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SUMMARY

Sparse discriminant methods based on independence rules, such as the nearest shrunken cen-
troids classifier (Tibshirani et al., 2002) and features annealed independence rules (Fan & Fan,
2008), have been proposed as computationally attractive tools for feature selection and classi-
fication with high-dimensional data. A fundamental drawback of these rules is that they ignore
correlations among features and thus could produce misleading feature selection and inferior
classification. We propose a new procedure for sparse discriminant analysis, motivated by the
least squares formulation of linear discriminant analysis. To demonstrate our proposal, we study
the numerical and theoretical properties of discriminant analysis constructed via lasso penalized
least squares. Our theory shows that the method proposed can consistently identify the subset of
discriminative features contributing to the Bayes rule and at the same time consistently estimate
the Bayes classification direction, even when the dimension can grow faster than any polynomial
order of the sample size. The theory allows for general dependence among features. Simulated
and real data examples show that lassoed discriminant analysis compares favourably with other
popular sparse discriminant proposals.

Some key words: Discriminant analysis; Features annealed independence rule; Lasso; Nearest shrunken centroids
classifier; Nonpolynomial-dimension asymptotics.

1. INTRODUCTION

Consider a binary classification problem where x = (x1, . . . , x p)
T represents the predictor

vector and G = 1, 2 denotes the class label. Linear discriminant analysis is perhaps the oldest
classification technique that is still being used routinely in applications. The linear discrimi-
nant analysis model assumes x | G = g ∼ N (μg, �), pr(G = 1) = π1, pr(G = 2) = π2. Then, the
Bayes rule, which is the theoretically optimal classifier minimizing the 0–1 loss, classifies a data
point to class 2 if and only if

{x − (μ1 + μ2)/2}T�−1(μ2 − μ1) + log(π2/π1) > 0. (1)

Let μ̂1, n1 and μ̂2, n2 be the sample mean vector and sample size within classes 1 and 2, respec-
tively. Let �̂ be the pooled sample covariance estimate of �. Linear discriminant analysis sets
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30 QING MAI, HUI ZOU & MING YUAN

μ1 = μ̂1, μ2 = μ̂2, � = �̂, π1 = n1/n, π2 = n2/n in (1). Despite its simplicity, it has proved to
be a reasonably good classifier in many applications. For example, Michie et al. (1994) and Hand
(2006) have shown that linear discriminant analysis has very competitive performance for many
real-world benchmark datasets.

With the rapid advance of technology, high-dimensional data appear more and more frequently.
In such data, the dimension, p, can be much larger than the sample size, n. It has been empiri-
cally observed that, for classification problems with high-dimension-and-low-sample-size data,
some simple linear classifiers perform as well as more sophisticated classification algorithms
such as the support vector machine and boosting. See, e.g., the comparison study by Dettling
(2004). Hall et al. (2005) provided some geometric insight into this phenomenon. In recent years,
many papers have considered ways to modify linear discriminant analysis to be suitable for high-
dimensional classification. One approach is to use more sophisticated estimates of the inverse
covariance matrix �−1 to replace the naive sample estimate. Under sparsity assumptions, one
can obtain good estimators of � and �−1 even when p is much larger than n (Bickel & Levina,
2008; Cai et al., 2010; Rothman et al., 2008). However, a better estimate of �−1 does not neces-
sarily lead to a better classifier. In an ideal scenario where we know that � is an identity matrix
and π1 = π2 = 0·5, then we could classify x to class 2 if {x − (μ̂1 + μ̂2)/2}T(μ̂2 − μ̂1) > 0.

Although this classifier does not suffer from the difficulty of estimating a large covariance matrix,
Fan & Fan (2008) showed that this classifier performs no better than random guessing when p
is sufficiently large, due to noise accumulation in estimating μ1 and μ2. Therefore, effectively
exploiting sparsity is critically important for high-dimensional classification.

Tibshirani et al. (2002) proposed the nearest shrunken centroids classifier for tumour classi-
fication and gene selection using microarray data. This classifier is defined as follows. For each
variable x j , we compute d jg = (1/ng + 1/n)−1/2(μ̂g j − x̄ j )(s j + s0)

−1 (g = 1, 2), where μ̂g j is
the within-class sample mean, s2

j is the sample estimate of � j j and s0 is a small positive constant
added for robustness. For simplicity, we set s0 = 0. Define the shrunken centroids mean by

μ̂′
g j = x̄ j + (n−1

g + n−1)1/2s j d
λ
jg (g = 1, 2),

where x̄ j = (n1μ̂1 + n2μ̂2)/n is the marginal sample mean of x j , λ is a pre-chosen positive
constant and dλ

jg is computed by soft-thresholding d jg: dλ
jg = sign(d jg)(|d jg| − λ)+ (g = 1, 2).

The nearest shrunken centroids classifier classifies x to class 2 if

p∑
j=1

{x j − (μ̂′
2 j + μ̂′

1 j )/2}s−2
j (μ̂′

2 j − μ̂′
1 j ) + log(n2/n1) > 0. (2)

Comparing (2) and (1), we see that this classifier modifies the usual linear discriminant analysis
in two ways. First, it uses only the diagonal of the sample covariance matrix to estimate �. If
λ = 0, this classifier reduces to diagonal linear discriminant analysis, which has been shown in
Bickel & Levina (2004) to work much better than linear discriminant analysis in high dimen-
sions. Secondly, this classifier uses the shrunken centroids means to estimate μ1, μ2 for fea-
ture selection. If we use a sufficiently large λ, then the soft-thresholding operation will force
μ̂′

j1 = μ̂′
j2 = x̄ j for some variables, which then make no contribution to the classifier defined

in (2). Many experiments have shown that the nearest shrunken centroids classifier is very com-
petitive for high-dimensional classification. More recently, Fan & Fan (2008) proposed features
annealed independence rules, in which feature selection is done by hard-thresholding marginal
t-statistics for testing whether μ1 j = μ2 j .
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Direct sparse discriminant analysis 31

