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Abstract. We present a direct imaging algorithm for extended targets. The algorithm is
based on a physical factorization of the response matrix of a transducer array and the Multi-Signal
Classification (MUSIC) imaging function is used to visualize the results. A resolution and noise level
based thresholding strategy is developed for regularization. The algorithm is simple and efficient since
no forward solver or iteration is needed. Multiple-frequency information improves both resolution and
stability of the algorithm. Efficiency and robustness of the algorithm with respect to measurement
noise and random medium fluctuations are demonstrated.
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1. Introduction. Probing a medium using waves to detect and image targets
has many applications. The objective is to infer the location and/or geometry of
targets from the scattered wave field. Examples include ultrasound imaging in med-
ical applications, detection of defects in nondestructive testing, underground mine
detection and target detection using radar or a sonar system. In the general inverse
problem approach the whole medium is regarded as the unknown. Hence, an inverse
or pseudo-inverse of the forward operator has to be approximated and computed. The
inverse problem is often nonlinear even if the forward problem is linear. A nonlinear
optimization problem typically needs to be solved via iterations. This optimization
problem usually involves solving an adjoint forward problem at each iteration. More-
over, the inverse problem is often ill-posed and regularization has to be introduced. As
a consequence, imaging the whole medium using this general inverse problem approach
may be too complicated and too expensive to be practical in many applications, for
instance if the imaging domain is large. If the background medium is homogeneous
and some simple boundary condition is satisfied at the boundary of the target, the
inverse problem can be turned into a geometric problem, that is, the problem of deter-
mining the shape of the target from the scattered wave field pattern. In this case the
‘number of degrees of freedom’ is greatly reduced from the case of imaging the whole
medium. If incident plane waves and the corresponding far field patterns are used
this is the classical ‘inverse scattering problem’. This problem involves a nonlinear
optimization problem with respect to an appropriate shape space which is typically
solved using shape derivatives via iterations. Again shape regularization is needed
and an adjoint forward problem has to be solved to find the shape derivative in each
iteration.

Here we propose a direct imaging algorithm to image both location and geometry
of extended targets. The motivation for our method is to locate or visualize dominant
scattering events for the scattered wave field. In homogeneous media this is equivalent
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to finding the boundary of a target that has some contrast from the background.
For heterogeneous media, whether we can clearly locate or visualize the boundary
depends on two factors: (1) to what extent the scattering at the boundary of the
target dominates other scattering events in the medium, e.g., the signal to noise
ratio; (2) knowledge about the background medium known, e.g., how well the Greens
function for the background medium can be approximated. With a physically based
thresholding we show that our direct imaging algorithm can deal with quite strong
measurement noise and also some random heterogeneities in the medium.

Our physical model is the Helmholtz equation for harmonic waves. An array
of transducers that can send out waves and record scattered waves is used to probe
the medium. The measurement data is the response matrix, which are the inter-
element responses of the array, i.e., the recorded signal at a receiver corresponding
to a probing pulse sent out by a transmitter. This matrix gives all the information
about the medium that can be obtained with the transducer array. Based on a physical
factorization of the scattered field we characterize the Singular Value Decomposition
(SVD) of the response matrix for extended targets. We then design a direct imaging
function based on the SVD and introduce a thresholding strategy for regularization
based on the physical resolution of the array and the noise level.

A physical motivation for our algorithm is that strong scattering events can be
considered as sources for the scattered field. This is related to the idea behind the
physical experiment of time reversal. In time reversal the received wave field is time
reversed and back propagated into the medium. The retransmitted wave will focus
on sources. For target detection, the target is illuminated by a probing wave first
and then the time reversed wave will focus on dominant scatterers. This procedure
can also be repeated, i.e., iterated time reversal. However, the standard time reversal
procedure only provides a way to locate the most dominant scattering event associated
with the largest singular value or dominant events associated with different singular
values one by one. To image an extended target we need to use the SVD to extract
dominant events that characterize the shape information.

Our imaging function is of a similar form as the MUltiple SIgnal Classification
(MUSIC) imaging function. The previous MUSIC algorithm [25, 9, 15, 23, 12, 10]
can only locate small targets. Under the assumption of point targets the response
matrix has a simple structure. This structure is used in MUSIC and has also been
exploited to focus a wave field on selected scatterers using iterated time reversal
[24, 22, 20, 21, 14, 19]. The iterated time reversal procedure corresponds to the power
method for finding the dominant singular vectors for the response matrix. However,
with the point target assumption, physical properties and the geometry of the target
are neglected. More importantly an extended target is not a superposition of point
targets. For extended targets the response matrix has a more complicated structure
and we exploit this structure in our approach. Two key ideas behind our algorithm
are: (1) a physical representation of the scattered field and the corresponding response
matrix; (2) a thresholding strategy based on the resolution of the array and the SVD
of the response matrix. We use these two ideas to extract important contributions
to the scattered field simultaneously from the SVD of the response matrix. Moreover
our imaging algorithm can (1) incorporate physical properties of the targets into the
imaging function; (2) use different wave form, e.g., point source or plane wave, for
illumination; (3) use data in near or far field.

This algorithm is different from the one proposed in [13], in which a shape opti-
mization is used to match all measurements in the response matrix. The method can
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be parallelized easily since the evaluation of the imaging function at different grids
are independent.

The linear sampling method, first proposed in [8], is also a direct imaging algo-
rithm for the inverse scattering problem. The method is based on a characterization
of the range of the scattering operator for the far field pattern. It is shown that the
far field pattern of a point source located inside the object should be in the range of
the scattering operator. Kirsch gave a factorization of the scattering operator [16] and
use this factorization for imaging. The relation between the MUSIC and the linear
sampling method is studied in [7, 17]. The approach presented here differ from the
linear sampling method. First, our algorithm is based on a different factorization.
Second we use a physically based thresholding instead of the Tikhonov regularization
in the linear sampling method. Moreover, our targets can be illuminated either by
point sources or by incoming plane waves and our data can be near or far field.

The outline of the paper is as follows. In section 2 we first give a brief discussion
of the response matrix and its SVD for point targets. We present a study of the
response matrix for extended targets and develop our image algorithm in Section
3. We develop a resolution analysis and a noise level based thresholding in section
4. Extensive numerical experiments are presented in Section 5 to demonstrate our
imaging algorithm.

2. The Response Matrix And Its Singular Value Decomposition for

point targets. Our setup uses an array of transducers that can send and receive
signals to probe the medium. For simplicity we mainly focus on the case with an
active array, i.e., the transducers can both send out and record signals. These results
can easily be extended to arrays where transmitters and receivers are different, which
will be discussed briefly at the end of this section. The scalar wave equation, e.g. for
acoustic waves, is used to describe the wave field. Figure 2.1 shows a typical config-
uration. We surround the region of interest with transducers, giving a full aperture.
The background medium could be either homogeneous or weakly heterogeneous and
random. There could be one or more targets in the region.

