
Rev. Sci. Instrum. 90, 065115 (2019); https://doi.org/10.1063/1.5092635 90, 065115

© 2019 Author(s).

A direct comparison of high-speed methods
for the numerical Abel transform 
Cite as: Rev. Sci. Instrum. 90, 065115 (2019); https://doi.org/10.1063/1.5092635
Submitted: 13 February 2019 . Accepted: 16 May 2019 . Published Online: 25 June 2019

Daniel D. Hickstein , Stephen T. Gibson , Roman Yurchak, Dhrubajyoti D. Das , and Mikhail

Ryazanov 

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

Open-source software compares Abel transforms for easy use
Scilight 2019, 260003 (2019); https://doi.org/10.1063/1.5111853

A high efficiency low-temperature microwave-driven atmospheric pressure plasma jet
Applied Physics Letters 114, 254106 (2019); https://doi.org/10.1063/1.5108538

Theoretical analysis of tensor perturbations for uncertainty quantification of Reynolds
averaged and subgrid scale closures
Physics of Fluids 31, 075101 (2019); https://doi.org/10.1063/1.5099176

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/1562245120/x01/AIP/MadCity_RSI_PSF_2019/MCL_RSI-Banner_Jan2019.gif/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.5092635
https://aip.scitation.org/topic/collections/featured?SeriesKey=rsi
https://doi.org/10.1063/1.5092635
https://aip.scitation.org/author/Hickstein%2C+Daniel+D
http://orcid.org/0000-0003-1277-847X
https://aip.scitation.org/author/Gibson%2C+Stephen+T
http://orcid.org/0000-0002-3767-6114
https://aip.scitation.org/author/Yurchak%2C+Roman
https://aip.scitation.org/author/Das%2C+Dhrubajyoti+D
http://orcid.org/0000-0001-9731-2489
https://aip.scitation.org/author/Ryazanov%2C+Mikhail
https://aip.scitation.org/author/Ryazanov%2C+Mikhail
http://orcid.org/0000-0002-7269-6436
https://aip.scitation.org/topic/collections/featured?SeriesKey=rsi
https://doi.org/10.1063/1.5092635
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5092635
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5092635&domain=aip.scitation.org&date_stamp=2019-06-25
https://aip.scitation.org/doi/10.1063/1.5111853
https://doi.org/10.1063/1.5111853
https://aip.scitation.org/doi/10.1063/1.5108538
https://doi.org/10.1063/1.5108538
https://aip.scitation.org/doi/10.1063/1.5099176
https://aip.scitation.org/doi/10.1063/1.5099176
https://doi.org/10.1063/1.5099176


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

A direct comparison of high-speed methods
for the numerical Abel transform

Cite as: Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635
Submitted: 13 February 2019 • Accepted: 16 May 2019 •

Published Online: 25 June 2019

Daniel D. Hickstein,1,a) Stephen T. Gibson,2 Roman Yurchak,3 Dhrubajyoti D. Das,4

and Mikhail Ryazanov5

AFFILIATIONS

1Kapteyn–Murnane Laboratories, Inc., Boulder, Colorado 80301, USA
2Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia
3Symerio, 91120 Palaiseau, France
4Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
5JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA

a)danhickstein@gmail.com. Questions and comments regarding PyAbel may be posted to http://github.com/PyAbel/PyAbel.

ABSTRACT

The Abel transform is a mathematical operation that transforms a cylindrically symmetric three-dimensional (3D) object into its two-
dimensional (2D) projection. The inverse Abel transform reconstructs the 3D object from the 2D projection. Abel transforms have wide
application across numerous fields of science, especially chemical physics, astronomy, and the study of laser-plasma plumes. Consequently,
many numerical methods for the Abel transform have been developed, which makes it challenging to select the ideal method for a specific
application. In this work, eight published transform methods have been incorporated into a single, open-source Python software package
(PyAbel) to provide a direct comparison of the capabilities, advantages, and relative computational efficiency of each transformmethod. Most
of the tested methods provide similar, high-quality results. However, the computational efficiency varies across several orders of magnitude.
By optimizing the algorithms, we find that some transform methods are sufficiently fast to transform 1-megapixel images at more than 100
frames per second on a desktop personal computer. In addition, we demonstrate the transform of gigapixel images.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5092635

I. INTRODUCTION

The projection of a three-dimensional (3D) object onto a two-
dimensional (2D) surface takes place in many measurement pro-
cesses; a simple example is the recording of an X-ray image of a
soup bowl, donut, egg, wineglass, or other cylindrically symmet-
ric object (Fig. 1), where the axis of cylindrical symmetry is par-
allel to the plane of the detector. Such a projection is an example
of a forward Abel transform and occurs in numerous experiments,
including photoelectron/photoion spectroscopy,1–7 the studies of
plasma plumes,8 flames,9–14 and solar occulation of planetary atmo-
spheres.15–17 The analysis of data from these experiments requires
the use of the inverse Abel transform to recover the 3D object from
its 2D projection.

While the forward and inverse Abel transforms may be writ-
ten as simple, analytical expressions, attempts to naively evaluate
them numerically for experimental images does not yield reliable

results.18 Consequently, many numerical methods have been devel-
oped to provide approximate solutions to the Abel transform.1–4,19–23

Each method was created with specific goals in mind, with some
taking advantage of pre-existing knowledge about the shape of
the object, some prioritizing robustness to noise, and others offer-
ing enhanced computational efficiency. Unfortunately, each algo-
rithm is implemented with somewhat different mathematical con-
ventions and with often conflicting requirements for the size and
format of the input data. Additionally, the algorithms are writ-
ten in different computer programming languages, and some only
run on specific computing platforms. This situation makes it dif-
ficult to select the optimal Abel-transform method, since it can
be very time-consuming to test multiple methods. Moreover, it is
often unclear whether the observed differences betweenmethods are
intrinsic to the algorithm or simply a result of a particular software
implementation.

