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In this paper, a direct meshless method (DMM), which is based on the radial basis function, is developed to the numerical solution of
the two-dimensional second-order hyperbolic telegraph equations. Since these hyperbolic telegraph equations are time dependent, we
present two schemes for the basis functions from radial and nonradial aspects.,e first scheme is fulfilled by considering time variable
as normal space variable to construct an “isotropic” space-time radial basis function. ,e other scheme considered a realistic re-
lationship between space variable and time variable which is not radial. ,e time-dependent variable is treated regularly during the
whole solution process and the hyperbolic telegraph equations can be solved in a direct way. Numerical experiments performed with
the proposed numerical scheme for several two-dimensional second-order hyperbolic telegraph equations are presented with some
discussions, which show that the DMM solutions are converging very fast in comparison with the various existing numerical methods.

1. Introduction

,e telegraph equation, which has been used to describe
phenomena in various fields, belongs to the hyperbolic
partial differential equation scope. For example, the two-
dimensional second-order hyperbolic telegraph equations
can model various physical phenomena in applied sciences
and engineering and also has applications in the other fields
[1, 2]. ,e generalized two-dimensional second-order hy-
perbolic telegraph equation has the following form:

Lu ≡ z
2u

zt2
+ 2α

zu

zt
+ β2u − δ

z
2u

zx2
− δ

z
2u

zy2
� f(x, y, t), t> 0.

(1)
On the physical domain (x, y) ∈ Ω � [0, 1] × [0, 1],

α> 0, β and δ are known coefficients, and f(x, y, t) is the
source term.

It is well-known that it is difficult to get the analytical
solutions for relatively complex problems. ,us, the

approximate numerical approximations to the telegraph
equation are a better choice. Several numerical methods
have been developed and compared to deal with the hy-
perbolic telegraph equations during the past two decades. In
the literature, a three-level implicit unconditionally stable
difference scheme for the numerical solution of the hy-
perbolic equation [3], linear hyperbolic equation with var-
iable coefficients in two space dimensions [4], and
multidimensional telegraphic equations [5] are proposed.
Bülbül and Sezer [6] proposed a Taylor matrix method for
the numerical solution of the two-space dimensional linear
hyperbolic equation. A variational iteration method is used
to compute the solution for the linear, variable coefficient,
fractional derivative, andmultispace telegraph equations [7].
,e differential quadrature method has been developed for
the numerical computation of two-dimensional hyperbolic
telegraph equations [8–10]. Hafez [11] proposed a spectral
collocation scheme for the numerical solutions of one- and
two-dimensional linear telegraph equations with nonlinear
forcing term.

Hindawi
Journal of Mathematics
Volume 2020, Article ID 8832197, 9 pages
https://doi.org/10.1155/2020/8832197

mailto:houenran@163.com
https://orcid.org/0000-0003-0961-2874
https://orcid.org/0000-0003-1826-7320
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8832197


Recently, meshless methods have witnessed the research
boom in science and engineering [12–14]. For these
branches, Dehghan and his coworkers proposed several
meshless methods to investigate the solution of second-
order two-space dimensional linear hyperbolic telegraph
equation which include the implicit collocationmethod [15],
the thin plate splines radial basis functions [16], the meshless
local Petrov–Galerkin method [17], and the boundary knot
method [18]. Recently, the second-order two-space-di-
mensional telegraph equation in regular and irregular do-
mains are investigated by radial basis function with finite
difference scheme [19], the pseudospectral radial basis
functions method [20], and the radial basis function method
with Crank–Nicolson finite difference scheme [21]. By using
the Houbolt method, the solution of the second-order hy-
perbolic telegraph equation in two space dimensions are
solved by the singular boundary method [22] and a hybrid
meshless method [23]. Reutskiy et al. [24] proposed a cubic
B-spline method based on finite difference and meshless
approaches for solving 2D generalized telegraph equations
in irregular single and multiconnected domains. ,ese
numerical techniques are based on two-level finite difference
approximations or integral approximations [25–28].