Since the goal of sparse discriminant analysis is to find those features that contribute most to
classification, the target of an ideal feature selection should be the discriminative set that contains
all the discriminative features that contribute to the Bayes rule, because we would use the Bayes
rule for classification if it was available. Feature selection is needed when the cardinality of the
discriminative set is much smaller than the total number of features. The performance of feature
selection by a sparse method is measured by its ability to discover the discriminative set. There is
little theoretical work for justifying the nearest shrunken centroids classifier and its variants. To
our knowledge, only Fan & Fan (2008) provided detailed theoretical analysis of features annealed
independence rules, under the fundamental assumption that � is a diagonal matrix. However,
such an assumption is too restrictive to hold in applications, because strong correlations can
exist in high-dimensional data, and ignoring them may lead to misleading feature selection. We
argue that independence rules aim to discover the so-called signal set, whose definition is given
explicitly in § 2. We further provide a necessary and sufficient condition under which this set is
identical to the discriminative set. This condition can easily be violated and hence independence
rules could be problematic.

In this work, we propose a new procedure for sparse discriminant analysis in high dimen-
sions. Our proposal is motivated by the fact that classical linear discriminant analysis can be
reconstructed exactly via least squares (Hastie et al., 2008). We suggest using penalized sparse
least squares to derive sparse discriminant methods. Our proposal is computationally effi-
cient in high dimensions owing to efficient algorithms for computing penalized least squares.
We further provide theoretical justifications for our proposal. If the Bayes rule has a sparse
representation, our theoretical results show that the proposed sparse method can simultane-
ously identify the discriminative set and estimate the Bayes classification direction consistently.
The theory is valid even when the dimension can grow faster than any polynomial order of
the sample size and does not impose strong assumptions on the correlation structure among
predictors.

2. SIGNAL SET AND THE DISCRIMINATIVE SET

Consider the problem of tumour classification with gene expression arrays. It is an intuitively
sound claim that differentially expressed genes should be responsible for the tumour classifica-
tion and equally expressed genes can safely be discarded. However, we show in this section that
a differentially expressed gene can have no role in classification and an equally expressed gene
can significantly influence classification.

By definition, the discriminative set is equal to A = { j : {�−1(μ2 − μ1)} j |= 0}, since the
Bayes classification direction is �−1(μ2 − μ1). Variables in A are called discriminative vari-
ables. Define the signal set Ã = { j : μ1 j |= μ2 j }; variables in Ã are called signals. Ideally, Ã is
the variable selection outcome of an independence rule. Practically, independence rules pick the
strongest signals indicated by the data. When � is diagonal, A = Ã. For a general covariance
matrix, however, the discriminative and the signal sets can be very different, as shown in the
following proposition.

PROPOSITION 1. Let

� =
(

�A,A �A,Ac

�Ac,A �Ac,Ac

)
, � =

(
� Ã, Ã � Ã, Ãc

� Ãc, Ã � Ãc, Ãc

)
.
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1. If and only if � Ãc, Ã�−1
Ã, Ã

(μ2, Ã − μ1, Ã) = 0, we have A ⊆ Ã.

2. If and only if μ2,Ac = μ1,Ac or �Ac,A�−1
A,A(μ2,A − μ1,A) = 0, we have Ã ⊆ A.

Based on Proposition 1 we can construct examples that a non-signal can be discriminative and
a nondiscriminative feature can be a signal. Consider a linear discriminant analysis model with
p = 25, μ1 = 0p, �i i = 1 and �i j = 0·5 (i, j = 1, . . . , 25; i |= j). If μ2 = (1T

5, 0T
20)

T, then Ã =
{1, 2, 3, 4, 5} and A = { j : j = 1, . . . , 25}, since �−1(μ2 − μ1) = (1·62 × 1T

5, −0·38 × 1T
20)

T.
Similarly, if we let μ2 = (3 × 1T

5, 2·5 × 1T
5)

T, then all variables are signals but A = {1, 2, 3, 4, 5},
because �−1(μ2 − μ1) = (1T

5, 0T
20)

T.
The above arguments warn us that independence rules could select a wrong set of features. Dif-

ferent sparse discriminant analysis methods have been proposed based on Fisher’s view of linear
discriminant analysis: the discriminant direction is obtained by maximizing βT B̂β/βT�̂β, where
B̂ = (μ̂2 − μ̂1)

T(μ̂2 − μ̂1). Wu et al. (2009) proposed the �1-constrained Fisher discriminant:

min
β

βT�̂β, subject to (βT B̂β)1/2 = 1, ‖β‖1 � τ. (3)

A referee pointed out that a similar estimator was proposed by Trendafilov & Jolliffe (2007).
When revising this paper, it came to our attention that Witten & Tibshirani (2011) proposed
another �1-penalized linear discriminant:

max
β

⎧⎨
⎩βT B̂β − λ

p∑
j=1

|s jβ j |
⎫⎬
⎭ , subject to βT�̂β � 1. (4)

Little is known about the theoretical properties of the estimators defined in (3) and (4), but we
include them in our numerical experiments.

3. METHOD AND THEORY

3·1. Sparse discriminant analysis via penalized least squares

Our approach is motivated by the intimate connection between linear discriminant analysis
and least squares in the classical p < n setting; see Chapter 4 of Hastie et al. (2008). We code
the class labels as y1 = −n/n1 and y2 = n/n2, where n = n1 + n2. Let

(β̂ols, β̂ols
0 ) = arg min

β,β0

n∑
i=1

(yi − β0 − xT
i β)2. (5)

Then β̂ols = c�̂−1(μ̂2 − μ̂1) for some positive constant c. In other words, the least squares for-
mulation in (5) exactly derives the usual linear discriminant analysis direction.