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-1

Published under license by AIP Publishing

https://scitation.org/journal/rsi
https://doi.org/10.1063/1.5092635
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5092635
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5092635&domain=aip.scitation.org&date_stamp=2019-June-25
https://doi.org/10.1063/1.5092635
https://orcid.org/0000-0003-1277-847X
https://orcid.org/0000-0002-3767-6114
https://orcid.org/0000-0001-9731-2489
https://orcid.org/0000-0002-7269-6436
mailto:danhickstein@gmail.com
http://github.com/PyAbel/PyAbel
https://doi.org/10.1063/1.5092635


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

FIG. 1. The Abel transform maps a cylindrically symmetric three-dimensional (3D)
object to its two-dimensional (2D) projection, a physical process that occurs in
many experimental situations. For example, an X-ray image of the object on the left
would produce the projection shown on the right. The inverse Abel transform takes
the 2D projection and mathematically reconstructs the 3D object. As indicated by
Eqs. (1) and (2), the 3D object is described in terms of (r, z) coordinates, while the
2D projection is recorded in (y, z) coordinates.

In this work, we present the PyAbel package, which provides a
consistent interface for the Abel-transform methods via the Python
programming language. Within PyAbel, the transform methods
share the same mathematical conventions and data format, which
allows a straightforward, quantitative comparison of the output. In
addition, this package is independent of the computing platform and
has been tested on Linux, MacOS, and Windows. We find that, in
general, the results of the various algorithms are similar, but that
some methods produce inverse Abel transforms with somewhat less
noise and in better agreement with analytical solutions.

In the process of implementing these transform methods in a
common language, the numerical approaches were refined to opti-
mize efficiency. After optimization, most of the transform methods
operated more quickly than the available published results would
suggest, often by several orders of magnitude. Previous studies3,21

have demonstrated “real-time” inverse Abel transforms of 1000× 1000-pixel images at a rate of about 1 frame per second (fps),
for a throughput of 1 megapixel per second (Mp/s). While this
is sufficient for some applications, even inexpensive digital cam-
eras can record and transfer high-definition video at frame rates
of 30 fps or more, for a throughput of ∼50 Mp/s, and specialized
high-speed cameras can exceed 1000 Mp/s. Consequently, there is
a need for software that can perform the inverse Abel transform
at high frame rates, preferably without requiring costly supercom-
puting infrastructure. Such an ability could be especially power-
ful when the results of an Abel transform are used in a feedback
loop, for example, to optimize laser pulses to control a chemical
reaction.3

This work demonstrates the first implementation of an inverse
Abel transform operating at high-definition video rates, achieved
using a standard desktop computer. In addition, the inverse Abel
transform of a 65 537 × 65 537-pixel image is computed, enabling
Abel transforms of gigapixel images. Additionally, a side-by-side
comparison of the results of numerous methods for the inverse Abel
transform is presented for analytical functions and experimental
photoelectron-spectroscopy data.

II. ABEL-TRANSFORM ALGORITHMS

The forward Abel transform is given by

F(y, z) = 2∫ ∞

y

f (r, z) r√
r2 − y2 dr, (1)

where y, r, and z are the spatial coordinates as shown in Fig. 1, f (r, z)
is the density of the 3D object at (r, z), and F(y, z) is the intensity of
the projection in the 2D plane. The inverse Abel transform is given
by

f (r, z) = − 1
π ∫

∞

r

dF(y, z)
dy

1√
y2 − r2 dy. (2)

While the transform equations can be evaluated analytically for
some mathematical functions, experiments typically generate dis-
crete data (e.g., images collected with a digital camera), which must
be evaluated numerically. Several issues arise when attempting to
evaluate the Abel transform numerically. First, the simplest compu-
tational interpretation of Eq. (2) involves three loops: over z, r, and
y, respectively. Such nested loops can be computationally expensive.
Additionally, y = r presents a singularity where the denominator
goes to zero and the integrand goes to infinity. Finally, a simple
approach requires a large number of sampling points in order to
provide an accurate transform. Indeed, a simple numerical integra-
tion of the above equations has been shown to provide unreliable
results.18

Various algorithms have been developed to address these
issues. PyAbel incorporates eight algorithms for the inverse Abel
transform, and three of these algorithms also support the forward
Abel transform. Here, we focus on the results of the inverse Abel
transform, because it is the inverse Abel transform that is used most
frequently to interpret experimental data.

