
A Direct Bootstrap Method for Complex Sampling
Designs From a Finite Population

In complex designs, classical bootstrap methods result in a biased variance estimator when the sampling design is not taken into account.
Resampled units are usually rescaled or weighted in order to achieve unbiasedness in the linear case. In the present article, we propose novel
resampling methods that may be directly applied to variance estimation. These methods consist of selecting subsamples under a completely
different sampling scheme from that which generated the original sample, which is composed of several sampling designs. In particular,
a portion of the subsampled units is selected without replacement, while another is selected with replacement, thereby adjusting for the
finite population setting. We show that these bootstrap estimators directly and precisely reproduce unbiased estimators of the variance in
the linear case in a time-efficient manner, and eliminate the need for classical adjustment methods such as rescaling, correction factors, or
artificial populations. Moreover, we show via simulation studies that our method is at least as efficient as those currently existing, which
call for additional adjustment. This methodology can be applied to classical sampling designs, including simple random sampling with and
without replacement, Poisson sampling, and unequal probability sampling with and without replacement.

KEY WORDS: One–one resampling design; Poisson sampling; Replications; Simple random sampling; Unequal probability sampling;
Variance estimation.

1. INTRODUCTION

Resampling methods such as the bootstrap and jackknife
are largely used to estimate variances across a broad spec-
trum of statistical contexts. In survey sampling, the variances
of even simple estimators depend on the sampling design, and
can take very complex forms, particularly when the sampling
design is elaborate. The classical bootstrap method, developed
by Efron (1979) cannot be directly applied to cases of sam-
pling from a finite population because the identical and inde-
pendent distribution assumption fails under sampling without
replacement. Gross (1980) and Chao and Lo (1985) have pro-
posed a method for variance estimation based on reconstructing
artificial populations from the sample. Bootstrap samples are
then selected from this artificial population using the original
sampling scheme. Another important class of methods arises
from the rescaled bootstrap (Rao and Wu 1988) which consists
of modifying the sample values of the variable of interest to
construct an unbiased estimator of the variance in the linear
case. Other methods have also been proposed by McCarthy and
Snowden (1985), Kuk (1989), Rao, Wu, and Yue (1992), Shao
and Tu (1995), Sitter (1992a, 1992b), Booth, Butler, and Hall
(1994), Holmberg (1998).

In this article, we propose a new methodology that can be
applied to classical sampling designs both with and without re-
placement, as well as both equal and unequal inclusion proba-
bilities. Our methodology consists of selecting bootstrap sam-
ples from the original sample in such a way that it eliminates the
need for scaling, weighting of the sample, and using artificial
populations. We argue that if the aim is variance estimation, the
resampling design must be radically different from that which
generates the original data. We then proceed to construct an ad
hoc resampling design by mixing several designs, such that the
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bootstrap variance is equal to the estimator of the variance in
the linear case, and such that the bootstrap sample has the same
expected sample size as that of the actual sample size of the
data, and can thus be treated as the original sample. This fea-
ture is particularly attractive because imputation, weighting for
nonresponse, and calibration can thus be carried out without the
need for any additional considerations or corrective techniques.
In sampling without replacement, the main idea consists in se-
lecting bootstrap samples by mixing sampling with and with-
out replacement in order to reproduce a variance estimator that
comprises the finite population correction.

The remainder of the article is structured as follows. We will
first review basic notions of the theory of survey sampling, and
provide an overview of the most frequently used sampling de-
signs. We will then introduce two new sampling designs, sim-
ple random sampling with over-replacement and one–one re-
sampling, that are used exclusively in resampling. We will then
define sufficient conditions for a direct unbiased estimator for
the variance of the total in resampling designs, and provide the
construction of the algorithms used to draw such samples for
several basic sampling designs. Finally, we supplement the the-
oretical proofs with results of simulation studies performed on
several functions of interest, including the total, the median, the
Gini index, and the ratio of totals. These results are compared to
those obtained under resampling methods currently used, such
as the classical bootstrap with and without replacement. We
conclude with comparative remarks on our proposed method-
ology, and propose additional development and future research
on the topic.

2. SAMPLING DESIGN AND ESTIMATION

Consider the finite population U = {1, . . . , k, . . . ,N} and the
variable of interest y that takes the value yk on unit k, for
all k in U. A first aim is to estimate the total of the interest
variable: Y = ∑k∈U yk. A random sample is a random vec-
tor S = (S1, . . . ,Sk, . . . ,SN)′, where Sk is the number of times
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unit k is selected in the sample. If the sample is selected with-
out replacement, then Sk can only take ∑the values 0 and 1. If the 
sample has a fixed sample size n, then k∈U Sk = n.

Let πk be the expectation of Sk, that is, πk = E(Sk). The joint 
expectation of two units k and � is πk� = E(SkS�). Moreover,
�k� = cov(Sk,S�) = πk� −πkπ�. If the sample is selected with-
out replacement, πk is the inclusion probability of unit k and
πk� is the joint inclusion probability of unit k and �.

If πk > 0, for all k ∈ U, then the total Y can be estimated in
an unbiased manner by using the Horvitz–Thompson estimator
Ŷ =∑k∈U Skyk/πk. The variance of Ŷ is

var(Ŷ) =
∑
k∈U

∑
�∈U

yky�

πkπ�

�k�. (1)

Theoretically, if πk� > 0, for all k �= � ∈ U, this variance can be
estimated in an unbiased manner by

v̂ar(Ŷ) =
∑
k∈U

∑
�∈U

SkS�yky�

πkπ�

�k�

πk�
. (2)

Nevertheless, this variance estimator is often very unstable. It
can even take negative values. When the sampling design has
a fixed sample size, then the variance can be written

var(Ŷ) = −1

2

∑
k∈U

∑
�∈U

(
yk

πk
− y�

π�

)2

�k�,

and, if πk� > 0, for all k �= � ∈ U, can be estimated by the
Yates–Grundy estimator of variance:

v̂ar(Ŷ) = −1

2

∑
k∈U

∑
�∈U

SkS�

(
yk

πk
− y�

π�

)2
�k�

πk�
. (3)

Expression (3) holds for sampling with or without replacement
and can also be written in the quadratic form

v̂arD(Ŷ) =
∑
k∈U

∑
�∈U

SkS�yky�

πkπ�

Dk�, (4)

with

Dk� =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
∑
j∈U
j�=k

Sj
�kj

πkj
if k = �

�k�

πk�
if k �= �.

