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A family of models for the representation and assessment of individual differences for 
multivariate data is embodied in a hierarchically organized and sequentially applied procedure 
called PINDIS. The two principal models used for directly fitting individual configurations to 
some common or hypothesized space are the dimensional salience and perspective models. By 
systematically increasing the complexity of transformations one can better determine the validities 
of the various models and assess the patterns and commonalities of individual differences. PINDIS 
sheds some new light on the interpretability and general applicability of the dimension weighting 
approach implemented by the commonly used INDSCAL procedure. 
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Following Horan ' s  [1969] original proposal for a subjective metrics model, there has 

been considerable effort devoted to solving the mathematical  problems and to construct- 

ing computer  algorithms for scaling real data [e.g.: Bloxom, Note  1; Carroll & Chang, 

1970, Note  2; Carroll & Wish, 1974; Sch6nemann, 1972; Sch6nemann et al., Note  7; 

Takane  et al. 1977]. Because Carroll & Chang's  IDIOSCAL procedure, and its special 

case INDSCAL,  is by far the most  well-known solution to the "dimensional  salience 

model" ,  we shall briefly review the general issues in this area using the I N D S C A L  

terminology. 

In the dimensional salience (or weighted euclidean) model, the distance between 

points p and q in individual i's "private perceptual space" is estimated from the respective 

points in some average configuration of all N individuals in the sample by the following 

weighted euclidean distance formula: 

(1) ,4~,~,,~ d~ , ,=  [ ~a c~'(gm gqa)211/2 ~ p q  ~ ~ p q  - -  , 

where d~) is the distance between p and q (given as datum),  -po d . )  _pq d,~ is an estimate Of_pq (e.g., 

a least-squares estimate), c~ ~ is the squared weight associated with coordinate axis a, gpa is 

the projection of  p on a in the n × m "group space" G, aim the superscript i indicates 

individual i. As is true for all scaling algorithms proposed so far for the dimensional 

salience model, I N D S C A L  does not at tempt a direct solution for the unknowns in (1), i.e., 

for cg~(a = 1, . . . ,  m; i = 1, . . . ,  N) and G. Rather,  ( I )  is converted into its simpler scalar- 

product  form: centering G at the origin and using the well-known relation: 

o p q  a 6 p a  a a 6 q a  ~ p q  . J ,  
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one arrives at 

(3) ~p/; "'q -- ~ " c('~" 6 p a  a 6 q a ,  

where ~pF; ~t~q is the estimated scalar product o fp  and q for individual i. Now, since the given 

distances d~(p ,  q = 1, • • . ,  n; i = 1, • • . ,  N) are determined only up to an arbitrary origin 

(if one assumes that they are interval scaled), one must decide on some origin in order to 

generate the corresponding scalar products for each individual, because INDSCAL uses, 

for reasons of computational simplicity, scalar products rather than distances. The estima- 

tion of a convenient origin is implemented by Torgerson's additive constant method 

[1958]. 

Equation (3) can also be expressed more compactly in matrix notation as: 

(4) B~ = G G G ' ,  

where G is n × m and C~ is diagonal (the 1NDSCAL implementation of the subjective 

metrics model) or is constrained to be (semi-) definite (the IDIOSCAL model with 

positivity constraints). An alternating least-squares (ALS) procedure is then used to solve 

for G and Ct(i  = 1, . . . ,  N ) .  In case of a non-diagonal G,  Carroll & Chang [Note 3] 

propose a further decomposition of C~ into 

(5) Cl = TtA~T'L, 

where T~T't  = T'~Tt = I and At is diagonal. Geometrically, this corresponds to an 

orthogonal "idiosyncratic" rotation of G by T~, followed by dimension weighting with 

AI/2. In contrast with the INDSCAL solution, however, in which G and CL are not 

rotationally invariant, IDIOSCAL will yield results which are determined only up to a 

joint rotation of G and G.  Furthermore, the decomposition in (5) is obviously not the only 

possible one: Harshman [Note 4] and Tucker [1972] propose other, non-orthogonal 

factorizations. 
Although INDSCAL, in particular, has been applied very successfully in various 

contexts, some problems associated with the ID1OSCAL family of procedures (of which 

INDSCAL is but a special case) remain. The most obvious of these difficulties lies in the 

choice of loss function: goodness of fit is defined in terms of scalar products, which are 

interpretationally more indirect and complicated than distances. Moreover, the transfor- 

mations used to fit G to each individual's data assume a relatively simple relationship 
between the two configurations. If some of the points therein have different relative 

locations or if the configurations are unevenly or nonlinearly distorted, the dimensional 

salience model has no means of detecting this. This could have the consequence that the 

computed group space is quite misleading, representing a confounding of a class of 

essentially qualitatively different configurations. Finally, a most serious disadvantage is 

that the substantive and statistical significance of  the transformations is not clear. The 

dimension weighting, for example, might produce a quite negligible fit improvement over 

a classical procrustean fitting of the configurations which leaves invariant the relative 

distances. It is clearly desirable to disentangle the admissible transformations from those 

that change the meaningful properties of the group space by some distortion, a point 

which is to some extent taken into account in the third phase of IDIOSCAL [Carroll & 

Chang, Note 3], but not at all for the more widely used INDSCAL procedure. 
Note that not all algorithms developed in this area share all of INDSCAL's weak- 

nesses. SchSnemann et al.'s COSPA [Note 7] even provides some tests for the applicability 

of the dimensional salience model, but it also introduces some additional and fairly strong 

assumptions not included in the original formulations of the model. However, neither 
COSPA nor INDSCAL nor ALSCAL [Takane et al., 1977] minimizes a loss function 
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defined for (unsquared) distances, nor do any of these procedures provide information 

with respect to the performance of admissible (nondistorting) transformations. Further- 

more, no method adds anything to the dimensional salience model which might provide 

information regarding individual differences of a more complicated nature. 

The PINDIS  Model 

PINDIS (Procrustean INdividual Differences Scaling: Lingoes, Note 6; Lingoes & 

Borg, 1976, 1977; Borg & Lingoes, Note 2, 1977; Borg, 1977) is similar to procedures like 

IDIOSCAL in the sense that PINDIS also scales individual similarities according to the 

dimensional salience model. It is different, however, from all other algorithms and models 

in a number of respects: (a) in PINDIS, the dimensional salience model is only one 

approach for assessing individual differences; (b) the set of models in PINDIS is organized 

into two hierarchies with a typical common order, i.e., the procedure sequentially analyzes 

the relationship of individuals to some group space in such a way that a fitting is done first 

by strictly admissible transformations (those that leave the relative distances invariant) 

and then by adding increasingly more free parameters in the form of weights, idiosyncratic 

rotations and translations. 

Also different from other approaches in this respect, PINDIS starts with a set of 

individual configurations X~(i = 1, . . . ,  N)  rather than with either scalar product or 

distance matrices. These X~'s are assumed to be given by some prior and assumption- 

appropriate analysis, either metric or nonmetric. Each X~, an order n × m t  matrix, is 

assumed to be arbitrary insofar as only comparative distances among the n points are to 

remain invariant, i.e., X~ is determined up to rigid motions and central dilations. Con- 

sequently, we will always exhaust the complete set of admissible transformations, i.e., 
rotations/reflections, translations, and central dilations on Xt, in fitting X~ to the target 
configuration at each stage of the PINDIS analysis. This tranformed X~ will be symbol- 

ized by ~ and is to be interpreted as including any or all of the permitted transformations 
in the group relevant to the particular target under analysis. 

Initially, we arbitrarily norm all X~'s (centered at the origin) to unit length, which 

constitutes the optimal translation on Xt for the following analyses: a centroid configura- 

tion Z of order n × m (m = max~ (mr)), which is analogous to IDIOSCAL's group space G, 
is computed as the average of all XL's after they have been fitted optimally to each other 

under the admissible transformations. Since Z's orientation is arbitrary, it is put into an 

orientation that is optimal for dimension weighting of all X~'s, which will be discussed in 

more detail below. The similarity of each ,~ to Z is expressed by f()?~, Z), the squared 

product-moment correlation between the corresponding elements of )?z and Z [Lingoes & 

Sch6nemann, 1974]. This is the first important index in PINDIS, representing a reference 

value for those transformations that do not preserve the distance ratios in Z. Centering X~ 

is also optimal for the dimension salience model, which constitutes the next stage of 
analysis. 

The simplest distortion of Z for mapping X~ is that of dimension weighting, where a 

diagonal m-square weight matrix W~ is determined for each optimally transformed indi- 

vidual configuration X~. Another fit index, r2(~, ZrW~) yields the relevant information 

about the explanatory power of such weighting. Obviously, one would not want to attach 
much psychological meaning to the differences among the elements of W~ if r2()?, ZrW~), 

where Z r is the optimally rotated Z for all Xt, is not substantially higher than our reference 

value, r2(A~t, Z). Similarly, one would also hesitate to interpret an idiosyncratic rotation of 

Z, at the next transformation stage of the dimensional salience model in P1NDIS, as 
having much substantive import, if r2(,(~, ZrW~) is not appreciably smaller than r~(A~, 
Z714~), where Z~ = ZSI, S~S~ = S~SL = I (the identity matrix) and ~ is the diagonal 

weight matrix for ZT. It should be noted that since we want just one "average subject" or 
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one Z for explaining individual differences, we consider such idiosyncratic rotations of Z 

as being in the same class of inadmissible transformations as those of dimension weight- 

ing. 