Define the interelement response Pij(t) to be the signal received at the j − th
transducer with an impulse sent out from the i−th transducer. For an array consisting
of N transducers, the matrix P (t) = [pij(t)]N×N is called the response matrix. Since
the medium is static we have Pij(t) = Pji(t) due to spatial reciprocity. For a source
signal distribution ~e(t) = [e1(t), e2(t), . . . , eN (t)]T , where ei(t) is the output signal at
the i− th transducer and T is transpose, the reflected signal at the array is,

~r(t) = [r1(t), r2(t), . . . , rN (t)]T = P (t) ∗ ~e(t) ,

with ∗ denoting convolution in time. In the frequency domain we have

~̂r(ω) = P̂ (ω)~̂e(ω),

where ω is the frequency and P̂ (ω) is the Fourier transform of P (t). In this paper, we
focus on a frequency domain formulation with time harmonic waves. We briefly review
the basic structure of the response matrix P̂ (ω) for a fixed frequency and omit theˆno-
tation below. Denote the Greens function of the homogeneous background at a partic-
ular frequency by G0(ξ,x). Due to the spatial reciprocity, G0(x, ξ) = G0(ξ,x). Here
we also suppress the dependence of the Greens function on the frequency when there
is no confusion. Assume that there are M point scatterers located at x1,x2, . . . ,xM

in the medium with reflectivity τ1, τ2, . . . , τM , if we neglect the multiple scattering
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Fig. 2.1. Setup for Imaging Experiments

among the scatterers, then for a signal ~e(ω) = [e1(ω), e2(ω), . . . , eN (ω)]T sent out
from the active array, the reflected signal at the j − th transducer is

rj(ω) =
M
∑

k=1

N
∑

i=1

G0(ξj ,xk)τkG
0(ξi,xk)ei(ω),

where ξ1, ξ2, . . . , ξN are the locations of the transducers. If we define the illumination
vectors, ~g0

k, k = 1, 2, . . . ,M , to be

~g0
k = [G0(ξ1,xk), G0(ξ2,xk), . . . , G0(ξN ,xk)]T ,

i.e., the wave field at the array of transducers corresponding to a point source at the
k − th scatterer, we have

P (ω) =

M
∑

k=1

τk
~g0
k
~g0
k

T

and ~r(ω) = P (ω)~e(ω). (2.1)

Due to the spatial reciprocity P (ω) is symmetric. The ‘time reversal step’ corresponds
to a phase conjugation in the frequency domain, and we form R(ω) = P (ω)P (ω) =
P ∗(ω)P (ω) which is called the time reversal matrix (operator) where ∗ denotes the
adjoint. It is shown that the time reversal operator is an optimal spatial and temporal
matched filter in [26, 5]. The matrix R(ω) is Hermitian and from (2.1) we have

R(ω) =

M
∑

k=1

τk
~g0
k
~g0
k

T
M
∑

k′=1

τk′
~g0
k′

~g0
k′

T

=

M
∑

k′=1

M
∑

k=1

Λk,k′
~g0
k
~g0
k′

T

, (2.2)

where

Λk,k′ = τkτk′ < ~g0
k,
~g0
k′ >= τkτk′

~g0
k

T
~g0
k′ .
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Using the representations (2.1) and (2.2) we can easily see that both the response
matrix P (ω) and the time reversal matrix R(ω) are of rank M , i.e., the number
of scatterers, and that their range is the span of the illumination vectors ~g0

k, k =
1, 2, . . . ,M . Define the point spread function

Γ(x′,x) =
N

∑

i=1

G0(ξi,x
′)G0(ξi,x). (2.3)

Then Γ(x′,x) is exactly the wave field at point x after phase conjugating the signal
received at the active array for a point source at x′ and sending it back into the
medium. The support of the point spread function also defines the resolution of the
array. That the scatterers are well resolved by the active array means

Γ(xk,xk′) = ~g0
k

T ~g0
k′ ≈ 0 if k 6= k′

i.e., the wave field corresponding to the time reversal of a point source at one scatterer

is almost zero at all other scatterers. In the well resolved case ~g0
k ( ~g0

k) is the left (right)

singular vectors for P (ω) with singular values τk‖ ~g0
k‖2 since

P (w) ~g0
k = τk‖ ~g0

k‖2 ~g0
k, P ∗(w) ~g0

k = τk‖ ~g0
k‖2 ~g0

k. (2.4)

It is shown in [12] how multiple scattering among several point scatterers can be
taken into account. Similar to the Lippmann-Schwinger formula, the response matrix
can be written as

P (ω) =

M
∑

k=1

τk
~g0
k ~gk

T , (2.5)

where ~g0
k is the illumination vector for the homogeneous background medium and ~gk

is the illumination vector for the medium that includes all point scatterers. Hence,
the column space of the response matrix (spanned by the left singular vectors) is
still the same as in the case with a homogeneous background, i.e., spanned by
~g0
k, k = 1, 2, . . . , N . The structure of the response matrix (2.5) can be used to image

the locations of the point scatterers. In the MUSIC algorithm one of the crucial steps
is the definition of the signal space V S in terms of the SVD of the response matrix.

The noise space V N is the orthogonal complement of V S . Denote ~g0(x) to be the
illumination vector at a searching point x, then the imaging function is constructed
as

I(x) =
1

‖PV N
~g0(x)‖2

, where PV N is the projection operator. (2.6)

For the ideal point scatterer case, the signal space is spanned by the singular vectors
corresponding to non-zero singular values. From the structure of the response matrix
(2.5) it is easy to see that I(x) becomes large when x matches the location of one
of the scatterers. It is also easy to see that we can not have more scatterers than
transducers (since the response matrix will have a full rank) for the MUSIC imaging
function. A nice property of the projection operation is that we do not need a one
to one correspondence between the singular vector and the illumination vector of the
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scatterers. Let ~u1, ~u2, . . . , ~uN be the set of singular vectors that span the signal space
V S . The imaging function for MUSIC is defined by

I(x) =
1

‖~g0(x)‖2 − ‖PV S~g0(x)‖2
=

1

‖~g0(x)‖2 − ∑N
k=1 | ~g0(x) · ~uk |2

.

