A Direct Catalytic Asymmetric Mannich-type Reaction via a Dinuclear Zinc Catalyst:

Synthesis of Either anti- or syn- α-Hydroxy- β-Amino Ketones

Barry M. Trost ${ }^{\mathrm{a}}$, Jaray Jaratjaroonphong ${ }^{\mathrm{a}, \mathrm{b}}$, and Vichai Reutrakul ${ }^{\mathrm{b}}$
$\mathrm{a}_{\text {Department of Chemistry, Stanford University, Stanford, California } 94305-5080}{ }^{\mathrm{b}}$ Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

Abstract

The Mannich reaction is one of the most widely utilized chemical transformations for the construction of β-amino carbonyl compounds and 1,2-amino alcohol derivatives, valuable synthetic intermediates for the synthesis of drugs and biologically active compounds. ${ }^{1}$ Only recently, several groups have reported a direct catalytic asymmetric Mannich reaction without resorting to preactivation of the pronucleophile using organocatalysts and metal catalysts, ${ }^{2,3}$ including our own dinuclear zinc complex 2.3 b Most of the examples reported to date are limited to reaction of unmodified ketone or hydroxyketone donors with imine acceptors. In addition, the cleavage of the N-protective group also requires harsh oxidizing conditions. Shibasaki, recently, reported pioneering work on the $\mathrm{Et}_{2} \mathrm{Zn} /(S, S)$-linked-BINOL catalysis using an easily removable N-protective diphenylphosphinoyl (Dpp) imine and Boc-imine, which selectively provided either anti- and syn- β-amino alcohols, respectively. $3 \mathrm{c}-\mathrm{d}$ The successful donors are 2^{\prime} - and 4^{\prime} - methoxy substituted hydroxyacetophenones and so far the successful imine acceptors have been limited to those derived from non-enolizable aldehydes, most notably aryl. In this paper, we report the application of our dinuclear zinc catalyst to the complementary direct catalytic asymmetric Mannich-type reaction of α-hydroxyketones using α-enolizable Dpp-imines ${ }^{4}$ and Boc-imines, ${ }^{5}$ which we have found to be stable at 0° at least for several days, to generate either anti- or syn- β-amino alcohols, respectively (Scheme 1).

We first examined the reaction of Dpp-imine 4a with hydroxy ketone 3a (Table 1) using dinuclear zinc catalyst $\mathbf{2 a},{ }^{6}$ which was prepared from chiral ligand $\mathbf{1 a}$ and 2 equiv of $\mathrm{Et}_{2} \mathrm{Zn}$ in THF (Scheme 2). Initially subjection of the catalyst $\mathbf{2 a}(3.5 \mathrm{~mol} \%)$ to a mixture of $\mathbf{3 a}(1.4$ equiv) and Dpp-imine 4a in the presence of 4ÅMS in THF afforded the desired amino alcohol $5 \mathbf{a}$ in reasonable yield but with poor dr (entries 1 and 2). Changing the sequence of addition by subjection of $\mathbf{3 a}$ and then $\mathbf{4 a}$ in THF to the suspension of the catalyst $\mathbf{2 a}$ and $4 \AA$ MS in THF and lowering the reaction temperature to $-25^{\circ} \mathrm{C}$ (entry 3) led to a significant increase in anti selectivity. Increasing the catalyst loading to $5 \mathrm{~mol} \%$, and the amount of ketone to 2.0 equiv, and stirring the reaction at $-30^{\circ} \mathrm{C}$ (entry 4) gave a high yield of $\mathbf{5 a}$ with high dr and ee. Increasing the size of the chiral ligand by switching from $\mathbf{1 a}(\mathrm{Ar}=\mathrm{Ph})$ to $\mathbf{1 b}(\mathrm{Ar}=4$-biphenyl) gave comparable yield and ee but with slightly increased dr (entry 5). On the other hand, using ligand $\mathbf{1} \mathbf{c}$ decreased both yield and dr (entry 6). By lowering the catalyst loading to 3.5 and 2.5 mol $\%$ (entries 7 and 8), the desired product $5 \mathbf{5}$ was also obtained in high yield and selectivity. With $2.5 \mathrm{~mol} \%$ 2a, however, a longer reaction time (36 h) was necessary (entry 8).