Using even more free parameters, one could now fit VtZ to the optimally transformed 

X~, where Vt is an n-square diagonal matrix of  vector weights. Geometrically, the points in 

Z are herein conceived of as termini of vectors emanating from the origin of Z: the weights 

of  V~ will then stretch or shrink each vector with or without reversing its sense. The 

measure which indicates the success of  such fitting is r~(.~, V~Z t) where T is an optimally 

translated Z for all XL. However, it will be shown below that generally there exists an 

idiosyncratic translation of Z relative to each ~t which improves the predictability of.YL. 

The latter represents a subject-specific mapping in the context of vector weighting, 

analogous to the individual rotations of Z in the dimension-weighting approach, and, as 

such, are also considered to be inadmissible along with vector weighting. The fit index for 

idiosyncratic translations is r2(,~t, ~Z~), where Z~ is the idiosyncratically translated Z and 

is the associated weight matrix for this mapping. Both of these fit indices for vector 

weighting can be compared with one another and both with our basic, non-distorting, 

measure of fit, r~(37~, Z), for assessing the relevance of these transformations. The vector 

weighting model provides not only indices of inter-individual differences, but also repre- 

sents a psychological model in its own right (which we call the "perspective model")  for a 

number of psychological and social contexts. 

We can now summarize the various PINDIS transformations in Table 1. Note that 

AY~ is defined as that X~ which is transformed by admissible mappings in such a way 

that the respective fit index is maximized. Thus, it is clear that inadmissible mappings are 

always associated with the centroid configuration Z. The distinction admissible vs. in- 

admissible transformation is based upon the property of the former to be indeterminate 

from either the data itself or from the respective fitting model. Consequently, admissible 

transformations can have no substantive meaning whatsoever: only the listed inadmissible 

fitting parameters are principally interpretable. 

From Table 1 one can discern two model hierarchies contained in a PINDIS anal- 

TABLE 1 

Summary of PINDIS Transformations 

i l l  

Model 

Number of 

inadmissible 

fitting parameters 

Similarity transformation 0 
(unit weighting) 

Dimensional salience m 

(dimension weighting) 

Dimensional salience r~(~) 
with idiosyncratic 

orientation 

Perspective model n 
with fixed origin 

(vector weighting) 

Perspective model n+m 

with idiosyncratic 

origin 

Fit index 
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ysis one hierarchy is established by the triple (1) similarity transformation, (2) dimen- 

sional salience with a fixed orientation, and (3) dimensional salience with idiosyncratic 

orientations; the other hierarchical triple is formed by (1) similarity transformation, 

(2) perspective model with fixed origin, and (3) perspective model with idiosyncratic 

origins. Both of these model collections are hierarchical in the sense that the models are 

nested, the one using fewer inadmissible fitting parameters being but a special case of the 

one using more. However, since in empirical applications one would typically encounter 

situations where n is much greater than m, one would also have an order among all models 

established by the number of free parameters, i.e., the typical order is 

O < m < m +  ( 2 ) < n < n + m .  

In a more general sense, the various PINDIS mappings belong to the group of affine 

transformations defined, respectively, on the column and row spaces of the various 

configurations with the similarity transformation being but a special case of unit weight- 

ings for both sub-models. 

Such a hierarchical approach yields standards against which the significance of the 

inadmissible transformations can be judged. Furthermore, it provides many indices (v.i.) 

which not only represent additional information in their own right, but which also allow 

one to evaluate the validity of various features of  the dimensional salience model for a 

given sample of individuals. 

The Centroid Configuration, Z 

The centroid configuration, Z, is calculated from the X~'s by a method similar to the 
one proposed by Gower [1975]. (Gower calls Z the "consensus configuration", a term 

which carries unnecessary and potentially misleading psychological connotations. We 

prefer a more neutral name.) 

The derivation of Z starts with the individual Xt's, where each X~ is an n × m~ co- 

ordinate matrix generated by a prior MDS, factor analysis, or any other appropriate 

multidimensional procedure. It is not necessary that all individual (perceptual) spaces be 

of the same dimensionality if one adds zero-element columns to X~'s whenever m~ < m. 

The goal is to-rescale all X~'s simultaneously by affine transformations to .~ = X~R~ -ju~, 
such that the following fit criterion, representing a residual sum of squares, is optimized: 

(6) L = Y~. [tr(,~i- Z)(,~ - Z)'],  

where R~R~ = R~R~ = I, j  is an n-element vector of ones, and u~ is an m-element translation 

vector. To minimize L, each Xt is centered at the origin first, which represents the optimal 

u~ motion, and then centrally contracted or dilated such that its euclidean norm, tr (X~X~) 
equals unity. We then proceed iteratively as follows: 

(a) X2 is then rotated to fit XI in a procrustean sense and a first Z matrix is 

constructed, Z C1~ as the average of the corresponding elements of X1 and 3(2. Next, X8 is 

rotated to fit Z c1~, Z ~2~ is computed from Z c~ and Xs, etc., until XN is included in the 

preceding process. This, then, completes the initial cycle, yielding our best initial estimate 
of Z. 

(b) Each of the NXt's are then rotated to fit the current best estimate of Z and a new 

estimate for Z is computed from the average of the X~'s fitted to the current estimate of Z. 

A goodness of fit index is computed for each X~, gt = r2(X~, Z)  and then we compute 

1 
h = ~ ~ (1 - g,) ' ,~,  

' -F 
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which is taken as an overall measure of fit for each new estimate of Z. We repeat process 

(b) until h ceases to drop by more than some prespecified threshold value. 

The above iterative algorithm corresponds to the one proposed by Kristof & Wing- 

ersky [1971]. Berge [1977] has recently analyzed this procedure and found that a slightly 

modified version satisfies a somewhat stronger necessary condition for minimizing L. 

However, neither procedure generally satisfies the sufficient condition presented by Fis- 

cher & Roppert [1965] and Berge [1977]. Moreover, it is not clear yet what constitutes the 

necessary and sufficient conditions for the present problem. Empirically, there has been 

some evidence as to the superiority of Berge's algorithm. If more results point in this 

direction, it may be desirable to implement the Berge procedure for PINDIS instead of the 

Kristof-Wingersky algorithm presently used. 
Gower [1975], who allows one to input raw score data matrices as Xl's, provides an 

(optional) additional transformation besides rotation/reflection and translation, i.e., a 

central dilation scalar kt for each X~. These k~'s are used to adjust for differences in the 

range of scores used by different individuals under the constraint 

k~ tr (X,X~) = Y]~ tr (XtX~). 
t l 

Since in PINDIS every tr (XtX~) = 1, so that Z represents a directly interpretable "average 

subject", whereas Gower makes only the weaker norming ~ l  tr (XtX~) = N, such scalar 

multipliers would make no sense here. As one of our reviewers has pointed out, however, 

Xt-conditional scalar multipliers would still be useful as a fit index for the relationship of 

any Xt and Z, but our ?(At, Z) is actually closely related to kt if employed in this respect: 

k~ tr (ZZ') 1/2 = ? ( e ,  Z). 

For the norm of Z the following relationship holds: 

(7) 0 < tr (ZZ') ~/2 < 1, 

which follows from 

(8) Y~ tr (X,X[) = N tr (ZZ') + ~ tr (E,E~), 
t 

where the left-hand side represents the total sum of squares of the individual configura- 

tions, which is equal to N due to the prior norming of every X,. Thus, tr (ZZ') is equal to 

one if and only if all X,'s are perfectly explained by Z. In other words, the squared norm of 

Z represents the communality of the X,'s, which is perfect if and only if all Xt's are related 

to each other by rotations/reflections and translations. The n × m matrix Et contains the 

unexplained residuals. 
Having produced a target configuration, we now address the various transformations 

on both Z and X required for maximizing the fit between them. 

Similarity Transformations 

The problem at this initial stage of a PINDIS analysis is to fit each Xt to a given Z by 

rigid motions and central dilations. Although this has already been accomplished in the 
process of deriving Z described in the previous section, we shall now present the involved 

issues in somewhat more detail. (It might also be noted that Z may be an externally 

provided hypothesis configuration, in which case the Z-generating process would, of 

course, be bypassed.) 
Restricting the set of transformations to similarity mappings will lead to sub-optimal 

solutions in the case that the X,'s resulted from a previous nonmetric scaling, since one 
would not use all of the indeterminacies in the individual configurations. Nevertheless, 

such an approach is consistent with the general practice of considering MDS solutions as 
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essentially interval scaled for a sufficient number of points. Since the group of rotations/ 

reflections, translations, and central dilations exhausts the set of admissible and practically 

relevant transformations for nonmetric representations quickly as n gets ever larger, it has 

essentially the same effect as the more general group of isotonic mappings. 