In the following, we describe the basic approach and charac-
teristics of each transform method. The title of each method is the
keyword for the method used in PyAbel. Methods that precom-
pute matrices for a specific image size—and (optionally) save them
to disk for subsequent reuse—are indicated with an asterisk (∗).
All methods implement the inverse Abel transform, while meth-
ods that also implement a forward transform are indicated with a
superscript F (F).

basex∗F—The “BAsis Set EXpansion” (BASEX) method of
Dribinski and co-workers1 uses a basis set of Gaussian-like func-
tions. This is one of the de facto standard methods in photoelec-
tron/photoion spectroscopy.18 The number of basis functions and
their width can be varied. However, following the basis set provided
with the original BASEX.exe program, by default, we use a basis set
where the full width at 1/e2 of the maximum is equal to 2 pixels and
the basis functions are located at each pixel. Thus, the resolution
of the image is roughly maintained. The basex algorithm allows
a “Tikhonov regularization” to be applied, which suppresses inten-
sity oscillations, producing a less noisy image.1 In the experimental
comparison presented here, the Tikhonov regularization factor is set
to 200, which provides reasonable suppression of noise, while still
preserving the fine features in the image.

directF—The “direct” methods24 use a simple numerical inte-
gration, which closely resembles the basic Abel-transform equations
(1) and (2). If the direct method is used in its most naive form,

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-2

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

the agreement with analytical solutions is poor, due to the singular-
ity in the integral when r = y. However, a correction can be applied,
where the function is assumed to be piecewise-linear across the pixel
where this condition is met. This simple approximation allows a
reasonably accurate transform to be completed. Fundamentally, the
direct method requires that the input function be finely sampled
to achieve good results. PyAbel incorporates two implementations
of the direct algorithm, which produce identical results, but with
different calculation speeds. The direct_Python implementation
is written in pure Python, for easy interpretation and modification.
The direct_C implementation is written in Cython,25 a Python-
like language that is converted to C and compiled, providing higher
computational efficiency.

hansenlawF—The recursive method of Hansen and Law26–28

interprets the Abel transform as a linear space-variant state-variable
equation, to provide a reliable, computationally efficient transform.
The hansenlaw method also provides an efficient forward Abel
transform.

onion_bordas—The onion-peelingmethod of Bordas et al.2 is
a Python adaptation of the MatLab implementation of Rallis et al.3

While it is conceptually similar to onion_peeling, the numerical
implementation is significantly different.

onion_peeling∗—This method and the following two meth-
ods (two_point and three_point) are adapted from the 1992
paper by Dasch.19 All of these methods reduce the core Abel trans-
form to a simple matrix-algebra operation, which allows a com-
putationally efficient transform. Dasch emphasizes that these tech-
niques work best in cases where the difference between adjacent
points is much greater than the noise in the projections (i.e., where
the raw data is not oversampled). This “onion-peeling deconvolu-
tion” method is one of the simpler and faster inverse Abel-transform
methods.

three_point∗—The three_point method19 provides a fast
and robust transform by exploiting the observation that underly-
ing radial distribution is primarily determined from changes in the
line-of-sight projection data in the neighborhood of each radial data
point. The name refers to the fact that three neighboring pixels are
considered, which improves the accuracy of the method for trans-
forming smooth functions and reduces the niose in the transformed
image. The trade-off is that the ability of the method to transform
very sharp features is reduced.

two_point∗—The “two-point method” (also described by
Dasch19) is a simplified version of the three_point algorithm and
provides similar transform speeds. Since it only considers two adja-
cent points in the function, it allows sharper features to be trans-
formed than the three_point method, but does not offer as much
noise suppression.

linbasex∗—The “lin-BASEX” method of Gerber et al.20 mod-
els the 2D projection using spherical functions, which evolve slowly
as a function of polar angle. Thus, it can offer a substantial increase
in signal-to-noise ratio in many situations, but it is only appropri-
ate for transforming projections that are appropriately described
by these basis functions. This is the case for typical velocity-map-
imaging photoelectron/photoion spectroscopy4 experiments, for
which the algorithm was designed. However, for example, it would
not be appropriate for transforming the object shown in Fig. 1.
The algorithm directly produces the coefficients of the involved
spherical functions, which allows both the angular and radially

integrated distributions to be produced analytically. This abil-
ity, combined with the strong noise-suppressing capability of
using smooth basis functions, aids the interpretation of photoelec-
tron/photoion distributions.

III. IMPLEMENTATION

A. Interface

PyAbel incorporates a streamlined interface to all of the trans-
form methods, as well as numerous related functions for centering,
symmetrizing, and circularizing the input images. Tools for analyz-
ing the reconstructed images, including functions for angular and
radial integration are also included. The ability to provide identi-
cal image preparation and output processing allows a quantitative
comparison of transform methods.

Generating a sample image, performing a forward Abel trans-
form, and completing an inverse Abel transform requires just a few
lines of Python code:

import abel

im0 = abel.tools.analytical.SampleImage().image

im1 = abel.Transform(im0,

direction='forward',

method='hansenlaw').transform

im2 = abel.Transform(im1,

direction='inverse',

method='three_point').transform

Choosing a different method for the forward or inverse transform
requires only that the method argument be changed. Additional
arguments can be passed to the individual transform functions using
the transform_options keyword. A basic graphical user inter-
face (GUI) for PyAbel is also available in examples directory in the
PyAbel repository at github.com/PyAbel/PyAbel.

In addition to the transform methods themselves, PyAbel pro-
vides many of the preprocessing methods required to obtain optimal
Abel transforms. For example, an accurate Abel transform requires
that the center of the image is properly identified. Several approaches
allow to perform this identification in PyAbel, including the center-
of-mass, convolution, and Gaussian-fitting. Additionally, PyAbel
incorporates a “circularization” method, in the style of that pre-
sented by Gascooke et al.,29 which allows the correction of images
that contain features that are expected to be circular (such as pho-
toelectron and photoion momentum distributions). Moreover, the
pyabel.tools module contains a host of post-processing algo-
rithms, which provide, for example, efficient projection into polar
coordinates and radial or angular integration. A detailed project
documentation can be found at https://pyabel.readthedocs.io.