(5)

When the sampling design with or without replacement has
a fixed sample size, estimator (3) must be preferred to estima-
tor (2). We shall show below in Result 2 that the presentation
of estimator (3) in a quadratic form is needed to construct a re-
sampling method that produces an unbiased estimator.

3. BASIC SAMPLING DESIGNS

In a Poisson sampling design with inclusion probabilities πk,

the Sk are N independent Bernoulli random variables with pa-
rameter πk. Thus, �k� = πk(1 − πk) if k = � and 0, if not. So
�k�/πk� = 1 − πk if k = � and 0 if not.

Simple random sampling with replacement is very common.
The sampling design is given by Pr(S = s) = N−n

( n
s1···sk···sN

)
,

for all s ∈ Rn, where Rn = {s ∈ N
n|∑N

k=1 sk = n}. It follows
that �k� = −n(N −1)/{N2(N −1)} when k �= � ∈ U and �kk =

n(N − 1)/N2 when k ∈ U. Since the sample size is fixed, we
can construct an unbiased estimator by using the quadratic form
based on the Dk�, defined in Expression (5), Dk� = −1/(n − 1)

when k �= � ∈ U, and Dkk = 1 when k ∈ U, which gives

v̂ar(Ŷ) = N2

n

1

n − 1

∑
k∈U

Sk(yk − Ŷ)2, (6)

where Ŷ = n−1∑
k∈U Skyk.

Unequal probability with replacement with fixed sample
size, is a generalization of simple random sampling with re-
placement to unequal probabilities of selection. The distribution
of this sampling design is multinomial:

Pr(S = s) =
(

n

s1 · · · sk · · · sN

)−1 ∏
k∈U

(
πk

n

)sk

for all s ∈ Rn.

In unequal probability sampling with replacement,

�k� = n(N − 1)

N2
×

⎧⎪⎪⎨⎪⎪⎩
πk

(
1 − πk

n

)
if k = �

−πkπ�

n
if k �= �.

In order to construct an unbiased estimator of the variance,
we can use the Dk� defined in Expression (5), and we get
Dk� = −1/(n − 1) when k �= � ∈ U, and Dkk = 1 when k ∈ U.
Curiously, Dk� does not depend on the πk’s of the sampling
design and are the same as simple random sampling with re-
placement. The unbiased variance estimator (3) becomes

v̂ar(Ŷ) = n

n − 1

∑
k∈U

Sk

(
yk

πk
− Ŷ

n

)2

. (7)

Simple random sampling without replacement is defined by

the following sampling design: Pr(S = s) = (Nn)−1
, for all s ∈

Sn, where

Sn =
{

s ∈ {0,1}N
∣∣∣ N∑

k=1

sk = n.

}
.

We thus have �k� = −n(N − n)/{N2(N − 1)} when k �= � ∈ U,
�kk = n(N − n)/N2 when k ∈ U, �k�/πk� = −(N − n)/{N(n −
1)} when k �= � ∈ U, and �kk/πkk = (N − n)/N when k ∈ U.

Unequal probability sampling without replacement and with
fixed sample size is much more complex. The first problem
is that there are many methods of sampling without replace-
ment and with unequal probabilities. Each method provides
a specific matrix of joint inclusion probabilities. These in-
clusion probabilities are, however, very similar if the sam-
pling has a large entropy (Berger 1998; Brewer and Donadio
2003; Henderson 2006), such as the random systematic de-
sign (Madow 1949) or the Rao–Sampford design (Rao 1965;
Sampford 1967), the Brewer design (Brewer 1975), the maxi-
mum entropy design or the random pivotal design (Tillé 2006,
pp. 79–95 and p. 106). The second problem is that these inclu-
sion probabilities can never be simplified. So, a simpler expres-
sion of variance than (1) and its estimator (2) cannot be con-
structed. Several approximations of variance based on a simple
sum have been proposed, however. These approximations are
obviously biased, but simulations have shown that they have
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smaller mean squared errors than estimators (2) and (4) (Hájek
1981; Matei and Tillé 2005). There are thus various ways to
estimate the variance. The strictly unbiased estimator consists
of computing the Dk� by expression (5). A general biased and
simple estimator of variance is given by

v̂ar(Ŷ) =
∑
k∈S

ck

(
yk

πk
−
∑

k∈S ckyk/πk∑
k∈S ck

)2

,

where the ck are weights that we discuss further. This expres-
sion can be viewed as an approximation of the Dk� given in
expression (5), by

D̃k� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ck − c2

k∑
j∈U Sjcj

if k = �

− ckc�∑
j∈U Sjcj

if k �= �.

Diverse values have been proposed for the ck:

1. A simple value was given by Hájek (1981), who proposed
using

ck1 = n

n − 1
(1 − πk). (8)

2. Deville and Tillé (2005) proposed ck such that

ck2 − c2
k2∑

j∈U Sjcj2
= 1 − πk. (9)

In this case, the diagonal elements D̃kk2 of the approx-
imated matrix are equal to 1 − πk. A solution does not
always exist for this equation, for instance when n = 2.

3. One could also take the ck such that

ck3 − c2
k3∑

j∈U Sjckj
= −

∑
j∈U
j�=k

Sj
�kj

πkj
, (10)

but this approximation needs to solve a nonlinear system
of equations. In this case, the diagonal elements of the
approximated matrix

D̃kk3 = −
∑
j∈U
j�=k

Sj
�kj

πkj

and correspond to the diagonal of the matrix used for the
Yates–Grundy estimator of variance given in (5).

Simple random sampling with over-replacement was re-
cently proposed by Antal and Tillé (2010). The sampling de-
sign is defined by Pr(S1 = x1, . . . ,SN = xN) = (card Rn)

−1 =(N+n−1
n

)−1
. The

(N+n−1
n

)
samples with replacement have ex-

actly the same probability of being selected. The marginal dis-
tribution of Sk is given by

Pr(Sk = j) =
(

N + n − 1

n

)−1

×
(

N − 1 + n − j − 1

n − j

)
, j = 0, . . . ,n,

which is an inverse hypergeometric distribution.The expecta-
tion is E(Sk) = n/N, and the matrix of �k� is given by

�k� = (N − 1)(N + n)n

N2(N + 1)
×
⎧⎨⎩

1 if k = �

− 1

N − 1
if k �= �.