Remark: If the array is composed of two different sets of transmitters and re-
ceivers, e.g., there are s transmitters located at ξ1, . . . , ξs and there are r receivers
located at η1, . . . ,ηr. The response matrix for M point targets located at x1, . . . ,xM

with reflectivity τ1, . . . , τM becomes

P (ω) =
M
∑

k=1

τk ~gs
k
~gr
k

T
, (2.7)

where

~gr
k = [G0(η1,xk), G0(η2,xk), . . . , G0(ηr,xk)]T ,

and

~gs
k = [G0(ξ1,xk), G0(ξ2,xk), . . . , G0(ξs,xk)]T

k = 1, 2, . . . ,M , are illumination vectors for the receiver and transmitter arrays re-
spectively. The response matrix is of rank M . If the targets are well resolved by the

transmitter and receiver array, ~gs
k and ~gr

k are the left and right singular vectors for

the response matrix P (ω) respectively. In general, ~gs
k and ~gr

k, k = 1, 2, . . . ,M , span
the column and row signal spaces, V S

C and V S
R , respectively. The MUSIC imaging

function can be constructed using both of them. For example, let ~g0
s(x) and ~g0

r(x) be
the illumination vector at a searching point x corresponding to the transmitter and
receiver arrays respectively, we define the imaging function

I(x) =
1

‖~g0
s(x)‖2 − ‖PV S

C
~g0

s(x)‖2
+

1

‖~g0
r(x)‖2 − ‖PV S

R
~g0

r(x)‖2

For extended scatterers whose sizes are comparable to or larger than the resolution
of the array the above analysis is not valid anymore. The response matrix has a more
complicated structures. Even for a single extended scatterer, there will be many non-
zero singular values. For example, it was shown in [6] that compressibility contrast and
density contrast can generate different wave fields and hence multiple eigenstates even
for a small spherical scatterer. The study was generalized to extended scatterers in [2]
and also to electro magnetic waves in [3, 4]. In [26], the number of significant singular
values for a finite aperture array is analyzed and in [27] the leading singular values
and corresponding singular vectors of the response matrix are further characterized
in terms of the location and the dimensions of the extended scatterers in a particular
regime.

We can classify a scatterer into three regimes in terms of the size r of the support
of the point spread function, i.e., the resolution of the transducer array defined in
(2.3). If the size of the scatterer s is much smaller than the resolution r of the array
then the scatterer can be regarded as a point scatterer. The response matrix for point
scatterers contains only their location information. If s is not much smaller than r
then the response matrix contains both the location and size information about the
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scatterer as studied in for instance [27]. If s is larger than r, then the rank of the
response matrix depends on the ratio s/r [26] and there are many significant singular
vectors in the SVD of the response matrix. However, one important point is that
each singular vector does not have a clear physical interpretation. In particular each
singular vector does not correspond to the illumination vector of a point on the target.
Therefore, a particular singular vector does not focus on a point on the target when
it is ‘time reversed’ and sent back. In other words, an extended target can not be
interpreted as a collection of point targets. We will show in the next two sections
that the response matrix does contain shape (geometry) information of the target up
to the resolution of the array, moreover, that if we choose the proper signal space
according to the resolution of the array we can image the shape of extended targets.

Figure 2.2(a), (b) and (c) show typical spectra of the singular values in log scale
for scatterers of different sizes as classified above. The wavelength is 48h and the
target sizes are 1h,5h,35h respectively, where h is the grid size, and the background
medium is homogeneous. We use 40 transducers located about 200h from the target
and on all four sides.
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Fig. 2.2. The spectrum(log scale) of the response matrix

3. Imaging Algorithm For Extended Target. From the matched filter point
of view, imaging using either time reversal or MUSIC will result in focusings at the
sources for the scattered field. In this section we will study the scattered field and the
structure of the response matrix for extended targets. In particular we will address the
following two crucial issues for imaging extended targets using the MUSIC algorithm
(2.6):

• How should one choose properly the set of singular vectors that span the
signal space?

• How should one choose the physically correct illumination vector?
Our starting point is based on the boundary integral equation formulation for the

scattered field which provides a good understanding of the response matrix and the
information it contains.

3.1. Dirichlet Boundary Condition. First, let us assume a Dirichlet bound-
ary condition for the target, i.e., a sound soft target. Let Ω denote the target and Ωc

the exterior of the target. The scattered field us satisfies the following equation
{

∆us(x) + k2us(x) = 0 x ∈ Ωc ⊂ Rd

us(x) = −ui(x) x ∈ ∂Ω
(3.1)

and in addition a far field radiation condition r
m−1

2 (∂u
∂r

− iku) → 0 as r = |x| → ∞.
Here ui is the incident field and m is the space dimension. Let GD(x,y) be the Greens
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function that satisfies
{

∆GD(x) + k2GD(x) = δ(x − y) x,y ∈ Ωc ⊂ Rd

GD(x,y) = 0 x ∈ ∂Ω
(3.2)

and the same far field radiation boundary condition as above. From Greens formula
we have

us(x) = −
∫

∂Ω

us(y)
∂GD(x,y)

∂ν
dy =

∫

∂Ω

ui(y)
∂GD(x,y)

∂ν
dy (3.3)

where ν is the outward normal at the boundary. The Greens function GD(x,y) is
unknown since it depends on the shape of the unknown target. However, ui is the
illumination wave form we can control. If a point source is fired at transducer xi,
ui(y) = G0(y,xi). The scattered wave received at xj is

Pij =

∫

∂Ω

G0(y,xi)
∂GD(xj ,y)

∂ν
dy =

∫

∂Ω

G0(xi,y)
∂GD(xj ,y)

∂ν
dy, (3.4)

whereG0 is the free space Greens function. A physical interpretation is that the source
of the scattered wave field is a weighted superposition of monopoles at the boundary.
In particular Pij(= Pji) is a superposition of the wave field at xi corresponding
to monopoles located at the boundary. The weights are determined by the normal
derivatives of the Greens function which corresponds to a point source at xj , e.g.,
∂GD(y,xj)

∂ν
. It follows that the part of the boundary that is “well illuminated” gives

a strong contribution to the response matrix. The response matrix can be written

P =

∫

∂Ω

~g0(y)

[

∂~g(y)

∂ν

]T

dy (3.5)

where ~g0(y) is the illumination vector

~g0(y) = [G0(x1,y), . . . , G0(xN ,y)]T (3.6)

and

∂~g(y)

∂ν
=

[

∂GD(x1,y)

∂ν
, . . . ,

∂GD(xN ,y)

∂ν

]T

(3.7)

Equation (3.5) is a factorization of the response matrix that separates known infor-
mation (the incoming wave) from unknown information. The range of the response
matrix is determined by the span of the illumination vectors ~g0(y) corresponding to
the well illuminated part of the boundary. Our imaging function is based on the
following two observations:

1. The array picks up a certain degree of independent shape information of ex-
tended targets depending on the resolution of the array [26]. This information
is embedded in a proper collection of leading singular vectors.

2. The illumination vector corresponding to points on well illuminated part of
the boundary should be in or close to the subspace spanned by the above
collection of leading singular vectors.

Define the shape space (or the signal space): V S = span{~v1, ~v2, . . . , ~vM},M < N ,
where ~vk’s are the singular vectors of the the response matrix with corresponding
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singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ µ > 0 and define the noise space V N as the
orthogonal complement of the shape or signal space, then our imaging function is
the MUSIC (2.6) imaging function. From the above two observations, the MUSIC
imaging function peaks at points on the boundary of the target. In Section 4 we
will show how to estimate a proper cutoff range for M based on the distribution of
singular values and resolution analysis and demonstrate that with a proper choice of
M the imaging function will peak at the boundary of the target. We will also show
that the thresholding provides a proper regularization when there is noise.

