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Abstract

A direct approach to point and interval estimation of Cronbach’s coefficient alpha for
multiple component measuring instruments is outlined. The procedure is based on a
latent variable modeling application with widely circulated software. As a by-product,
using sample data the method permits ascertaining whether the population discre-
pancy between alpha and the composite reliability coefficient may be practically negli-
gible for a given empirical setting. The outlined approach is illustrated with numerical
data.
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Cronbach’s coefficient alpha (a; Cronbach, 1951) is currently one of the most fre-

quently used psychometric indexes in the educational, behavioral, and social

sciences. Its history can be traced back almost a century to the work of Kuder and

Richardson (1937) and their formulas KR20 and KR21, as well as to Guttman’s sub-

sequent research on scale reliability (Guttman, 1945; cf. McDonald, 1999). Over the

past few decades, a has attracted a great deal of attention and interest among

1Michigan State University, East Lansing, MI, USA
2University of California at Santa Barbara, CA, USA

Corresponding Author:

Tenko Raykov, Measurement and Quantitative Methods, Michigan State University, 443A Erickson Hall,

East Lansing, MI 48824, USA.

Email: raykov@msu.edu



behavioral and social researchers and has been mostly used as an index possibly

informing about the reliability of overall sum scores from multicomponent measur-

ing instruments (Miller, 1995; Raykov & Marcoulides, 2011).

At the same time, a has been the focus of numerous critical discussions in the

psychometric literature, ranging from contained to outright heated criticism (see,

e.g., Raykov, 2012, for a balanced treatment). In particular, as has been demonstrated

more than four decades ago, with uncorrelated errors population a does not exceed

the population composite reliability unless the scale’s components are essentially

tau-equivalent, when the two coefficients are identical (Novick & Lewis, 1967).

Similarly, population a can be very close to the population scale reliability for unidi-

mensional scales with uncorrelated errors and uniformly high loadings on the com-

mon construct (for details, see Raykov, 1997). Therefore, under the latter

circumstances—which are empirically examinable/testable (see below)—point and

interval estimation of the scale reliability coefficient can be accomplished in practi-

cal terms by point and interval estimation of coefficient alpha (see Raykov, West, &

Traynor, 2013).

With this impressive interest in a by substantive and methodologically oriented

scholars, it seems desirable to have a routinely applicable means of its point and

interval estimation that can be readily used by empirical researchers with widely cir-

culated software. The purpose of the present note is to outline an estimation approach

accomplishing this aim. The approach is based on the latent variable modeling

(LVM) methodology and at the software level employs the increasingly popular

LVM program Mplus (Muthén & Muthén, 2012). As a by-product of the approach,

one can also ascertain for a given empirical setting if the discrepancy between a and

reliability at large is negligible.

A Parameterization Framework for Point and Interval
Estimation of Alpha With Popular Latent Variable Modeling
Software

Denote by X1, X2, . . . , Xp p .2ð Þ a set of observed measures, such as the components

of a test, scale, testlet, subscale, inventory, self-report, survey, or questionnaire part

(generically referred to as ‘‘scale’’ in this article).1 These devices represent highly

popular means of measuring underlying latent dimensions in contemporary educa-

tional, behavioral, and social research. Coefficient alpha is defined in a studied popu-

lation as

a =
p
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where X = X1 + X2 + � � � + Xp is the overall scale sum (composite) score that is often

of main interest in empirical work, whereas Var(.) and Cov(.,.) denote variance and

covariance of the variables involved (Cronbach, 1951).

The remainder of this article uses instrumentally the classical test theory frame-

work (e.g., Zimmerman, 1975). Accordingly, each observed component (measure)

score Xi is decomposable into the sum of true score Ti and error score Ei:

Xi = Ti + Ei i = 1, . . . , pð Þ:

In case of scale homogeneity (unidimensionality), the following congeneric test

model holds (Jöreskog, 1971):

X = a + b T + E, ð2Þ

where X is the p x 1 vector of observed measures (scale components), T denotes the

assumed common latent construct evaluated by the p measures in question and with

variance set at 1 for model identification, a is a p x 1 vector of intercepts, b is the

p x 1 vector of manifest variable loadings on T, and E is the p x 1 vector of error terms

with zero means and uncorrelated with T. (For T one could take the true score of the

first measure, X1, without loss of generality in the following discussion; underlining

is used to denote vector in this article.)