Based on the abovementioned investigations, we propose a
direct meshless method with one-level approximation, which is
based on the radial basis functions, for the two-dimensional
second-order hyperbolic telegraph equations. Since the hy-
perbolic telegraph equations are time dependent, we present
two schemes for the basis functions from radial and nonradial
aspects.,efirst scheme is fulfilled by considering time variable
as normal space variable to construct an “isotropic” space-time
radial basis function. ,e other scheme considered a realistic
relationship between space variable and time variable which is
not radial. ,e time-dependent variable is treated regularly
during the whole solution process, and the hyperbolic telegraph
equations can be solved in a direct way.,e rest of this paper is
organized as follows. In Section 2, we describe the two-di-
mensional second-order hyperbolic telegraph equations with
initial and boundary conditions. Section 3 introduces the
space-time radial and nonradial basis functions. In Section 4,
we present the methodology of the direct meshless method
(DMM) for the two-dimensional second-order hyperbolic
telegraph equations. Several numerical examples are presented
to validate the accuracy and stability of the proposed algo-
rithms in Section 5. Some conclusions are given in Section 6
with some additional remarks.

2. Problem Description

To seek for the solution of equation (1), one should also
consider the initial conditions:

u(x, y, 0) � g1(x, y), (x, y) ∈ Ω, (2)

ut(x, y, 0) � g2(x, y), (x, y) ∈ Ω, (3)

and boundary conditions

Bu(x, y, t) � g3(x, y, t), (x, y)|x � 0, 1 ory � 0, 1{ }, t> 0,
(4)

where g1(x, y), g2(x, y), and g3(x, y, t) are prescribed
functions. B is a boundary operator with Bu � u for
Dirichlet boundary and Bu � (zu/zx) or Bu � (zu/zy) for
Neumann boundary. We aim to seek for the solution of
unknown function u(x, y, t).

All meshless numerical techniques for equations (1)–(4)
are based on the two-level approximations, most of which
are based on the finite difference approximations. In order to
overcome the two-level strategy, we propose a direct col-
location scheme by using space-time radial and nonradial
basis functions.

3. Formulation of the Space-Time Radial and
Nonradial Basis Functions

It is well known that the radial basis functions (RBFs) are
“isotropic” for Euclidean spaces. ,e most famous Multi-
quadric (MQ) RBF, which is also named as Kansa’s method
[29], has the form [30]

ϕMQ rj( ) �
��������
1 + εrj( )2
√

, (5)

where rj � ‖X−Xj‖ �
����������������
(x−xj)

2 +(y−yj)
2

√
and rj � ‖X−

Xj‖ �
�������������������������
(x−xj)

2 +(y−yj)
2 +(z−zj)

2
√

are the Euclidean

distance for two-dimensional points X� (x,y) and three-
dimensional points X� (x,y,z), respectively. ε is the RBF
shape parameter.

For steady-state boundary value problems, the approx-
imate solution can be written as a linear combination of
RBFs with 2D or more higher dimensions. For time-de-
pendent boundary value problems, one should consider the
discretization of the time variable in the finite difference way
before using the linear combination of RBFs, and this will
lead to two-step algorithms.

To obtain a one-step algorithm for the time-dependent
problems, we construct a simple direct radial basis function
by combining the space variables x, y and time variable t as a
point (x, y, t) for the space-time domain Ω × t. More spe-
cifically, the space interval [0, 1] is evenly divided into
segments firstly 0 � x0 < x1 < · · · <xn � 1 and 0 � y0 <y1 <
· · · <yn � 1 with corresponding finess hx � (1/n) and
hy � (1/n). Meanwhile, the time variable is also evenly
chosen from the given initial time t0 � 0 to a prescribed final
time tn � T by insert some time points t1, t2, . . . , tn−1 with
time step Δt � (T/n). ,e corresponding configuration of
the space-time coordinate is shown in Figure 1, where “·”
stands for the value of space coordinate/variables (x, y), “∗”
represents the value of time coordinate/variable t, and “°”
stands for the space-time coordinates (x, y, t).

Similar to the traditional multiquadric radial basis
function, the “isotropic” space-time radial basis function can
be constructed as
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φMQ rj( ) � �������
1 + ε2r2j

√
. (6)

rj � ‖P − Pj‖ is the Euclidean distance between two
space-time coordinates P � (x, y, t) and Pj � (xj, yj, tj). To
make a difference between the space variables and time
variable, we propose the space-time nonradial basis function
which has the following expressions:

φNMQ P, Pj( ) �
������������������������������
1 + x − xj( )2 + y − yj( )2 + ε2 t − tj( )2
√

,

(7)

where ε can be considered as a parameter which reflects a
realistic relationship between space variables x, y and time
variable t.