Remark 1: The above analysis only claims that the imaging function will peak
on the well illuminated boundary parts. However, it does not preclude the possibility
of peaks at other points in the domain. Those points are usually inside the boundary
and their corresponding illumination vectors may be close to a linear combination
of those of the illuminated boundary. Physically this can by explained by resonance
or interference patterns. We do encounter such situations in our numerical test, see
Figure 5.3.

Remark 2: The SVD corresponds to a principal component analysis and extracts
dominant information. The projection operation to the signal space is used for imaging
extended targets because it is the collection of leading singular vectors that contains
important shape information, note however that each individual singular vector does
not have a clear physical meaning.

Remark 3: Numerically all singular vectors are normalized to unit vector in
L2 norm. The illumination vector is also normalized to a unit vector in the imaging
function.

3.2. Neumann Boundary Condition. If we have a sound hard target, i.e. the
Neumann boundary condition is satisfied at the boundary of the target, the scattered
field is:

us(x) = −
∫

∂Ω

∂ui(y)

∂ν
GN (x,y)dy (3.8)

where GN (x,y) is the unknown Greens function with Neumann boundary condition.
Again ui is the illumination wave field which we can choose. If we send out a point
source at transducer xi, the scattered wave received at xj is

Pij = −
∫

∂Ω

∂G0(y,xi)

∂ν
GN (xj ,y)dy.

In this case the source of the scattered wave field is a weighted superposition of
dipoles at the boundary. In particular Pij(= Pji) is a superposition of wave field at
xi corresponding to dipoles located at the boundary. The superposition weight is
determined by Greens function GN (y,xj) at the boundary corresponding to a point
source at xj . The response matrix has the following form

P = −
∫

∂Ω

[

∂~g0(y)

∂ν

]

~gT (y)dy (3.9)

where

∂~g0(y)

∂ν
= [

∂G0(y,x1)

∂ν(y)
, . . . ,

∂G0(y,xN )

∂ν(y)
]T (3.10)

and

~g(y) = [GN (x1,y), . . . , GN (xN ,y)]
T

(3.11)
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Now we have a different factorization of the response matrix. So we design our imaging
function differently. Suppose the set of leading singular vectors ~v1, ~v2, . . . , ~vM ,M < N

span the shape space. The normal derivative of the illumination vector
∂~g0(y)
∂ν(y) at the

well illuminated part of the boundary should be in or close to the signal space. In

other words, we use
∂~g0(y)
∂ν(y) to replace the illumination vector ~g0(y) in the imaging

function for Dirichlet boundary condition. Since the normal direction at the boundary
is also unknown, we use a set of fixed search directions νl, l = 1, 2, . . . , L at each point
and take the maximum among these directions at each point as the imaging function:

I(y) = maxl

1

‖∂~g0(y)
∂νl

‖2 − ∑M
i=1 | ∂~g0(y)H

∂νl
~vi |2

(3.12)

This imaging function gives both shape information and an estimate of the normal
directions at the boundary.

Remark 4: If we use the wrong imaging function we still get an estimate of
the target boundary but with poor quality. In fact, if we use the wrong imaging
function the imaging procedure attempts to approximate dipoles by a combination
of monopoles and visa versa. We will show this in our numerical tests and how this
phenomenon can be used to estimate the material property of a target.

3.3. Other Cases. Consider the impedance boundary condition ∂u
∂ν

+ iµu = 0
at the target boundary, we have the following integral equation:

us(x)=

∫

∂Ω

[

iµus(y)+
∂us(y)

∂ν

]

GI(x,y)dS(y)=−
∫

∂Ω

[

iµui(y) +
∂ui(y)

∂ν

]

GI(x,y)dS(y),

(3.13)
where GI(x,y) is the Greens function with the same impedance boundary condition.
If point sources are used for illumination, we have

Pij = −
∫

∂Ω

[

iµG0(y,xi) +
∂G0(y,xi)

∂ν

]

GI(xj ,y)dS(y). (3.14)

Hence, the scattered field is generated by a linear combination of monopoles and
dipoles at the boundary. If we know the material property of the targets, i.e., we
know µ then we can use this linear combination of a monopole and a dipole as the
illumination vector in our imaging function.

In general µ is unknown and we may use the Dirichlet and/or the Neumann
imaging functions. For large positive µ, the problem is Dirichlet-like and the Dirichlet
imaging function gives good result. For small positive µ, the problem is Neumann-like
and the Neumann imaging function gives good result, see Figure 5.5 for an example.
Using both can give some indication of the material property of the targets.

For a penetrable target with a constant contrast, we have the following integral
equations for the scattered field from potential theory:

us(x) =

∫

∂Ω

∂G0(x,y)

∂ν(y)
ψ(y) +G0(x,y)φ(y)dS(y) (3.15)

where φ and ψ are density functions for single and double layer potentials. The
inter-element response is then

Pij =

∫

∂Ω

∂G0(xj ,y)

∂ν(y)
ψ(xi,y) +G0(xj ,y)φ(xi,y)dS(y) (3.16)
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with ψ(xi,y), φ(xi,y) being the density functions for a point source at xi. Again the
source for the scattered field is a combination of monopoles and dipoles located on
the boundary. However the weight of the combination changes along the boundary.
If Dirichlet and/or Neumann imaging functions are used they both peak near the
boundary. See Figure 5.8 for an imaging example.

For a target with a smooth variation of contrast the Lippmann-Schwinger equation
gives

us(x) =

∫

Ω

G0(x,y)σ(y)u(y)dy. (3.17)

Here σ is the contrast which is a smooth function with compact support. If a point
source is used, then the total field u = ui + us is the Greens function with the target
included. The inter-element response is therefore

Pij =

∫

Ω

σ(y)G0(xi,y)G(xj ,y)dy (3.18)

and the response matrix

P =

∫

Ω

σ(y)~g0(y)~gT (y)dy. (3.19)

The integral is now over the whole region Ω and well illuminated high contrast parts,
with σ(y)G(xi,y) relatively large, can be viewed as the sources for the scattered wave
field. Hence, the Dirichlet imaging function will peak on those parts in region Ω, see
Figure 5.8.