This design has a larger variance than sampling with replace-
ment and will be used only for resampling.

4. RESAMPLING AND SUFFICIENT CONDITIONS

Define the random set S that contains the list of labels for
the units selected in the sample S. If a unit is selected several
times in the sample, the labels can appear several times in S.

For instance, if from population U = {1,2,3,4,5,6}, we select
a sample S that takes the value (0,2,1,0,3,1), the set S takes
the value {2,2,3,5,5,5,6}. A resampling method is a second
stage on sampling from sample S. A subsample S∗ = (S∗

k , k ∈ S)

can thus be presented as a sequence of discrete nonnegative
random variables S∗

k that denote the number of times unit k
is resampled. For example, if, in the above example, S∗ takes
the values (1,0,3,0,2,0,1), then the subsample set S∗ will be
{2,3,3,3,5,5,6}. The S∗

k are generally not independent. A cor-
relation is indeed necessary to obtain an unbiased estimation of
the variance when the sample size is fixed. The resampling sam-
ple size is denoted by n∗.

In fact, a resampling method is a second phase of sam-
pling that can depend on the first phase. Let E∗(·) = E(·|S),
var∗(·) = var(·|S) and cov∗(·, ·) = cov(·, ·|S) denote, respec-
tively, the conditional expectation, variance and covariance un-
der the resampling design with respect to the original design.
Moreover, let Pr∗(·) = Pr(·|S) denote the probability under the
resampling design and conditionally to the original design.
Let αk = E∗(S∗

k ), αk� = E∗(S∗
k S∗

�) and cov∗(S∗
k ,S∗

�) = �k� =
αk� − αkα�. The resampled estimator of the total is defined as
Ŷ∗ =∑k∈S ykS∗

k/πk. This estimator is generally biased, its con-
ditional expectation is

E∗(Ŷ∗) =
∑
k∈S

ykE∗(S∗
k )

πk
=
∑
k∈S

ykαk

πk
. (11)

Note that αk can depend on S. If αk = 1, then the estimator is
unbiased.

The conditional variance of the resampled estimator is

var∗(Ŷ∗) =
∑
k∈S

∑
�∈S

yky�

πkπ�

�k�. (12)

This directly leads to two fundamental results:

Result 1. A sufficient condition for E∗(Ŷ∗) = Ŷ is αk = 1,

for all k ∈ U.

This result directly comes from the equality between Expres-
sion (11) and the Horvitz–Thompson estimator.

Result 2. A sufficient condition for var∗(Ŷ) = v̂ar(Ŷ), is
�k� = �k�/πk�, for all k, � ∈ U and a sufficient condition for
var∗(Ŷ) = v̂arD(Ŷ), is �k� = Dk�, for all k, � ∈ U if the sample
size is fixed.
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This result directly comes from the equality between Expres-
sions (2) and (12) or between Expressions (4) and (12) when 
the sample size of S is fixed.

In fact, the main idea of this article is to develop resampling 
methods that satisfy conditions given in Results 1 and 2. This
idea leads us to choose a sampling design for S∗ that is com-
pletely different from the sampling design used for S. Indeed, 
Result 1 is generally not satisfied by using the same sampling
design for S and S∗, because �k� and Dk� are of very different 
natures: the �k� are variances and covariances, but the Dk� are 
not.

Let θ̂ be an estimator of a function of interest θ . Estima-
tor θ̂ is a function of the observed data {(yk,πk), k ∈ S}. The
bootstrap estimator θ̂∗ is the same function as θ̂ , applied on
the bootstrap data {(yk,πk), k ∈ S∗}. Practically, a sequence of
bootstrap samples S∗1, . . . ,S∗m are selected with the bootstrap
design. The bootstrap variance given in (12) is approximated by

ṽar∗(θ̂∗) = 1

m − 1

m∑
j=1

(θ̂∗
j − θ̂ )2,

where θ̂∗
j is the bootstrap estimator computed on the jth boot-

strap sample and θ̂ = (1/m)
∑m

j=1 θ̂∗
j .

5. THE SIMPLEST EXAMPLE: RESAMPLING FROM
A POISSON SAMPLE

In a Poisson sampling design, �k�/πk� = 0 when k �= � ∈ U,

and �kk/πkk = 1−πk when k ∈ U. The resampling design must
be such that E∗(S∗

k ) = 1, var∗(S∗
k ) = 1−πk, and cov∗(S∗

k ,S∗
�) =

0, for all k �= �. Algorithm 1 can be used to generate such S∗
k ’s.

The main idea consists of selecting a part of the units without
replacement and a part with replacement with Poisson random
variables in order to reproduce the finite population correction
1 − πk.

With Algorithm 1, the expectations, variances and co-
variances of the S∗

k can be computed E∗(S∗
k ) = E∗(S∗

kA) +
E∗(S∗

kB) = πk + 1 × (1 − πk) = 1. Moreover, var∗(S∗
k ) =

E∗[var∗(S∗
k |S∗

kA)] + var∗[E∗(S∗
k |S∗

kA)] = 1 − πk. This bootstrap
method provides the exact Horvitz–Thompson estimator in
the linear case. Indeed, var∗(Ŷ∗) = var∗(

∑
k∈S ykS∗

k/πk) =∑
k∈S y2

k(1 − πk)/π
2
k = v̂ar(Ŷ).

6. THE ONE–ONE RESAMPLING DESIGN

The one–one design is a sampling design defined only for re-
sampling. It is an ad hoc construction used to randomly select n
units from a sample of size n in such a way that the expectation
and the variance of S∗

k are equal to 1, that is, E∗(S∗
k ) = 1 and

var∗(S∗
k ) = 1. This sampling design is a mixture between a sim-

ple random sampling with replacement and a simple random

Algorithm 1 Resampling procedure for Poisson sampling
Define, independently, for k ∈ S:

• S∗
kA is a Bernoulli random variable with parameter πk.

• If S∗
kA = 1 then S∗

kB = 0,

else S∗
kB is a Poisson random variable with parameter

λ = 1.

• The resampling design is S∗
k = S∗

kA + S∗
kB.