This connection is lost in high-dimensional problems because the sample covariance estimate
is not invertible and the linear discriminant analysis direction is not well defined. However, we
may consider a penalized least squares formulation to produce a classification direction. Let
Pλ(·) be a generic sparsity-inducing penalty, such as the lasso penalty (Tibshirani, 1996) where
Pλ(t) = λt (t � 0). We first compute the solution to a penalized least squares problem,

(β̂λ, β̂λ
0 ) = arg min

β,β0

⎧⎨
⎩n−1

n∑
i=1

(yi − β0 − xT
i β)2 +

p∑
j=1

Pλ(|β j |)
⎫⎬
⎭ . (6)
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Direct sparse discriminant analysis 33

Then our classification rule is to assign x to class 2 if

xTβ̂λ + β̂0 > 0. (7)

Note that β̂0 in (7) differs from β̂λ
0 in (6). In the p � n case, consider the ordinary least

squares estimator and the usual linear discriminant analysis. Let us write β̂ols = cβ̂LDA, where
β̂LDA = �̂−1(μ̂2 − μ̂1). We should use β̂0 = cβ̂LDA

0 in (7), where β̂LDA
0 = log(n2/n1) − {(μ̂1 +

μ̂2)/2}Tβ̂LDA, such that the ordinary least squares classifier and the linear discriminant analysis
rule yield an identical classification. If we use β̂ols

0 in (7), then these two classifiers are not the
same in general. Finding the right intercept is critical for classification but receives little attention
in the literature. Hastie et al. (2008) mentioned that one could choose the intercept β̂0 empirically
by minimizing the training error. Fortunately, there is a closed-form formula for computing the
optimal intercept.

PROPOSITION 2. Suppose that a linear classifier assigns x to class 2 if xTβ̃ + β̃0 > 0. Given
β̃, if (μ2 − μ1)

Tβ̃ > 0, then the optimal intercept is

β
opt
0 = −(μ1 + μ2)

Tβ̃/2 + β̃T�β̃{(μ2 − μ1)
Tβ̃}−1 log(π2/π1), (8)

which can be estimated by

ˆ
β

opt
0 = −(μ̂1 + μ̂2)

Tβ̃/2 + β̃T�̂β̃{(μ̂2 − μ̂1)
Tβ̃}−1 log(n2/n1). (9)

By Proposition 2, we calculate β̂0 and then the classifier given in (7) assigns x to class 2 if

{x − (μ̂1 + μ̂2)/2}Tβ̂λ + (β̂λ)T�̂β̂λ{(μ̂2 − μ̂1)
Tβ̂λ}−1 log(n2/n1) > 0.

Remark 1. The condition (μ2 − μ1)
Tβ̃ > 0 in Proposition 2 is very mild. If the linear clas-

sifier actually yields (μ2 − μ1)
Tβ̃ < 0, then we can always use β̃new = −β̃, which obeys (μ2 −

μ1)
Tβ̃new > 0.

Remark 2. If π1 = π2 = 0·5, then we can take β̂
opt
0 = −(μ̂1 + μ̂2)

Tβ̃/2. In general, we need
to include the second term in the right-hand side of (9). If π1 |= π2 and without the sparsity
condition on β̃, the second term in (9) would not work well when p � n. Fortunately, when β̃ is
sparse, we have

β̃T�β̃ =
∑

i, j :β̃i |= 0,

β̃ j |= 0

�i j β̃i β̃ j , β̃T�̂β̃ =
∑

i, j :β̃i |= 0,

β̃ j |= 0

�̂i j β̃i β̃ j .

Thus, even when p � n, as long as ‖β̃‖0 � n, β̃T�̂β̃ is a good estimator for β̃T�β̃. Using a
regularized estimate of � could provide some further improvement. For example, for banded
covariance matrices, the banding estimator (Bickel & Levina, 2008) and the tapering estimator
(Cai et al., 2010) are better estimators for � than the sample covariance. However, in this work,
our primary focus is β̂λ and we do not want to entangle estimating large covariance matrices with
feature selection.

In principle, (6) can work with any sparsity-inducing penalty function. We choose the lasso in
this work because it is the most popular penalty in the literature. Other popular penalty functions
include the smoothly clipped absolute deviation (Fan & Li, 2001), the elastic net (Zou & Hastie,
2005), the adaptive lasso (Zou, 2006), the fused lasso (Tibshirani et al., 2005), the grouped
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lasso (Yuan & Lin, 2006) and the minimum concavity penalty (Zhang, 2010). For convenience,
we call the resulting classifier lassoed discriminant analysis from now on. We can use either
the least angle regression algorithm (Efron et al., 2004) or the coordinate descent algorithm
(Friedman et al., 2010) to compute the lasso-penalized least squares estimator.

3·2. Theory

We first introduce some necessary notation. For a general m × n matrix M , define ‖M‖∞ =
maxi=1,...,m

∑n
j=1 |Mi j |. For any vector b, let ‖b‖∞ = max j |b j | and |b|min = min j |b j |. We

let βBayes = �−1(μ2 − μ1) represent the Bayes classifier coefficient vector. So, A = { j :
β

Bayes
j |= 0} and let s be the cardinality of A. We use C = cov(x) to represent the marginal covari-

ance matrix of the predictors and partition C as

C =
(

CAA CAAc

CAc A CAc Ac

)
.