We note that in the setting of concern to this article, the congeneric Model (2) is

not empirically distinguishable from the single-factor model that is frequently used

in applications. With this in mind, to achieve its aims the remainder of the note con-

siders a special case of the single-factor model, formally with m = p underlying fac-

tors that (a) have a unit loadings each on a corresponding observed component and

(b) are associated with zero error variances (e.g., Raykov & Marcoulides, 2010):

Y = a + L j + d , ð3Þ

where L = Ip is the p x p identity matrix, j is a p x 1 vector of (dummy) latent vari-

ables, and d is a p x 1 vector of error terms with zero variance each.2 From Equation

(3) follows directly

Cov(Y ) = Cov jð Þ, ð4Þ

with Cov(.) denoting the covariance matrix for the vector in parentheses, as well as

that the model in Equation (4) is saturated and with perfect fit to a given data set

(observed means, variances, and covariances). Therefore, a can be represented as

a =
p

p� 1
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(Raykov et al., 2013).
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Evaluation of Coefficient Alpha Using Latent Variable Modeling With Popular
Software

The implications of the preceding discussion for the aims of this article are as fol-

lows. Within the framework of the model defined in Equation (3), which is readily

accessed using LVM, a is a function only of the variances and covariances of the

dummy latent variables j. These variances and covariances are however the para-

meters of Model (3), which are estimated when fitting it to data. A point estimate of

a results then as follows (with hat denoting parameter estimate):

â =
p

p� 1
1�

Pp
i = 1

Vâr(ji)

Pp
i = 1

Vâr(ji) + 2
P

1�i\j�p

Côv(ji, jj)

2
6664

3
7775: ð6Þ

This estimate of coefficient alpha is readily obtained with Mplus, and the needed

source code is provided in Appendix A (as applicable to the example in the illustra-

tion section). We stress that while point estimates of a are easily furnished with other

popular software (such as SPSS, Stata, or SAS, to name a few), there are two advan-

tages associated with the presently described approach. One, a confidence interval

for coefficient alpha is readily obtainable within the same LVM framework. Indeed,

this is straightforwardly achieved by employing the popular bootstrap approach

(Efron & Tibshiriani, 1993), and the Mplus source code in Appendix A includes also

the pertinent request for such an interval estimate. As a second advantage, based on

sample data, one can ascertain as a by-product of this approach whether the popula-

tion discrepancy between a and the scale reliability coefficient is negligible for a

given empirical setting (see Note 2).

As discussed in detail in Raykov (1997), the population slippage or discrepancy of

coefficient alpha from the population scale reliability coefficient can be substantial

depending on model parameters and their relative magnitude, but need not always be

large, as indicated earlier in this note. Therefore, it is important for a researcher con-

sidering use of a as an index of reliability, to be in a position to ascertain if in an

empirical setting he or she is in a situation where this slippage is minimal and for

practical reasons ignorable. A procedure examining empirically this slippage and

responding to the question whether the alpha-reliability discrepancy is negligible is

provided in Raykov et al. (2013), where it was developed in the context of complex

sample designs. A readily used version of its associated Mplus command file for the

single-level case with no design variables, which is of concern in this note, is given

in Appendix B. This procedure is directly used on a given data set from a unidimen-

sional scale with uncorrelated errors, when one is interested in responding to the

query whether a can be practically used as a substitute of the scale reliability coeffi-

cient (see also Note 2).
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The discussed approach to point and interval estimation of coefficient alpha and

examining if the population alpha-reliability discrepancy is practically ignorable for

an empirical setting is demonstrated next on numerical data.

Illustration on Data

For the demonstration aims of this section, we use a simulated data set from a scale

with p = 5 components, which was generated according to the following model (cf.

Equation 2):

X1 = 3 + :75 T + e1,

X2 = 3 + :75 T + e2,

X3 = 3 + :80 T + e3,

X4 = 3 + :85 T + e4,

X5 = 3 + :85T + e5,

ð7Þ

where h was standard normal and e1 through e7 were independent normal zero-mean

variates with variance .5 each.

Since the average loading used in this data generation process is above .7 and the

discrepancies of the individual component loadings from it are all well below .2 in

absolute value (as is readily seen in Equations 7), from Raykov (1997) it follows that

an upper bound of the population difference between a and the reliability coefficient

of the sum X = X1 + � � � + X5 is .02. Hence, the population discrepancy between a

and the composite reliability coefficient is practically negligible, that is, a effectively

equals the scale reliability at large. Given that we know the population parameters

underlying the data simulation process, we can also work out here the population

reliability coefficient, r, as follows (e.g., Bollen, 1989; an asterisk is used to denote

multiplication next):

r = :75 + :75 + :8 + :85 + :85ð Þ2= :75 + :75 + :8 + :85 + :85ð Þ2 + 5 � :5
h i

= :865: ð8Þ

The covariance matrix associated with the simulated data set on the 5 scale com-

ponents under consideration (Equations 7) is presented in Table 1.

