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ABSTRACT

We present a direct approach to finite-order compensator design for

distributed parameter systems, i.e., one that is not based on reduced

order modelling. Instead, we use a parametrization around an initial

compensator which displays both controller order and closed-loop stability

in a convenient way. The main result is an existence theorem which holds

for a wide class of linear time-invariant systems (parabolic, delay, damped

hyperbolic). The most important assumptions are: bounded inputs and

outputs, finitely many unstable modes, completeness of eigenvectors.

An example is included, to illustrate the feasibility of our method for

purposes of design.



1. Introduction

In the context of systems described by linear partial differential

equations or functional differential equations, the problem of stabili-

zation by feedback gains some challenging features that are not present

in the finite-dimensional situation. For instance, it is no longer easy to

establish necessary and sufficient conditions for the existence of a finite-

dimensional compensator that will produce a closed-loop system with a

prescribed stability margin. It is an important practical problem to

find at least sufficient conditions which will hold for a wide class of

interesting systems, since implementation of state feedback ([1], [2]) or

of controllers of infinite order ([3], [4], [5]) is often not possible.

The most popular approach consists of replacing the infinite-dimensional

system by a finite-dimensional "reduced order model", and applying standard

techniques to obtain a finite-dimensional compensator for this model. The

pertinent question is, of course, how we can be sure that the compensator

will also stabilize the original, infinite-dimensional system. It has been

shown by examples that, under unfavorable circumstances, the interaction

of the controller with the unmodelled part of the system (sometimes termed

"spillover")may be such as to de-stabilize the closed-loop system as a

whole [6]. Existence results for finite-dimensional compensators have been

established recently on the basis of a "zero spillover" assumption ([5],

[7], [8]), but this assumption is severely restrictive. Also, existence

results can be based on a suitable concept of 'closeness' of the reduced-

order model and the actual system. This approach is taken in [9], where

the results are still limited in nature. At this point, it should be

emphasized that a concept of 'closeness' is also crucial in any study



-2-

of parameter uncertainty. This aspect is, as well as order reduction,

inherent in many discussions of modelling. For the sake of theoretical

clarity, we shall keep these two issues apart. In the present paper, we

shall assume that the infinite-dimensional system to be controlled is

known precisely, and we shall construct a finite-dimensional compensator

under this assumption. It is expected that this result can then be

used in a further study of what can be done under conditions of parameter

uncertainty.

Our approach is not based on reduced-order modelling, and therefore

we call it a "direct approach". The core of our method is a certain

parametrization of compensators for a given system, which displays both

the stability properties of the closed-loop system and the order of the

compensator in a convenient way. We shall try to explain the basic idea

in Section 2. In Section 3, the set-up is described in a more rigorous

fashion. The main result, which establishes the existence of finite-

dimensional compensators for a wide class of time-invariant linear systems

(including parabolic systems, delay systems, and damped hyperbolic systems),

will be given in Section 4. The method of proof is constructive and can

be turned into an actual design method, as will be shown by an example

in Section 5. Some final remarks follow in Section 6.
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2. Heuristics

The purpose of this section is to describe the main idea behind the

development in the rest of the paper, without entering into technical details.

A rigorous set-up will be described in the next section; here, we just

want to give a heuristic discussion.

So let us consider a linear system in its standard state-space form

x'(t) = Ax(t) + Bu(t)

(2.1)
I y(t) = Cx(t)

where we assume that the pair (A,B) is stabilizable and the pair CC,A) is

detectable. We can then choose F such that A+BF is stable and G such that

A+GC is stable, and the standard full-order compensator (see, for instance

[10]) is then formed by

x'(t) = (A+GC)x(t) - Gy(t) + Bu(t)

(2.2)
( u(t) = Fx(t)

In the finite-dimensional situation, it is well-known that the closed-

loop system obtained by combining (2.1) and (2.2) is described by a

system matrix whose eigenvalues are those of A+BF and A+GC taken together

([10, 5.2]). Let us examine the compensator (2.2) a little more closely.