We define three quantities that frequently appear in our analysis:

κ = ‖CAc A(CAA)−1‖∞, ϕ = ‖(CAA)−1‖∞, 
 = ‖μ2A − μ1A‖∞.

Suppose that X is the predictor matrix and let X̃ be the centred predictor matrix, whose column-
wise mean is zero. Obviously, C (n) = X̃ T X̃/n is an empirical version of C . Likewise, we can
write X̃ T

A X̃ A/n = C (n)
AA and X̃ T

Ac X̃ A/n = C (n)
Ac A.

Denote β∗ = (CAA)−1(μ2A − μ1A). Now we can define β̃Bayes by letting β̃
Bayes
A = β∗ and

β̃
Bayes
Ac = 0. The following proposition shows the equivalence between β̃Bayes and βBayes.

PROPOSITION 3. The quantities β̃Bayes and βBayes are equivalent in the sense that β̃Bayes =
cβBayes for some positive constant c and the Bayes classifier can be written as assigning x to
class 2 if

{x − (μ1 + μ2)/2}Tβ̃Bayes + (β̃Bayes)T�β̃Bayes{(μ2 − μ1)
Tβ̃Bayes}−1 log (π2/π1) > 0.

Proposition 3 tells us that it suffices to show that the proposed sparse discriminant analysis
can consistently recover the support of β̃Bayes and estimate β∗.

Throughout our analysis we assume that the variance of each variable is bounded by a finite
constant. In practice, one often standardizes the data beforehand. Then the finite constant can be
taken as unity. In this subsection, ε0 and c1, c2 are positive constants.

The lassoed discriminant analysis direction is computed by

(β̂ lasso, β̂λ
0 ) = arg min

β,β0

⎧⎨
⎩n−1

n∑
i=1

(yi − β0 − xT
i β)2 + λ

p∑
j=1

|β j |
⎫⎬
⎭ . (10)

If lassoed discriminant analysis finds the support of the Bayes rule, then we should have β̂ lasso
Ac = 0

and β̂ lasso
A should be identical to β̂A, where

β̂A = arg min
β,β0

⎧⎨
⎩n−1

n∑
i=1

(yi − β0 −
∑
j∈A

xi jβ j )
2 +

∑
j∈A

λ|β j |
⎫⎬
⎭ . (11)
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Direct sparse discriminant analysis 35

We introduce β̂A only for mathematical analysis. It is not a real estimator, because its definition
depends on knowing A. To ensure that the lassoed discriminant analysis has the variable selection
consistency property, we impose a condition on the covariance matrix of the predictors:

κ = ‖CAc A(CAA)−1‖∞ < 1. (12)

The condition in (12) is an analogue of the irrepresentability condition for the lasso regression
estimator (Meinshausen & Bühlmann, 2006; Zou, 2006; Zhao & Yu, 2006; Wainwright, 2009).
This condition can be relaxed if using a concave penalty to derive β̂λ; see § 5.

THEOREM 1. Pick any λ such that λ < min{|β∗|min/(2ϕ), 
}. Then:

1. assuming the condition in (12), with probability at least 1 − δ1, β̂ lasso
A = β̂A and β̂ lasso

Ac = 0,

where

δ1 = 2ps exp(−c1ns−2ε2) + 2p exp{−c2nλ2(1 − κ − 2εϕ)2(1 + κ)−2/16} (13)

and ε is any positive constant less than min[ε0, λ(1 − κ)(4ϕ)−1{λ/2 + (1 + κ)
}−1];
2. with probability at least 1 − δ2, none of the elements of β̂A is zero, where

δ2 = 2s2 exp(−c1ns−2ε2) + 2s exp(−c2nε2) (14)

and ε is any positive constant less than min{ε0, ζ(3 + ζ )−1/ϕ, 
ζ(6 + 2ζ )−1};
3. for any positive ε satisfying ε < min{ε0, λ(2ϕ
)−1, λ}, we have

pr(‖β̂A − β∗‖∞ � 4ϕλ) � 1 − 2s2 exp(−c1ns−2ε2) − 2s exp(−c2nε2). (15)

The non-asymptotic results in Theorem 1 can be easily translated into asymptotic arguments
when allowing the triple (n, s, p) to tend to infinity at suitable rates. To highlight the main points,
we assume that 
, κ, ϕ are constants. In addition, we need the following regularity conditions:

Condition 1. n, p → ∞ and log(ps)s2/n → 0;

Condition 2. |β∗|min � {log(ps)s2/n}1/2.

Condition 1 restricts p. Clearly, we cannot expect the proposed method to work for an arbi-
trarily large p. However, the restriction is rather loose. Consider the case where s = O(n1/2−γ )

for some γ < 1/2. Condition 1 holds as long as p � en2γ
. Therefore, p is allowed to grow faster

than any polynomial order of n, referred to as nonpolynomial-dimension asymptotics. Condition
2 requires the nonzero elements of the Bayes rule to be large enough such that we could consis-
tently separate them from zero using the observed data. The lower bound actually converges to
zero under Condition 1, so Condition 2 is not strong.

THEOREM 2. Let Â = { j : β̂ lasso
j |= 0}. Under Conditions 1 and 2, if we choose λ = λn such

that λn � |β∗|min and λn � {log(ps)s2/n}1/2
, and further assume κ < 1, then pr( Â = A) → 1

and pr(‖β̂ lasso
A − β∗‖∞ � 4ϕλn) → 1.