3.4. Another Formulation Using the Total Field. Another formulation is
to represent the scattered field in term of the total field u(x) = ui(x) + us(x). The
scattered field and the incoming field satisfy the following two relations:

us(x) =

∫

∂Ω

G0(x,y)
∂us(y)

∂ν
− us(y)

∂G0(x,y)

∂ν
dy, (3.20)

0 =

∫

∂Ω

G0(x,y)
∂ui(y)

∂ν
− ui(y)

∂G0(x,y)

∂ν
dy, (3.21)

If u(x) satisfies Dirichlet boundary condition at ∂Ω the sum of the above two equations
gives

us(x) =

∫

∂Ω

G0(x,y)
∂u(y)

∂ν
dy. (3.22)

For a point source at xi the total field is u(x) = GD(x,xi). The scattered field at xj

is

Pij =

∫

∂Ω

G0(xj ,y)
∂GD(xi,y)

∂ν
dy, (3.23)

which is equivalent to the previous formulation (3.4) and shows the reciprocity of the
scattered field. Physically this also gives a dual interpretation: the scattered field at a
receiver can be viewed as the normal derivative of the total field (unknown) at target

11



boundary propagated by the free space Greens function. Similar formulations can be
derived for other boundary conditions.

When we have an active array, i.e., the transmitters and receivers are at the same
place, the response matrix is square and symmetric and these two formulations are
equivalent. However, when the array of transmitters and the array of receivers are
different the response matrix may not be square anymore and these two formulations
can provide complementary information. For example, suppose there are s transmit-
ters located at x̃1, . . . , x̃s and there are r receivers located at x1, . . . ,xr. The response
matrix is then of size s × r. For Dirichlet boundary condition the scattered field at
jth receiver due to a point source fired at ith transmitter is

Pij =

∫

∂Ω

G0(y, x̃i)
∂GD(xj ,y)

∂ν
dy, (3.24)

So the response matrix has the following vector form

P =

∫

∂Ω

~̃g0(y)

[

∂~g(y)

∂ν

]T

dy (3.25)

where ~̃g0(y) is the illumination vector with respect to the transmitter array

~̃g0(y) = [G0(x̃1,y), . . . , G0(x̃s,y)]T (3.26)

and

∂~g(y)

∂ν
=

[

∂GD(x1,y)

∂ν
, . . . ,

∂GD(xr,y)

∂ν

]T

(3.27)

Based on this formulation we can choose a proper set of left singular vectors to form
the column signal space and use illumination vector ~̃g0(y) in the imaging function.

On the other hand we can use the total field formulation and have

P =

∫

∂Ω

[

∂~̃g(y)

∂ν

]

~gT
0 (y)dy (3.28)

where ~g0(y) is the illumination vector with respect to the receiver array

~g0(y) = [G0(x1,y), . . . , G0(xr,y)]T (3.29)

and

∂~̃g(y)

∂ν
=

[

∂GD(x̃1,y)

∂ν
, . . . ,

∂GD(x̃s,y)

∂ν

]T

(3.30)

So we can also choose a proper set of right singular vectors to form the row signal space
and use illumination vector ~g0(y) in the imaging function. Of course by combining
these two formulations we incorporate aperture from both the transmitter and the
receiver arrays to some extent. We will show examples in section 5.

3.5. Illumination By Plane Waves. In the above formulations the scattered
field is factorized into two parts, one is the incoming illumination field which we can
choose and the other one is the scattering of the incoming field due to the unknown
targets. Instead of point source we can use other forms of illumination. For instance,

12



one can use plane waves of different directions as incoming fields. As an example,
with Dirichlet boundary condition the scattered wave field due to an incoming plane
wave is

us(x) =

∫

∂Ω

eikx̂·y ∂GD(x,y)

∂ν
dy, ‖x̂‖ = 1 , (3.31)

where x̂ is the incident plane wave direction. If we illuminate the targets from s dif-
ferent directions, x̂1, . . . , x̂s, and measure the scattered field at r locations x1, . . . ,xr

the response matrix will be of size s× r with elements

Pij =

∫

∂Ω

eikx̂i·y ∂GD(xj ,y)

∂ν
dy

representing the scattered field measured at jth receiver due to a plane wave in the
ith direction. Here there is no symmetric relation, e.g. Pij 6= Pji. In matrix form we
have

P =

∫

∂Ω

ĝ(y)

[

∂~g(y)

∂ν

]T

dy, (3.32)

where

ĝ(y) = [eikx̂1·y , . . . eikx̂s·y ]T .

So we can define a column signal space using a proper set of leading left singular
vectors and use ĝ(y) as the illumination vector in the imaging function.

We can also use the total field formulation and have

us(x) =

∫

∂Ω

G0(x,y)
∂u(y)

∂ν
dy, (3.33)

where u is the total field due to an incident plane wave. Let ui denote the total wave
field due to the ith incoming plane wave. We have

Pij =

∫

∂Ω

G0(xj ,y)
∂ui(y)

∂ν
dy,

These two equivalent formulations correspond to the duality and mixed reciprocity
between plane waves and point sources [18] in the sense that the scattered field at a
point y due to an incident plane wave with direction −x̂ is proportional to the far
field at the direction x̂ due to a point source located at y. The response matrix takes
the following form

P =

∫

∂Ω

[

∂~u(y)

∂ν

]

~gT
0 (y)dy, (3.34)

where ~u = [u1, . . . , us]
T and ~g0 is the illumination vector defined by the free space

Greens function in (3.6). In other words, we can use leading right singular vectors to
define a row signal space and use ~g0 as the illumination vector in the imaging function,
or we can combine both of these two formulations.
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3.6. Dealing With Noise And Inhomogeneity. In real applications noise,
such as measurement noise, is always present. Moreover, the background medium may
contain some inhomogeneity, i.e., we do not know the exact form of the background
Greens function. We can model the measured field at the array in the form

Pij =

∫

∂Ω

∂GT (xj ,y)

∂ν
GB(xi,y)dy (+ or ×) measurement noise (3.35)

assuming a Dirichlet boundary condition. This formulation separates the target infor-
mation, embedded in Greens function GT , from the background medium information,
embedded in GB . If the signal to noise ratio (SNR) in the measurement is high in
the sense that the signal from scattering at the targets is stronger than the scattering
of background inhomogeneities and the measurement noise, the SVD can still ex-
tract dominant information or the principal components from the measurement as is
demonstrated in our tests in Section 5. Since scattering at the targets is coherent for
different frequencies, using multiple frequencies and averaging will increase the signal
to noise ratio and the robustness of the imaging procedure.

Remark 5: In general the strength of the background inhomogeneity depends
on the medium variation, both the contrast and the scale of the variation, and the
propagation distance from the array to the target. Any knowledge that improves
the approximation of the background Greens function will result in better imaging.
In particular we can (1) incorporate multiple scattering of the background medium,
such as reflections of walls, into the background Greens function, (2) derive effective
medium property to ignore small scale variations in the background medium.

4. Resolution And Noise Level Based Thresholding. Here we carry out a
resolution analysis to characterize the signal space and give a guideline for choosing
a proper set of significant singular vectors that contains the shape information and
spans the signal space V S . The orthogonal complement is defined as the noise space
V N as in (2.6). We consider only sound-soft target(s) in this study.