We can re-write the compensator equations as

(' (t) = (A+BF+GC) (.t) - Gy(t)

d u(t) = Fx(t)

and hence the compensator transfer matrix is
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~c(s) = -F(sI-A-BF-GC) G . (2.4)

Now, there is no reason why (2.3) should represent a minimal realization

of this transfer function. If it is not, then the compensator order can

be reduced. Even if the McMillan degree of c coincides with the order

of the system (2.3), there may be transfer matrices with considerable

lower McMillan degree that are close enough to ~c to guarantee that they

as well will stabilize (2.1). In order to find such transfer matrices,

one possible strategy would be to take c and to change it a little bit by

turning near-cancellations into actual cancellations, thereby decreasing

the order of its minimal realization.

The question is, of course, under what conditions we can be sure that

such a procedure will lead to a finite-dimensional compensator, if the

original system (2.1) is infinite-dimensional. To get at least a partial

answer to this, let us return to the state-space setting. The realization

(2.3) is non-minimal if the pair (A+BF+GC,G) is not reachable or the pair

(F,A+BF+GC) is not observable. We shall concentrate on the reachable

set of the pair (A+BF+GC,G), which is of course the same as the reachable

set of the pair (A+BF,G). This set is characterized as the smallest sub-

space V such that (A+BF)V C V and im G C V. The basic idea which underlies

the present paper is the observation that, by manipulation of G alone,

we can implement a strategy of slightly perturbing the compensator transfer

matrix to decrease its McMillan degree. Even if the original im G is not

contained in any (A+BF)-invariant subspace of interesting dimension, it

may very well be true that close to G there is a G such that im G does

fit into a low-dimensional (A+BF)-invariant subspace. Then the reachable
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set of the pair (A+BF+GC,G) will also be low-dimensional, say equal to k,

and it will be possible to construct a compensator of order k based on

F and G. The stability of the closed-loop system will then depend on

A+BF and A+GC. We didn't change A+BF, so there is no problem for that

part, and it follows from the theorem on continuity of eigenvalues that the

stability of A+GC follows from that of A+GC if G is close enough to G.

(Actually, we shall use another theorem below, which gives us a ball

around G where stability of A+GC is guaranteed: see Lemma 4.3.)

It can also be seen directly from the differential equations (2.2)

that a reduction of compensator order is possible if there is a nontrivial

subspace V with (A+BF)V C V and im G C V. For this purpose, re-write (2.2)

as

x'(t) = (A+BF)x(t) + G(Cx(t)-y(t))

(2.5)

(u(t) = Fx(t)

The equation for x(t) is seen to be given by the evolution operator A+BF

together with a driving input which enters through G. Since the stabili-

zation action of the compensator should take place for any initial value

of x(.), we may as well suppose that x(O) = 0. Then it is clear that

x(t) will be in V for all time. Consequently, no larger state space than

V is necessary for x.

As a third possible interpretation, consider the following matrix

argument. Again, if V is a subspace such that (A+BF)V C V and im G C V,

then we obviously have the following matrix representations for A+BF and

G, with respect to a suitable basis.
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B1 1 A12 +B1 2 (26)
A+BF = (AII+B 2/ (Gl G ) (2.6)

\ A22+B2F 1

As is easily established from (2.1) and (2.2), the equation describing the

closed-loop system is

d x(t) (t) A BF
Ae=x Ae =e 1 (2.7)

dt"(t) a e(t)GC A+BF+G

Using the special forms in (2.6) to describe the compensator dynamics,

we see that the evolution operator Ae in (2.7) can be given as a three-by-

three block matrix:

/ A BF1 BF2

A = A-G1C A12 +B1F2+G1C2 (2.8)All+B1F1 2 21

0° ° A22+B2F2

It is evident from this representation that if Ae is stable, then the

two-by-two left upper block in Ae must also be stable. This means that

we are able to build a stabilizing compensator (of order dim V) based on

G1, Fl, and All+B 1F+G1C1
. Technically speaking, this is perhaps the

cleanest way to describe the situation, and we shall use basically

this approach in the rigorous development of later sections.