B. Conventions

In order to provide similar results, we have ensured that the
numerical conventions are consistent across the various transform
methods. When dealing with pixel data, an ambiguity arises: do
intensity values of the pixels represent the value of the data at
r = {0, 1, 2, . . ., n − 1}, where n is an integer, or do they correspond
to r = {0.5, 1.5, 2.5, . . ., n − 0.5}? Either convention is reasonable, but
comparing results from methods that adopt differing conventions
can lead to small but significant shifts. We adopt the convention
that the pixel values correspond to r = {0, 1, 2, . . ., n − 1}. One

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-3

Published under license by AIP Publishing

https://scitation.org/journal/rsi
http://github.com/PyAbel/PyAbel
https://pyabel.readthedocs.io


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

consequence of this is that, when considering an experimental image
that contains both the left and right sides of the image, the total
image width must be odd, such that r = {1 − n, . . ., −2, −1, 0, 1,
2, . . ., n − 1}. A potential disadvantage of our “odd image” conven-
tion is that 2D detectors typically have a grid of pixels with an even
width (for example, a 512 × 512-pixel camera). If the image were
perfectly centered on the detector, our convention would not match
the data, and a half-pixel shift would be required. However, in most
real-world experiments, the image is not perfectly centered on the
detector and a shift of several pixels is required, so the additional
half-pixel shift is of no significance.

A similar ambiguity exists with regards to the left–right
and top–bottom symmetry of the image. In principle, since the
Abel transform assumes cylindrical symmetry, left–right symmetry
should always exist, and it should only be necessary to record one
side of the projection. However, many experiments record both sides
of the projection. Additionally, many experiments record object that
possess top–bottom symmetry. Thus, in some situations, it is best to
average all of the image quadrants into a single quadrant and per-
form a single Abel transform on this quadrant. On the other hand,
the quadrants may not be perfectly symmetric due to imperfections
or noise in the experiment, and users may wish to Abel-transform
each quadrant separately and select the quadrant that produces the
highest-fidelity data. PyAbel offers full flexibility, providing the abil-
ity to selectively enforce top–bottom and left–right symmetry, and
to specify which quadrants are averaged. By default, each quadrant
is processed separately and recombined into a composite image that
does not assume either top–bottom or left–right symmetry.

In our performance benchmarks, left–right symmetry is
assumed because this is the most common benchmark presented in
other studies.3,21 However, the image size is listed as the width of a
square image. For example, n = 513 corresponds to the time for the
transformation of a 513 × 513-pixel image with the axis of symmetry
located in the center. Since the Abel transform makes the assump-
tion of cylindrical symmetry, both sides of the image are identical,
and it is sufficient to perform the Abel transform on only one side of
the image, or on an average of the two sides. So, to complete an Abel
transform of a typical 513 × 513-pixel image, it is only necessary to
perform the Abel transform on a 513 × 257-pixel array.

Another fundamental question about real-world Abel trans-
forms is whether negative values are allowed in the transform result.
In most situations, negative values are not physical, and some imple-
mentations set all negative values to zero. In contrast, PyAbel allows
negative values, which enables its use in situations where negative
values are physically reasonable. Moreover, maintaining negative
values keeps the transformmethods linear and gives users the option
to average, smooth, or fit images either before or after the Abel trans-
form without causing a systematic error in the baseline. Suppression
of negative values can easily be achieved by including A[A<0] = 0.

IV. COMPARISON OF TRANSFORM METHODS

Since numerous Abel-transform methods have been incorpo-
rated into the same interface, it is straightforward to directly com-
pare the results. Consequently, a user could simply try all of the
transform methods and see which produces the best results or per-
formance for a specific application. Nevertheless, here we present a
brief comparison of the various transform methods in several cases.

First, we compare themethods applied to a simple Gaussian function
(for which an analytical Abel transform exists) in order to assess the
accuracy of each transform method. Second, we apply each method
to a synthetic function constructed of narrow peaks with noise added
in order to closely examine the fundamental resolution of each
method and how noise accumulates. Third, we use each method to
provide the inverse Abel transform a high-resolution photoelectron-
spectroscopy image in order to examine the ability of eachmethod to
handle real-world data. All calculations are completed using PyAbel
version 0.8.2.34

The Abel transform of a Gaussian is simply a Gaussian, which
allows a comparison of each numerical transform method with
the analytical result in the case of a one-dimensional (1D) Gaus-
sian (Fig. 2). As expected, each transform method exhibits a small
discrepancy compared with the analytical result. However, as the
number of pixels is increased, the agreement between the transform
and the analytical result improves. Even with only 70 points (the case
shown in Fig. 2), all the methods produce reasonable agreement.
While all methods show a systematic error as r approaches zero,
the basex, three_point, and onion_peeling seem to provide the
best agreement with the analytical result. The direct methods show
fairly good agreement with the analytical curve, which is a result
of the “correction” discussed above. We note that the results from
the direct_Python and the direct_C methods produce identical
results to within a factor of 10−9.

Applying the various transform methods to a synthetic func-
tion that consists of triangular peaks with one-pixel halfwidth—the
sharpest features representable on the pixel grid—allows the funda-
mental resolution of each method to be visualized (Fig. 3). In order
to provide an understanding of how each method responds to noise,
the function transformed in Fig. 3 also has uniformly distributed
random noise added to each pixel. The figure reveals that some
methods (basex, hansenlaw, onion_peeling, and two_point)
are capable of faithfully reproducing the sharpest features, while
other methods (direct, onion_bordas, and three_point) pro-
vide some degree of smoothing. In general, the methods that provide
the highest resolution also produce the highest noise, which is most
obvious at low r values. The exception is the basex method using a
moderate regularization factor [Fig. 3(b)], which exhibits low noise
near the center, while still displaying good resolution. Thus, it seems
that experiments that benefit from an optimal balance of noise sup-
pression and resolution would benefit from inverse Abel-transform
methods that incorporate regularization.