First, we develop a resolution based thresholding strategy. Let M be the number
of leading singular vectors that span the signal space. In the case of uniform illumi-
nation of the boundary, our thresholding strategy is based on the following relation

D

r
= CM, (4.1)

where D is the perimeter (or dimension) of the target(s) boundary, r is the cor-
responding scale of the resolution for the array and C is a dimensionless factor of
proportionality. In more general situations the above relation will be more compli-
cated. For example, the material properties of the target, such as contrast, may affect
the constant C. Moreover, the geometry of the boundary, such as concavity, and
the configuration of the array, such as limited aperture, will affect the illumination
strength at different parts of the boundary. When the target is not in the near field
the resolution of the array is proportional to λL/a, where λ is the wavelength, L is
the distance from the array to the target and a is the aperture of the array. Thus we
have the following relation [26]:

Da

λL
= CM ⇒ M ∝ 1

λ
, (4.2)

e.g., the dimension of the signal space should be inversely proportional to the wave-
length. In many applications L and a are fixed. We vary λ and use this proportionality
relation to determine the thresholding.
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shape λ L a δ D predict invariance estimate
circle λ0 L0 a0 δ0 D0 12
circle λ0 L0 a0 δ0 2D0 24 24
circle 3

2λ0 L0 a0 δ0 2D0 16 16
circle λ0 L0 a0 2δ0 D0 12 12
circle λ0 L0

5
8a0 δ0 D0 7.5 8

circle λ0
2
3L0

2
3a0

2
3δ0

4
3D0 16 16

ellipse λ0 L0 a0 δ0
4.967

π
D0 18.97 18

rectangle λ0 L0 a0 δ0
6
π
D0 22.92 24

triangle λ0 L0 a0 δ0
4+2

√
2

π
D0 26.08 23

7 leaves λ0 L0 a0 δ0
7.767
2π

D0 14.83 14
2 circles λ0 ≈ L0 a0 δ0 2D0 24 22

Table 4.1

Numerical justification of the invariance of the signal-to-noise ratio. Notice that the last two
columns of the table almost agree.

Next, we define a signal to noise ratio that will be helpful in order to estimate the
number of singular vectors M . Let P = UΣV H be the singular value decomposition
of the response matrix and σ1 ≥ σ2 ≥ . . . ≥ σM be the singular values of the response
matrix that span the signal space V S . Define the signal-to-noise ratio:

‖Psignal‖2

‖Pnoise‖2
=

σ1

σM+1
,

where Psignal = UMΣMV H
M with UM , VM denoting the first M columns of U and V ,

respectively, ΣM being the corresponding submatrix of Σ and Pnoise = P − Psignal.
With correctM , this ratio represents the relative received energy of the scattered wave
due to the target(s) versus the energy scattered by the background medium and/or
noise. We claim that σ1/σM+1 is a robust and stable quantity that is invariant to
the wavelength. It is a quantity that is stable with respect to the structure of the
experiment. We performed extensive numerical simulations which show that this
quantity depends only weakly on the parameters:

1. λ: wavelength
2. L: average distance from the transducers to the target(s)
3. a: aperture of the transducer array
4. δ: spacing between two adjacent transducers
5. D: perimeter of the target(s) boundary that is well illuminated.

We illustrate this with a numerical test. In this experiment we use a circular array
with evenly spaced transducers in a homogeneous medium. We change the parameters
listed above as well as the geometry and size of the targets. Let M0 be the dimension
of the signal space when the parameters (λ0, L0, a0, δ0, D0) are used. Pick a threshold
ε such that σ1/σM < ε ≤ σ1/σM+1. This experiment is set as the reference case.
For any other parameter sets, we first use the relation Da/λL = CM to get the
‘predicted’ value of M and then use the same ε to find the ‘invariance estimate’
of M , that is a value of M such that σ1/σM < ε ≤ σ1/σM+1. The results are given
in table 4.1 and we see that the invariance estimate is close to the predicted value of
M .

Here we propose to use the invariance of the signal to noise ratio at different
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frequencies to estimate M and describe this procedure next. Let σj
i be the i’th

singular value for the response matrix that corresponds to the j’th frequency for
j ∈ {1, · · · ,m}. Let

Rj(Mj) = σj
1/σ

j
Mj+1

be the signal to noise ratio for the j’th frequency or wavelength, where Mj is the
number of singular vectors that span the signal space. According to the resolution
analysis, λjMj is close to a constant, where λj is the j’th wavelength. We have

therefore Mj ≈ (λm/λj)Mm. We now construct the following function of M̂m:

f(M̂m) =
1

m− 1

m
∑

j=2

| Rj(M̂j) −R1(M̂1) |
R1(M̂1)

, (4.3)

where we define M̂j = (λm/λj)M̂m. If the ‘correct’ M̂m is chosen, that is, M̂m ≈Mm,

then f(M̂m) is close to zero. If we plot f(M̂) as a function of M̂ , the pattern is
quite clear and with many frequencies we shall demonstrate that the pattern is quite
clear even with noise. In particular we would like to make the following remarks:

1. There is an invariance principle for the signal to noise ratio that gives:
f(M̂m) ≈ 0 for M̂m = Mm.

2. For M̂m > Mm, since the signal-to-noise ratio is large f(M̂m) will in general
be large. For M̂m < Mm, if the first few singular values are close to each
other, which may happen for large extended targets, then the average of
relative errors f(M̂m) could be close to zero. Thus we estimate Mm as the
largest value of M̂m so that f(M̂m) is small and has a significant increment
afterwards. This pattern can be easily identified from the plot of f versus
M̂m. See Figure 5.1.

3. In general it is better to have the lowest frequency (the longest wave length)
as the reference, e.g., themth frequency in (4.3) because (1) the low frequency
is more robust; (2) its signal space has the smallest dimension.

4. Usually the number of significant singular vectors M can vary in a range
which all give a good approximation of the signal space and good imaging
results. The range is of a certain percentage of the total information, i.e., the
rank of the

5. When the noise level or heterogeneities in the medium increased, the tail
of the spectrum corresponding to the SVD of the response matrix decays
relatively slowly. Thus, it will also make the pattern of the f(M̂m) less clear.
However, if we can estimate the correct dimension M of the signal space from
prior or other information, our imaging algorithm will be quite robust with
respect to noise.

In Section 5 we present numerical examples that illustrate the above points and
show that invariance based estimate of M gives good results in general, in particular
also in the case with measurement noise.

5. Numerical Experiments. We present numerical experiments that demon-
strate the thresholding algorithm for determining the signal space, imaging of ex-
tended targets for different boundary conditions and penetrable objects and the ro-
bustness of this procedure. In all the examples below the calculation domain is 499h-
by-499h, where h is the grid size, and we use a Helmholtz solver with PML [1] for the
forward problem in order to generate the response matrix. The search box for the
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imaging is chosen to be (191:310,191:310) for most experiments and for the imaging
figures we use a coordinate system with the origin at (191,191).