In summary, the proposed method is the following. We start by selecting

a full-order compensator that stabilizes the original system. Then, we

parametrize a set of nearby compensators on the basis of the 'injection

mapping' G. This parametrization is not necessarily complete, but the

stability of the resulting closed-loop systems is easily monitored, and,
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in particular, there is a ball around the original injection mapping where

stability is guaranteed. Moreover, the points in the parameter space where

the compensator order is reduced to a given number k are easily spotted,

because they correspond to the k-dimensional invariant subspaces of A+BF,

which are, at least theoretically speaking, known. So this parametrization

allows us to do an effective search for low-order stabilizing compensators.

In the infinite-dimensional case, we expect that it will be possible to prove

the existence of a finite-dimensional stabilizing compensator if there are

finite-dimensional (A+BF)-invariant subspaces arbitrarily close to any given

subspace, i.e., if we have completeness of eigenvectors. No further

essential restrictions will be required. We shall now proceed to make

this precise. It shouldbe emphasized that the procedure we have sketched is

meant for theoretical purposes; several alterations may be made to advantage,

when a similar method is to be used for practical design purposes. This

will be illustrated in the example of Section 5.
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3. Assumptions and Preliminaries

We shall consider systems of the form

x' (t) = Ax(t) + Bu(t), x(t) e X, u(t) e U

(3.1)
y(t) = Cx(t), y(t), y(t) e Y

under the following basic assumptions:

(Al) A is the generator of a strongly continuous semigroup T(')

of bounded linear operators on the Banach space X.

(A2) B is a bounded linear mapping from the finite-dimensional input

space U into X.

(A3) C is a bounded linear mapping from X into the finite-dimensional

output space Y.

For the general theory of semigroups, we refer to [11]. The condition (A2)

requires that the control enters the system in a 'distributed' way, i.e.,

as a forcing term, rather than via the boundary conditions. The condition

(A3) excludes, forinstance, taking point observations on an L2-space.

We make these boundedness assumptions here for simplicity.

Following [12, p.181], we shall say that the spectrum of an operator

is discrete if it consists only of isolated eigenvalues with finite

multiplicities. We shall make the following assumption because it is

convenient, and also because it covers the commonly encountered cases.

(A4) The spectrum of A is discrete.

As a measure of stability, we shall use the growth constant. This constant

is obtained for every semigroup T(t) (from now on, we shall use the term

'semigroup' as a synonym for 'strongly continuous semigroup of bounded
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linear operators on a Banach space') by the following formula [11, p.306]:

:= inf log IT(t) I = lim - log |jT(t)j| < 1. (3.2)
0: =inf tte(0,') t'g

The semigroup is said to be asymptotically stable if its growth constant

is negative, and the absolute value of the growth constant is then also

called the stability margin. Obtaining a reasonable stability margin is

a primary purpose of feedback control, and we shall suppose that a desired

minimum degree of stability has been specified by a growth constant i<0

which will be fixed from now on. A semigroup will be called simply stable

if its growth constant is smaller than or equal to w. We shall assume

that there are only finitely many unstable or nearly unstable modes:

(A5) There exists 6>0 such that the half-plane {XeClRe X>w-6}

contains only finitely many eigenvalues of A.

Under this assumption, we can draw a simple closed curve enclosing precisely

those eigenvalues of A that have real parts larger than W. From this,

we obtain a decomposition of the state space X as in [12, p.178]. We

shall write X=X 0 X where X is called the unstable modal subspace

and X is the stable modal subspace. Correspondingly, the following

notation will be used with respect to this decomposition:

A A=B = C = (C C ) . (3.3)
0 A)B u s

As in the finite-dimensional case, we shall need assumptions on the

stabilizability of the pair (A,B) and the detectability of the pair (C,A).

In the present context, these are most easily expressed in the following

way.
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(A6) The pair (A , B ) is controllable.
u u

(A7) The pair (Cu, A ) is observable.

Note that both pairs involve only operators between finite-dimensional

spaces, so that we can rely on the familiar finite-dimensional concepts.

Next, we need an assumption of a somewhat more technical nature. Let

6>0 satisfy the condition of (A5). Then it is clear that one can also

do a decomposition of X with respect to the eigenvalues of A that have

real parts larger than w-6 (rather than a). Let A denote the operator

that is obtained in this way, similarly to A . It has been shown in [2,
s

App. 2] that A generates a semigroup. We shall assume the following.