Actually, there are several types of definitions of radial or
not radial nonmetric space-time radial basis functions with
nongeometrical relationship between the space and the time.
More details can be found in [31–34].

4. Implementation of the Direct Meshless
Method (DMM)

4.1. 0e DMM Solution Procedure. Here, we consider the
initial boundary value problem equations (1)–(4) to illustrate
the direct meshless method (DMM). Based on the definition of
space-time radial or nonradial basis functions, equations
(1)–(4) can be solved directly in a one level approximation.,e
approximate solution of the function u(x, y, t) has the form

u(·) ≈ ∑N
j�1

λjφj(·). (8)

We should seek for the unknown coefficients λj{ }n
j�1

.
To illustrate the DMM, we choose collocation points on

the whole physical domain which includeNI internal points

Pi � (xi, yi, ti){ }NI

i�1, Nt initial boundary points Pi � (xi,{
yi, ti)}

NI+Nt

i�NI+1
, and Nb boundary points Pi � (xi, yi,{

ti)}
N
i�NI+Nt+1

. Based on the traditional collocation approach,

by substituting equation (8) into equation (1)–(4), we have
the following equations:

∑N
j�1

λjLφj Pi, Pj( ) � f Pi( ), i � 1, . . . , NI, (9)

∑N
j�1

λjφj Pi, Pj( ) � g1 Pi( ), i � NI + 1, . . . , NI +Nt, (10)

∑N
j�1

λj
zφj Pi, Pj( )

zt
� g2 Pi( ), i � NI +Nt + 1, . . . , NI + 2Nt, (11)

∑N
j�1

λjBφj Pi, Pj( ) � g3 Pi( ), i � NI + 2Nt + 1, . . . , N, (12)

where

Lφj �
z
2φj

zt2
+ 2α

zφj

zt
+ β2φj − δ

z
2φj

zx2
− δ

z
2φj

zy2
. (13)

It should be noted that the initial boundary points are
used twice to cope with initial conditions. ,us, the number
of total collocation points N � NI + 2Nt +Nb.

Hence, we should seek for the solution of the following
N ×N linear algebraic system:

QΛ � f , (14)

where

Q �

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44


, (15)

are N ×N known matrix with submatrices:
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Figure 1: Configuration of the space-time coordinates.
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Q11 with elements Lφj(Pi, Pj), i, j � 1, 2, . . . , NI

Q12 with elements Lφj(Pi, Pj), i � 1, 2, . . . , NI, j �
NI+ 1, . . . , NI +Nt

Q13 with elements Lφj(Pi, Pj), i � 1, 2, . . . , NI, j �
NI+ Nt + 1, . . . , NI + 2Nt

Q14 with elements Lφj(Pi, Pj), i � 1, 2, . . . , NI, j �
NI + 2Nt + 1, . . . , N

Q21 with elements φj(Pi, Pj), i � NI + 1, . . . , NI +Nt,
j � 1, 2, . . . , NI

Q22 with elements φj(Pi, Pj), i � NI + 1, . . . , NI +Nt,
j � NI + 1, . . . , NI +Nt

Q23 with elements φj(Pi, Pj), i � NI + 1, . . . , NI +Nt,
j � NI +Nt + 1, . . . , NI + 2Nt

Q24 with elements φj(Pi, Pj), i � NI + 1, . . . , NI +Nt,
j � NI + 2Nt + 1, . . . , N

Q31 with elements (zφj(Pi, Pj)/zt), i � NI+ Nt + 1,
. . . , NI + 2Nt, j � 1, 2, . . . , NI

Q32 with elements (zφj(Pi, Pj)/zt), i � NI +Nt+

1, . . . , NI + 2Nt, j � NI + 1, . . . , NI +Nt

Q33 with elements (zφj(Pi, Pj)/zt), i � NI +Nt+

1, . . . , NI + 2Nt, j � NI +Nt + 1, . . . , NI + 2Nt

Q34 with elements (zφj(Pi, Pj)/zt), i � NI +Nt+

1, . . . , NI + 2Nt, j � NI + 2Nt + 1, . . . , N

Q41 with elements Bφj(Pi, Pj), i � NI + 2Nt + 1, . . . ,
N, j � 1, 2, . . . , NI

Q42 with elements Bφj(Pi, Pj), i � NI + 2Nt + 1, . . . ,
N, j � NI + 1, . . . , NI +Nt