To apply the outlined procedure for point and interval estimation of coefficient

alpha, we fit Model (3) to these data (see Mplus source code in Appendix A). As

mentioned earlier, this model is saturated and hence associated with perfect overall

fit. The model yields for a the estimate â = .863, with a 95% confidence interval (CI)

of (.849, .874). We note in passing that, as expected (see above in this section), the

estimate of coefficient alpha is quite close to the population reliability coefficient r

and in fact both are practically identical (see also Equation 8). In addition, we observe

that the 95% CI for alpha obtained with this procedure also covers that population

reliability coefficient.
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In empirical research, one typically does not know the population reliability coef-

ficient. Hence, if he or she is considering use of the alpha estimate as such of compo-

site reliability, it would be necessary that the researcher ascertains first if he/she is in

a situation where based on the sample data it can be suggested that the population

discrepancy between alpha and reliability is practically ignorable (see Note 2). As

discussed in detail in Raykov (1997), for unidimentional scales with uncorrelated

errors this will be the case if in the studied population the average loading is above

.7 and the largest (in absolute value) component loading difference from that average

is below .2, after setting at 1 the underlying true score variance (for model identifica-

tion purposes).

To ascertain if this is also the case for the presently considered data set, we apply

the above-mentioned single-level, no-design-variable version of the Raykov et al.

(2013) procedure to examine whether the population alpha-reliability slippage is prac-

tically ignorable here. To this end, we first fit the unidimensional model (single-factor

model) to this data set, and find that it is tenable: chi-square = 4.259, degrees of free-

dom = 5, p = .513, root mean square error of approximation (RMSEA) = 0, with a

90% CI (0, .041; see Mplus source code in Appendix B). The resulting parameter esti-

mates, with standard errors, are presented in Table 2. In this model, as mentioned ear-

lier, of particular interest are the loading estimates. Their average and component

differences from it, along with their standard errors and 95% CIs, are presented in

Table 3, with these standard errors and CIs being obtained with the Raykov et al.

(2013) test version that is of relevance here (see also Appendix B and notes to it).

As seen from Table 3, (a) the CI for the average loading is entirely above .7 and

(b) the CI of each difference between component loading and that average is entirely

well within the interval (2.2, .2). Hence, the presently considered data set is in fact

an example where (with a high degree of confidence one may suggest that) the differ-

ence between coefficient alpha and scale reliability is practically negligible at large.

Therefore, a can be used in the role of a scale reliability coefficient in this example.

With this in mind, we deduce that the scale score X defined as the sum of the 5

components X1 through X5 under consideration in this section (see Equations 7) rep-

resents a composite with satisfactory reliability that is estimated essentially as equal

to .863 and with a 95% CI of (.849, .874).

Table 1. Covariance Matrix of Analyzed Data Set.

Variable Y1 Y2 Y3 Y4 Y5 Y6 Y7

Y1 1.019
Y2 0.575 1.077
Y3 0.564 0.602 1.136
Y4 0.628 0.635 0.683 1.231
Y5 0.625 0.651 0.660 0.741 1.248

Note. Since reliability and coefficient alpha do not depend on observed variable intercepts (denoted a in

Equations 2 and 3), observed variable means are inconsequential for the discussion in this note and thus

not presented.

Raykov and Marcoulides 151



Conclusion

This note was concerned with the highly popular Cronbach coefficient alpha in the edu-

cational, behavioral, and social sciences. A directly applicable LVM procedure was

outlined that can be readily used with widely circulated LVM software to point and

interval estimate coefficient alpha. As a by-product, the approach can also be used to

ascertain if one is in an empirical situation where alpha and the reliability of a consid-

ered scale can be treated as practically identical at large. While in the general case coef-

ficient alpha is not a consistent estimator of composite reliability and has a number of

downsides (discussed in detail, e.g., in Raykov, 2012), under unidimensionality and

uncorrelated errors alpha can be very close to reliability at large if the average construct

loading—given unitary latent variance—is in excess of .7 and the component loading

deviations from it are within the interval (2.2, .2). This set of conditions can be exam-

ined/tested using LVM and the procedure outlined in this note (see also Note 2).