(A8) The growth constant of the semigroup generated by A is smaller

than t.

We know, of course, that the eigenvalues of A all have real parts smaller
s

than or equal to w-g, but counter examples ([11, p.665], [13]) show that

this in itself does not guarantee that the growth constant of the semi-

group will be bounded by w-d or by t. One solution, then, is to introduce

a "spectrum determined growth assumption" like (A8). This solution has been

proposed in [2], where it has also been argued that the assumption holds for

various important classes of semigroups.

For an alternative, we should consider our ultimate purposes. To

the system (3.1), we want to add a finite-dimensional compensator of the

form

w' (t) = A w(t) + Gcy(t) w(t) e W, dim W <

(3.4)
u(t) = Fcw(t) + Ky(t)
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Doing so, we obtain a closed-loop system which looks like

dt e () (35)

where the closed-loop system mapping Ae is given by

A =A (3.6)

G C A
c c

This operator generates a semigroup on X W, since it is a bounded

perturbation of

ae ) (3.7)

\0 

[11, p. 389]. For our purposes, it will be easily sufficient if we know

the following:

(A8)' For any choice of the matrices K, F , Gc, and A in (3.6), the

growth constant of the semigroup generated by Ae is equal to

~~~~~~~~~esup {Re XIX e a(A )}.

We shall primarily use (A8), because this assumption is probably in most

cases more directly verifiable (see [2]). However, in some instances it

may be easy to check that (A8)' is true, and then (A8) can be dispensed

with. In engineering contexts, (A8) ' is often assumed without mentioning.

For our final assumption, we point out that we shall call any non-

zero vector in the range of the eigenprojection associated with a given

eigenvalue [12, p.181] an eigenvector, so this includes 'generalized

eigenvectors'. A set of elements of X is called complete (in X) if the

finite linear combinations of these elements form a dense set in X. We

assume the following.
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(A9) The eigenvectors of A form a complete set in X.

Completeness of eigenvectors is a common property for diffusion operators,

delay operators, and wave operators as well; see, for instance, [14, p.325],

[15, pp.465-470], [16, pp.278-289], [17], [18], and [19, p.250]. Under

the stated assumptions, it will be shown below (Lemma 4.5) that there

exists a feedback mapping F:X + U such that the spectrum of A+BF is dis-

crete and contained in {X e CIRe X < W}, and such that the eigenvectors

of A+BF form a complete set in X. We could use this statement to replace

both (A6) and (A9), but since these assumptions are stated directly in

terms of A, we prefer to use then, rather than an indirect (be it weaker)

expression.

For easy reference, we shall state here the following lemma, which

will be used repeatedly. The proof presents no basic difficulties and

will be omitted.

Lemma 3.1. Suppose that All and A22 are generators of semigroups on the

Banach spaces X1 and X2, respectively, with growth constants wi' and 2'

Suppose also that A21: X1 + X2 is a bounded linear mapping. Then the

operator on X1 3 X2 defined by

A =( ) (3.8)

generates21 A2

generates a semigroup whose growth constant equals max(wl,~ 2)
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4. Existence Result

Our aim in this section is to prove the following result.

Theorem 4.1. Consider the system (3.1), and suppose that the assumptions

(A1)-(A8) hold for some given growth constant w. Then there exists a

compensator of finite order such that the evolution of the controlled

system is described by a strongly continuous semigroup with growth

constant smaller than or equal to w.

For convenience, we shall break up the proof of this theorem into

four separate lemmas.

Lemma 4.2. Consider the system (3.1) under the assumptions (A1)-(A3).

Let w be a given growth constant, and suppose that there exist a finite-

dimensional subspace VC D(A) and linear mappings F:V + U and G:Y + X

with the following properties:

im G C V (4.1)