Remark 3. Although we use penalized least squares to estimate the classification direc-
tion, there is a fundamental difference between Theorem 1 and theoretical results derived for
lasso-penalized least squares regression (Meinshausen & Bühlmann, 2006; Zhao & Yu, 2006;
Wainwright, 2009). The previous work assumes that the data obey a linear regression model
with additive noise, which is not true for y and x in (10).
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36 QING MAI, HUI ZOU & MING YUAN

Table 1. Simulation models. The choices of n, p, � and βBayes are listed

Model n p � βBayes

1 100 400 �i j = 0·5|i− j |. 0·556 (3, 1·5, 0, 0, 2, 0p−5)
T

2 100 400 �i j = 0·5|i− j |. 0·582 (3, 2·5, −2·8, 0p−3)
T

3 400 800 � j j = 1, �i j = 0·5, i |= j . 0·395 (3, 1·7, −2·2, −2·1, 2·55, 0p−5)
T

4 300 800 � = I5 ⊗ �̃, I5 is an identity matrix; 0·916 (1·2, −1·4, 1·15, −1·64, 1·5, −1, 2, 0p−7)
T

�̃ j j = 1, �̃i j = 0·6, i |= j .
5 400 800 � j j = 1, �i j = 0·5, i |= j . 0·551 (3, 1·7, −2·2,−2·1, 2·55, (p − 5)−11p−5)

T

6 400 800 � j j = 1, �i j = 0·5, i |= j . 0·362 (3, 1·7, −2·2, −2·1, 2·55, (p − 5)−11p−5)
T

Remark 4. Our method is also fundamentally different from those based on high-dimensional
covariance estimation. In the current literature on covariance or inverse-covariance matrix
estimation, a commonly used assumption is that the target matrix has some sparsity structure
(Bickel & Levina, 2008; Cai et al., 2010). Such assumptions are not needed in our method.

4. NUMERICAL RESULTS

4·1. Simulation

We use simulated data to demonstrate the good performance of our proposal. For com-
parison, we included the nearest shrunken centroids classifier (Tibshirani et al., 2002), the
features annealed independence rule (Fan & Fan, 2008), the �1-penalized linear discriminant
(Witten & Tibshirani, 2011) and the �1-constrained Fisher discriminant (Wu et al., 2009). The
nearest shrunken centroids classifier is implemented in the R package pamr; see http://
cran.r-project.org/web/packages/pamr/index.html. The �1-penalized linear discriminant is
implemented in the R package penalizedLDA; see http://cran.r-project.org/web/packages/
penalizedLDA/index.html. We used the code of Wu et al. (2009) to implement the �1-constrained
Fisher discriminant. We also considered the t-test classifier: we first performed Bonferroni-
adjusted t-tests with size 0·05 and then did linear discriminant analysis only using these features
that passed the t-test.

We randomly generated n class labels such that π1 = π2 = 0·5. Conditioning on the class labels
g (g = 1, 2), we generated the p-dimensional predictor x from a multivariate normal distribution
with mean vector μg and covariance �. Without loss of generality, we set μ1 = 0 and μ2 =
�βBayes. We considered six different simulation models. The choices of n, p, � and βBayes are
shown in Table 1. Models 1–4 are sparse discriminant models with different covariance and mean
structure; Models 5 and 6 are practically sparse in the sense that their Bayes rules depend on
all variables in theory but can be well approximated by sparse discriminant functions. Table 2
summarizes the simulation results based on 2000 replications.

Our method, lassoed discriminant analysis, is the only one that shows good performance in
all six simulation settings. It closely mimics the Bayes rule, regardless of the Bayes error and
covariance structure. Tibshirani’s method and Fan’s method have very comparable performance,
but they are much worse than ours except for Model 1. In Model 1, the first five elements of
μ2 − μ1 are much larger than the rest, which implies that independence rules can include all three
discriminative variables. On the other hand, although Model 2 uses the same � as in Model 1,
it has a very different mean structure: the first two elements of μ2 − μ1 are huge while the rest
are much smaller. This means that independence rules have difficulty in selecting variable 3,
resulting in inferior classification. Wu’s method has good classification accuracy overall, but
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Table 2. Simulation results. The methods are named after the first author of the original papers.
The reported numbers are medians with their standard errors, obtained by bootstrap, in parenthe-
ses. TRUE selection and FALSE selection denote the numbers of selected variables from the dis-
criminative set and its complement, respectively. Fitted model size is the total number of selected

variables
Bayes Our method Wu Witten Tibshirani Fan t-test classifier

Model 1
Error (%) 10 10·89 13·71 10·81 10·94 11·47 10·46

(0·03) (0·01) (0·01) (0·02) (0·05) (0·01)

TRUE selection 3 3 3 1 3 3 3
(0) (0) (0) (0) (0) (0)

FALSE selection 0 2 0 26 6 7 1
(0·16) (0·49) (0·11) (0·61) (0·66) (0)

Model 2
Error (%) 10 12·84 14·5 14·25 15·12 15·67 14·12

(0·05) (0·01) (0·02) (0·05) (0·07) (0·01)

TRUE selection 3 3 1 2 2 2 2
(0) (0·14) (0) (0·34) (0) (0)

FALSE selection 0 6 0 4 9 8 0
(0·27) (0) (0·61) (0·73) (0·29) (0)

Model 3
Error (%) 20 21·93 22·37 33·69 27·48 25·69 38·94

(0·03) (0·05) (0·01) (0·07) (0·02) (0·03)

TRUE selection 5 5 5 3 3 2 3
(0) (0) (0) (0) (0) (0)

FALSE selection 0 14 2 419·5 2 0 790
(0·59) (0) (10·19) (0·31) (0) (0·42)

Model 4
Error (%) 10 12·50 13·99 23·90 19·25 18·56 24·59

(0·02) (0·03) (0·01) (0·04) (0·00) (0·06)

TRUE selection 7 7 6 4 4 3 6
(0) (0) (0) (0) (0) (0)