A limitation of the modeling approach underlying this note is the requirement for

large samples. The reason is that it is grounded in the LVM methodology that itself

relies critically on asymptotic theory (Muthén, 2002). Similarly, the bootstrap is a

large-sample method for sampling distribution approximation that is essential for the

present approach when it comes to interval estimation of coefficient alpha. Therefore,

Table 2. Parameter Estimates, Standard Errors, Their Ratios, and p Values for the Fitted
Unidimensional Model.

Parameter Estimate SE Estimate/SE p value

Loadings
Y1 0.734 0.027 27.416 .000
Y2 0.762 0.027 27.850 .000
Y3 0.782 0.031 24.916 .000
Y4 0.858 0.032 26.506 .000
Y5 0.854 0.032 26.724 .000

Intercepts
Y1 2.944 0.031 94.635 .000
Y2 3.042 0.033 91.245 .000
Y3 3.041 0.034 88.310 .000
Y4 2.974 0.035 84.043 .000
Y5 3.013 0.035 85.747 .000

Error variances
Y1 0.480 0.025 19.023 .000
Y2 0.497 0.029 17.221 .000
Y3 0.524 0.029 17.844 .000
Y4 0.495 0.031 15.977 .000
Y5 0.519 0.030 17.304 .000

Latent variance:
F 1.000a

Note. Software parameter estimate presentation used.

a. Parameter fixed for model identification (cf. Raykov, 1997).
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in the absence currently of sufficiently precise guidelines for determining desirable

sample size, caution is advised when applying the approach outlined in this article

with samples having less than several hundred observations.

A related limitation of the procedure in this note is the following. While it can be

used for point and interval estimation of coefficient alpha with components having any

scale (i.e., binary, ordinal, or interval scaled; see Mplus command file in Appendix A),

its application for ascertaining whether alpha’s slippage from reliability at large is neg-

ligible assumes that the components X1,. . ., Xp are (approximately) continuous (see

Mplus command file in Appendix B). With components having at least 5-7 possible

values, the application of that part of the outlined procedure for point and interval esti-

mation of alpha’s slippage from reliability in a studied population (Appendix B), is

possible by using robust maximum likelihood (cf. Raykov & Marcoulides, 2011).

In conclusion, this note outlined a readily and widely applicable LVM-based pro-

cedure for (a) point and interval estimation of the popular coefficient alpha using a

widely circulated LVM software as well as (b) ascertaining, in a given empirical set-

ting, if the alpha-scale reliability population discrepancy could be considered practi-

cally ignorable for a multicomponent measuring instrument under consideration.

Appendix A

Mplus Source Code for Point and Interval Estimation of Coefficient Alpha

TITLE: LVM POINT AND INTEVAL ESTIMATION OF COEFFICIENT ALPHA.

Table 3. Average Loading and Its Difference From Individual Component Loadings in Fitted
Unidimensional Model—Point and Interval Estimates (see also Table 2; cf. Raykov, West, &
Traynor, 2013).

Parameter Estimate SE 95% Confidence interval

Average loading
AVE_LAM 0.798 0.020 (0.739, 0.838)

Individual loading differences from average loading
L1A 20.064 0.022 (20.107, 20.023)
L2A 20.036 0.022 (20.084, 0.004)
L3A 20.016 0.023 (20.062, 0.028)
L4A 0.060 0.024 (0.016, 0.106)
L5A 0.056 0.023 (0.012, 0.098)

Note.

1. AVE_LAM = average loading; LA1-LA5 = differences between component loading (first through fifth,

respectively) and average loading.

2. Check if (i) the confidence interval of the average loading is entirely above .7 and (ii) the confidence

intervals of its differences from the individual loadings are entirely within (2.2, .2), to suggest population

near identity of alpha and the scale reliability coefficient for a given empirical setting (Raykov, 1997, pp.

342-344). When both (i) and (ii) hold, the point and interval estimates of alpha and reliability can be

treated as essentially interchangeable empirically, and the Mplus code in Appendix A can be used to point

and interval estimate scale reliability by point and interval estimating coefficient alpha instead.
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DATA: FILE =\NAME OF RAW DATA FILE.;

VARIABLE: NAMES = Y1-Y5;

ANALYSIS: BOOTSTRAP = 2000;

MODEL: KSI1 BY Y1@1; ! SEE EQUATIONS (3) AND THEIR IMMEDIATELY

KSI2 BY Y2@1; ! FOLLOWING DISCUSSION.