Q43 with elements Bφj(Pi, Pj), i � NI + 2Nt + 1, . . . ,
N, j � NI +Nt + 1, . . . , NI + 2Nt

Q44 with elements Bφj(Pi, Pj), i � NI + 2Nt + 1,
. . . , N, j � NI + 2Nt + 1, . . . , N

Λ �

λ1

λ2

λ3

λ4


, (16)

is N × 1 vector.

f �

f

g1

g2

g3


, (17)

is N × 1 vector with

f � f P1( ), f P2( ), . . . , f PNI
( )[ ]T,

g1 � g1 PNI+1
( ), g1 PNI+2

( ), . . . , g1 PN1+Nt
( )[ ]T,

g2 � g2 PNI+Nt+1
( ), g2 PNI+Nt+2

( ), . . . , g2 PN1+2Nt
( )[ ]T,

g3 � g3 PNI+2Nt+1
( ), g3 PNI+2Nt+2

( ), . . . , g3 PN( )[ ]T.
(18)

Equation (14) can be solved by the backslash compu-
tation in MATLAB codes. From the above procedures, we
can find that the implementation of the proposed direct
meshless method is very simple. Finally, by substituting the
determined coefficients into equation (8), we obtain the
approximate solution:

u(·) ≈ ∑N
j�1

λjφj(·). (19)

4.2. Algorithmof theDMM. In this part, we summarize steps
of the given method as an implementation algorithm as
follows:

Step 1: enter the given functions f(x, y, t), g1(x, y),
g2(x, y), and g3(x, y, t), and the real constants α, β,
and δ

Step 2: select the value n which corresponds to the total
collocation number N

Step 3: find the space-time collocation points
(xi, yi, ti), I � 1, 2, . . . , N which include NI internal

points Pi � (xi, yi, ti){ }NI

i�1, Nt initial boundary points

Pi � (xi, yi, ti){ }NI+Nt

i�NI+1
, and Nb boundary points

Pi � (xi, yi, ti){ }Ni�NI+Nt+1

Step 4: compute the matrix Q and the vector f

Step 5: solve the system QΛ � f

Step 6: substitute the determined coefficients from Λ
into (9) and construct the approximate solution
u(x, y, t) in (19)

5. Numerical Experiments

In this section, several examples are considered to validate
the DMM. For fair comparison with the other numerical
methods, we use the maximum absolute error (MAE),
relative error (L2), and root mean square error (RMSE). ,e
RMSE and L2 errors are defined as below [35, 36]:

RMSE �‖u(P) − ũ(P)‖2 �

��������������������
1

NT
∑NT

j�1

u Pj( ) − ũ Pj( )∣∣∣∣∣ ∣∣∣∣∣2
√√

, L2 �‖u(P) − ũ(P)‖2 �

������������������
∑NT
j�1 u Pj( ) − ũ Pj( )∣∣∣∣∣ ∣∣∣∣∣2
∑NT
j�1 u Pj( )∣∣∣∣∣ ∣∣∣∣∣2

√√
, (20)
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where u is the analytical solution at test points Pj{ }NT

j�1
and ũ

is the numerical solutions at the test points Pj{ }NT

j�1
. NT is the

number of test points on the physical domain. For the choice
of parameter ε in the DMM, we consider a prior determi-
nation. More specifically, the collocation points are fixed to
find the quasi-optimal parameter; then, it will be used for the
other calculations. ,e optimal choice of space-time radial
or nonradial basis function parameter is similar with the
other traditional radial basis functions. For more details
about this topic, one can be found in [37, 38] and references
therein.

We denote the “isotropic” space-time radial basis
function method as DMM1 and the space-time nonradial
basis function as DMM2 in the following numerical
investigations.

5.1. Example 1. First, we consider the hyperbolic telegraph
equation (1) with the initial conditions

u(x, y, 0) � sinx siny, (x, y) ∈ [0, 1] ×[0, 1r],
ut(x, y, 0) � 0, (x, y) ∈ [0, 1] ×[0, 1],

(21)

and boundary conditions

u(0, y, t) � u(x, 0, t) � 0, 0≤ t< 1,
u(1, y, t) � cos(t)sin(1)sin(y), 0≤ t< 1
u(1, y, t) � cos(t)sin(1)sin(y), 0≤ t< 1.