A least-squares solution for the present problem has been provided by SchSnemann 

& Carroll [1970]. It minimizes the function 

(9) F = tr [(2'~ - Z)(.(, - Z)'], 

where 

(10) ~t = k,(X,  - ju~)R,, 

with R ,  j,  and u, defined as in (6) and k, being a central dilation scalar. 

Since we seek a simultaneous solution for the unknowns, (10) can be written as .~ =k,X~R~ 

- ju~ in this context. One obtains as solutions: 

(11) R~ = AB' ,  

where 

(12) A A B '  = X~MZ = C, 

the Eckart-Young decomposition of C, and M = I - j j ' /n .  The columns of A are the 

eigenvectors of CC',  those of B are the eigenvectors of C'C,  both ordered according to the 

size of their common eigenvalues contained in the diagonal matrix A [Sch6nemann, 1966]. 
For ut: 

( z  - X , R , ) 7  . (13) ut = 
n 

The effect of M is to center both X~ and Z at the origin (which has already been 

accomplished in the process of calculating Z). Also, ut has been taken care of implicitly 
above, since XtRt + ju~ = X~R, + ( j j ' / n ) (Z  - X~R,) = ( j j ' / n )Z  + (I - j j ' / n ) X ~ R ,  = (I - j j ' /  

n)X~R~ = XtR~. So the problem quite simply reduces to an orthogonal procrustean rotation 

[Schfnemann, 1966], since the fit index does not require explicit computation of kt. 

The analysis at this (and at every subsequent) phase is concluded with the computa- 
tion of  the appropriate individual fit measure, which is here r2(,~t, Z). 

Dimension-weighting Transformations 

The problem at this stage is to predict each Xt by a dimensionally weighted Z. In the 
more restrictive model we use a Z with a fixed orientation analogous to INDSCAL's  G: 

(14) min = tr [(~'~ - ZSW~)(.,~ - ZSW~)'] ,  

where S ' S  = SS '  = I, W~ is diagonal, and ~ is defined as in (10). First, if we call the 

function to be minimized in (14) f, one finds via ~gf/Ou~ = O: 

(15) u, = (1 /n) (X ,  - Z S W ,  R~)'j. 

Since both X~ and Z are column centered and since this property is not destroyed by S, Wt, 

and R~, respectively, the translation vector must be equal to (0, . . . ,  0). In (14) it is 
assumed, however, that Z remains centered at the origin. We shall now show that Z's 

origin is sufficient for an optimal fit in the dimension-weighting case. Consider the 

following generalized loss function, where another translation vector, t ,  has been added: 

(16) F =  tr (AA'), 

A = ( Z - j t ~ ) S W t  - (Xt - j u ~ ) R , .  
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Via partial differentiation one finds: 

1 
= - -  [ l  - -  ( X  t - ~I"~R S t W  -11'¢ (17) h n J ~j ~ l j j ,  

1 
(18) u, = - -  [X, - (Z  - jt~)SW~R~]~L 

n 

Inserting one solution into the other, one obtains u~ = u~ and h = h, respectively, which 

proves the assertion. This result also shows that it is not necessary to center Z at the origin 

for obtaining an optimal  fit for dimension weighting, but it is definitely convenient 

computat ionally and is essential for a direct interpretation of the dimension weights. 

To find W. we set R~ = I = S for the moment .  The optimal dimension weights are 

then given by 

(19 )  [diag (Z'Z)]-~[diag (Z'X,)] = W,, 

i.e., they are the regression weights in ZW~ + El = X .  We can normalize Wt such that 

r2(X. ZW~) = tr (W~tW~'), (20) 

by setting 

(21) 

which follows from 

W* = [diag (Z'Z)]~/2Wt, 

V XpaZpa  

(22) ,(x, ,  zw , )  = Z L Z z?,o ' 
p 

where the weights waa = ~,p xp~,zp~,/Y~.p z~,a, given by (19), arc used in simplifying the 

correlation equation. 

We now formulate the following loss function for dimensions a and b (a ¢ b): 

2z~o Ez~° 
p P 

where 

(24) x*a = xpa cos a - Xpo sin a,  

(25) x% = x~a sin a + xp~ cos a.  

Since Kao represents the proport ion of variance of XtRt predicted by ZW~ in the plane a, b, 

we want  to maximize Kab for each pair of  dimensions through an appropriate  choice of  the 

rotat ion angles, a .  For  plane a, b we obtain by differential calculus: 

(26) a = .5 tan-1 ( 2 _ ~ ) ,  

where 

(27) A - Caa Coa Cob C~ 
V~ vo ' 

(28) B = Cg° - C 2oo + C h  - Cg~ 

Vo V0 
and where 

c,,  = E x.,z., y v, = E z~,- 
p p 
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The rotation angle a will either maximize or minimize Kab. The result depends upon the 

orientation of  the initial X~ relative to the maximizing/minimizing X~. Because of (26), 

there are four special positions in a two space: two maxima and two minima. One can test 

if a rotation by ol will maximize K,b by using the second derivative inequality: 

d2Ka~, 
(29) da 2 = B cos (2~) + 2A sin (2o 0 < 0, 

and add 90 ° to a if (29) does not hold, since it follows from (26) that maxima and minima 

alternate at 90 ° intervals. In practice, a will rarely minimize Kab because the orientation of 

Xt generated by the previous similarity transformations are almost always a very good 

initial estimate of the optimal X~ for dimension weighting. However, in cases where the 

dimension weighting leads to very small weights for some coordinate dimensions of  Z, i.e., 

where Z is essentially collapsed to a lower dimensional space, the initial "similarity" 

orientation of X~ might lead to a minimizing a.  

Rotations for higher dimensional spaces can be done pairwise for all (~') combina- 

tions of dimensions: rotate columns 1 and 2 of Xt first, calculate their new values; rotate 1 
and 3, • • . ,  rotate 1 and m; then continue with 2 and 3; 2 and 4, • . . ,  2 and m; until m - 1 

and m complete one cycle. Repeat the cycles until some criterion of convergence is reached 
[cf., Harman, 1967]. For the reoriented X~'s optimal weights are then computed by (19), 

substituting Xt by XtRt. The resulting solution is unique up to 180 ° rotations in each plane 
for both W~ and R,. 

The problem that remains to be solved in order to maximize the predictability of Xt 

for the dimension-weighting model is to find that orientation of  Z with respect to some 
fixed coordinate system in which Z, when distorted along these axes, approximates .~ as 

closely as possible. Apparently, every orientation of Z is associated with a different family 

of producible configurations [cf., Lingoes & Borg, 1977]. We shall first address the 

problem of finding the optimal rotation of Z for each X~ and then our attention will turn 

to finding the optimal orientation of Z (fixed) over all X~. The relevant loss function for 
the idiosyncratic case can be formulated as follows: 

(30) min = tr [(ZS,14~; - X~R,)(ZS, W~ - XtR,)'], 

where S ,  R ,  and I45t = f ( Z S ,  X~R~), which means that ~ ¢ W~ in general, are the 
unknowns. Stated for a two space, and using relationship (20) between normalized 

dimension weights and the variance explained in Xt by Z W ,  (30) can be expressed as: 

x ,  z ,  1 (31) 1 ~ pa pa/ + 

Z " Z 
P p 

where 

x%z% = max, 

(32) 

(33) 

z*a = zpa cos/3 - zp~ sin/3, 

z% = zp, sin/3 + zp~ cos/3, 

and x*, and x% are defined by (24) and (25), respectively. Partial differentiation of (31) 
w.r.t, a and/3 yields a simple solution for o~ (for some fixed/3), corresponding to (26), but a 

very complicated expression for /3 (holding ot constant), which does not seem to be 
solvable in any simple way. Having by necessity to resort to a numerical approximation 
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procedure, one first observes the following simplification: the optimal Z must be attain- 

able from the current Z by a rotation of  no more than 90 °. This follows from a simple 

consideration: in a two space there are four possible positive directions for Z which are 

related to each other by permutation transformations. I n each of these orientations, Z will 

explain the respective )?~ equally well. Thus, starting from some arbitrary orientation and 

rotating Z over an interval of 90 ° yields all possible communality values (i.e., r2's) and, 

therefore, allows one to determine the optimal Z. 

The search algorithm proceeds as follows: the original orientation of Z is the one due 

to its generation in the Kristof-Wingersky process. Using this Z as a starting point we 

compute the communality of  ZSt  W~ and .~t with orthonormal S~ rotating Z in steps of 5 ° 

over an interval :t:45 ° in some plane a, b. The best Z is found and a ~5 ° sector about this 

Z is searched in 1 ° intervals. The best Z in this search process is then picked as the final Z 

in a given plane, having an uncertainty level of 1 °. This procedure is then iteratively 

repeated over all planes and each cycle until some criterion of convergence is satisfied. 