FALSE selection 0 18 2 35 1 0 153
(0·70) (0) (4·43) (0·48) (0) (0)

Model 5
Error (%) 10 11·11 12·07 21·99 14·72 14·27 25·79

(0·02) (0·07) (0·01) (0·03) (0·01) (0·04)

Fitted model size 800 21 7 737 3 3 800
(0·65) (0·16) (2·29) (0·46) (0) (0)

Model 6
Error (%) 20 22·22 23·34 30·43 26·13 24·14 36·80

(0·03) (0·05) (0·01) (0·07) (0) (0·04)

Fitted model size 800 20 5 592·5 8 3 798
(0·53) (0·49) (7·46) (0·51) (0) (0)

it can often miss some important features. Witten and Tibshirani’s method has rather poor per-
formance, which is somewhat surprising because the basic idea is similar to Wu’s. Witten and
Tibshirani’s formulation in (4) is nonconvex while Wu’s formulation in (3) is convex, which may
help explain their different performances. The t-test classifier is best for Model 1, second best
for Model 2 and worst for Models 3–6.
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Table 3. Comparing lassoed discriminant analysis with other approaches on the colon and the
prostate datasets

Our method Witten Wu Tibshirani Fan t-test classifier

Colon Error (%) 86·4 (1·54) 86·4 (0·49) 84·1 (2·17) 86·4 (1·20) 86·4 (0·61) 81·0 (1·67)

Fitted model size 5 (0·63) 10 (1·39) 1 (0) 89 (29·95) 11 (1·19) 16 (1·15)

Prostate Error (%) 94·1 (0·55) 91·2 (0·24) 91·2 (0·70) 91·2 (0·96) 76·5 (0·54) 76·5 (1·62)

Fitted model size 10 (0·77) 18 (4·45) 1 (0) 10 (0·84) 4 (0·40) 58 (2·65)

Table 4. Adjusted classification accuracies of four methods by forcing them to
select a similar number of genes as does our method

Witten Wu Tibshirani Fan

Colon 86·4 (0·51) 86·4 (1·06) 63·6 (0·70) 77·3 (2·16)

Prostate 94·1 (1·25) 91·2 (1·24) 91·2 (1·39) 73·5 (1·11)

4·2. Real data

We further compare the methods on two benchmark datasets: the colon and prostate cancer
datasets. The basic task here is to predict whether an observation is tumour or is normal tissue.
We randomly split the datasets into the training and test sets with ratio 2:1. Model fitting was
done on the training set and classification accuracy was evaluated on the test set. This procedure
was repeated 100 times. Shown in Table 3 are the classification accuracies and the numbers of
genes selected by each competitor.

The colon and prostate datasets have been previously used to test classification and fea-
ture selection methods. See Alon et al. (1999), Singh et al. (2002) and Dettling (2004). Dettling
(2004) reported that BagBoost was the most accurate classifier for the prostate data, with 92·5%
classification accuracy, and the nearest shrunken centroids classifier was the most accurate clas-
sifier for the colon data. Table 2 shows that our method is as accurate as the nearest shrunken
centroids classifier on the colon data and significantly outperforms BagBoost on the prostate
data. Since BagBoost does not do gene selection, we do not include it in Table 2. Witten and
Tibshirani’s method works quite well on these two real datasets. As suggested by a referee, we
adjusted the tuning parameters of Witten and Tibshirani’s, Wu’s, Tibshirani’s and Fan’s meth-
ods such that they selected a similar number of genes to that by our method on each dataset.
Their adjusted classification errors are reported in Table 4. This adjustment helps Witten and
Tibshirani’s method but degrades Tibshirani’s and Fan’s methods.

5. DISCUSSION

Sparse discriminant analysis based on independence rules is computationally attractive for
high-dimensional classification. However, independence rules may lead to misleading feature
selection and hence poor classification performance, due to the difference between discrimi-
native and signal variables. When doing feature selection in classification, one should aim to
recover the discriminative set, not the signal set, which is the goal of large-scale hypothesis test-
ing. Discovering the signal set is the fundamental question of research in many scientific studies
(Efron, 2010), but identifying features for classification could be very different from identifying
interesting signals, and hence the statistical tools for data analysis should be carefully chosen.

If one feels that the condition (12) is somewhat strong for establishing the nonpolynomial-
dimension theory, one may use a concave penalty other than the lasso penalty. We have tried
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using the smoothly clipped absolute deviation penalty (Fan & Li, 2001) and have shown that
the resulting sparse discriminant algorithm enjoys a strong oracle property without requiring the
condition (12). These results are given in a technical report which is available upon request. We
only focus on lassoed discriminant analysis in the current paper because our primary goal is
to demonstrate the effectiveness of the penalized least squares formulation of sparse discrim-
inant analysis. We do not want to overly emphasize the penalty function. For a given dataset,
one penalty function may be more appropriate than others. For example, in some situations, the
predictors may have a natural ordering, so ordered variable selection is preferred, and the nested
lasso (Levina et al., 2008) is a better choice than the lasso or smoothly clipped absolute devia-
tion penalty. It is straightforward to implement the nested lasso in our proposal, but a detailed
treatment is beyond the scope of this paper.
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APPENDIX

Proof of Proposition 1. 1. Let � = �−1 and βBayes = �(μ2 − μ1). Note that A ⊆ Ã is equivalent to
β

Bayes

Ãc = 0, and β
Bayes

Ãc = � Ãc, Ã(μ2, Ã − μ1, Ã), where � Ãc, Ã = −(� Ãc, Ãc − � Ãc, Ã�−1
Ã, Ã

� Ã, Ãc)−1� Ãc, Ã�−1
Ã, Ã

.
Therefore, part 1 is proven.