the semigroup generated by A+GC has growth constant

W1< W (4.2)

(A+BF)x e V for all x e V (4.3)

the (finite-dimensional) semigroup generated by A+BFIV (4.4)

has growth constant 2 < w.2-

Then there exists a compensator of the form (3.4), which has (finite)

order equal to dim V, and which is such that the evolution of the

controlled system is described by a semigroup with growth constant

max IwlW 2 < W.
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Proof. Introduce a new linear space W isomorphic to V, and let R:V + W

be the mapping that provides the isomorphism. Define a compensator of the

-1 -1
form (3.4) by setting K=O, F = FR , G = -RG, and A = R(A+BF+GC)R

(Note that it follows from (4.1) and (4.3) that G and A are well-defined,
c c

even though R is not defined on all of X.) We can write the following

differential equation for the controlled system:

dt (t) = ae (tw ) (4.5)

with the extended system mapping A given by
e

A BF A BFR_
c. (4.6)

e AC RGC R(A+BF+GC)R

Consider the following subspace of the extended state space X : = X <9W:

M: = {(X)lx e V. (4.7)
Rx

There is an obvious isomorphism between V and M, given by

Tx = x e V . (4.8)

The space X can also be decomposed as X OM, rather than as X GJW. Written

with respect to this decomposition, A will have the form

A : = HA H , (4.9)
e e

where the isomorphism H: X0 W - X )M is defined by

H = (_ (4.10)
TR
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By straightforward computation, we find that

/A+GC O

A = . (4.11)
-TGC T(A+BF)T)

Noting that T(A+BF)T-1 is similar to A+BF l , we now immediately get the re-

sult by an application of Lemma 3.1.

Lemma 4.3: Consider a pair of mappings (C,A) under the assumptions (Al),

(A3), (A4), (A5), (A7), and (A8). Then we can find a linear mapping

G: Y - X and a constant nr>0 such that, for every G: Y + X satisfying

I IG-G6I < A, the semigroup generated by A+GC is stable.

Proof. We shall use the same modal decomposition that has been used to

formulate (A8), and we shall further decompose the 'unstable' parts A
U

and C (cf. (3.3)) in order to display the unobservable subspace of
u

this pair. The final result of these operations is a decomposition of

the form

0 0

A =|0 A22 0 C = (C1 C2 0) (4.12)

A A32 33

where Re X < d-6 for X e G(All), the pair (C2 , A22) is observable,

and w-6 < Re X < w for XA a (A33). (The last inequality follows from

(A7).) By the observability of the pair (C2 , A22), there exists a G2

such that all eigenvalues of A22 + G2C 2 have real parts smaller than

W. Define G by

G = G2 . (4.13)
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t t -t t
In general, for G = (G1 t G) , we get

123

/A +GAC G1C2 /

A + GC (= Gl2C22l +G2C 2 (4.14)

G3C1 A32+G3C 2 A33

If G=G, it follows from our construction,from Lemma 3.1, and from assumption

(A8), that the two-by-two left upper block in (4.14) generates a semigroup

whose growth constant is smaller than w. By the general result on bounded

perturbation of semigroups (see, for instance, [20, p.3 8 1), this entails

that the same block will also generate a stable semigroup if I G-G I is

small enough. Since the eigenvalues of A33 all have real parts smaller

than or equal to w, this means again by Lemma 3.1, that the semigroup

generated by A+GC is stable as well.

Lemma 4.4. Consider the system (3.1) under the assumptions (Al)-(A3).

Let G:YV+X by a given injection mapping, and suppose that there exists

F:X - U such that the eigenvectors of A+BF are complete in X. Then,

for any n>0, there exist a finite-dimensional subspace V C D(A) and a

mapping : Y -* X such that

I| -cII < n (4.15)

(A+BF)x e V for all x e V (4.16)

im G C V (4.17)

Proof. Pick some orthonormal basis {Yl , ,y'Y p} of Y, and write gi:=Gyi.

Let n>o be given. For every i=l,...,p, there exists a finite set

{xil,...,xiN(i) of generalized eigenvectors of A+BF such that
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N(i)

li . - aig.x.i II< (4.18)
j=l 

for suitable constants c..(i=l,...,p; j=l,...,N(i)). To every (i,j) there
13

exist a . . e : and an n.i. 6 1 such that