Although we have found empirically that the response surface is smooth and monotonic- 

ally increasing to the maximum (which would allow one to use a more efficient algorithm), 

we could not show that the function will always possess these properties. By our search 

procedure, we obtain the optimal idiosyncratic Z, Z~, for each .~, which is unique up to 

axes permutations. 

Determining an orientation for Z (fixed) that is globally optimal would require the 

solution of  (14) for S over all NX~'s simultaneously, an apparently very difficult task in 

view of the dependency of the Wt's and the various transformations in )?t on S. At this 

time, we cannot offer such a solution. However, extensive empirical analyses with artificial 

data have shown that the following procedure yields a very good approximation to the 

optimal Z (fixed). In a two space, Z S  is taken as the arithmetic mean of the Z~'s over all N 

configurations. To show that Z S  calculated in this way is geometrically similar to each 

generating Z one observes that the average of some matrix A and another rotated matrix 

A T(TT' = T 'T  = I) is similar to either one if and only if.5(A + A T).5(A + A T)' = .5(AA') 

+ .5A(T + T')A' = kAA' ,  where k is a scalar. For a two space one obtains T + T' = 2 cos 

aI, but for a higher dimensional space T + T' is generally not a scalar matrix. This means 

that 2 = 1/N ~ Z ~  does not correspond to the rotated (and centrally dilated) average 

subject configuration for m > 2. Expressed differently: an unknown distortion whose 

psychological meaning remains completely obscure would also affect Z r in this process. 

Furthermore,  using 2 in lieu of the Kristof-Wingersky generated Z for higher dimensional 

spaces would destroy the value of our basic reference index, since r2()?~, 2)  < r2(~,  Z),  in 

general, whenever similarity is destroyed. Apparently, these features are undesirable. 

Thus, in order to preserve similarity we use Z merely as a target to which Z is orthogonally 

rotated as described above in the section on similarity transformations for m > 2. 

Similarity should be preserved afor t ior i  whenever one has a hypothesis configuration, for 

obvious reasons. 

Vector-weighting Transformations 

On the next level of complexity, the loss function can be formulated as: 

(34) min = tr / [A ~, - V~(Z - jt~)][A ~, - V~(Z - jt~)]'}, 

where A~, is defined as in (10) and Vt is diagonal. Apparently, the attainable fit between A~t 

and V~(Z - j t [ )  in this vector-weighting model is independent of Z's orientation with 

respect to a given coordinate system, which simplifies the problem relative to the dimen- 

sion-weighting case. However, (34) is more complicated in requiring the computation of  

two translation vectors, u, and t,. The latter is necessary since the solutions for u, and t, do 
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not lead to the tautology found in the dimension-weighting case, i.e.: 

(35) ut = 1 [X~- V~(Z- jt~)R~]~i, 
n 

1 [ Z -  V51(X~-ju~)Rtl~j. (36) tt = n 

While the translation vectors were simple and, in particular, dependent in (17) and (18), 

this is not the case here. The complete solution of (34) requires, as a consequence, the 

determination of 6, u ,  R ,  and Vt. Of these transformations only R~ and ut are devoid of  

psychological significance. Translations and vector weightings for Z, on the other hand, 

are confounded and to some extent yield redundant information vis-a-vis one another, but 

may carry interpretative import. 

Since there exist relatively direct solutions for the Rt and Vt as unknowns, we shall 

discuss their derivations first. Initially, one must determine the optimal reflection of  X~ 

relative to V~Z. This step was: of course, irrelevant in the dimension-weighting case, 

since reflections could be handled there by  the sign of the salience weight. We now make 

the following considerations: The criterion to be minimized is: 

(37) D = Z E (~)PpZpa- XpaWa) 2, 
p a 

where a~a is either + 1 or - 1. The vector weights Vpp (p = 1, • •., n) are determined from the 

regression equation Xtt2~ = V~Z + E,  where t2~ is the m × m diagonal reflection matrix and 

Et are the residuals: 

(38) [diag (Xt~2~Z')][diag (ZZ')]  - '  = Vt. 

Inserting Vpp = (Y]~XpaWaZpa)/~.,a z~,~ into (37) and simplifying the expression yields: 

I ~a Xpat~aZpal 2 

(39) D = - ~ _ + ~ ~ x~a. 
P ~" -2 p a 

Since the sum of  squares of X~ is unity due to norming, it follows that the first term in (39) 

has bounds zero to one. The task is then to maximize this term, which can be conceived of, 
analogous to the W* weights, as the sum of  squares of  normalized vector weights, V*: 

(40) v ' p =  vpp( ~ z~a) 1/2 

The sum of  squares of  these v~p represents the proportion of  variance of X~ft~ accounted 

for by V~Z. One observes immediately that D is not differentiable with respect to the 

unknowns w~ (a = 1, • •. ,  m), Consequently, we resort to a search algorithm in which each 

dimension is reflected in turn and the outcome is evaluated for any increase in the total 

sum of squared normalized vector weights. This single dimension approach, however, 

does not guarantee finding the best reflection of the Xt under all conditions, but is, 

nonetheless, implemented for reasons that will be discussed in fuller detail after we deal 

with the problems of rotation and translation. 

Having obtained an "optimally" reflected Xt, we proceed in a completely analogous 

manner to the dimension-weighting approach for rotation, i.e., in each plane we minimize 
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(37), where xp~w~ = 2j,~ is replaced by a rotated ~pa. This leads to our plane-wise loss 
function of D in (37): 

D,,o = ~_, [(vm, zp~ - x* , , )  2 + (vppzpo - x'b)21, 
P 

(41) 

where 

(42) 
E X ~ a Z p a  

l.)pp ~-- a 

Zz o 
Q 

and x*~ and x*~ are as in (24) and (25), respectively, if one replaces xpa and xp~ by 2pa and 

2p~. Inserting appropriately, differentiating the expression in (41) with respect to ~, and 
setting the derivative equal to zero yields: 

 43, o =  , t a n  

where 

(44) A = 

- ) - - 

P 

zL 

(45) B = 

] C  . 2  , . . 
- xT,~)(z;,a - z~,~) + 4XoaXp~ZpaZpb ] 

P 

zga + z~b 

As before, for dimension weighting, we test via the sign of the second derivative of(41 ) as 
to whether a maximizes or minimizes Dao. If the former is true, ot is incremented by 90 °. 
With these plane-wise solutions we proceed iteratively until the cycles converge. Although 
we cannot offer a convergence proof for this process, abundant evidence from both 
artificial and empirical data strongly suggests convergence and the "recovery" of known a 

priori vector weights can be demonstrated. 
The remaining problem at this stage of the analysis is to find the individual translation 

vectors tt and us. The problem is complicated by the fact that although one can express t~ in 
terms of u,  no simple analytic solutions could be derived for all the unknowns involved in 
the optimization of (37). Hence, we employed an ALS procedure which first solves for Vt 
and R~ with t~ initially a null vector, then for t~ [with us substituted in (36) by (35)] in terms 
of the previous solutions, etc., until this process converges (necessarily). The fit values for 
the vector-weighting model with idiosyncratic translations on Z (the unrestricted "per- 

spective model", v.i.) are then computed on termination of the ALS procedure. These 

values are denoted by r~(,~t, ~Z~). 
Now, in order to determine the overall optimal translation of Z for the restricted 

perspective model, we proceed completely analogous to the dimension-weighting ap- 
proach (where, it will be recalled, we determined from the average of the idiosyncratically 
rotated Z's, the Z"). That is, by setting t = 1 / N  ~ , t  fi, the vector of average shift, we 
translate Z to this new origin. By another ALS procedure, this time involving Z t = Z - j t ' ,  

one obtains the individual vector weights for the less general version of the perspective 
model. The fit values are now expressed as r~(~t, V~Zt) ,  where Z t is fixed for all N 

configurations. It should be clear that ~ 4 V, in general. Moreover, the full model will 

explain each ~'~ at least as well as the fixed origin model, of course. 
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As an alternative to shifting Z by t, one may want to select some specific point as the 

origin of  Z (or leave the origin undisturbed in the case of some factor solution). In certain 

instances, e.g., in a radex structure, a meaningful origin is given and this is, o f  course, to be 

preferred to some blindly determined mathematical optimum. Thus, Z may optionally be 

translated (or be left undisturbed) to a prespecified origin in a manner parallel to the 

option available in the dimension-weighting approach vis-h-vis the orientation of Z 

Some comments are in order regarding optimal reflections in vector weighting. It will 

be recalled that we stated that our reflection procedure for X~ could be suboptimal under 

some conditions. We shall now take a closer look at this problem. 