The optimized reaction conditions (Table 1, entry 7) was applicable to various aliphatic Dppimine 5, and the results are summarized in Table 2. Increasing the size of the α-substituents of

[^0]the Dpp-imines increases the dr and ee. Reacting 3a with imine 4d-f (entries 4-6) derived from primary aldehydes (bearing both linear and $\boldsymbol{\beta}$-branched aliphatic chains) also afforded the anti-amino alcohols 5d-f, respectively, in good yields and excellent ee with high diastereoselectivity ($\mathrm{dr}>4: 1$).

In an analogous manner, Mannich-type reaction with other hydroxyketone donors was then investigated to extend the scope of the reaction (Table 2, entries 7 to 13). The use of heteroaromatic hydroxyketone was found to be applicable in our Mannich-type reaction. With 2hydroxyacetylfuran $\mathbf{3 b}$ and imine $\mathbf{4 a}$, an increase in both yield and stereoselectivity of the resultant amino alcohol $\mathbf{5 g}$ was observed with a higher catalyst load (entries 7 and 8). Surprisingly, hydroxyketone 3c (entries 9 and 10), the best ketone donor in Shibasaki' results, $3 \mathrm{c}-\mathrm{d}$ saw a dramatic drop in both dr and ee. The hydroxyketones $\mathbf{3 d}$ and $\mathbf{3 e}$ (entries 11 to 15) were studied in order to gain insight on the origin of the observed selectivity. With ketone $\mathbf{3 d}$ and $\mathbf{4 c}$ using $3.5 \mathrm{~mol} \%$ catalyst loading, dr was modest (entry 11). Increasing catalyst loading to $5 \mathrm{~mol} \%$, dr was significantly improved (entry 12). The use of hydroxyketone $\mathbf{3 e}$ and imine $\mathbf{4 c}$ in the presence of $5 \mathrm{~mol} \% \mathbf{2 a}$ also provided the Mannich adduct $\mathbf{5 j}$ in high ee (95%) with good anti selectivity (entry 14). Furthermore, the enantiomeric product was smoothly obtained in comparable yield and dr with completely reverse enantioselectivity when (R, R)-2a was used (entry 15). It is clear from our results that the methoxy substituent in the ortho-position plays a significant role in the loss of the yield and selectivity.

Another class of imine investigated was Boc-imine 6 (Table 3). Surprisingly the syn- β-amino alcohol 7a was selectively obtained in a ratio of 5 (syn, 94% ee) to 1 (anti) on treatment of imine $\mathbf{6 a}$ with 3a in the presence of $5 \mathrm{~mol} \%$ catalyst $\mathbf{2 a}$ and $4 \AA$ MS in THF (entry 1). In this reaction, the undesired product 8 a derived from alkoxide attack on the imine was isolated as a minor product (6%). The reaction of $\mathbf{3 a}$ with acyclic imine $\mathbf{6 b}$ also afforded the syn- $\mathbf{7 b}$ in good yield and excellent ee. To the best of our knowledge, this is the first example of a direct catalytic asymmetric Mannich-type reaction using a Bocimine derived from an α-enolizable aldehyde.

The relative and absolute stereochemistry were established by converting the amino alcohols into their corresponding 1,3-oxa-zolidin-2-one through NOE studies, ${ }^{7}$ and O-methyl mandelic amides, respectively. ${ }^{8}$ It is noteworthy that our dinuclear zinc catalyst $\mathbf{2}$ provides the Mannich adduct, anti-5 and syn-7, together with aldol adduct ${ }^{6}$ with the same absolute configuration at the α-position. On the other hand, the stereoselectivity at the β-position of the amino alcohol derivatives is differentiated. The observed stereoselectivities (see Scheme 1) can be understood by assuming the following mechanism. With the more bulky Dpp-imine, anti selectivity dominates to avoid the steric repulsion between the Dpp-group and the Zn -enolate. ${ }^{3 \mathrm{~d}}$ Conversely, to avoid the steric repulsion between a substituent (R group) of the less sterically demanding Boc-imine and zinc-enolate, the syn-amino alcohol 7 was observed in this case.