(22)

,e corresponding coefficients are α � 1, β � 1, and δ �
1 with analytical/exact solution:

u(x, y, t) � cos(t)sin(x)sin(y). (23)

,e source term is

f(x, y, t) � 2(cos(t) − sin(t))sin(x)sin(y). (24)

For hx � hy � Δt � (1/9), the total collocation point
number isN � 1036.,eDMM results with rootmean square
errors (RMSE), L2, and maximum errors, L∞, are listed in
Table 1 for different times t � 0.5, t � 1, and t � 2. We also
compare our results with the ones reported in [8–10, 19, 20]. It
should be pointed that our time step Δt � (1/9), which will
lead to less computations, is larger than the one dt � 0.01 in
[8–10] and dt � 0.001 in [19, 20]. However, all the root mean
square errors (RMSE), L2, and maximum errors, L∞, of the
two DMM schemes perform better than the other numerical
methods. We can see that the results obtained by the proposed
method are in excellent agreement with the exact solutions.
,e maximum absolute errors remain stable around
L∞ ≈ 10− 7 for all times tested. Since the two DMM schemes
perform similar results, the DMM2 scheme will be eliminated
in the rest numerical results.

,e absolute error in Figure 2 shows that the results of
our DMM method are more satisfactory and reliable.

5.2. Example 2. Consider the hyperbolic telegraph equation
(1) with the corresponding initial conditions

u(x, y, 0) � exp(x + y), (x, y) ∈ [0, 1] ×[0, 1],
ut(x, y, 0) � −exp(x + y), (x, y) ∈ [0, 1] ×[0, 1],

(25)

and the mixed boundary conditions

u(0, y, t) � exp(y − t), 0≤ t< 1,

u(1, y, t) � exp(1 + y − t), 0≤ t< 1,

u(x, 1, t) � exp(x + 1 − t), 0≤ t< 1,

zu

zt
(x, 0, t) � exp(x − t), 0≤ t< 1.

(26)

,e corresponding analytical/exact solution is

u(x, y, t) � exp(x + y − t), (27)

with source term

Table 1: Numerical results for Example 1.

Methods t L2 RMSE L∞

DMM1 0.5 1.33E− 06 4.13E− 07 5.15E− 07
DMM2 0.5 1.62E− 06 5.02E− 07 7.09E− 07
[8] 0.5 1.24E− 05 3.24E− 06 —
[19] 0.5 — 7.82E− 06 3.11E− 05
[20] 0.5 1.74E− 05 7.15E− 05 4.59E− 05
DMM1 1 6.64E− 07 1.27E− 07 2.12E− 07
DMM2 1 9.38E− 06 1.79E− 06 2.66E− 06
[8] 1 2.67E− 05 4.27E− 06 —
[9] 1 9.97E− 04 5.98E− 03 2.27E− 03
[10] 1 3.75E− 06 2.47E− 05 4.57E− 06
[19] 1 — 2.07E− 05 1.01E− 05
[20] 1 8.15E− 06 5.45E− 05 2.51E− 05
DMM1 2 4.24E− 06 6.24E− 07 9.16E− 07
DMM2 2 2.76E− 06 4.06E− 07 5.30E− 07
[8] 2 3.20E− 05 3.94E− 06 —
[9] 2 1.09E− 03 8.50E− 03 2.87E− 03
[10] 2 4.47E− 06 3.83E− 05 5.61E− 06
[19] 2 — 3.01E− 06 8.25E− 06
[20] 2 9.36E− 06 8.13E− 05 2.41E− 05

×10
–6
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Figure 2: ,e absolute error for Example 1.
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f(x, y, t) � −2 exp(x + y − t). (28)

,e coefficients are α � 1, β � 1, and δ � 1.
Similar to the previous example, the root mean square

errors (RMSE), L2, and maximum errors, L∞, are shown in
Table 2 for space and time step hx � hy � Δt � (1/9). We
compare our results with the reported results in [9, 10, 19].
,e DMM time step Δt � (1/9) is still larger than the one
dt � 0.001 in [9, 10, 19]. As can be seen from the table, the
numerical results are in good agreement with the exact
solution. We can see that the results obtained by the pro-
posed method are still consistent with the exact solutions
and the maximum absolute errors remain stable around
L∞ ≈ 10− 5 for all times tested. It is shown that the maximum
absolute errors are a little larger than the previous example.
,is phenomenon may be partially due to the mixed
boundary conditions.