The problem is to reflect Xt by fl~ such that ,(~ will lead to a maximal fit i f - ( l  is 

subsequently optimally transformed by a proper rotation R~. Anticipating the proper 

rotation reduces the set of distinct reflection matrices to the relevant equivalence classes of 

f~ defined by all permutations of  m - 1 elements "1"  and " - t " .  One observes that the 

rotation angle a in (43) is not identical over equivalence classes, however, since the signs in 

between the numerator terms of (44) and (45) would not be the same in all planes for 

different fl's. The latter observation implies that minimizing D in (39) through an appro- 

priate choice of  the signs of each dimension in X~ will no t  necessarily be optimal if one 

takes into account the possibility of  later proper rotations. Examples illustrating this fact 

are readily constructed. Consider the three matrices below: 

Z X Y 

- 3  2 1 - 6  - 1  - 6  

6 8 - 2  - 5  2 - 5  

1 - 7  3 4 - 3  4 

- 5  - 4  - 7  8 7 8 

Matrix X is related to Y by a reflection of the first dimension. The fit index L = 

Y~p[(Y~a xp,~zp~)V,~_.~ z~] has the value L(Z, X) = 57.07. The analogous measure on 

Y yields L(Z, Y) = 142.78, which would suggest that either dimension of X be reflected 

(which one is of no consequence). Computing the rotation angles we find a(X) = -16 .26  ° 

and a(Y) = -17.79 °, but according to the second derivative test we must alter a(X) to 

73.74 °. We then obtain L(Z, XR) = 155.29 and L(Z, YR) = 152.15, i.e., a relative rever- 

sal in the order of  agreement so that we would have been better off not to have reflected 

X at all. 

To insure that (34) is minimized over all ft-equivalences we would have to test each 

and every one, a considerable undertaking for planar rotations if m is of  substantial size, 
i.e., for each ~ there would be 

(m ) 1) 

rotations for each cycle. For m = 10 one would need 495 planar rotations for one cycle 

and probably anywhere up to 50 cycles (on the average) would be required for con- 
vergence. 

Although for the (not so uncommon) case of  low dimensional spaces, the computa- 

tional efforts would be much reduced, some other alternative is needed in general. Our 

present suboptimal algorithm is certainly inexpensive compared to the exhaustive require- 

ments outlined above. In addition, it might be mentioned that extensive computer runs 

have demonstrated that reflections are in general not required and that when they are, the 

gain in fit is not of  a magnitude that would tip the balance in favor of the vector model 

over that of  others addressed by PINDIS, e.g., the dimensional salience model. The chief 
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reason that reflections are not generally needed is that the dimension-weighting transfor- 

mations place X in an orientation that is not far from the optimal for that of vector 
weighting. 

In our matrix formulations of the PINDIS hierarchy of transformations, v.i., we 

outline a possible ALS procedure for handling the vector-weighting case optimally in 

respect to both reflection and rotation. Before we delineate these matrix formulations for 

both dimension and vector weighting, we would like to make a few passing remarks on the 

uses and possible interpretations of the perspective model. 

There are essentially two roles for the vector-weighting approach. The weight profiles 

may be indicative of more complicated relations among the subject configurations than 

is conveyed by a simple dimensional distortion. Additionally, the vector weights may also 

be related to a psychological model about inter-individual differences. 

In the first case, where vector weighting is used as an index-providing procedure, one 

obtains, in particular, insight into the degree to which certain points in Z are related to 

those in an individual's configuration in a way that cannot be handled by the affine 

transformations in the dimensional salience model. One may find that Z explains an X~ 

fairly well except for a few points that require substantial displacements. Such cases have 

been reported by Borg & Lingoes [1976]: some individuals associated certain breakfast 

food items that were grouped by the average subject into some cluster A, say, with those in 

some other cluster, non-A. Except for those few points, however, they perceived the 

stimuli in practically the same way as the others. It may have been true though that all 

points required considerable shifting for all individuals and, at the same time, some typical 

patterns in the computed vector weights could be discerned over all subjects; this would 

then indicate that instead of computing Z over apparently different groups, it might be 

useful to consider partitioning the sample first on the basis of the obtained vector weight 

profiles into more homogeneous groups. What  one could aim at, for example, would be a 

partitioning such that the subjects in each subgroup were related to their common average 
by such simple transformations as a similarity transform or as dimensional weighting. 

As in the dimensional salience model, the vector-weighting model is closely related to 

a psychological theory in a number of contexts. We choose to call this psychological 

model a perspective model for obvious reasons related to the geometry of the representa- 

tion as it relates to visual perception. As an illustration, let us assume that one asks 

different individuals to compare various geographic locations with respect to the time they 

think it will take them to walk there from a given point. Let us further assume that the 

physical terrain is fairly hilly. Then one would expect that the subjects would radially shift 

the stimulus representations according to their respective perceived accessibilities. Phys- 

ically very fit persons, for example, would probably use very little shifting as a function of 
the object's position on a hill or in a valley, whereas this would not be true for those who 

expect greater differences in required efforts. A number of  psychological parallels to this 

physical example come readily to mind. 
A relatively direct analogy exists for representations of sociometric data. An individ- 

ual data matrix in this context may be as follows: row and column entries correspond to 

the same persons: A, B, C, • ' ' ,  Y, where A represents the experimental subject; the matrix 

elements stand for the similarity of each pair of persons as perceived by A. Scaling each 

such data matrix one obtains a spatial representation of the group structure for each 

individual A, . - . ,  Y. One can no w hypothesize that inter-individual differences are due to 

idiosyncratic origins (i.e., each subject is himself a point of  perspective) and differential 

gradients due to liking, power, etc. One would thus assume that the individuals have 

basically the same perception of the group structure except for differences in the sense of 

the perspective model. 
Another application of the perspective model is possible in the context of Guttman's  
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radex theory [1954]. To illustrate this we consider a series of studies on "quality of life" 
[cf., for example, Levy & Guttman, 1975], where item points in the SSA (smallest space 

analysis) space could be grouped into regions representing questions on satisfaction with 

one specific aspect of life. These regions were arranged as slices around an origin repre- 

sented by the item "satisfaction with life in general". For such studies it was observed that 

different groups were different essentially only in shifting the points within each of these 

sectors [Levy, t976; Borg, 1978]. Thus, the origin and also the order of the sectors 

remained practically the same for the groups and the point weighting was done in the sense 

of the perspective model. The radial shifting in this example is, therefore, related to 

differential perceptions of an item's centrality' with respect to the issue "quality of life". 

Although we have indicated some psychological interpretations for idiosyncratic 

origins and (non-negative) vector weights, there does not seem to be any convincing 

interpretation for negative vector weights in a model sense. This situation is similar, to 

some extent, to the dimensional salience case (for PINDIS, but not INDSCAL), where 

negative weights have a double meaning, i.e., they indicate both a differential importance 

and a necessary reflection of Z. The latter has the status of an index rather than that of a 

model parameter. For vector weights it seems most appropriate to treat the negative 
weight case similarly. 

Matr ix  Solutions f o r  Dimension and Vector Weighting 

We shall now summarize the PINDIS model family in the more compact language of 

matrix algebra. In addition, we shall consider one rather obvious extension of the various 

weighting models used so far. 

In general, the following loss function must be minimized in PINDIS: 

(46) tr (EE')  = min , 

where 

(47) E = Vt(Z - j t~)StWt - k~(X~ - ju~)Rt . 

The different approaches discussed so far were different in attempting a solution of (45) 

for proper subsets of the set of variables only. The various subsets are different with 

respect to the mappings on Z. The transformations on X~ are always completely optimized 

(although this is strictly true for R~ and u~ only, the central dilation scalar kt will be 
implicitly determined by the fit index). It should be clear that R~, kt, and u~ will generally 

be different for the similarity transform, the dimension weightings, and the vector weigh- 
tings. In no instance should one attempt to interpret any of these mappings, of course. The 
possible exception of using kL as a fit index has already been discussed. Only the transfor- 
mations on Z are principally of substantive interest. 

In the dimension-weighting case, we set V~ = I and St = S. In the idiosyncratic 
orientation weighting, V~ = I as before, but W~ will now be different from the weight 

matrix obtained for the fixed orientation case. We have denoted the idiosyncratic orienta- 

tion weight matrix by W~ above to indicate the conditionality of the resulting weights on 
how Z is rotated. Finally, in vector weighting, W~ = I and rotations of Z are irrelevant so 

that one can set St = S arbitrarily. For the full perspective model, the idiosyncratic case, Z 

is translated to Z~ using tt. For an overall-optimally positioned Z, Z ~, one uses t as a shift 
vector. 