Algorithm 2 The one–one resampling design
• If n = 2, then

S∗
1 =

{
0 with probability 1/2
2 with probability 1/2

and S∗
2 = 2 − S∗

1.• If n ≥ 3, then
– Compute:

m =
⌊

1

2

(
1 +

√
4n2 + 5n − 1

n − 1

)⌋
, (13)

where �x� is the largest integer less than or equal to x
and

α = m(n − 1)(m + 1) − n(n + 1)

2m(n − 1)
. (14)

– Define the random variable

ñ =
{

m with a probability α

m + 1 with a probability 1 − α.

– Select a simple random sample with overreplacement
with sample size ñ from S. This sample is denoted
by S∗

kA.
– Select a simple random sample with replacement with

sample size n − ñ from S. This sample is denoted by
S∗

kB. This second sample is independent from the first
one.

– The final sample is S∗
k = S∗

kA + S∗
kB.

sampling with over-replacement. Its implementation is given in
Algorithm 2.

Result 3. If S∗
k is the number of times unit k is selected by

the one–one resampling design described in Algorithm 2, then
E∗(S∗

k ) = 1,var∗(S∗
k ) = 1, cov∗(S∗

k ,S∗
�) = −1/(n − 1), for all

k �= �.

Proof. The case where n = 2 is obvious. For the case where
n ≥ 3, we have that E∗(S∗

k |ñ) = E∗(S∗
kA|ñ)+E∗(S∗

kB|ñ) = ñ/n+
(n − ñ)/n = 1. Thus E∗(S∗

k ) = E∗E∗(S∗
k |ñ) = 1. Moreover,

var∗(S∗
k |ñ) = var∗(S∗

kA|ñ) + var∗(S∗
kB|ñ)

= (n − 1)(n + ñ)ñ

n2(n + 1)
+ (n − ñ)(n − 1)

n2

= n − 1

n2

[
(n + ñ)ñ + (n + 1)(n − ñ)

(n + 1)

]
.

Since E∗(S∗
k |ñ) = 1,

var∗(S∗
k ) = E∗ var∗(S∗

k |ñ)

= α
n − 1

n2

[
(n + m)m + (n + 1)(n − m)

(n + 1)

]
+ (1 − α)

n − 1

n2

×
[
(n + m + 1)(m + 1) + (n + 1)(n − m + 1)

(n + 1)

]
= (n − 1)[n + n2 + m(1 − 2α + m)]

n2(1 + n)
. (15)
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By plugging the value of α given in (14) and the value of m
given in (13) in Expression (15), we get var∗(S∗

k ) = 1. This
sampling design has a fixed sample size, which implies that∑

k∈S cov∗(S∗
k ,S∗

�) = cov∗(n,S∗
�) = 0. Moreover, since all the

units are treated symmetrically cov∗(S∗
k ,S∗

�) = −var∗(S∗
k )/(n−

1). We thus have �k� = −1/(n − 1) when k �= � ∈ U and
�kk = 1 for k ∈ U.

7. RESAMPLING FROM A SIMPLE RANDOM SAMPLE
WITH REPLACEMENT

7.1 The Usual Bootstrap With Replacement

If the sample S is selected by means of simple random sam-
pling with replacement, the formula of the estimated variance of
the total estimator is already given in Expression (6). The usual
bootstrap consists of selecting a sample from S with the same
sampling design, that is, a simple random sampling design with
replacement from S. In this case, the variance of the resampled
estimator is var∗(Ŷ∗) = (N2/n2)

∑
k∈S(yk − Y)2. The bootstrap

variance slightly underestimates the unbiased estimator given
in Expression (6). Indeed, v̂ar(Ŷ) = n/(n − 1) × var∗(Ŷ∗). Ac-
tually, this underestimation is not very important if the sample
size is large but can create problems if the samples are selected
in strata with small sample sizes. Obviously, a correction fac-
tor can be applied in each stratum, but these procedures require
a particular treatment of the bootstrap sample in each stratum.

7.2 Bootstrap by Using the One–One Sampling Design

The one–one simple random sampling design allows us to
avoid the use of correction factors for the variance. Indeed, if
the bootstrap sample is selected by a one–one design then the
bootstrap variance is var∗(Ŷ∗) = [N2/{n(n − 1)}]∑k∈S(yk −
Y)2. In a one–one simple random sampling, the repetition of
the units is slightly larger than with simple random sampling
with replacement, which increases the variance by a factor of
n/(n − 1). It is thus no longer necessary to multiply the boot-
strap variance by this factor.

8. RESAMPLING FROM A SAMPLE SELECTED WITH
UNEQUAL PROBABILITIES WITH REPLACEMENT

8.1 The Usual Bootstrap With Replacement

If the sample is selected with unequal probabilities, with re-
placement and with fixed sample size, the estimator of variance
is given in (7). In this case, the matrix of Dk� given in (5) does
not depend on the πk’s, which means that the resampling design
must be done with equal selection probabilities. A usual design
consists of resampling by means of simple random sampling
with replacement, which gives the bootstrap variance

var∗(Ŷ∗) =
∑
k∈S

(
yk

πk
− Ŷ

n

)2

.

With simple random sampling with replacement, the bootstrap
variance thus suffers from a small underestimation. This prob-
lem can be annoying when the sample size is small and can be
fixed by using a one–one simple random sampling.

8.2 Bootstrap by Using the One–One Sampling Design

If the bootstrap samples are selected with a one–one design,
the bootstrap variance becomes

var∗(Ŷ∗) = n

n − 1

∑
k∈S

(
yk

πk
− Ŷ

n

)2

,

and is exactly equal to the estimator of variance (7). The one–
one design is thus a convenient design for resampling from
a sample selected with unequal probabilities with replacement,
particularly when the sample size is small.

9. RESAMPLING FROM A SIMPLE RANDOM SAMPLE
SELECTED WITHOUT REPLACEMENT

9.1 Resampling Using Simple Random
Sampling With Replacement

In simple random sampling without replacement, the estima-
tor of variance is

v̂ar(Ŷ) = N2(N − n)

nN

1

n − 1

∑
k∈S

(yk − Ŷ)2. (16)

A simple way of resampling consists of using a simple ran-
dom sampling with replacement as a resampling design. In this
case, var∗(Ŷ∗) = (N2/n2)

∑
k∈S(yk − Y)2. Obviously, the boot-

strap variance is not equal to the variance estimator. Indeed,
v̂ar(Ŷ) = var∗(Ŷ∗)(N − n)n/{N(n − 1)}, which means that the
resampling variance does not take into account the loss of one
degree of freedom and the finite population correction. The
bootstrap variance must be corrected by a factor. This correc-
tion can become intricate if a large number of samples are se-
lected in strata.