Applying the various inverse Abel-transform methods to an
experimental photoelectron-spectroscopy image (Fig. 4) provides a
comparison of how the noise in the reconstructed image depends on
the transformmethod. To a first approximation, the results of all the
transform methods look similar. The linbasex method produces
the “smoothest” image, which is a result of the fact that it mod-
els the projection using functions fitted to the image, that vary only
slowly as a function of angle. The basexmethod incorporates a user-
adjustable Tikhonov regularization factor, which tends to suppress
noise, especially near the symmetry axis. Here, we set the regular-
ization factor to 200, which provides significant noise suppression
while providing no noticeable broadening of the narrow features.
When the regularization factor is set to zero, the basex method pro-
vides a transform that appears very similar to the onion_peeling

method. For the other transform methods, the direct and

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-4

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

FIG. 2. Comparison of inverse Abel-transform methods for a 1D Gaussian function
with 70 points. All of the inverse Abel transform methods [(a)–(g)] show rea-
sonable agreement for the inverse Abel transform of a Gaussian function. The
root-mean-square error (RMSE) for each method is listed in the figure legend. In
the limit of many pixels, the error trends to zero. However, when a small number of
pixels is used, systematic errors are seen near the origin. This effect is more pro-
nounced in some methods than others. The lowest error seen from the basex,

three_point, and onion_peeling methods. The linbasex method is not
included in this figure because it is not applicable to 1D functions.

FIG. 3. Inverse Abel-transform methods applied to a synthetic image of one-
pixel peaks with noise added. [(a)–(h)] The gray line represents the analytical
inverse Abel transform in the absence of noise. Some methods reproduce the
height of the peaks, while other methods reduce noise while somewhat smooth-
ing the peaks. The regularization in the basex method provides strong noise
suppression near the origin, while maintaining peak height at higher values
of r.

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-5

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

FIG. 4. Comparison of inverse Abel-transform methods for an experimental photo-

electron spectrum.30 [(a)–(h)] While all methods provide a faithful reconstruction of
the experimental image, some of them cause a greater amplification of the noise
present in the original image. The linbasex method models the image using a
basis set of functions that vary slowly as a function of angle, which strongly reduces
the high-frequency noise seen in the other transform methods. Besides the basex

method with adjustable regularization, the direct and three_point meth-
ods seem particularly suited for providing a low-noise transform. This dataset is
the photoelectron spectrum of O−2 photodetachment using a 455 nm laser, as
described in Ref. 30.

three_point methods appear to have the strongest noise-filtering
properties.

Figure 5 uses the same dataset as Fig. 4, but with an angu-
lar integration performed to show the 1D photoelectron spec-
trum. Good agreement is seen between most of the methods,
even on a one-pixel level. Small but noticeable differences can be
seen in the broadness of the peaks [Fig. 5(b)]. The hansenlaw,
onion_peeling and two_point methods show the sharpest peaks,
suggesting that they provide enhanced ability to resolve sharp fea-
tures. Of course, the differences between the methods are empha-
sized by the very high resolution of this dataset. In most cases, more
pixels per peak yield amuch better agreement between the transform
methods. Interestingly, the linbasex method shows more baseline

FIG. 5. Comparison of inverse Abel-transform methods applied to an experimental
photoelectron spectrum and angularly integrated. The results shown in this figure
are simply the angularly integrated 2D spectra shown Fig. 4. (a) Looking at the
entire photoelectron speed distribution, all of the transform methods appear to
produce similar results. (b) Closely examining two of the peaks shows that all
of the methods produce similar results, but that some methods produce broader
peaks than others. (c) Examining the small peaks in the low-energy region reveals
that some methods accumulate somewhat more noise than others.

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-6

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

noise than the other methods. Figure 5(c) shows a close exami-
nation of the two lowest-energy peaks in the image. The methods
that produce that sharpest peaks (hansenlaw, onion_peeling, and
two_point) also exhibit somewhat more noise than the rest (except
linbasex).

V. EFFICIENCY OPTIMIZATION

A. High-level efficiency optimization

For many applications of the inverse Abel transform, the speed
at which transform can be completed is important. Even for users
who are only aiming to transform a few images, the ability to per-
form Abel transforms efficiently may enable more effective data
analysis. For example, users may want to explore many different
schemes for noise removal, smoothing, centering, and circulariza-
tion, and faster Abel-transform algorithms allow this parameter
space to be explored more rapidly and effectively.

While PyAbel offers improvements to the raw computational
efficiency of each transform method, it also provides improvements
to the efficiency of the overall workflow, which are likely to provide a
significant improvements for most applications. For example, since
PyAbel provides a straightforward interface to switch between dif-
ferent transform methods, a comparison of the results from each
method can easily be made and the fastest method that produces
acceptable results can be selected. Additionally, PyAbel provides
fast algorithms for angular and radial integration, which can be the
rate-limiting step for some data-processing workflows.