For dimension weighting with idiosyncratic orientation we obtain the following solu- 
tions via partial differentiation of (46) under the respective linear constraints: 

( x ,  - z ~ R ~ ) 7  (48) u~ = ' , 
n 
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(49) ~ = [diag (Z'/'Z'/)]-l[diag (Z~'X]R,)], 

(50) (X]'ZrW~)R~ = symmetric, 

(51 ) (W~'Z'X~R,)S~ = symmetric ,  

where X~ = X~ - ju~. As has been shown above, a single translation vector is sufficient for 

optimization of  (46) with V~ = I. Thus, Z remains centered at the origin, i.e., ti = (0, • •. ,  

0). The solution (50) is due to minimization of  (46) with Vt = I and tt = (0, " ' ,  0) with 

respect to Rt under the condition R~Rt = R~R~ = I. The latter constraint can be formulated 

as tr [L(R~Rt - I)] = 0, where L is a matrix of Lagrangian multipliers, which leads to the 

function f = tr (EE')  + tr [L(R~Rt - I)]. Solving Of/~gRt = 0 yields 

(52) nuiu~ + X~Xt + L = X~'ZS~ 14/~tR~, 

where the left-hand side is apparently a symmetric matrix. Now, setting A = Z S ~  and 

B = X~, it follows that B'AR~ = R t A ' B  or B'A = RtA'BR~ which leads to SchSnemann's 

[1966] solution for the orthogonal procrustean rotation, i.e., R~ = WV'  with W and V 

being appropriately oriented eigenvectors of  B ' A A ' B  and A ' B B ' A ,  respectively. 

There are four unknowns in the system of equations (48-(51), i.e., ut, R~, S ,  and W,. 

First, of course, one observes that (48) leads to the null vector for ut since both X~ and Z 

are columnwise centered and since this property remains unaffected by the other transfor- 

mations. Although each of the remaining equations can be solved for any given independ- 

ent variables, there does not seem to exist any apparent direct solution for the whole set. It 

would be possible, however, to use an alternating method analogous to the one used in 

INDSCAL and ALSCAL, for example. If  the space were higher than two-dimensional, 

this would have the advantage over the scalar approach that the rotation matrices would 

be computed directly rather than in the plane-wise iterative manner, which cannot be 

proved to converge necessarily. 

( x , -  ~z~R~)'j 
(53) ui ....................... , 

n 

(54) t, = [ Z -  (~ ) - tX]R, ] ' j  , 
n 

(55) ( X ~ ' ~ Z I ) R I  = symmetric ,  

(56) ~ = [diag (X'~R,Z~')][diag (Z~Z~')]-I. 

For R~ one observes that by using Sch6nemann's [1966] results no separate computation 

of  a reflection matrix ~2~ is necessary. Again, the whole system is not directly solvable, but 

requires an iterative approach, such as outlined for dimension weighting above. 

In evaluation of the entire matrix approach, one could say that it has clear advantages 

over the scalar solutions previously discussed whenever the transformational analyses are 

carried out in higher dimensional spaces. In the rather frequent case of  two dimensions, 

however, we obtained some direct analytic results via scalar methods which have the 

additional advantage of being computationally faster than those involving matrix manipu- 

lations. 

To conclude this section we consider an extension where (46) is solved for all transfor- 

mations listed in the set of variables, i.e., Z is now simultaneously weighted from the left 

and the right. A less complete form of such double weighting has been investigated 

previously by Lissitz et al. [1976], although in a different context. The solutions for this 

model are easily derived and could be solved (at considerable expense) via the alternating 

least-squares approach. (In fact, the PINDIS program presently contains a double- 

For the vector-weighting approach, we obtain the following equations: 
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weighting analysis as an option.) The major difficulty with this model is, of course, that it 

is neither in any obvious way related to a psychological model such as "dimensional 

salience", for example, nor is it generally useful in an indexing sense because it is simply 

too complex. A rather exotic application where a restricted double-weighting solution 
proved useful can be found in Lingoes [1978]. Moreover, using double weighting in a 

purely formalistic sense, we found that it did not lead to appreciable fit improvements 

in practically all case that were investigated. Thus, we do not pursue this approach here 
any further. 

PINDIS Examples 

Feger Political Party Attitudinal Data 

To illustrate PINDIS in a real application we use some data collected and previously 

analyzed by Feger [1974]. The study involved the six major political parties in West 

Germany: 1, a nationalistic party; 2, a very conservative party; 3, a moderately con- 

servative party; 4, the Liberals; 5, the Social Democrats; and 6, the Communists. Fourteen 

subjects were asked to indicate which one of various combinations of political parties (1 -- 

NPD, 2 = CSU, 3 = CDU, 4 = FDP, 5 = SPD, 6 = DKP) and rating categories (A = 
extremely far, B = very far, C = far, D = close, E = very close, F = extremely close) were 

more descriptive of their attitudes. For example, the subject was presented with the two 

combinations A - 1 and D - 4. He then had to pick one of the two which he thought was 

a truer description of himself. Assume he chose A - 1. A - 1 would then be assigned a 

score of one, while D - 4 would receive a score of zero. In the process of presenting all 630 

possible pairs of pairs (using a randomized sequence, a screen projection of the stimuli, 

and a machine response recording system) a 6 X 6 dominance matrix was constructed, 
whose entries ranged between zero (dominates none) to thirty-five (dominates all) [cf., 

Feger, 1974, for further details]. These fourteen rectangular dominance matrices were then 

analyzed by SSAR-I [Lingoes, 1973], which assumes between-set information only (i.e., 

parties and categories) at the ordinal level and all elements are comparable. In every case 

an almost perfect representation was possible in a two-space, the poorest fit having a stress 

less than .009 (form 1) for Subject 8. The 14 XL's of order 12 X 2 served as the input for a 

PINDIS analysis. 

As a first step, PINDIS computed a Z, which is represented graphically in Figure 1 
below. The average subject obviously arranges the parties on an approximate simplex 

(dashed line), where the nationalistic party (point 1) forms one terminus and the Commu- 

nists (point 6), the other. The rating categories do not, surprisingly enough, form a 

simplex (solid line): the category "extremely close" is avoided by 12 of the 14 subjects and 

is positioned closer to the centroid of the parties. The squared norm of Z was .75, which 

means that Z accounted for 75% of the variance over all X~'s. 

The first column of Table 2 lists the fit values for the similarity matching of the Xt's to 

Z. Apparently, most individuals had rather similar perceptions, which is inferred from 
their high communalities with the average subject Z. Individuals 1 and 9, however, are 

much more poorly explained by Z than are the other subjects. These differences are 
preserved even after dimension weighting (column 2 of Table 2). From a plot of Subject l's 

perceptual space (see Figure 3), one can readily see that this subject does indeed have a 

configuration which cannot be satisfactorily related to Z by either the similarity or 

dimension-weighting transformation. In general, we see from the second column of Table 

2 that the dimension weights do not improve the fit values substantially for any subject, 
indicating that the computed weights should not be interpreted as differential dimensional 
saliences (the implicit unit weights of the similarity transform do almost as well). The 
information provided by a "subject space", i.e., a graphical representation of individual 
w* vectors in the stimulus space, as in INDSCAL, (Figure 2), should always be evaluated 



508 PSYCHOMETRIKA 

/ . . . . . . . . . . . . . . . . .  ] 

FIGURE 1 
Centroid configuration for Feger data. 

with care. The scatter around the origin can only be given a substantive meaning if the A'~'s 

are substantially better explained under the dimension weighting transformation than by 
purely admissible, i.e., similarity mappings. The fact that we obtained comparable "com- 

munalities" from an INDSCAL analysis of the euclidean distances generated from the 

SSAR-I X's [Borg & Lingoes, 1977] reinforces our conclusion. INDSCAL's G was related 

to our Z by a 180 ° rotation and a simple dimension weighting to the extent of r2(G, Z) = 

.99. 
Some useful additional information may be contained in column three of Table 2. 

Here, the communality between A'~ and Z~WL i.e., the individually optimally oriented Z, is 

represented. It is to be expected, of course, that there will be some dispersion of the Z~'s 

about Z r. However, some A'~'s may be substantially better explained by their'respective 

Z~'s than by Z r, which would indicate that these individuals are not likely to use the same 

spatial directions, or, in the terminology of IDIOSCAL, that they have idiosyncratic 

frames of reference. In our present example, this does not appear to be the case for any 
individual (only Subjects 7 and 9 reveal any tendency of this kind). If one found some 
instances of such idiosyncracy in ones data, it might be advisable to eliminate such 
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TABLE 2 

F i t  Values  for PINDIS Ana lys i s  of  Feger  Study 
I!l!ll II I!l)ll!!l, I) , , I  I I 

FIT 

t .155 .~67 .168 .674 .88~ 

2 .801 .817 .819 .887 .998 

3 .942 .948 .948 .986 .998 

4 .854 .862 .862 .939 .996 

§ .780 .785 .785 .942 .994 
6 .780 .794 .794 .910 .962 
7 .877 .881 .915 .965 .950 
8 .794 .795 .796 .943 .981 
9 .584 .586 .648 .885 .942 

10 .842 .844 .844 .947 .998 

11 .945 .945 .945 .986 .998 

12 .791 .793 .793 .949 .926 
13 .838 .849 .849 .984 .975 
14 .844 .850 .850 .960 .993 

1-2 .773 .778 .786 .926 .971 

indiv iduals  from the analys is  and  then re-analyze  the da ta .  In  this manner ,  the sample  

could  be pa r t i t i oned  into more  h o m o g e n e o u s  subgroups .  