9.2 Resampling Using a With Replacement
and a One–One Design

In order to avoid the use of a correction factor, one can use
a mixture of a simple sampling without replacement and a one–
one design as described in Algorithm 3 in order to directly re-
produce the unbiased estimator of variance for the totals.

Result 4 gives the properties of Algorithm 3.

Result 4. If Algorithm 3 is used for the resampling design,
(i) E∗(S∗

k ) = 1, (ii) var∗(S∗
k ) = (N − n)/N, (iii) cov∗(S∗

k ,S∗
�) =

−(N − n)/{N(n − 1)}.
Proof. The case where n − n2/N < 2 is trivial. For the case

where n − n2/N ≥ 2, the expectation is given by E∗(S∗
k ) =

E∗(S∗
kA) + E∗(S∗

kB|S∗
kA)Pr∗(SkA = 0) = n/N + 1 × (1 − n/N) =

1. Next, the variance is var∗(S∗
k ) = E∗[var∗(S∗

k |S∗
kA)] +

var∗[E∗(S∗
k |S∗

kA)] = var∗(S∗
kB|S∗

kA = 0)Pr∗(S∗
kA = 0) = 1 − n/N.

Finally, the covariances can be derived from the symmetry of
treatment of the units, which implies that cov∗(S∗

k |S∗
kA,S∗

�A) =
−var∗(S∗

k )/(n − 1) = −(N − n)/{N(n − 1)}.
If Algorithm 3 is used, the resampling variance is thus

var(Ŷ∗) = N2 N − n

nN

1

n − 1

∑
k∈S

(yk − Ŷ)2,

and is exactly equal to the estimator of variance given in Ex-
pression (16).
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Algorithm 3 Resampling using a with replacement and a one–
one design

• If n − n2/N < 2:
– With a probability q = n(N − n)/(2N), select randomly

without replacement and with equal probabilities two
units in S denoted by i and j. Next define S∗

i = 2,S∗
j =

0,Sk = 1, for all k /∈ {i, j}.
– With a probability 1 − q, S∗

k = 1, for all k ∈ S.

• If n − n2/N ≥ 2:
– Define

m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⌊

n2

N

⌋
with probability q⌊

n2

N

⌋
+ 1 with probability 1 − q,

where q = �n2/N� + 1 − n2/N.

– Select a sample S∗
kA from S with simple random sam-

pling design without replacement with a sample size m.
– From the set of units of S such that S∗

kA = 0, select
a sample S∗

kB according to a one–one design, so S∗
kB has

size n − m.
– The resampling design is S∗

k = S∗
kA + S∗

kB.

10. RESAMPLING FROM A SAMPLE SELECTED
WITH UNEQUAL PROBABILITIES

WITHOUT REPLACEMENT

Unequal probability without replacement is obviously a more
complicated problem. The main reason is that the unbiased es-
timators given in (2) and (4) of the variance can never been sim-
plified, which makes it necessary to compute all the joint inclu-
sion probabilities to estimate the variance. When the entropy of
the sampling design is large, biased estimators given in (8), (9),
and (10) have a smaller mean square error than estimators (2)
and (4) (see Matei and Tillé 2005). For this reason, we do not
propose using a bootstrap method that exactly reproduces the
estimator of variance, but rather one that gives one of the three
approximations. These methods are described in Algorithms 4
and 5.

Result 5 gives the properties of Algorithm 4.

Result 5. If Algorithm 4 is used for the resampling design,
(i) E∗(S∗

k ) = 1, (ii) var∗(S∗
k ) = 1 − φk, (iii) cov∗(S∗

k ,S∗
�) =

−q(1 − φk1 − φ�1 + φk�1)/(n − m1 − 1) − (1 − q)(1 − φk2 −
φ�2 + φk�2)/(n − m2 − 1).

Proof. First, the conditional expectation is given by E∗(S∗
k |

mj) = E∗(S∗
kA|mj)+E∗(S∗

kB|mj) = φkj +1× (1−φkj) = 1. Thus,
E∗(S∗

k ) = E∗E∗(S∗
k |m) = 1. Next, the conditional variance is

var∗(S∗
k |mj) = E∗[var∗(S∗

k |S∗
kA,mj)|mj] + var∗[E∗(S∗

k |S∗
kA,mj),

mj] = var∗(S∗
kB|S∗

kA = 0,mj)Pr∗(S∗
kA = 0|mj) = 1 − φkj, j =

1,2. Thus, var∗(S∗
k ) = E∗ var∗(S∗

k |m) + var∗ E∗(S∗
k |m) = q(1 −

φk1) + (1 − q)(1 − φk2) = 1 − φk. Finally, the covariance is
given by

cov∗(S∗
k ,S∗

� |mj)

= cov∗[E∗(S∗
k |S∗

kA,S∗
�A,mj),E∗(S∗

� |S∗
kA,S∗

�A,mj)|mj
]

+ E∗[cov∗(S∗
k ,S∗

� |S∗
kA,S∗

�A,mj)|mj]

Algorithm 4 Resampling for unequal probability sampling
without replacement: Case 1

Case 1: n −∑k∈S φk ≥ 2.

• Select a sample S∗
kA without replacement with unequal in-

clusion probabilities φk (the choice of φk is discussed be-
low) and fixed sample size. This sampling design is the
same as the original design. If n∗ =∑k∈S φk is not an in-
teger, then define

m =
{

m1 = �n∗� with probability q
m2 = �n∗� + 1 with probability 1 − q,

where q = �n∗� + 1 − n∗. Also define φk1 and φk2 as the
inclusion probabilities such that∑

k∈S

φk1 = m1,
∑
k∈S

φk2 = m2,

qφk1 + (1 − q)φk2 = φk for all k ∈ S.

Let φk�1 and φk�2 also be the joint inclusion probabilities
of the design where sample sizes m1 or m2 were selected.

• From the set of units of S such that S∗
kA = 0, select a sample

S∗
kB according to a one–one design.

• The resampling design is S∗
k = S∗

kA + S∗
kB.

= cov∗(S∗
k ,S∗

� |S∗
kA = 0,S∗

�A = 0,mj)

× Pr∗(S∗
kA = 0,S∗

�A = 0|mj)

= − 1

n − mj − 1
× (1 − φkj − φ�j + φk�j).