In addition, when the computational efficiency of the various
Abel transform methods is evaluated, a distinction must be made
between those methods that can precompute, save, and reuse infor-
mation for a specific image size (basex, three_point, two_point,
onion_peeling, linbasex) and those that do not (hansenlaw,
direct, onion_bordas). Often, the time required for the precom-
putation is orders of magnitude longer than the time required to
complete the transform. One solution to this problem is to pre-
compute information for a specific image size and provide this
data as part of the software. Indeed, the popular BASEX appli-
cation includes a “basis set” for transforming 1000 × 1000-pixel
images. While this approach relieves the end user of the compu-
tational cost of generating basis sets, it often means that the ideal
basis set for efficiently transforming an image of a specific size is
not available. Thus, padding is necessary for smaller images, result-
ing in increased computational time, while higher-resolution images
must be downsampled or cropped. PyAbel provides the ability to
precompute information for any image size and cache it to disk for
future use. Moreover, a cached basis set intended for transforming
a larger image can be automatically cropped for use on a smaller
image, avoiding unnecessary computations. The basex algorithm
in PyAbel also includes the ability to extend a basis set intended for
transforming a smaller image for use on a larger image. This allows
the ideal basis set to be efficiently generated for an arbitrary image
size.

B. Low-level computational efficiency

Transforming very large images, or a large number of images,
requires inverse Abel-transform methods with high computational
efficiency. PyAbel is written in Python, a high-level programming

language that is easy to read, understand, and modify. A com-
mon criticism of high-level interpreted (non-compiled) languages
like Python is that they provide significantly lower computational
efficiency than low-level compiled languages, such as C or For-
tran. However, such slowdowns can be avoided by calling functions
from optimized math libraries for the key operations that serve as
bottlenecks. For most of the transform methods (and indeed, all
of the fastest methods), the operation that bottlenecks the trans-
form process is a matrix-algebra operation, such as matrix mul-
tiplication. PyAbel uses matrix-algebra functions provided by the
NumPy library,31 which are, in turn, provided by the Basic Lin-
ear Algebra Subprograms (BLAS) library [for example, the open-
source OpenBLAS, Intel’s Math Kernel Library (MKL), or Apple’s
Accelerate Framework]. Thus, the algorithms in PyAbel have com-
parable performance to optimized C/Fortran. One subtle conse-
quence of this reliance on the BLAS algorithms is that the perfor-
mance is dependent on the exact implementation of BLAS that is
installed, and users seeking the highest level of performance may
wish to experiment with different implementations. In our tests, the
fastest benchmarks have been achieved with MKL and Accelerate
Framework.

A systematic comparison of the time required to complete
an inverse Abel transform vs the width of a square image is pre-
sented in Fig. 6. We note that the onion_bordas method completes
a transform of a 1000 × 1000-pixel image in approximately 1 s,
which is nearly the same as reported by Rallis et al.3 The basex,
two_point, three_point, and onion_peeling methods all rely
on similar matrix-algebra operations as their rate-limiting step, and
consequently exhibit identical performance for typical experimental
image sizes.

Figure 6(a) reveals the computational scaling of each method
as the image size is increased. At image sizes below n = 100, most
of the transform methods exhibit a fairly flat relationship between
image size and transform time, suggesting that the calculation is lim-
ited by the computational overhead. For image sizes of 1000 pixels
and above, all the methods show a steep increase in transform time
with increasing image size. A direct interpretation of the integral for
the inverse Abel transform involves three nested loops, one over z,
one over r, and one over y, and we should expect n3 scaling. Indeed,
the direct_C and direct_Python methods scale as nearly n3. Sev-
eral of the fastest methods (basex, onion_peeling, two_point,
and three_point) rely on matrix multiplication. These meth-
ods scale roughly as n3, which is approximately the expected scal-
ing for matrix-multiplication operations.32 For typical image sizes
(∼500–1000 pixels width), basex and the methods of Dasch19

consistently out-perform other methods, often by several orders
of magnitude. Interestingly, the hansenlaw algorithm exhibits a
nearly n2 scaling and should outperform other algorithms for large
image sizes. While the linbasex method does not provide the
fastest transform, we note that it analytically provides the angular-
integrated intensity and anisotropy parameters. Thus, if those
parameters are desired outcomes—as they often are during the anal-
ysis of photoelectron spectroscopy datasets—then linbasex may
provide an efficient analysis.

The basex, two_point, three_point, and onion_peeling

methods run much faster if appropriately sized basis sets have been
pre-calculated. For the basex method, the time for this precalcula-
tion is orders of magnitude longer than the transform time. For the

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-7

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

FIG. 6. Computational efficiency of inverse Abel-transform methods. (a) The time
to complete an inverse Abel transform increases with the size of the image. The
times for the generation of basis sets are shown with squares and dotted lines.
Most of the methods display a roughly n3 scaling (dotted gray line). (b) Alterna-
tively, the performance can be viewed in terms of pixels-per-second rate. Here, it
is clear that some methods provide sufficient throughput to transform images at
high-definition video rates. These benchmarks were completed using a personal
computer equipped with a 3.4 GHz Intel i7-6700 processor. For comparison, the

transform times reported by Harrison et al.21 (0.4 s for n = 1000) and Rallis et al.3

(0.6 s for n ≈ 1054) are also shown in panels (a) and (b).

Daschmethods (three_point, onion_peeling, and two_point),
the precalculation is significantly longer than the transform time
for image sizes smaller than 2000 pixels. For larger image sizes, the
precalculation of the basis sets approaches the same speed as the
transform itself. In particular, for the two_point method, the pre-
calculation of the basis sets actually becomes faster than the image
transform for n ≳ 4000. For the linbasex method, the precalcula-
tion of the basis sets is consistently faster than the transform itself,
suggesting that the precalculation of basis sets is not necessary for
this method.