Proceeding  with the  vec tor -weight ing  t r ans fo rma t ion  at the next level o f  complexi ty ,  

we ob ta ined  the fit values given in the four th  co lumn of  Tab le  2. Overal l ,  it is obvious  that  

4 4" 

6~12 

9 • 80" I  u •  "~ 

0 3  
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1 

FIGURE 2 
Subject space for Fcger data. 
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this transformation accomplished more than that of dimension weighting: The total 

communality improvement is 15% as compared to practically 0%, respectively, over the 
similarity transform. This increment has to be evaluated, however, against the consid- 
erably increased number of free parameters in vector weighting [12 vs. 0 (similarity) and 
12 vs. 2 (dimension weighting)]. Nevertheless, it is clear that, for example, for Individual 1 

the fit improvement is quite impressive. Taking a closer look at this individual, it is 

interesting to note that practically all of his optimal vector weights are quite different 

among each other and they depart from + 1. Apparently, Z explains XI sufficiently well 

only under independent (and substantial) movements of the points. Quite clearly, these 
point displacements show that his perceptual space relative to the one of the average 
subject is "scrambled". Indeed, a plot (see Figure 3) of his space shows that he folds what 
others perceive as a left-right simplex of political parties (Figure 1) at his most preferred 
party, which obviously generates a radically different perceptual space. 

It may be noted that Individual l's attitude structure showed remarkable stability 

over eight replications taken over eight weeks of testing [Feger, 1975; Borg & Lingoes, 
1977]. In other words, his discrepancy from the average subject cannot be explained by 
error alone. In conclusion, it becomes apparent that the vector weights can serve as yet 
another index of group homogeneity and, consequently, as a basis for evaluating the 
representivity of the average subject space in the dimensional salience model. This latter 
point simply means that Z may be a confounding of essentially qualitatively different 

individual structures, or, in other words, the average subject may not represent any 

individual sufficiently well. If such is the case, then the dimensional salience model does 

not make much sense, of course. 
Allowing for individual origins of the average subject configuration, one obtains the 

fit values found in the fifth column of Table 2. On the average, a further fit improvement of 

some 5% over the previous transformation has been effected. However, the communality 
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/ -  
/ 

#a  ,,, 

z /  

5 

A 

B 

FIGURE 3 
SSAR-I configuration for Individual I in Feger study. 
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increments are not uniformly distributed over subjects. Individuals 7, 12, and 13 even drop 
slightly in their communalities, which appears to be a function of the flatness of their 
response surfaces and the termination criterion in the ALS procedure. On the other hand, 
one notes a substantial fit improvement for Subject 1 of over 20%, indicating again that 

this individual is quite different from the remaining subjects. (Indeed, from other sources 

of information [Feger, Note 8] we know that Subject 1 is about forty years of age and has 
a conservative attitude in political matters, whereas the remaining thirteen subjects are 

psychology students with pronounced leftist views.) For the idiosyncratic origins, one 
observes considerable variance among the individuals (see Figure 4). However, taking into 
account the fact that appreciable fit improvement was obtained for two subjects only (1 
and 2), it seems questionable to interpret the noted scatter as indicative of real inter- 
individual differences for all subjects, particularly when one takes into account the 

relatively high fit values for the fixed origin version of the vector-weighting model. Under 

other conditions, of course, one could use the origin space in a manner similar to the 

subject (dimension weight) space as a basis for partitioning. For the present results, 

however, it seems reasonable to contrast the origin of Subject 1 with the average of the 
remaining individuals. Since no substantive perspective model was assumed to account for 
these data, only indexing information is herewith provided. 

Helm Color Data 

In this example we use data collected by Helm and analyzed by him [Note 5; 1964] via 
a ratio scale MDS technique, by Helm & Tucker [1962] via a points of view method, by 
Carroll & Chang (as reported by Wish & Carroll, 1974) via INDSCAL, and by MacCal- 
lum [1974] comparing INDSCAL with Tucker's three-mode scaling. 

Helm [Note 5] asked subjects to judge the similarity of ten colors which differed in 
hue by arranging triples of color tiles such that the distances among the tiles were to be set 
proportional to their perceived similarities. The matrix of distances derived from these 
triadic judgements was assumed to be determined up to a scalar multiplier. Thus, the 
matrix of scalar products for each subject was diagonalized without prior transformations. 
There were ten color normal subjects plus one replication (normals) and four red-green 

deficient individuals (as determined by a standard discrimination test) plus one replication 
(deficients). The eigenvalues for the normals and mildly color deficient subjects indicated 

an underlying two space, whereas the two highly deficient subjects yielded but a single 
dimension essentially. Negative eigenvalues were obtained in all cases, but were explained 
by Helm [Note 5] and Helm & Tucker [1962] to be the result of systematic estimation 
error. 

The first two components of toadings from the normals were used as the PINDIS 
input. The resulting Z is represented in Figure 5. The average subject configuration shows 
the expected color circle. The vertical axis corresponds directly to a red-green dimension 

relative to which we should anticipate finding the essential differences among color 
normals and deficients. 

The five color deficients' two dimensional spaces from Helm's analysis were then 
related to this Z by using the PINDIS option for fixing the target (Z) and expressing all 
transformations in terms of the given Z for each X~. The fit values for all sixteen data sets 
are given in Table 3. Note that there is no idiosyncratic rotation or translation for the 
deficients, since Z was fixed in the orientation and origin optimal for explaining the 
normals under the dimensional salience and perspective models, respectively. 

Table 3 shows that Z explains the Xt's of the normals extremely well without any 
differential weighting. This is reflected in Figure 6 by the fact that all the respective weight 
vectors (solid points) in the subject space are (a) closely clustered around the bisector and 
(b) lie almost at the unit circle, which expresses perfect communality. Consequently, 
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FIGURE 4 

Idiosyncratic origins (stars) for 14 subjects of Feger study. T = overall optimal origin. 

neither idiosyncratic orientations of Z nor vector weightings are of any relevance here. It 

should be mentioned that close clustering of subject points indicates highly similar private 
perceptual spaces, but that the points may scatter considerably even if very little additional 

variance, relative to the unit weighting implied by the similarity transform, is explained by 
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FIGURE 5 
Unrotated centroid configuration for 10 color normals of  Helm study, 

differential dimension weights [Borg & Lingoes, Note 2]. This scatter should, therefore, 
only be interpreted if ta(ft, Z) << r2(2~, Z"WL). 

For the color deficients, Table 3 reveals that dimension weighting improves the fit on 
the average by some 15% and for the two most deficient individuals even higher. In the 
subject space one can see that the weight vectors for the deficients (stars) are clearly 
separated from the normals. Furthermore, the salience of the red-green dimension is, in all 
cases, lower than unity. The estimated private perceptual spaces would thus be ellipses 
rather than circles as for the normals. For the extremely deficient subjects these ellipses are 
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TABLE 8 

Fit Values for PINDIS ~malysis of Helm Color Data 

ii ii ii ,,i 

FIT 

Subject la(Xi,Z) ta (Xi,ZrWi) r 2 ~ r ~i,~wi) .e6~i,vlz*) ,'(it,v~z~) 

J 
.< 

o 
z 

i .978 .983 .983 .995 .998 

$ .978 .981 .987 .993 .998 

3 .990 .991 .992 .997 .999 

4 .9S9 .990 .991 .994 .998 

5 .991 .991 .991 .996 .999 

6 .969 .970 .971 .985 .998 

7 .983 .983 .983 .993 .997 

8 .974 .974 .975 .984 .997 

9 .982 . 9 8 3  .983 . 9 8 9  1.000 

I0 .983 .991 .992 .992 1.O00 

11 .956 .965 .967 .982 .995 

Y~ .979 .982 .983 .991 .998 

1 .891 .920 -* .966 

2 .911 .949 .944 
Z 

3 .437 .8,?3 .772 

4 .943 .968 .977 

5 .496 .754 .776 

~ l ~  .736 .883 .887 

-t 

* Orientation fixed to optimal solution of normals. 

t Origin fixed to optimal solution of normals. 

% 

FIGURE 6 
Subject space for Helm data. Dots = normals, and stars = deficients. 



.lAMES C. LINGOES AND INGWER BORG 515 

almost collapsed onto a line, i.e., these subjects differentiate the colors only on a green/ 
yellow-purple continuum. 

Table 3 further shows that the vector weightings do not indicate peculiarities in the 
perceptual space of any individual, since such weightings improve the fit either only by a 
negligible amount or lead to a substantial decrement as compared to dimension weighting. 
This observation is even more relevant if it is evaluated against the fact that eight (ten) 
additional free parameters are used here, The results, therefore, validate the expectations 
in all respects. 