Thus

cov∗(S∗
k ,S∗

�) = E∗ cov∗(S∗
k ,S∗

� |m) + cov∗[E∗(S∗
k |m),E∗(S∗

� |m)]
= − q

n − m1 − 1
× (1 − φk1 − φ�1 + φk�1)

− 1 − q

n − m2 − 1
× (1 − φk2 − φ�2 + φk�2).

We have seen that according to the definition of the ck, there
are several ways to approximate the matrix of Dk� by a matrix
of D̃k�. The values of φk that reconstruct as best as possible the
three approximations for ck given in (8), (9), and (10) can be
chosen by taking 1 − φk = D̃kk. Obviously, these resampling

Algorithm 5 Resampling for unequal probability sampling
without replacement: Case 2

Case 2: n −∑k∈S φk < 2.

• Compute (ψk, k ∈ S) = 1 − H(1 − φk, k ∈ S;2) and q =
(n −∑k∈S φk)/2.

• With a probability q select a sample without replacement
denoted by S∗

kA of size n − 2 from S by using inclusion
probabilities ψk. Let ψk� denote the joint inclusion prob-
ability of this design. From the two remaining units, se-
lect a one–one design denoted by S∗

kB. The final sample is
S∗

kA + S∗
kB.

• With a probability 1 − q, S∗
k = 1, for all k in S.
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variances are not exactly equal to the estimator of variance,
but they take into account the correction for finite population.
Moreover, the diagonal terms are exactly the same as usual es-
timators of variance.

The case where n −∑k∈s φk < 2 must also be treated. Con-
sider the procedure used to compute the inclusion probabilities
from a vector of positive values xk. First, compute the quantities

nxk∑
�∈U x�

, (17)

k = 1, . . . ,N. For units for which these quantities are larger
than 1, set πk = 1. Next, the quantities are recalculated using
(17) restricted to the remaining units. This procedure is repeated
until each πk is in ]0,1]. Some πk are 1 and others are propor-
tional to xk. Let H(x1, . . . , xN;n) denote the function that al-
lows us to construct these inclusion probabilities from a vector
of positive values (x1, . . . , xN). Function H(·; ·) allows us to de-
fine Algorithm 5 in order to select the bootstrap sample in the
case where n −∑k∈s φk < 2.

With Algorithm 5, E∗(S∗
k ) = 1 and

var∗(S∗
k ) = (1 − ψk)(n −∑k∈S φk)

2
and

cov∗(S∗
k ,S∗

�) = (1 − ψk − ψ� + ψk�)(n −∑k∈S φk)

2
.

The φk can be chosen according to the three approximations
given above in (8), (9), and (10).

11. MONTE CARLO SIMULATION STUDY FOR
NUMERICAL COMPARISONS

First, we developed simulations for matrix reconstruction in
order to confirm the theoretical results obtained in Section 10
on the new bootstrap methods for unequal probability sampling.
As seen earlier, we distinguished the two cases depending on
whether n −∑k∈S φk is greater than or equal to 2 or less than 2.
We generated a population for each of these cases. We com-
puted the matrices of Horvitz–Thompson and of Yates–Grundy
variance estimators, as well as their approximations, we then
ran sets of simulations to obtain the matrices of the variances
using the new bootstrap method. We noticed that these matrices
were very close to the respective approximations, so the method
should provide estimators of variance that are very similar to the
estimators given by the approximations. In order to be concise,
we do not include the results of these simulations in this article.

Secondly, we also ran a set of simulations for the vari-
ance estimators in different sampling designs. In each case
a population of 150 units was generated from the model yk =
(β0 + β1x1.2

k + σεk)
2 + c, whit xk = |ik| and ik ∼ N (0,7),

εk ∼ N (0,1) and σ = 15. The regression parameters are β0 =
12.5, β1 = 3 and c = 4000. The model and its parameters
were chosen intentionally to have a distribution for y similar to
a lognormal—as it is often used for income distributions—with
a correlated and positive explanatory variable x in the regres-
sion model. From this population, 1000 samples were drawn
with a sample size n = 50. We knowingly used a large sample
rate n/N = 1/3 and a skewed population in order to better il-
lustrate the performance of the tested bootstrap methods. From
each of these samples, we calculated four statistics: the total,

the median, the Gini index of variable y and the ratio of total of
variable y on the total of variable x.

Three sampling designs were tested: Poisson sampling, sim-
ple random sampling without replacement and a maximum en-
tropy design with unequal inclusion probabilities. Concerning
the inclusion probabilities, they were calculated proportional to
the values of a variable z, which was generated from equation
z = y0.2p where p ∼ ln N (0,0.25). In this manner the correla-
tion between y and z is about 0.5. In the case where the total was
the function of interest, the goal was to reproduce the estimator
of variance of the total. In fact, for the estimation of the total,
estimators of variance can directly be computed. A resampling
method is thus not necessary. However, simulations were also
run in this case in order to test the performance of the methods.

From each of the 1000 initial samples, 1000 bootstrap sam-
ples were selected by means of five different bootstrap methods.
Besides the new bootstrap method, four other resampling meth-
ods were tested. The first one is the bootstrap with replacement
proposed by McCarthy and Snowden (1985) for which a cor-
rection factor for the finite population is used. The second one
is the bootstrap without replacement, which consists of creat-
ing an artificial population from the initial sample and draw-
ing bootstrap samples with the same design as the initial one
(Gross 1980; Chao and Lo 1985). In the cases of simple random
sampling without replacement or unequal inclusion probability
sampling design as initial sampling designs, the third method
is the rescaled bootstrap of Rao and Wu (1988). For the Pois-
son sampling design, we used the Patak and Beaumont (2009)
method. Nonlinear functions of interest were also tested: the ra-
tio of two totals, the median, and the Gini index. For these func-
tions of interest, the variances under the simulations, say the
Monte Carlo variances, were considered as the true variances
of the estimators. In the case where the total was the function of
interest, the results were directly compared with the variance of
the total that can be exactly computed, and not with the Monte
Carlo simulation variance. After drawing the bootstrap samples,
the estimators, their variances and the means of these variances
were computed for each of the initial samples and were then
compared with the approximations of the true variances. Note
that the median is not a smooth function of the total. Estimating
its variance can therefore be difficult, but the simulations show
that in this case bootstrap methods perform well.