Using a desktop computer (equipped with a 3.4 GHz Intel i7-
6700 processor and 32 GB RAM, and running Linux) we are able
to complete inverse Abel transforms with image sizes up to 50 001× 50 001 pixels (Fig. 6), for an image size of 2.5 gigapixels using both
the hansenlaw and two_point methods. For image sizes larger
than this, the available RAM was filled and the transforms slowed
as they moved into virtual memory. Furthermore, using a computer
equipped with two 14-core 2.6 GHz Xeon E5-2697-v3 processors
and 270 GB ofmemory, we were able to use both the hansenlaw and
three_point methods to complete transforms up 65 537 × 65 537
pixels, for an image size of 4.30 gigapixels. To our knowledge, this is
the first demonstration of the numerical Abel transform of gigapixel-
scale images. The capability of transforming large images is becom-
ing increasingly important, as techniques for collecting gigapixel-
scale images, such as mosaic imaging and large CCD arrays become
more commonplace.33

C. High-framerate transforms

Many experiments that rely on inverse Abel transforms utilize
“high-definition” video cameras that record data at a rate of more
than 20 Mp/s. For example, a “720p” camera records 1280 × 720
images at 30 fps for a data-rate of 27.6 Mp/s. As shown in Fig. 6(b),
the basex, onion_peelng, two_point, and three_point meth-
ods are capable of performing an inverse Abel transform at data rates
of nearly 100 Mp/s for n ≈ 1000, thus achieving Abel transforms at
high-definition video rates for the first time.

Since the basex method has an adjustable regularization
parameter, Fig. 6 also shows a “basex(var)” curve that corresponds
to changing this parameter for each data frame. This requires addi-
tional computations and thus slows down the processing. Never-
theless, the throughput remains sufficient for high-definition video
rates, meaning that the regularization parameter can be adjusted in
real time. This capability is very helpful even for analyzing indi-
vidual images, as users can vary the regularization strength and
immediately observe how it affects the results.

VI. CONCLUSION

Here, we have presented the PyAbel software package for com-
pleting forward and inverse Abel transforms, which allows the
numerical transformation of three-dimensional objects into their
two-dimensional projection and vice versa. We have implemented
eight different published algorithms for the inverse Abel transform
and found good agreement between the results produces using the
various methods. After significant optimization of the algorithms
in each method, we analyzed the computational efficiency of each
method and compared the scaling of the frame rate with the image

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-8

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

size. We have made the first demonstration of inverse Abel trans-
forms at high-definition video frame rates (1-megapixel images
at more than 30 fps). In addition, we have transformed a 65 537× 65 537-pixel image, realizing inverse Abel transforms of gigapixel
images. Moreover, all of the Abel transform methods are imple-
mented in Python (or Cython), a high-level scripting language that
allows easy modification and incorporation into other projects. This
ability to easily complete efficient Abel transforms should enable
new capabilities in many fields.

PyAbel is open-source and freely available at http://github.com/
PyAbel/PyAbel. The PyAbel development team encourages the
incorporation of new Abel-transform methods into PyAbel.

ACKNOWLEDGMENTS

We acknowledge useful feedback from Oliver Haas, Eric
Hansen, Jason Gascooke, Gilbert Shih, Eric Wells, Chris Rallis,
Adi Natan, Kevin Dorney, Jennifer Ellis, and Quynh Nguyen. We
thank Thomas Gerber for his assistance incorporating the linbasex
method.

S.T.G.’s research was supported by the Australian Research
Council Discovery Project, Grant No. DP160102585.

REFERENCES

1V. Dribinski, A. Ossadtchi, V. A.Mandelshtam, andH. Reisler, Rev. Sci. Instrum.
73, 2634 (2002).
2C. Bordas, F. Paulig, H. Helm, and D. L. Huestis, Rev. Sci. Instrum. 67, 2257
(1996).
3C. E. Rallis, T. G. Burwitz, P. R. Andrews, M. Zohrabi, R. Averin, S. De,
B. Bergues, B. Jochim, A. V. Voznyuk, N. Gregerson, B. Gaire, I. Znakovskaya,
J. McKenna, K. D. Carnes, M. F. Kling, I. Ben-Itzhak, and E. Wells, Rev. Sci.
Instrum. 85, 113105 (2014).
4D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445 (1987).
5M. Ryazanov, “Development and implementation of methods for sliced velocity
map imaging. Studies of overtone-induced dissociation and isomerization dynam-
ics of hydroxymethyl radical (CH2OH and CD2OH),” Ph.D. thesis, University of
Southern California, 2012.
6F. Renth, J. Riedel, and F. Temps, Rev. Sci. Instrum. 77, 033103 (2006).
7G. A. Garcia, L. Nahon, and I. Powis, Rev. Sci. Instrum. 75, 4989 (2004).
8J. Glasser, J. Chapelle, and J. C. Boettner, Appl. Opt. 17, 3750 (1978).
9S. D. Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, Combust. Flame
115, 253 (1998).
10F. Cignoli, S. D. Iuliis, V. Manta, and G. Zizak, Appl. Opt. 40, 5370
(2001).
11D. R. Snelling, K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder, Appl. Opt.
38, 2478 (1999).