If we had no prior knowledge about the deficiency of some subjects, the Z generated 

from all sixteen data sets would, of course, reflect the low salience of the red-green 
dimension for five individuals: Z is then flattened to an ellipse along the red-green axis. 

The associated subject space does, however, still allow one to distinguish between the 

different subgroups, although the mildly deficients are only extremes of the group of 
normals (as can be seen from Figure 6). Note that in an INDSCAL analysis, the group 

space would not change its shape in the same manner, since it is normed to unit length on 
all dimensions; only the INDSCAL subject space would then reflect the fact that the 
average subject configuration is not circular. 

Another interesting phenomenon can be observed if one analyzes the complete set of 

the X,'s made up of the first three and four dimensions based on Helm's solutions, 

respectively, rather than those corresponding to the first two dimensions only. The 
resulting fit values will then be poorer under all transformations (Table 4) except that of 
vector weighting. From this fact one has to conclude that the common perceptual 
structure is two rather than three or four dimensional. The additional dimensions consti- 
tute non-common variance essentially and may thus be regarded as error in this context. 
Of course, since neither one of the additional dimensions accounts for much variance 
relative to the first two, their effect on the total communality is rather small, i.e., they 

change the ratio of explainable to error variance only slightly in the direction of error 
variance. 

We observe, however, that the communalities do not drop monotonically from two to 
four dimensions in all instances: for both dimension weighting transformations there is no 
such decrement. Taking a closer look at the individuals, one finds that the color deficients 
are explained slightly better by increasing dimensionality, whereas just the opposite is true 
for the normals. Thus, while added dimensions represent error for the normal subjects, 
this seems not to be the case for the deficients (an observation already made by Helm, 
Note 5). 

One might pursue this issue of dimensionality further in the present case by analyzing 

TABLE 4 

PINDIS Average Common Variance 

(by dimensionality) for Helm Data 
i i  

D ~ E N ~ O N A L I T Y  

~ D  ~ D  ~ D  

Xi,Z .91 .88 .88 

XI,Z~Wi .95 .92 .92 

x ,z w[ .95 .92 .03 

Xi,ViZt .97 .99 .96 

Xi,VIZ I .99 1.00 .99 



516 PSYCHOMETRIKA 

normals and deficients separately, which would be particularly interesting if a hypothesis 
about such a difference in the dimensionality of the perceptual spaces of normals and color 

deficients was to be given. In the absence of having some theoretical basis for deciding 
upon the dimensionality of the X~'s, one could to some extent use the observations made 
here, i.e., one could analyze X~'s in different dimensionalities and then determine where 

the maximal average fit occured. One should remember, however, that proceeding in this 
fashion does not guarantee optimal predictability within each meaningful subgroup. In 

general, at this stage of knowledge, we would hesitate in making any strong recommenda- 
tions as to how one could determine the dimensionality of the X~'s on purely formal 
grounds. Clearly, further evidence is needed and substantive considerations play an 

important role here. 

Discussion 

In our second illustration, where we reanalyzed Helm's color data, PINDIS was 

applied in a confirmatory way. The orientation and origin of the average subject configu- 

ration obtained in the analysis of the color normals was such that it corresponded to the 

substantive theory for the differences among the individuals. Thus, exactly this average 
subject space was used as a not-to-be-changed hypothesis configuration in the subsequent 

scaling of the color deficient individuals. It might have been necessary, however, to rotate 
the centroid configuration to a meaningful orientation first before weights related to a 
substantive theory of spatial directions could be derived. Proceeding in this manner, one 

would generally not be able to predict the same amount of variance, of course, since Zr's 
orientation is unique (mathematically) in the dimensional salience model. In some empiri- 

cal tests where Z was rotated over a 180 ° interval, we observed the rather interesting 
behavior, however, that the decrement in predicted variance for non-optimal orientations 

relative to the optimal Z was generally quite small. This finding requires further investiga- 
tion, needless to add, but even at this stage of knowledge, we do not think that there can be 
much conflict for the researcher as to whether Z should be "optimally" or "substantively" 

oriented. 
In other applications [Borg, 1977] we have also observed that the similarity transfor- 

mations do generally, by far, the most important job in predicting an individual from the 
average subject, although we have also found some instances where (fixed origin) vector 
weighting has increased the proportion of explained variance by some 65% [Borg & 
Lingoes, Note 2]. It would be interesting to know in this context how well various random 
configurations could be explained by their centroids, of course, since we presently lack a 
statistical theory for our fit measures. Our choice of examples was in part dictated by the 
appropriateness of the two vis-~t-vis the two models discussed, i.e., the dimension salience 
model (Helm's color data) and the perspective model (Feger's political attitude data), but 
it should be noted that over a wide range of data we have found the perspective model 
explains individual differences better than does the dimension salience model (which 

generally does little better than the unit weighting of the similarity transform). The 
difficulty in evaluating this finding in the absence of a statistical theory, however, leads us 
to suggest a certain amount of pragmatism in exploring both as a matter of routine. 

As a final remark, we note that PINDIS provides normed scalars for each X~ so that 
unconditional weights for both dimensions and vectors can be easily computed for 
correlational and group comparison purposes [MacCallum, 1977]. 

Appendix: Definition of Symbols 

Scalars and Miscellaneous 

a, b dimension subscripts (a, b = 1, 2, " . ' ,  m dimensions) 
i configuration super/subscript (i = 1, 2, . . . ,  N.configurations) 
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P,q 
m 

r* 

gl 

h 

A 

B 

k, k~ 

Ol 

d 

tr 
t 

max, min 
sin, cos, tan -~ 

point subscripts (p, q = 1, 2, . . . ,  n points) 
= max~(m~) for mt dimensions of the l ~h configuration 
squared product moment correlation coefficient 
squared product moment correlation for z ~h configuration 
average (over i) coefficient of alienation 

eqs. (27) and (44) 
eqs. (28) and (45) 

general and individual central dilation scalars 
rotation angle for individual configuration as in eqs. (26) and (43) 
rotation angle for centroid/hypothesis configuration 

full derivative 
partial derivative 
trace 
transpose 

least-squares estimate of 
maximum and minimum functions 
sine, cosine, and inverse tangent circular functions 

Loss Functions 

L eq. (6) 
F eqs. (9) and (16) 

Kao eq, (23) 

D eq. (37) 
D~ eq. (41) 

Matrices and Arrays 

INDSCAL/IDIOSCAL 

G(gpo) 
C,(c2 ~) 

i~ pq j  

D,(~) 

T,(t~) 

PINDIS 
X,(x~'.) 

L(~'~) 
X , t ' ~ * ( l ) ~  

t~,.'~.pa ! 

x'~(x,~') 
Z(z~a) 
Zr(z;o) 
z ,r(z~ ') 
Z'(zgo) 

Z(~,,o) 
Z*(z~o) 
R,(~d~) 

(i) S,(s~ ) 
S(s~ ) 
W,(w~) 
W ,  t..,,(~)~ ~VVaa ! 

group space 
diagonal matrix of squared weights 
eq. (2) 
eq. (1) 

eq. (1) 

eq. (5), an m-square orthonormal matrix 
eq. (5), diagonal m-square matrix of squared weights 

rectangular coordinates of order n × m~ for configuration i 
Xg subjected to rigid motions and a central dilation as in eq. (10) 
optimally reflected Xt as in eq. (45) 
optimally rotated Xt/:~t as in eqs. (24) and (25) 
optimally translated X~/)(t as in eq. (50) 

rectangular coordinates of n × m centroid/hypothesis configuration 
optimally rotated Z over all i for dimension weighting 
optimally rotated Z for each i for dimension weighting 
optimally translated Z over all i for vector weighting 
optimally translated Z for each i for vector weighting 
the centroid of Z~ 

eqs. (32) and (33) for dimension weighting rotations 
orthonormal matrix for orthogonally rotating any Xt 
orthonormai matrix for rotating Z orthogonally 
orthonormal matrix for rotating Z to Z 
eq. (19), the dimension weights applied to Z r 
eq. (21), the normalized W~ 
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Wr~(~ ~) eqs. (30) and (49), the dimension weights applied to Z'~ 
(t)  V~(vpp) eq. (38), the vector weights applied to Z t 

V*tv * ~  pp"~j eq. (40), the normalized Vl 

~ ( v ~  t~) eq. (56), the vector weights applied to Z~ 
~2t(w~ ~) the diagonal reflection matrix for X~t 
u~ eqs. (13), (15), (35), (48), and (53), the dimension origins of X~ 

t~ eqs. (36) and (54), the dimension origins of Z~ 
t the mean origin (over i) for each a in Z t 

I the m/n-square identity matrix 
j the unit vector 
Et(ej;~) eq. (18), the n × m matrix of residuals after optimal fitting 

L eq. (52), a matrix of Lagrangian multipliers 

A, B~ W, V eq. (11), left and right eigenvector matrices 

M eq. (12), centering matrix 

C eq. (12) 
A, B/X, Y general configurations (locally defined) 
__A eq. (12), diagonal matrix of eigenvalues 
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