In order to measure the performance of the new method and
compare it with the other ones, the following five indicators
were used:

• Lower error rate (L) in %

L = 100

sim

sim∑
i=1

I[θ̂ − 1.96 ×
√

var(θ̂∗) > θ],

where I[a] = 1 if a is true and I[a] = 0 elsewhere,
• Upper error rate (U) in %

U = 100

sim

sim∑
i=1

I[θ̂ + 1.96 ×
√

var(θ̂∗) < θ],
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Table 1. Performance of resampling methods in Poisson sampling

Poisson L U ER Relative bias RRMSE

Total
New method 0.5 4.7 5.2 −0.0278 38.5813
Bootstrap WR 10.1 16.2 26.3 −76.4830 78.6988
Bootstrap WOR 4.9 5.4 10.3 −35.4241 36.1937
Method of Patak–Beaumont 1.0 6.1 7.1 −2.8247 40.0502

Median
New method 3.9 6.2 10.1 0.4701 60.1267
Bootstrap WR 2.3 4.3 6.6 −12.9935 50.2141
Bootstrap WOR 1.9 0.6 2.5 66.7149 113.1575
Method of Patak–Beaumont 3.1 4.8 7.9 8.0193 64.6926

Gini
New method 1.1 9.8 10.9 −5.3805 38.4937
Bootstrap WR 0.0 5.2 5.2 15.3095 44.8152
Bootstrap WOR 3.5 13.9 17.4 −41.5459 48.1382
Method of Patak–Beaumont 0.6 8.8 9.4 8.1915 65.8452

Ratio
New method 2.3 4.0 6.3 1.6710 59.6199
Bootstrap WR 0.6 2.6 3.2 −4.8825 49.1502
Bootstrap WOR 8.3 6.2 14.5 −45.2226 48.6318
Method of Patak–Beaumont 1.8 4.8 6.6 8.0236 76.6924

• Total error rate (ER) in %

ER = 100 − 100

sim

sim∑
i=1

I
[
θ̂ − 1.96 ×

√
var(θ̂∗) ≤ θ

≤ θ̂ + 1.96 ×
√

var(θ̂∗)
]
,

• Relative Bias

RB = 100 × var(θ̂∗) − varsim(θ̂ )

varsim(θ̂ )
= 100 × B

varsim(θ̂)
,

• Relative Root Mean Squared Error

RRMSE = 100 ×
√

B2 + var[var(θ̂∗)]
varsim(θ̂ )

.

The RB gives a measure of the bias of the estimator of variance.
The RRMSE measures its accuracy. The Error Rates allow us
to evaluate the capacity of the methods to provide a valid in-
ference. The lower and the upper error rates give us an idea of
how skewed the distribution of the estimator θ̂ is. Tables 1, 2,
and 3 present the numerical performances of the estimators of
variance for the three sampling designs, the four functions of
interest and the four resampling methods.

Table 1 presents the outcomes achieved using the Poisson
sampling design with inclusion probabilities proportional to
variable z. The variance estimator provided by the proposed
method is unbiased for the total and for the other considered
function, it is nearly unbiased according to the MC simulation.
The relative bias are small, even for the Gini index (around
−5%). For the total and the ratio, the total error rates are about
5%, and for the two other functions of interest about 10%. The
bootstrap with replacement is clearly inefficient for the total. In
fact, despite the use of a correction factor, the bootstrap with
replacement with fixed sample size cannot catch the variance
due to the randomness of the sample size of the Poisson sam-

pling design. The variance estimator can thus largely underes-
timate the true variance. For the other functions of interest, the
bootstrap with replacement provides a relatively high coverage
rate, but the estimators themselves are biased. With regard to
the bootstrap without replacement, the variance estimators are
also strongly biased. For the total, the Gini index and the ra-
tio, the variance estimators underestimate the true variance, and
give lower coverage rates. For the median, the coverage rate is
97.5% which is only due to the large overestimation of the vari-
ance. In general, the performance of the proposed method and
the method of Patak and Beaumont (2009) are equivalent. The
estimators are unbiased, or have a slight bias for each func-
tion. The RRMSE have the same order and the error rates show
a slightly positively skewed distribution, with coverage rates
between 90 and 95%. We can conclude that the new method
provides essentially the same results as the others, but its appli-
cation is simpler: it does not require a correction factor, rescal-
ing or artificial population.

Table 2 shows the results of the applications of resampling
methods for simple random sampling without replacement.
Here, the original sampling design has a fixed sample size,
which explains why the bootstrap with replacement method
performs better. Instead of the method of Patak and Beau-
mont (2009) dedicated to Poisson sampling, we have used the
rescaled bootstrap proposed by Rao and Wu (1988). The sim-
ulations show that, for the total error rates, the bootstrap with
replacement method performs slightly better than the three oth-
ers, but the coverage rates provided by these others are also
between 93% and 94% for each function of interest. The lower
and upper error rates for each method and for each function of
interest show the same behavior: the distributions are skewed
right. There are small biases, positive in the case of the total,
the median and the ratio of two totals, except for the rescaled
bootstrap method, where the variance of the median is under-
estimated. For the Gini index, the first three methods give an

8



Table 2. Performance of resampling methods in simple random
sampling without replacement sampling design

SRSWOR L U ER Relative bias RRMSE

Total
New method 1.3 6.3 7.6 5.9195 35.9356
Bootstrap WR 0.0 4.1 4.1 6.5763 36.3808
Bootstrap WOR 1.2 6.3 7.5 4.6716 35.4567
RW Bootstrap 1.0 6.5 7.5 0.6130 33.0132

Median
New method 1.8 6.4 8.2 9.4256 56.6512
Bootstrap WR 0.5 4.4 4.9 3.8235 49.2184
Bootstrap WOR 2.1 6.1 8.2 10.7279 58.4537
RW Bootstrap 1.9 6.1 8.0 −1.5549 49.6286

Gini
New method 1.7 5.0 6.7 −4.4216 17.6308
Bootstrap WR 0.6 2.5 3.1 −2.5877 18.1130
Bootstrap WOR 1.7 5.6 7.3 −3.4073 19.4626
RW Bootstrap 0.7 7.8 8.5 12.3624 42.5067

Ratio
New method 1.7 4.2 5.9 1.2438 28.5170
Bootstrap WR 0.2 2.6 2.8 3.0868 29.1121
Bootstrap WOR 1.7 4.3 6.0 1.3686 28.5030
RW Bootstrap 1.8 4.8 6.6 0.0379 27.1146

estimator that underestimates the true variance, in contrast to
the rescaling bootstrap method. In general, for simple random
sampling without replacement, there is no crucial difference in
performance between the resampling methods. They all pro-
vide a slightly biased estimator, with relatively high coverage
rates—around 94%—and the variabilities of the variance esti-
mators are also similar.