n.

C(.. - (A+BF)) ]x. . = . (4.19)
13 1j

Now define G:Y + X by GYi = gi (i=l,...,p), where

N(i)

g := Z a ..x. (4.20)
j=l L J1

and let V be the subspace defined by

V:= span{(X.j-(A+BF)) kxiji=l,...,p; j=l,...,N(i); k=O,...,n..-1}
ij 1 1]

(4.21)

Then G and V satisfy the requirements.

Lemma 4.5: Consider a pair of operators (A,B), and suppose that the

assumptions (Al), (A2), (A4), (A5), (A6), and (A9) hold. Then there exists

a bounded linear mapping F:X + U such that the spectrum of A+BF is discrete,

all eigenvalues of A+BF have real parts smaller than or equal to w, and

the eigenvectors of A+BF are complete in X.

Proof. Doing a modal decomposition with respect to the eigenvalues of

A in {XeCIRe X > a}, we obtain a direct sum representation X = X 0 Xs

and corresponding block representations for A and B:

A ( A) B ) . (4.22)

0A(o~~ °/( 



By (A6), we can choose F such that the eigenvalues of A + B F are

in {xea Re X < w} and such that they are distinct from the eigenvalues of

A . Define F by
s

F = (F 0). (4.23)

Then the spectrum of A+BF will consist of the eigenvalues of A together

with those of A +B F . Because the two sets are separated, there is a
u uu

corresponding modal decomposition, which we shall indicate by X = X ' X
s n

('n' for 'new'). Hence, every vector x e X can be written as x = x + x
s n

with x G X and x e X.. By (A9), x can be approximated by linear
s s n n s

combinations of eigenvectors of A in X , which are, as a consequence of the

special form of F, also eigenvectors of A+BF. Because X is a finite-

dimensional (A+BF)-invariant subspace, x is equal to some linear

combination of eigenvectors of A+BF. We conclude that x can be approximated

by linear combinations of eigenvectors of A+BF. Thus, the eigenvectors

of A+BF are complete in X.

Proof (of Thm. 4.1). Choose G as in Lemma 4.3 and F as in Lemma 4.5.

Let n>0 be the constant from Lemma 4.3, and use Lemma 4.4 to obtain

G:Y + X and V C D(A) satisfying (4.15-17). Finally, apply Lemma 4.2

to the subspace V and the mappings F and G.

The proof of the theorem is constructive, and therefore it suggests a design

method. Depending on the particular type of equation one has at hand,

one may vary the actual form of this method in order to avoid unnecessary

work. In the next section, we shall illustrate this by an example.
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5. Design Example

Consider the following system, which is of the 'delay' type:

xl ( t) = 2 xl(t-1) + x 2 t) (5.1)

x2 (t) u (t)

y(t) = xl( t). (5.2)

To write these equations in the standard form (3.1), we use the following

set-up (cf. [21]). Let M 2 (-1,0) denote the product space /R x L2(-1,0), and

let H (-1,0) be the set of functions on [-1,0] whose distributional deriva-

tive is in L2(-1,0) [22, p.44]. By Sobolev's lemma [22, p. 9 7], the mappings

. (-1) and O * i(0) are well-defined and continuous functions on H (-1,0).

For the equation (5.1), the state space will be

X:=M2 ( - 1 , 0) 0 IR . (5.3)

The elements of this linear space will be written as column vectors with

two components, where the first component is in M2 (-1,0) and will be written

as a row vector ( 0,~) with '0 6 IRand ~ C L2(-1,0), and the second

component is in JR. The operator A is defined by

D(A): = IR(,°'¢) |f e H 1(-1, 0), a. e ], (0)= - (5-4)

{(I··c:- ¥P R,4 1 (5.5)
A( ) 2 (l)+, )

The input space U and the output space Y are both equal to IR,and the

mappings B and C are given by
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Ba = (0 ) (5.6)

C (O o (5.7)

We shall also use the complexifications of these spaces and operators, with-

out change of notation.

It follows from the results of [23] (see also [21]) that the operator

A generates a semigroup on X. It is seen immediately that the operators

B and C are bounded. The spectrum of A is discrete, and the eigenvalues

are precisely the roots of the characteristic equation

X + 2 e -1

det =0 (5.8)
0

[18; Prop. 4.2]. The characteristics function

A A() := A( + 2 e) 5.9)

