a Proposed slid-

ing windows. b Regular sliding/rotating windows. c Regular sliding

windows on panoramic image

proposed method. This can also be explained by the fact that

car has a ‘wide’ model with a width/height ratio of 2.5. It

is harder for taller object models, like standing humans, to

maintain the original width/height ratio in panoramic images.

Since the panoramic image is created on a cylindrical surface

rotating around the viewpoint, as we move down on the sur-

face, same amount of viewing angle starts to cover a larger

height in the image. This can be observed in the lower parts

of Fig. 6c.

4.4 Experiments of van detection in real images

As a third object type, we performed experiments on van

detection. Figure 10 shows the results for a single image.

For this image, we observe that all three methods have a

true-positive detection; however, score obtained with the pro-

posed method (Fig. 10a) is higher than the score obtained

on panoramic image (Fig. 10c) which is relatively higher

than the score with regular HOG on omnidirectional image

(Fig. 10b). Precision-recall curves in Fig. 11 show overall

performance comparison for our dataset that includes 50 real

images containing a van each. We used 57 other van images

as a positive training set.

This time, the proposed approach is consistently better

than HOG on panoramic approach. Regular HOG approach

again has the worst performance since the vans we work

on are wide objects similar to cars. One can also observe

that recall=1 can be reached for low thresholds for all three

approaches. This is explained by the fact that test and train-

ing images are chosen from the same dataset that we built.
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Fig. 11 Precision-recall curves to compare the proposed HOG com-

putation, the regular HOG and HOG after panoramic conversion

approaches for van detection

However, for car detection experiment, the training images

were from a publicly available dataset.

5 Conclusions

We aimed to perform object detection directly on the omni-

directional images. As a base, we took the HOG + SVM

approach which is one of the popular object detection meth-

ods. After describing how the feature extraction step of

the conventional method should be modified, we performed

experiments to compare the proposed method with the reg-

ular HOG computation on omnidirectional and panoramic

images. Results of the experiments indicate that the perfor-

mance of the proposed approach is superior to the regular

approach. The performance of regular HOG on panoramic

image is partially comparable to the proposed approach for

objects that have high width/height ratio (such as cars). Hav-

ing a high width/height ratio is an advantage for detection

on panoramic image but a disadvantage for applying regular

HOG on omnidirectional images. One should also note that

the detection on panoramic images has the disadvantage of

requiring image conversion beforehand.

In this work, we concentrated on HOG features for object

detection. However, other features, especially the ones based

on image derivatives can be modified in a similar fashion for

a theoretically correct and effective use in omnidirectional

cameras.
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