Table 3 shows the performance of resampling methods under
a maximum entropy design with inclusion probabilities propor-

Table 3. Performance of the resampling methods in maximum
entropy sampling design

UPWOR L U ER Relative bias RRMSE

Total
New method 0.4 7.4 7.8 −0.9515 35.8027
Bootstrap WR 0.0 2.8 2.8 6.8616 34.9417
Bootstrap WOR 3.1 8.8 11.9 −22.6490 33.1929
RW Bootstrap 2.8 10.6 13.4 −36.7334 49.8869

Median
New method 3.5 6.8 10.3 0.9405 58.6158
Bootstrap WR 1.3 5.0 6.3 −12.9157 48.5572
Bootstrap WOR 0.2 0.0 0.2 233.5629 280.1593
RW Bootstrap 16.6 19.0 35.6 −71.0074 72.6283

Gini
New method 2.1 5.6 7.7 −3.8518 7.1675
Bootstrap WR 1.0 3.1 4.1 −12.9006 5.5983
Bootstrap WOR 1.3 5.2 6.5 −1.2589 3.3370
RW Bootstrap 7.7 16.7 24.4 −64.8759 65.8130

Ratio
New method 2.6 3.6 6.2 −2.3080 36.2905
Bootstrap WR 1.2 1.5 2.7 1.0800 30.9940
Bootstrap WOR 2.0 0.7 2.7 41.4054 53.3239
RW Bootstrap 15.3 13.5 28.8 −71.3400 71.9911

tional to variable z. In the proposed bootstrap method, the sec-
ond approximation (9) is used, which gives us φk = πk. In the
case where the function of interest is the total, the new method
gives an unbiased estimator with a coverage rate of 92.2%.
The bootstrap with replacement method provides a lower er-
ror rate and thus a higher coverage rate. However it is due to
a larger estimated confidence interval caused by a slight over-
estimation of the variance. The bootstrap without replacement
method with an artificial population and the rescaling boot-
strap method strongly underestimate the variance and conse-
quently give a smaller coverage rate. The RRMSE are essen-
tially the same, and again, the distributions of the estimators are
skewed right. Concerning the median, the variance estimator of
the new method is unbiased while the bootstrap with replace-
ment method, and the rescaled bootstrap method underestimate
the variance. The bootstrap without replacement method over-
estimates it. For the Gini index, the new method and the boot-
strap without replacement method perform almost identically:
the estimators of the variance are slightly biased (1%–3% in
absolute value as relative bias) with a coverage rate of around
92%–93%. The coverage rate provided by the bootstrap with
replacement method is larger, but the variance estimator is bi-
ased. The rescaled bootstrap method strongly underestimates
the variance, which is the reason why the error rate is higher.
Concerning the ratio, the estimator under the new resampling
method has a small negative bias. In contrast, the bootstrap with
replacement method gives an unbiased estimator and the boot-
strap without replacement method gives a variance estimator
that is 41% larger than the true variance. To summarize these
results: the new method performs at least as well as the other
methods considered. At the same time, it is simpler and does
not require any additional calculation to estimate the variance
of the estimators.

These simulations show that the new bootstrap method works
at least as well as the usual bootstrap methods. In Poisson sam-
pling design, the inefficiency of the bootstrap with replacement
is clear. It is due to the randomness of the sample size. In gen-
eral, the new method provides an unbiased or a slightly biased
estimator with a coverage rate between 89% and 95% for each
of the functions of interest under each sampling design consid-
ered. Besides having at least the same performance as the other
methods, the main advantage of the new method is that it does
not require rescaling, correction factors or an artificial popu-
lation. Thus, the samples can be directly used to compute the
variance of the functions of interest.

12. DISCUSSION

The main idea driving the new methodology presented in this
article is that if the original sample is drawn with replacement,
the one–one sampling design can be directly used in the boot-
strap method even if the units are selected with unequal prob-
abilities. If it is drawn without replacement, the variances are
smaller than that of a design with replacement and thus a por-
tion of the resampled units are selected without replacement
and another is selected according to a one–one design in order
to achieve the correct variance. The implementation of select-
ing resampled units according to a mixture of sampling designs
is straightforward and extremely rapid. It consists in computing
the sample sizes of the different components of the mixtures,
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and then proceeds to select the bootstrap samples, which do not 
need to be rescaled. The Horvitz–Thompson weights remain 
unchanged from the original sample.

The simulations show that the classical bootstrap with re-
placement is not appropriate under unequal probability sam-
pling without replacement, or if the sample size is random. 
For simple random sampling without replacement, bootstrap 
with replacement requires a rescaling factor. The class of meth-
ods based on the construction of artificial populations has lim-
itations in its time-consuming execution due to its intricacy. 
In addition, inaccuracy may arise due to rounding problems 
arising from the multiplication of sample units by the inverse 
of their inclusion probabilities which are almost never integer 
(Holmberg 1998). This problem is bypassed in the methodol-
ogy proposed in the present work. Regarding the method of 
Rao and Wu (1988), the bootstrap values need not be values 
from the original sample because of the redefinition technique; 
although this indeed provides unbiased estimators, difficulties 
may arise in cases of calibration, reweighting, and imputation.

The method of Patak and Beaumont (2009) entails noninte-
ger weights that may even be negative, which can lead to boot-
strap estimations that are not intuitive. This problem is miti-
gated via a rescaling method, but requires a rescaling factor for 
the variance, which also presents difficulties under imputation, 
calibration, and weighting for total nonresponse. The work pro-
posed here can be seen as a variant of the method of Patak and 
Beaumont (2009), but we impose weights that are positive and 
integer.

The use of artificial populations produces the correct vari-
ance, but, as shown in simulation studies, can be cumbersome 
and time consuming. The present work avoids these difficulties 
and attains bootstrap samples in a direct manner that have pre-
cisely the same weights as in the original sample, and do not 
present any of the previous limitations when weighting, cali-
bration or imputation is required.

[Received December 2009. Revised December 2010.]
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