2. By definition, Ã ⊆ A is equivalent to μ2,Ac = μ1,Ac . Now using μ2 − μ1 = �βBayes we have μ2,A −
μ1,A = �A,Aβ

Bayes
A and μ2,Ac − μ1,Ac = �Ac,Aβ

Bayes
A . Hence, μ2,Ac − μ1,Ac = �Ac,A�−1

A,A(μ2,A − μ1,A).
Thus part 2 is proven. �

Proof of Proposition 2. We recode the response variable as y∗ = ±1. Note that β̃
opt
0 =

arg minβ̃0
E{y∗

new |= sign(xT
newβ̃ + β̃0) | training data}. Since y∗

new, xnew are independent from the train-

ing data, (Y ∗
new, znew = xT

newβ̃) obeys a one-dimensional linear discriminant analysis model, that is,
znew | y∗

new = 1 ∼ N (β̃Tμ2, β̃
T�β̃), pr(y∗

new = 1) = π2 and znew | y∗
new = −1 ∼ N (β̃Tμ1, β̃

T�β̃), pr(y∗
new =

−1) = π1. Then a straightforward calculation gives (8). �

Proof of Proposition 3. By definition we can write CAA = �AA + π1π2(μ2A − μ1A)(μ2A − μ1A)T and
CAAβ̃

Bayes
A = μ2A − μ1A. Let c = n{n − 2 + π1π2(μ2A − μ1A)T�−1

AA(μ2A − μ1A)}−1 > 0, then β̃
Bayes
A =

cβBayes
A . �

We now prove Theorems 1 and 2. With y = n/n2, −n/n1 and the centred predictor matrix X̃ , we can
write

β̂ lasso = arg min
β

⎧⎨
⎩n−1βT(X̃ T X̃)β − 2(μ̂2 − μ̂1)

Tβ + λ

p∑
j=1

|β j |
⎫⎬
⎭ .

The following two lemmas are repeatedly used in the proof.

LEMMA A1. There exist constants ε0 and c1, c2 such that for any ε � ε0 we have

pr(|C (n)
i j − Ci j | � ε) � 2 exp(−nε2c1) (i, j = 1, . . . , p); (A1)

pr{|(μ̂2 j − μ̂1 j ) − (μ2 j − μ1 j )| � ε} � 2 exp(−nε2c2) ( j = 1, . . . , p); (A2)

pr(‖C (n)
AA − CAA‖∞ � ε) � 2s2 exp(−ns−2ε2c1); (A3)
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pr(‖C (n)
Ac A − CAc A‖∞ � ε) � 2(p − s)s exp(−ns−2ε2c1); (A4)

pr{‖(μ̂2 − μ̂1) − (μ2 − μ1)‖∞ � ε} � 2p exp(−nε2c2); (A5)

pr{‖(μ̂2A − μ̂1A) − (μ2A − μ1A)‖∞ � ε} � 2s exp(−nε2c2). (A6)

LEMMA A2. There exist constants ε0, c1 such that for any ε � min(ε0, 1/ϕ), we have

pr{‖C (n)
Ac A(C (n)

AA)−1 − CAc A(CAA)−1‖∞ � εϕ(κ + 1)(1 − ϕε)−1} � 2ps exp(−ns−2ε2c1).

Proof of Lemma A1. We only prove (A1) and (A2). Inequalities (A3)–(A6) can be obtained from
(A1)–(A2) by union bounds. First, pr(|μ̂1 j − μ1 j | � ε | Y ) � 2 exp{−n1ε

2/(2σ 2
j )}. Also, n1 ∼ Ber(n, π1)

and pr(|n1 − π1n| � nε) � 2 exp(−nc′
2ε

2). Therefore, pr(|μ̂1 − μ1| � ε) � 2 exp{−nπ1ε
2/(4σ 2

j )} +
2 exp(−nc′

2π
2/4) � 2 exp(−nc(1)

2 ε2). The same inequality also holds for class 2. Thus (A2) holds.
To prove (A1), note that C (n)

i j = n−1
∑n

k=1 xki xk j − x̄i x̄ j . Since x̄v = π̂1μ̂1v + π̂2μ̂2v (v = i, j), by pre-
vious arguments, we know that there exists c′

1 > 0 such that

pr{|x̄i x̄ j − E(xi )E(x j )| � ε} � 2 exp(−nc′
1ε

2).

We further have that n−1
∑n

k=1 xki xk j − E(xi x j ) = ∑2
l=1 nl/n{n−1

l

∑
gk=l xki xk j − E(xi x j | g = l)} +∑2

l=1 E(xi x j | g = l)(nl/n − πl) and E(xi x j | g = l) = �i j + μliμl j for l = 1, 2. Note that

n−1
l

∑
gk=l

xki xk j = n−1
l

∑
gk=l

(xki − μli )(xk j − μl j ) + μli (μl j − μ̂l j ) + μl j (μli − μ̂li ) + μliμl j .

Bickel & Levina (2008) showed that, for ε < ε0,

pr{|n−1
l

∑
gk=l

(xki − μli )(xk j − μl j ) − �i j | > ε | Y } � 2 exp(−c3nε2). (A7)

Combining the concentration results for μ̂lν , nl and (A7), we have (A1). �

Proof of Lemma A2. Let η1 = ‖CAA − C (n)
AA‖∞, η2 = ‖CAc A − C (n)

Ac A‖∞ and η3 = ‖(C (n)
AA)−1 −

(CAA)−1‖∞. First we have

‖C (n)
Ac A(C (n)

AA)−1 − CAc A(CAA)−1‖∞ � ‖C (n)
Ac A − CAc A‖∞ × ‖(C (n)

AA)−1 − (CAA)−1‖∞

+ ‖C (n)
Ac A − CAc A‖∞ × ‖(CAA)−1‖∞

+ ‖CAc A(CAA)−1‖∞ × ‖CAA − C (n)
AA‖∞ × ‖(CAA)−1‖∞

+ ‖CAc A(CAA)−1‖∞ × ‖CAA − C (n)
AA‖∞

× ‖(C (n)
AA)−1 − (CAA)−1‖∞

� (κη1 + η2)(ϕ + η3).