has roots at 0, + 2 'i, and at infinitely many other points in the complex

plane which are given approximately by

SkA -log(4k+l) + (4k+l)i (keN) . (5.10)

Rules for deriving such formulas are given in [30]. All roots are simple.

We see that there are only finitely many eigenvalues of A to the right of

any vertical line in the complex plane, as is true in general for delay

equations [24; p.114]. The stabilizability of the pair (A,B) and the

detectability of the pair (C,A) can be verified conveniently using the

generalization of the Hautus test ([253, [261) that was given in [3].

Because



-21-

+e 1 0
rank ( = 2 for all eAC , (5.11)

the pair (A,B) is stabilizable no matter how the desired growth constant

w is chosen. Likewise, detectability of the pair (C,A) also holds for

any X because

|R e 1

rank = 2 for all XeC . (5.12)

1 O0

Adding a compensator of the form (3.4) to the system (5.1-2) will lead

to a closed-loop system which still has the basic form of a delay equation:

x' (t) = A1x(t-1) + AOx(t) . (5.13)

Consequently, the closed-loop semigroup will be compact for t>l ([31];

see also [24]), and this is sufficient to guarantee that its growth constant

is determined by the spectrum of its generator [11, p.467]. So we can

use assumption (A8)' instead of (A8). Finally, the completeness of the

eigenvectors of A follows from [17; Cor. 5.5].

We have verified that all assumptions of Section 3 are satisfied for

any choice of the desired growth constant w. Hence, it follows from Thm.

4.1 that any degree of stability can be obtained by adding a finite-

dimensional compensator to the system (3.1). Let us design such a com-

pensator to obtain a stability margin of 1; so we set w=-l.

First Step. By the stabilizability of the pair (A,B), there exists an F

such that the eigenvalues of A at 0 and + 2 i are shifted to new eigenvalues

at -1 and -1 + 72 i for A+BF. If 1i is an eigenvalue of A+BF, it is easily
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verified that the corresponding eigenvector is given by

P / , () = [-1,0])(ee - l,0 ]), = (i+2 -)0'

(5.14)

The eigenvector will be normalized such that Cl = 1 if we put $0 = 1.

In that case, we also have

F = i( + -= A( e) A (5.15)

Second Step. The matrices of Au and C with respect to the basis
-^u u

1, cos 0, sin 7 8 ,
{(l, co:)2 O /(0, sin2 7) (r ' ) (5.16)

of X are given by

A , C (1 0 (5.17)
u u 7rru

O0 0 /

A straightforward pole placement procedure leads to the conclusion that

A+GC will have new eigenvalues at - T (double) and -i if we take

21(2, cos 2 0 + 2 sin 2 e + 1)G = -2 sin (5.18)

Third Step. Although it is possible, in principle, to compute n such that

A+GC will be stable for each G with I| G-GI < A, it does not seem attractive
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to perform the actual computations and, moreover, the bound we obtain

may be unnecessarily conservative. Rather, we shall proceed in an algorithmic

way. Let us select

(1, e cos -) 0, e sin 20

G = 2.08 e -9.08 - l (1-e) / (5.19)

1(1, e e0 )
- 8.36 1

\-l +2 7Te

which is obtained by orthogonally projecting G into the subspace spanned

by the eigenvectors of A+BF corresponding to the eigenvalues at -1 and

-1 +- 1 i. A convenient way to compute the eigenvalues of A+GC is
- 2

provided by the Weinstein-Aronzain theory [12, p.244], from which it

follows that these eigenvalues can be found as the zeros of

A+GC(A) A(X) (1-C(X-A) -G) . (5.20)

If G maps into a subspace spanned by finitely many eigenvectors of A+BF,

so that

m (, e )

kl Z k k + - (5.21)
k=l +-e

then we have the more explicit formula

m

AA+ C(A) = AA () - Yk(-A) (AA( () - AA( )) (5.22)
k=l

Using this, we can employ a simple Newton method to compute the eigenvalues

of A+GC, where G is given by (5.19). Initial guesses are provided by (5.10)

and by the assigned values - 2 and -7. The results are given in Table I.2
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We see that this trial is easily successful, and so we shall base our

design on F, G, and the subspace V spanned by the eigenvectors of A+BF