In summary, we have demonstrated the application of our dinuclear zinc catalyst for the synthesis of either syn- or anti-amino alcohols. Typically, with aliphatic Dpp-imines, the desired amino alcohols were obtained with anti-selectivity (yield up to 86, dr up to 6:1, ee up to $>99 \%$). On the other hand, syn selectivity was obtained in the reaction with Boc-imines. Detailed mechanistic studies of the present reaction, and further application of our catalyst with others hydroxyketone donors, and aliphatic Boc-imines are ongoing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

(GM-13598) for their generous support. The awards of the Royal Golden Jubilee Ph.D. Scholarship to JJ and a Senior Research Scholar to VR by the Thailand Research Fund are also gratefully acknowledged. We also thank the Higher Education Development project: PERCH for financial support. Mass spectra were provided by the Mass Spectrometry Regional Center of the University of California-San Francisco supported by the NIH Division of Research Resources.

References

(1). Reviews:(a)DenmarkSENicaiseOJ-CJacobsenENPfaltzAYamamotoHComprehensive Asymmetric Catalysis1999923961SpringerHeidelberg(b)KleinmannEFTrostBMComprehensive Organic Synthesis19912Pergamon PressNew YorkChapter 4.1 (c) Arend M, Westermann B, Risch N. Angew. Chem. Int. Ed 1998;37:1044. (d) Kobayashi S, Ishitani H. Chem. Rev 1999;99:1069. [PubMed: 11749440]
(2). A review of the direct Mannich reaction:Córdova A. Acc. Chem. Res 2004;37:102. [PubMed: 14967057]
(3). Selected examples for metal catalysts, see:(a) Juhl K, Gathergood N, Jørgensen KA. Angew. Chem. Int. Ed 2001;40:2995. (b) Trost BM, Terrell LR. J. Am. Chem. Soc 2003;125:338. [PubMed: 12517138] (c) Matsunaga S, Kumagai N, Harada S, Shibasaki M. J. Am. Chem. Soc 2003;125:4712. [PubMed: 12696881] (d) Matsunaga S, Yoshida T, Morimoto H, Kumagai N, Shibasaki M. J. Am. Chem. Soc 2004;126:8777. [PubMed: 15250731] (e) Harada S, Handa S, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed 2005;44:4365.For organocatalysts, see: (f) List B. J. Am. Chem. Soc 2000;122:9336. (g) List B, Pojarliev P, Biller WT, Martin HJ. J. Am. Chem. Soc 2002;124:827. [PubMed: 11817958] (h) Córdova A, Notz W, Zhong G, Betancort JM, Barbas CF III. J. Am. Chem. Soc 2002;124:1842. [PubMed: 11866583]
(4). Dpp-imine was prepared by treatment of N-(diphenylphosphinoyl)- α-(p-toluenesulfonyl) alkylamine 9 with sat. aq. NaHCO_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: see Supporting Information for details. For preparation of 9 , see:Côté A, Boezio AA, Charette AB. Proc. Natl. Acad. Sci. U.S.A 2004;101:5405. [PubMed: 15064400]
(5). Boc-imine was prepared by treatment of N-(N-tert-butyloxy-carbonyl)- α-(phenylsulfonyl) alkylamine 10 with 1.5 M aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: see Supporting Information for details. For preparation of 10, see:Pearson WH, Lindbeck AC, Kampf JW. J. Am. Chem. Soc 1993;115:2622.
(6). Leading reference:Trost BM, Ito H. J. Am. Chem. Soc 2000;122:12003.
(7). In support of our assignment, the relative stereochemistry of oxazolidinones can also be determined by examination of the J_{4-5} coupling constants:Murakami M, Ito H, Ito Y. J. Org. Chem 1993;58:6766.
(8). Trost BM, Bunt RC, Rulley SR. J. Org. Chem 1994;59:4202.

Scheme 1.
Anti- and Syn- β-Amino Alcohol Synthesis

Scheme 2.
Generation of Dinuclear Zinc Catalyst
Id!usnuew 10 !ı! $\forall \forall d$-HIN

| | |
| :--- | :--- | :--- |

[^0]: E-mail: bmtrost@stanford.edu.