KSI3 BY Y3@1;

KSI4 BY Y4@1;

KSI5 BY Y5@1;

Y1-Y5@0;

KSI1-KSI5(S1-S5);

KSI1 WITH KSI2-KSI5(S12-S15);

KSI2 WITH KSI3-KSI5(S23-S25);

KSI3 WITH KSI4-KSI5(S34-S35);

KSI4 WITH KSI5(S45);

MODEL CONSTRAINT:

NEW(ALPHA, P, SC, SV);

P = 5; ! enter here number of components in scale

SC = 2*(S12+S13+S14+S15+S23+S24+S25+

S34+S35+S45); ! modify correspondingly for p 6¼ 5,

SV = S1+S2+S3+S4+S5; ! as well as here.

ALPHA = P/(P-1)*SC/(SC+SV); ! SEE EQUATION (1).

OUTPUT: CINTERVAL(BCBOOTSTRAP);

Note. After the title for the analysis and naming the raw data file, names are assigned

in the VARIABLE section. The ANALYSIS and OUTPUT sections request the bias-

corrected bootstrap confidence intervals (at 90%, 95%, and 99% levels). The

MODEL section defines Model 3 (see discussion immediately after Equation 3). The

MODEL CONSTRAINT section introduces first place-holders for coefficient alpha,

the sum of component variances and of their covariances, and then defines alpha fol-

lowing Equation (1). (Modify the expressions for SV and SC by adding/deleting

applicable component variances and covariances, in case p6¼ 5.)

Appendix B

TITLE: VERSION FOR THE SINGLE-LEVEL, NO-DESIGN-VARIABLE CASE OF

THE RAYKOV, WEST, & TRAYNOR PROCEDURE FOR ASCERTAINING IF

ONE COULD USE ALPHA FOR RELIABLITY IN A GIVEN EMPIRICAL

SETTING (ESTIMATES CORRESPONDING POPULATION DISCREPANCY

BETWEEN ALPHA AND SCALE RELIABILITY, AND EXAMINES IF IT IS

IGNORABLE; cf. Raykov, 1997, pp. 342-344; Raykov et al.,

2013).

DATA: FILE =\NAME OF RAW DATA FILE.;

VARIABLE: NAMES = Y1-Y5;

ANALYSIS: BOOTSTRAP = 2000;
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MODEL: F BY Y1*(L1) ! defines single-factor (cong. test) model (2)

Y2-Y5(L2-L5);

F@1; ! cf. Raykov (1997)– suitable model identif. constr.

MODEL CONSTRAINT:

NEW(AVE_LAM, L1A, L2A, L3A, L4A, L5A);

AVE_LAM = (L1+L2+L3+L4+L5)/5; ! average loading

L1A = L1-AVE_LAM; ! difference of 1st to average loading

L2A = L2-AVE_LAM; ! 2nd

L3A = L3-AVE_LAM; ! 3rd

L4A = L4-AVE_LAM; ! 4th

L5A = L5-AVE_LAM; ! 5th

OUTPUT: CINTERVAL(BCBOOTSTRAP);

Note. The MODEL CONSTRAINT section is used to examine if alpha and reliability

are nearly identical at large (Raykov, 1997). For this to be the case, check in the out-

put if (a) the confidence interval (at a prespecified confidence level, such as say 95%)

for the average loading is entirely above .7, and (b) the confidence intervals for the

component loading-to-average discrepancies are each entirely within (2.2, .2). (The

metric of these numerical comparisons is set by fixing at 1 the latent variance—see

last line of the MODEL section.)
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Notes

1. If p = 2, additional identifying restrictions will be needed, for instance, indicator loading

equality (true score-equivalent/essentially tau-equivalent measures) and/or error variance

equality (e.g., parallel measures; Raykov & Marcoulides, 2011). As implied by a scale’s con-

sideration, it is further assumed in this article that not all elements of b in Equation (2) in the

main text are zero, a condition easily fulfilled in empirical behavioral and social research.

2. As elaborated below, based on sample data one can examine whether the corresponding

population slippage of coefficient alpha from the scale reliability coefficient is ignorable

for a given empirical setting. (The conclusion about the pertinent population slippage of a
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from reliability is drawn using sample data, as is typical in applications of statistics, and in

this sense does not require availability of population data on the scale under consideration.)
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