5.1. Thresholding. We first illustrate the performance of the thresholding al-
gorithm. We use the kite shape as in [16] and a Dirichlet boundary condition: u = 0
on the boundary of the kite. There are 80 transducers that can send and receive
signals and that are evenly placed on a circle of radius 200h centered at (250,250)
in the calculation domain mentioned above. In the examples we show the MUSIC
imaging function I(x) = 1/(‖~g0(x)‖2 − ∑M

k=1 | ~g0(x) · ~uk |2), where M is the num-
ber of singular vectors that span the signal space. The thresholding is determined
by the choice of M and in order to calculate this threshold we use the wavelengths:
λ1, · · · , λ5 = 16h, 24h, 32h, 48h, 96h. We determine M by the invariance estimate
introduced in Section 4:

• σj
i is the i’th singular value for the response matrix at the j’th wavelength.

• Let Rj = σj
1/σ

j

M̂j+1

and M̂j = M̂m(λj/λm).

• As discussed in Section 4, we plot the average of the relative errors

f(M̂m) =
1

m− 1

m
∑

j=2

| Rj −R1 |
R1

as function of M̂m in Figure 5.1, with here m = 5. We consider both clean data
and data with 10% multiplicative noise. From both pictures we see that the relative
error is small for M̂m = 4 but increase significantly afterwards. So we take M5 = 4
as the dimension of the signal space for λ = 96h and scale it accordingly for other
wavelengths.

Figure 5.2 shows the imaging function using the shortest wavelength, λ1 = 16h,
and M̂1=1,5,18,24,30,36,42 and 48. Note that λ5 = 96h so M̂1 = 6M̂5 = 24 is the
number we should use in imaging according to our resolution analysis and noise level
based thresholding. Observe that the imaging result is good for M̂1 in the range
from 18 to 36, which illustrates that the imaging has some robustness with respect
to the choice of M̂1. It also seems that the very first few singular vectors contain
information of strong scattering parts of the target such as sharp features like tips
or corners. Moreover the results clearly show that (1) each singular vector does not
correspond to a point on the target; (2) the shape information is embedded collectively
in a subset of singular vectors.

5.2. Imaging For Different Boundary Conditions. We next present imag-
ing results with our algorithm for extended targets with different boundary conditions
which correspond to different material properties of the targets. Our method is also
capable of imaging penetrable extended targets with smooth transition of contrast
or a constant jump of contrast, as we discussed in Section 3. We use the noise level
based thresholding introduced in the previous section to determine how many singular
vectors to use in each experiment. There are 80 transducers with equal spacing that
surround the target(s), the radius of the transducer array is 200h and the wave length
is 16h.

Figure 5.3 shows the imaging function for sound-soft or Dirichlet boundary condi-
tion in homogeneous medium. Figure 5.3(a) shows a target with the shape of 5 leaves,
40(1+0.2 cos(5θ))h. We observe large values of the imaging function on the boundary
of the target. There are also some spots inside the targets with large values, as pre-
dicted in Remark 1 in Section 3. Figure 5.3(b) shows the result for several extended
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Fig. 5.1. These pictures are the plot of the function f(M̂) for the thresholding criteria, the
horizontal axis is the number of singular vectors used for λ = 96h, the vertical axis is the average
of the relative errors. Left: clean data; Right: 10% mulitplicative noise. Both figures indicate that
the first big increment is from the 4th to the 5th value of f .
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Fig. 5.2. A slide show of using different number of leading singular vectors (first row: 1,5,18,24;
second row: 30,36,42,48) to define the signal space for imaging when we use 80 transducers.

objects without changing the imaging function. We obtain good imaging results as
long as the targets are well separated or the multiple scattering is not strong.

Consider now the case with a Neumann boundary condition for the target. Figure
5.4(a) shows the Neumann imaging function (3.12) using 25 fixed equally distributed
search directions for the normal derivative and we see that the boundary is clearly
resolved. If instead we use the Dirichlet imaging function, the image will be blurred.
See Figure 5.4(b). In fact, the imaging function then gives two boundary curves
corresponding to a dipole approximation using a combination of two monopoles. (In
all the figures, with boundary curves, we use the darkest color to draw the true
solution.) Vice versa, if we use the Neumann imaging function for a sound-soft target,
two boundary curves will also result.

Figure 5.5(a) and (b) show imaging results using Dirichlet and Neumann imag-
ing functions for impedance boundary condition with µ = 0.2(small µ, Neumann-
like). Figure 5.6 (a) and (b) show the Dirichlet and Neumann imaging function for
impedance boundary condition with µ = 2(big µ, Dirichlet-like). This shows that if
we use both imaging functions on an unknown target we can get an estimate of the
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Fig. 5.3. Imaging of a single (left) and multiple (right) sound-soft target(s) in homogeneous
medium.
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Fig. 5.4. Imaging of a sound-hard target.

shape as well as the material property of the target.

Figure 5.7(a) and (b) show the Dirichlet and Neumann imaging functions for a
mixed boundary condition (partially coated target). On the upper half of the
boundary, the parameter in the Robin condition is µ = 0.2(Neumann-like) and on the
lower half µ = 2(Dirichlet-like). We find that the Dirichlet imaging function gives
good result for the Dirichlet-like part of the boundary and gives two boundaries for
the Neumann-like part of the boundary and vice versa. If the object is partially coated
by dielectric our method can therefore be used to detect the coating.

Figure 5.8(a) shows the Dirichlet imaging function for a circular shape target
with smooth transition of contrast, that is, the contrast is a smooth function on the
boundary of the target. As predicted by the Lippmann-Schwinger equation in Section
3, the imaging function peaks inside the target. Figure 5.8(b) shows the Dirichlet
imaging function for a circular shape target with constant contrast. As predicted by
potential theory in Section 3, the imaging function peaks near the boundary of the
target.
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Fig. 5.5. Imaging of a target with Robin boundary condition with µ = 0.2(Neumann-like).
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Fig. 5.6. Imaging of a target with Robin boundary condition with µ = 2(Dirichlet-like)

5.3. Imaging With Different Transmitter And Receiver Array. Consider
first the case when there are 80 transducers surrounding the target. There are 40
transmitters and 40 receivers and they are arranged alternatingly, i.e., using 40 odd
label of transducers as transmitters and 40 even label of transducers as receivers.
Figure 5.9 (a) and (b) show the imaging results using left (right) singular vectors
with illumination vectors to the transmitter (receiver) array respectively. Since both
of the transmitter array and the receiver array have the same full aperture, the results
are comparable.

Figure 5.10 shows the imaging results using 40 lower transducers as transmitters
and 40 upper transducers as receivers. So the aperture is limited for both transmitter
and receiver arrays. To get good result we combine the two imaging functions for
transmitter and receiver arrays and the figure shows the sum.