5.3. Example 3. Here, we consider the hyperbolic telegraph
equation of the form equation (1) in the interval 0≤ x≤ 1
with the analytical/exact solution:

u(x, y, t) � ln(1 + x + y + t). (29)

,e corresponding source function and initial condi-
tions are

f(x, t) �
1

1 + x + y + t
+ ln(1 + x + y + t) +

1

(1 + x + y + t)2
,

u(x, y, 0) � ln(1 + x + y), ut(x, y, 0) �
1

1 + x + y
, 0≤x≤ 1,

(30)
respectively. ,e boundary conditions are

u(0, y, t) � ln(1 + y + t), 0≤ t< 1,
u(1, y, t) � ln(2 + y + t), 0≤ t< 1,
u(x, 1, t) � ln(x + 2 + t), 0≤ t< 1,
u(x, 0, t) � ln(1 + x + t), 0≤ t< 1.

(31)

For hx � hy � Δt � (1/9), the total collocation point
number is N � 1036. Table 3 contains a comparison of the
root mean square errors (RMSE), L2, and maximum errors,
L∞, for DMM to those obtained by the other numerical
methods [9, 10, 19] for different times t � 0.5, t � 1, t � 2,
t � 3, and t � 5. As can be seen from the table, the numerical
results are in good agreement with the exact solutions. Our
DMM results are more accurate than the other numerical
methods.

5.4. Example 4. Let us consider the hyperbolic telegraph
equation of the form equation (1) in the interval 0≤ x≤ 1
with the analytical/exact solution:

u(x, y, t) � exp(−t)sinh(x))sinh(y). (32)

,e corresponding source function and initial condi-
tions are

f(x, t) � −2α + β2
− 1( )exp(−t)sinh(x)sinh(y),

u(x, y, 0) � sinh(x)sinh(y), ut(x, y, 0) � −sinh(x)sinh(y),

(33)
respectively. ,e boundary conditions are

u(0, y, t) � 0 � u(x, 0, t), 0≤ t< 1,
u(1, y, t) � exp(−t)sinh(1)sinh(y), 0≤ t< 1,
u(x, 1, t) � exp(−t)sinh(x)sinh(1), 0≤ t< 1.

(34)

,e numerical results are obtained using space step hx �
hy � (1/9) and time step Δt � (1/9). Tables 4 and 5 present
the root mean square errors (RMSE), L2, and maximum
errors, L∞, for α � 10, β � 5 and α � 10, β � 0, respectively.
We compare our results with the reported results in
[8, 9, 20]. From these tables, we can see that numerical
results of the DMM for times t � 0.5 and t � 1 are better
than the other numerical methods. For time t � 2, the DMM
results are similar with the other numerical methods.

Table 2: Numerical results for Example 2.

Methods t L2 RMSE L∞

DMM1 0.5 6.08E− 06 8.62E− 06 1.85E− 05
[9] 0.5 3.48E− 03 8.42E− 05 9.51E− 03
[10] 0.5 1.18E− 04 — 2.36E− 04
[19] 0.5 — 7.10E− 04 1.16E− 03
DMM1 1 7.60E− 06 6.53E− 06 9.94E− 06
[9] 1 3.24E− 03 1.29E− 04 7.47E− 03
[10] 1 1.04E− 04 — 1.78E− 04
[19] 1 — 4.36E− 04 9.25E− 04
DMM1 2 1.15E− 04 3.63E− 05 8.56E− 05
[9] 2 2.85E− 04 3.10E− 05 1.04E− 03
[10] 2 9.01E− 06 — 2.39E− 05
[19] 2 — 7.23E− 05 2.75E− 04

Table 3: Numerical results for Example 3.