associated with the eigenvalues at -1 and -1 + 2 i.

Fourth Step. Written in a somewhat sloppy way (with omission of isomorphisms),

our compensator is given by

w'(t) = (A+BF+GC)w(t) - Gy(t) (5.23)

u(t) = Fw(t) (5.24)

where the state space of w(t) is the three-dimensional subspace of M2(-1,0) O

]R that is spanned by the vectors

1, e cos (o) ,e sin e
= 2 ) 2-e 

Wl=(1 l ) , w 21 (1-e) ) w3 = 2 -1 7T (l-e) + T Te

(5.25)

The coordinates of G with respect to this basis are given by (5.19). The

matrices of A+BF and C are easily found to be

-1 01 0

A+BF = -- -1 0 , C = (1 0 1) . (5.26)

0 0 -1

Finally, we can use (5.15) to calculate Fwl = 5.24, Fw 2 = 1.13, and Fw =

-3.27. We finally arrive at the following compensator equations:

1.08 1.57 2.08 -2.08

w'(t) = -10.65 -1 -9.08 w(t) + 9.08 y(t) (5.27)

8.63 0 -9.36 8.36
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u(t) = (5.24 1.13 -3.27)w(t). (5.28)

The eigenvalues of the closed-loop system are given by -1, -1+ 2 i, and

the eigenvalues of A+GC as listed in Table I. Consequently, the closed-

loop growth constant is exactly equal to -1.

In conclusion, we can say that the computational work needed to

obtain the finite-dimensional compensator has been quite moderate: nothing

was needed that goes beyond the power of hand-held calculators. Also,

note that it has not been necessary to compute the modal projection.

The method could be implemented as an interative procedure, with the third

step as the iteration step. The iteration consists of projecting G into

a series of trial (A+BF)-invariant subspaces of increasing dimension.

In this interpretation, Thm. 4.1 can be viewed as a convergence result,

guaranteeing that the procedure will terminate after a finite number of

steps. Finally, we note that the compensator we obtain is in the standard

finite-dimensional form, unlike the compensators obtained from algebraic

methods (see, for instance, [271), which in general contain delay elements.
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6. Final Remarks

Although we have worked an example to show that the method presented

here is in principle feasible as a design procedure, the main emphasis of

this paper has been on establishing the existence result on finite-dimensional

compensators for a wide class of infinite-dimensional systems. There are many

other design considerations, besides the stability margin, that have to be

taken into account in any practical situation, such as robustness properties

and sensitivity reduction. Fortunately, the method we have employed leaves

a great de4l of freedom, and in particular the selection of the initial F

and G is expected to be helpful in obtaining good closed-loop properties.

We did not really scrutinize our method to arrive at as low as possible

controller orders; here, too, further research promises to be fruitful.

The parameterization on the basis of the injection mapping G is particularly

suited for situations in which we have few outputs and many inputs; in the

reverse situation, one should work with a parametrization on the basis of

the feedback mapping F and with subspaces of finite codimension. It has

been shown in [28] that ideas very similar to the ones presented here will

lead to finite-dimensional compensators that solve tracking and regulation

problems for distributed parameter systems. It is, of course, of interest

to extend our results to situations in which we have unbounded control and

sensing; results in this direction have been reported recently in [29].
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roots of A (X) roots of A (X)
A+GC A+GC

-1.571 (double) -1.491 + 0.288 i

-3.142 -3.401

-1.604 + 7.647 i -1.609 + 7.854 i

-2.198 + 13.98 i -2.197 + 14.14 i

-2.567 + 20.29 i -2.565 + 20.42 i

-2.835 + 26.60 i -2.833 + 26.70 i

-3.046 + 32.89 i -3.045 + 32.99 i

-3.220 + 39.19 i -3.219 + 39.27 i

-3.368 + 45.48 i -3.367 + 45.55 i

-3.497 + 51.77 i -3.497 + 51.84 i

-3.612 + 58.06 i -3.611 + 58.12 i

TABLE I. EFFECTS OF PERTURBATION OF G.
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