5.4. Imaging Using Incident Plane Waves. Now we give some examples
with incident plane waves instead of point sources. The parameters are chosen as
above and we use the same criterion for thresholding as in the point source case. The
imaging function uses the corresponding plane wave illumination vectors as described
in Section 3.5. There are 80 directions of plane waves and 80 receivers on a circle, i.e.,
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Fig. 5.7. Imaging of a target with mixed boundary condition, on the upper half µ =
0.2(Neumann-like) and on the lower half µ = 2(Dirichlet-like); darkest color corresponds to the
true solution
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Fig. 5.8. Imaging of a circular shape target with smooth transition of contrast (left) and
constant contrast (right)

the response matrix has dimension 80x80. In this test, the directions and transducers
are distributed evenly on the circle. Figure 5.11(a) shows the result for a 5-leaf shape
with Dirichlet boundary condition and Figure 5.11(b) shows the result for a 5-leaf
penetrable object with a constant contrast, (the wave length inside equals

√
2/2 times

the wave length outside the object). We see that in both cases our imaging algorithm
identifies the shape of the object.

5.5. Imaging Robustness. Next we illustrate the robustness of the threshold-
ing strategy with respect to multiplicative noise and also random medium fluctuations.
Here we use the same number of singular vectors as in the clean case. Of course, in
practice, getting a good estimate of the number singular vectors can be challenging
when the noise level is high.

First, we consider the robustness with respect to multiplicative noise. Figure
5.12 shows the result for the kite shape with noise free data, 100% multiplicative
noise and 200% multiplicative noise, respectively. We introduce the noise as follows:

21



200

400

600

800

1000

1200

20 40 60 80 100 120

20

40

60

80

100

120
100

200

300

400

500

600

700

800

900

1000

1100

20 40 60 80 100 120

20

40

60

80

100

120

(a) (b)

Fig. 5.9. Imaging of a target. Left: using left singular vectors with illumination vector to the
transmitter array; Right: using right singular vectors with illumination vector to the receiver array;
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Fig. 5.10. Imaging of a target with 40 lower transducers as transmitters and 40 upper trans-
ducers as receivers. The plot is the sum of two imaging functions

The real and imaginary part of each entry in the response matrix is multiplied by a
factor 1 + ν with ν uniformly distributed and independent for the real and imaginary
parts and the different frequencies and matrix entries. There are 40 transducers that
surround the target. Figure 5.13 shows the result using 80 instead of 40 transducers.
Clearly, using more transducers gives more robust imaging.

Figure 5.14 shows the result for the kite shape in a random medium with 5%
standard deviation and correlation length 10h. The target is well resolved also in this
case even though only the homogeneous Greens function is used in the imaging.

Figure 5.15 shows the result for the kite shape with 400% multiplicative noise
using two different frequencies. We see that imaging with the lower frequencies, that
is a longer wavelength, gives a more robust result.

Our imaging algorithm could also handle 100% standard deviation Gaussian mul-
tiplicative noise with very promising result.

In the situation with multiplicative measurement noise or medium noise that
are independent for different frequencies we next enhance the imaging robustness by
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Fig. 5.11. Imaging of an extended target with incident plane waves

combining several frequencies. The multifrequency imaging function is chosen as:

I(x) =
m

∑

i=1

Mi
∑

k=1

| ~g0(x, λi) · ~uk(λi) |2 /‖~g0(x, λi)‖2

where we explicitly show the frequency dependence. Here m is the total number of fre-
quencies, Mi denotes the number of significant singular vectors for ith frequency and
λi is the wavelength for ith frequency. Note that the summation over the frequencies
stabilize statistically the projection to the signal space.
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Fig. 5.12. Imaging of a target using 40 transducers, left: clean data, middle: 100% noise,
right: 200% noise
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Fig. 5.13. Imaging of a target using 80 transducers, left: clean data, middle: 100% noise,
right: 200% noise

23



50

100

150

200

250

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 5.14. Imaging of a target using 80 transducers, λ = 16h in 5% Gaussian random medium
with correlation length 10h
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Fig. 5.15. Imaging of a target using 80 transducers, 400% noise, left: λ = 16h(high frequency),
right: λ = 32h(low frequency)

Figure 5.16 shows the result for the kite shape with 200% multiplicative noise
in the data. 80 transducers are used. The left figure shows the result using a sin-
gle frequency(λ = 16h) and the right figure is the result using 3 frequencies(λ =
16h, 24h, 32h). According to the noise level and resolution analysis based threshold-
ing, the number of singular vectors used are chosen to be 25, 17, 13 respectively.
Clearly the result for multiple frequencies is much better than that of a single fre-
quency.

Finally, we show how multifrequency information can be used to obtain robust
imaging results also in the case with random fluctuations in the background

medium. The information at different frequencies decorrelate rapidly with the fre-
quency separation [11], therefore, using several frequencies stabilize the imaging result
with respect to medium noise.

Figure 5.17 shows the result for the kite shape in a random medium with 10%
standard deviation and correlation length 10h when 80 transducers are used. The
left figure shows the result using a single frequency(λ = 16h). The right figure is
the result using 3 frequencies(λ = 16h, 24h, 32h). According to the noise level and
resolution analysis based thresholding, the number of singular vectors used are chosen
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Fig. 5.16. Imaging of a target using 80 transducers, 200% noise, left: λ = 16h, right: combining
λ = 16h, 24h, 32h

to be 25, 17, 13 respectively. Again the result for multiple frequencies is much better
than that of a single frequency.
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Fig. 5.17. Imaging of a target using 80 transducers, 10% random medium, left: λ = 16h, right:
combining λ = 16h, 24h, 32h

6. Conclusions. We propose a direct imaging algorithm for extended targets.
The algorithm is simple and efficient because no forward solver or iteration is needed.
The algorithm can also deal with different material properties and different type of
illuminations and measurements. The starting point is to locate and visualize strong
scattering events that generate the scattered field. A key point in this study is to
understand the structure of the measurements based on a physical factorization of
the response matrix. Singular value decomposition (SVD) of the response matrix is
used to extract information for the dominant scattering events. A crucial and chal-
lenging step is the choice of thresholding and regularization, that is, the number of
leading singular vectors to be used to define the signal space in the imaging algo-
rithm. A physical resolution based thresholding strategy using multiple frequencies
is developed. By an appropriate choice of illumination vectors, different material
properties and incoming wave fields can be handled by the imaging algorithm. The
proposed imaging algorithm is robust with respect to measurement noise, this derives

25



from the fact that the singular vectors are stable with respect to such noise for large
transducer arrays. The imaging procedure is also robust and stable with respect to
small medium fluctuations when we use multiple frequencies. This follows due to
rapid decorrelation of the response matrix at different frequencies, that is, a narrow
coherence bandwidth in the case with long propagation lengths, the situation when
the medium noise becomes important. In future work we will look at the effects of
limited aperture.
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