12K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, Appl. Opt. 45, 4638
(2006).
13C. Liu, L. Xu, Z. Cao, and H. McCann, IEEE Trans. Instrum. Meas. 63, 3067
(2014).
14D. D. Das,W. J. Cannella, C. S. McEnally, C. J. Mueller, and L. D. Pfefferle, Proc.
Combust. Inst. 36, 871 (2017).
15G. R. Gladstone, S. A. Stern, K. Ennico, C. B. Olkin, H. A. Weaver, L. A. Young,
M. E. Summers, D. F. Strobel, D. P. Hinson, J. A. Kammer, A. H. Parker, A. J.
Steffl, I. R. Linscott, J. W. Parker, A. F. Cheng, D. C. Slater, M. H. Versteeg,
T. K. Greathouse, K. D. Retherford, H. Throop, N. J. Cunningham,W.W.Woods,
K. N. Singer, C. C. C. Tsang, E. Schindhelm, C. M. Lisse, M. L. Wong, Y. L. Yung,
X. Zhu, W. Curdt, P. Lavvas, E. F. Young, G. L. Tyler, and New Horizons Science
Team, Science 351(6279), aad8866 (2016).
16J. D. Lumpe, L. E. Floyd, L. C. Herring, S. T. Gibson, and B. R. Lewis, J. Geophys.
Res. 112, D16308, https://doi.org/10.1029/2006jd008076 (2007).
17I. J. D. Craig, Astron. Astrophys. 79, 121 (1979).
18B. Whitaker, Imaging in Molecular Dynamics: Technology and Applications
(Cambridge University Press, 2003).
19C. J. Dasch, Appl. Opt. 31, 1146 (1992).
20T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, Rev.
Sci. Instrum. 84, 033101 (2013).
21G. R. Harrison, J. C. Vaughan, B. Hidle, and G. M. Laurent, J. Chem. Phys.
148, 194101 (2018).
22E. D. Micheli, Appl. Math. Comput. 301, 12 (2017).
23B. Dick, Phys. Chem. Chem. Phys. 16, 570 (2014).
24R. Yurchak, “Experimental and numerical study of accretion-ejection mech-
anisms in laboratory astrophysics,” Ph.D. thesis, Ecole Polytechnique (EDX),
2015.
25S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith,
Comput. Sci. Eng. 13, 31 (2011).
26E. W. Hansen and P.-L. Law, J. Opt. Soc. Am. A 2, 510 (1985).
27E. Hansen, IEEE Trans. Antennas Propag. 33, 666 (1985).
28J. R. Gascooke, “Energy transfer in polyatomic-rare gas collisions and
van der Waals molecule dissociation,” Ph.D. thesis, Flinders University, SA
5001, Australia, 2000, available at: github.com/PyAbel/abel_info/blob/master/
Gascooke_Thesis.pdf.
29J. R. Gascooke, S. T. Gibson, and W. D. Lawrance, J. Chem. Phys. 147, 013924
(2017).
30M. V. Duzor, F. Mbaiwa, J. Wei, T. Singh, R. Mabbs, A. Sanov, S. J. Cavanagh,
S. T. Gibson, B. R. Lewis, and J. R. Gascooke, J. Chem. Phys. 133, 174311 (2010).
31S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput. Sci. Eng. 13, 22
(2011).
32D. Coppersmith and S. Winograd, J. Symb. Comput. 9, 251 (1990), computa-
tional algebraic complexity editorial.
33D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish,
E. Vera, and S. D. Feller, Nature 486, 386 (2012).
34S. Gibson, D. D. Hickstein, R. Yurchak, M. Ryazanov, D. D. Das, and G.
Shih (2019). “PyAbel/PyAbel: v0.8.2,” Zenodo. https://doi.org/10.5281/zenodo.
3243413.

Rev. Sci. Instrum. 90, 065115 (2019); doi: 10.1063/1.5092635 90, 065115-9

Published under license by AIP Publishing

https://scitation.org/journal/rsi
http://github.com/PyAbel/PyAbel
http://github.com/PyAbel/PyAbel
https://doi.org/10.1063/1.1482156
https://doi.org/10.1063/1.1147044
https://doi.org/10.1063/1.4899267
https://doi.org/10.1063/1.4899267
https://doi.org/10.1063/1.453276
https://doi.org/10.1063/1.2176056
https://doi.org/10.1063/1.1807578
https://doi.org/10.1364/ao.17.003750
https://doi.org/10.1016/s0010-2180(97)00357-x
https://doi.org/10.1364/ao.40.005370
https://doi.org/10.1364/ao.38.002478
https://doi.org/10.1364/ao.45.004638
https://doi.org/10.1109/tim.2014.2315737
https://doi.org/10.1016/j.proci.2016.06.047
https://doi.org/10.1016/j.proci.2016.06.047
https://doi.org/10.1126/science.aad8866
https://doi.org/10.1029/2006jd008076
https://doi.org/10.1029/2006jd008076
https://doi.org/10.1364/ao.31.001146
https://doi.org/10.1063/1.4793404
https://doi.org/10.1063/1.4793404
https://doi.org/10.1063/1.5025057
https://doi.org/10.1016/j.amc.2016.12.009
https://doi.org/10.1039/c3cp53673d
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.1364/josaa.2.000510
https://doi.org/10.1109/tap.1985.1143640
http://github.com/PyAbel/abel_info/blob/master/Gascooke_Thesis.pdf
http://github.com/PyAbel/abel_info/blob/master/Gascooke_Thesis.pdf
https://doi.org/10.1063/1.4981024
https://doi.org/10.1063/1.3493349
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1016/s0747-7171(08)80013-2
https://doi.org/10.1038/nature11150
https://doi.org/10.5281/zenodo.3243413
https://doi.org/10.5281/zenodo.3243413