Moreover, η3 � ‖(C (n)
AA)−1‖∞ × ‖(C (n)

AA − CAA)‖∞ × ‖(CAA)−1‖∞ = (ϕ + η3)ϕη1. So, as long as ϕη1 < 1,
we have η3 � ϕ2η1(1 − ϕη1)

−1 and hence

‖C (n)
Ac A(C (n)

AA)−1 − CAc A(CAA)−1‖∞ � (κη1 + η2)ϕ(1 − ϕη1)
−1.

Then we consider the event max(η1, η2) � ε and use Lemma 1 to obtain Lemma 2. �

Proof of Theorem 1. We first prove conclusion 1. By (11) we can write β̂A = (n−1 X̃ T
A X̃ A)−1{(μ̂2A −

μ̂1A) − λtA/2}, where tA represents the subgradient such that t j = sign(β̂ j ) if β̂ j |= 0 and −1 < t j < 1 if
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β̂ j = 0. Write

β̂A = (CAA)−1(μ2A − μ1A) + (C (n)
AA)−1{(μ̂2A − μ̂1A) − (μ2A − μ1A)}

− {(C (n)
AA)−1 − (CAA)−1}(μ2A − μ1A) − λ(C (n)

AA)−1tA/2. (A8)

In order to show that β̂ lasso = (β̂A, 0), it suffices to verify that

‖n−1 X̃ T
Ac X̃ Aβ̂A − (μ̂2AC − μ̂1AC )‖∞ � λ/2. (A9)

The left-hand side of (A9) is equal to

‖C (n)
Ac A(C (n)

AA)−1(μ̂2A − μ̂1A) − C (n)
Ac A(C (n)

AA)−1λtA/2 − (μ̂2AC − μ̂1AC )‖∞. (A10)

Using CAc AC−1
AA(μ2A − μ1A) = (μ2AC − μ1AC ), (A10) is bounded from above by

U1 = ‖C (n)
Ac A(C (n)

AA)−1 − CAc AC−1
AA‖∞
 + ‖(μ̂2AC − μ̂1AC ) − (μ2AC − μ1AC )‖∞

+ {‖C (n)
Ac A(C (n)

AA)−1 − CAc AC−1
AA‖∞ + κ}‖(μ̂2A − μ̂1A) − (μ2A − μ1A)‖∞

+ (‖C (n)
Ac A(C (n)

AA)−1 − CAc AC−1
AA‖∞ + κ)λ/2.

If ‖C (n)
Ac A(C (n)

AA)−1 − CAc AC−1
AA‖∞ � (κ + 1)εϕ(1 − ϕε)−1, and

‖(μ̂2 − μ̂1) − (μ2 − μ1)‖∞ � 4−1λ(1 − κ − 2εϕ)/(1 + κ),

then U1 � λ/2. Therefore, by Lemmas A1 and A2, we have

1 − δ1 ≡ pr{‖n−1 X̃ T
Ac X̃ Aβ̂A − (μ2AC − μ1AC )‖∞ � λ/2}

� 1 − 2ps exp(−ns−2ε2c1) − 2p exp[−nc2{4−1λ(1 − κ − 2εϕ)/(1 + κ)}2].

Thus (13) is proven.
We now prove conclusion 2. Let ζ = |β∗|min/(
ϕ). Write η1 = ‖CAA − C (n)

AA‖∞ and η3 = ‖(C (n)
AA)−1 −

(CAA)−1‖∞. Then for any j ∈ A,

|β̂ j | � ζ
ϕ − (η3 + ϕ){λ/2 + ‖(μ̂2A − μ̂1A) − (μ2A − μ1A)‖∞} − η3
.

When η1ϕ < 1 we have shown that η3 < ϕ2η1(1 − η1ϕ)−1, thus

|β̂ j | � ζ
ϕ − (1 − η1ϕ)−1{λϕ/2 + ‖(μ̂2A − μ̂1A) − (μ2A − μ1A)‖∞ϕ + ϕ2η1
}≡ L1.

Because ‖β∗‖∞ � 
ϕ, ζ � 1. Hence λ � |β∗|min/(2ϕ) � 2|β∗|min/{(3 + ζ )ϕ}. Under the events η1 � ε

and ‖(μ̂2A − μ̂1A) − (μ2A − μ1A)‖∞ � ε we have L1 > 0. Therefore,

pr(L1 > 0) � 1 − 2s2 exp(−c1ns−2ε2) − 2s exp(−nc2ε
2).

Thus (14) is proven.
We now prove conclusion 3. By (A8) and η1ϕ < 1, we have

‖β̂A − β∗‖∞ � (1 − η1ϕ)−1{λϕ/2 + ‖(μ̂2A − μ̂1A) − (μ2A − μ1A)‖∞ϕ + ϕ2η1
}.

Under the events η1 < ε and ‖(μ̂2A − μ̂1A) − (μ2A − μ1A)‖∞ � ε we have ‖β̂A − β∗‖∞ � 4ϕλ. Thus,

pr(‖β̂A − β∗‖∞ � 4ϕλ) � 1 − 2s2 exp(−c1ns−2ε2) − 2s exp(−nc2ε
2).

Thus (15) is proven. �

Proof of Theorem 2. Theorem 2 directly follows from Theorem 1, so its proof is omitted. �
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