Methods t L2 RMSE L∞

DMM1 0.5 7.06E− 06 2.67E− 06 4.41E− 06
[9] 0.5 1.07E− 03 1.11E− 03 2.47E− 03
[10] 0.5 4.13E− 05 4.50E− 05 8.18E− 05
[19] 0.5 — 1.13E− 05 3.87E− 05
DMM1 1 1.45E− 05 6.06E− 06 1.06E− 05
[9] 1 1.53E− 03 1.33E− 03 3.31E− 03
[10] 1 6.38E− 05 5.81E− 05 9.35E− 05
[19] 1 — 1.76E− 05 2.55E− 05
DMM1 2 8.80E− 05 4.27E− 05 9.34E− 05
[9] 2 4.65E− 04 3.20E− 04 1.14E− 03
[10] 2 2.61E− 05 1.89E− 05 4.24E− 05
[19] 2 — 8.93E− 06 1.98E− 05
DMM1 3 2.08E− 05 1.13E− 05 2.34E− 05
[9] 3 2.20E− 04 1.30E− 04 4.36E− 04
[10] 3 1.06E− 05 6.58E− 06 1.79E− 05
[19] 3 — 1.14E− 05 2.09E− 05
DMM1 5 5.51E− 05 3.45E− 05 5.78E− 05
[9] 5 1.72E− 04 8.42E− 05 3.48E− 04
[10] 5 7.10E− 06 3.65E− 06 1.08E− 05
[19] 5 — 1.42E− 05 2.55E− 05
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5.5. Example 5. Consider the hyperbolic telegraph equation
of the form equation (1) in the interval 0≤x≤ 1 with the
analytical/exact solution:

u(x, y, t) � cos(t)sinh(x)sinh(y). (35)

,e corresponding source function and initial condi-
tions are

f(x, t) � −3 cos(t) − 2α sin(t) + β2 cos(t)( )sinh(x)sinh(y),
u(x, y, 0) � sinh(x)sinh(y), ut(x, y, 0) � 0,

(36)
respectively. ,e boundary conditions are

u(0, y, t) � 0, u(x, 0, t) � cos(t)sinh(x), 0≤ t< 1,
u(1, y, t) � cos(t)sinh(1)sinh(y), 0≤ t< 1,
u(x, 1, t) � cos(t)sinh(x)sinh(1), 0≤ t< 1.

(37)
,e numerical results are obtained using space step hx �

hy � (1/9) and time step Δt � (1/9). Tables 6 and 7 show the
root mean square errors (RMSE), L2, and maximum errors,
L∞, for α � 50, β � 5 and α � 10, β � 5, respectively. We
compare our results with the reported results in [8–10]. As
can be seen from these tables, numerical results for times

t � 0.5 and t � 1 are better than the other numerical
methods. For times t � 2 and t � 3, the DMM results are
similar with the other numerical methods.

6. Conclusions

A new direct meshless scheme is presented for the two-
dimensional second-order hyperbolic telegraph equations.
,e present numerical procedure considered two schemes
for the basis functions from radial and nonradial aspects.
,ere is no need to remove time-dependent variable during
the whole solution process. ,e time-dependent variable is
treated regularly during the whole solution process, and the
hyperbolic telegraph equations can be solved in a direct way.
From the numerical results, we can conclude that the
proposed meshless method is superior to the other nu-
merical methods. Besides, the direct meshless method can be
extended to solve nonlinear problems with the Newton it-
erative method considered and high-order differential

Table 6: Numerical results with α � 50 and β � 5 for Example 5.

Methods t L2 RMSE L∞

DMM1 t � 0.5 1.27E− 06 4.65E− 07 9.54E− 07
[8] t � 0.5 2.87E− 05 1.23E− 05 —
[9] t � 0.5 9.88E− 05 1.27E− 05 3.70E− 04
[10] t � 0.5 1.83E− 06 4.94E− 06 2.55E− 06
DMM1 t � 1 7.77E− 06 1.75E− 06 4.54E− 06
[8] t � 1 7.01E− 05 1.84E− 05 —
[9] t � 1 1.68E− 04 3.51E− 05 5.69E− 04
[10] t � 1 2.85E− 06 1.25E− 05 3.89E− 06
DMM1 t � 2 3.25E− 05 5.63E− 06 9.56E− 06
[8] t � 2 6.78E− 05 1.37E− 05 —
[9] t � 2 1.71E− 04 4.64E− 05 5.26E− 04
[10] t � 2 2.28E− 06 1.30E− 05 3.03E− 06
DMM1 t � 3 7.90E− 06 5.82E− 06 8.13E− 06
[8] t � 3 1.39E− 05 6.68E− 06 —
[9] t � 3 1.74E− 05 1.99E− 06 4.35E− 05
[10] t � 3 1.56E− 06 2.53E− 06 1.75E− 06

Table 7: Numerical results with α � 10 and β � 5 for Example 5.

Methods t L2 RMSE L∞

DMM1 t � 0.5 2.58E− 06 9.42E−E− 07 1.87E− 06
[8] t � 0.5 2.01E− 05 8.61E− 06 —
[9] t � 0.5 1.07E− 04 1.38E− 05 3.76E− 04
[10] t � 0.5 1.40E− 06 3.80E− 06 1.87E− 06
DMM1 t � 1 3.48E− 06 7.83E− 07 2.03E− 06
[8] t � 1 4.60E− 05 1.21E− 05 —
[9] t � 1 1.72E− 04 3.60E− 05 5.64E− 04
[10] t � 1 1.99E− 06 8.78E− 06 2.59E− 06
DMM1 t � 2 2.12E− 05 3.67E− 06 6.08E− 06
[8] t � 2 4.45E− 05 9.01E− 06 —
[9] t � 2 1.65E− 04 4.47E− 05 5.13E− 04
[10] t � 2at � 2 1.42E− 06 8.11E− 06 1.83E− 06
DMM1 t � 3 1.49E− 05 6.00E− 06 7.71E− 06
[8] t � 3 6.48E− 06 3.13E− 06 —
[9] t � 3 8.99E− 06 1.03E− 06 1.96E− 05
[10] t � 3 5.44E− 07 1.30E− 06 7.64E− 07

Table 5: Numerical results with α � 10 and β � 0 for Example 4.

Methods t L2 RMSE L∞

DMM1 0.5 3.48E− 6 8.80E− 7 1.44E− 6
[8] 0.5 1.12E− 4 3.31E− 5 —
[9] 0.5 9.30E− 5 3.47E− 4 4.23E− 4
[20] 0.5 1.53E− 4 3.91E− 5 9.52E− 5
DMM1 1 1.14E− 05 1.75E− 06 3.53E− 06
[8] 1 1.86E− 04 3.34E− 05 —
[9] 1 6.37E− 04 3.91E− 04 2.58E− 04
[20] 1 2.80E− 04 4.35E− 05 9.74E− 05
DMM1 2 3.29E− 04 1.86E− 05 3.44E− 05
[8] 2 5.18E− 04 3.41E− 05 —
[9] 2 2.55E− 05 4.27E− 04 9.58E− 05
[20] 2 5.38E− 04 3.07E− 05 8.45E− 05

Table 4: Numerical results with α � 10 and β � 5 for Example 4.

Methods t L2 RMSE L∞

DMM1 0.5 1.76E− 06 4.44E− 07 9.47E− 07
[8] 0.5 1.12E− 04 3.30E− 05 —
[9] 0.5 1.07E− 04 1.11E− 04 2.47E− 04
[20] 0.5 1.14E− 04 3.01E− 05 7.13E− 05
DMM1 1 2.86E− 05 4.38E− 06 8.69E− 06
[8] 1 1.81E− 04 3.23E− 05 —
[9] 1 1.53E− 04 1.33E− 04 3.31E− 04
[10] 1 2.88E− 06 1.80E− 05 3.73E− 06
DMM1 2 3.15E− 04 1.77E− 05 3.21E− 05
[8] 2 4.73E− 04 3.12E− 05 —
[9] 2 4.65E− 05 3.20E− 04 1.14E− 05
[20] 2 1.93E− 04 1.20E− 05 2.51E− 05
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equations [39–41]. ,e DMM with the localized method or
the domain decomposition method is promising in devel-
oping algorithms for large-scale problems.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,e work was supported by the Natural Science Foundation
of Anhui Province (project no. 1908085QA09) and Uni-
versity Natural Science Research Project of Anhui Province
(project nos. KJ2019A0591 and KJ2020B06).

References

[1] R. G. Cheng and H. X. Ge, “Element-free Galerkin (EFG)
method for a kind of two-dimensional linear hyperbolic
equation,” Chinese Physics B, vol. 18, pp. 4059–4064, 2009.

[2] I. Ahmad, H. Ahmad, A.E. Abouelregal, P. ,ounthong, and
M. Abdel-Aty, “Numerical study of integer-order hyperbolic
telegraph model arising in physical and related sciences,”
European Physical Journal-Plus, vol. 135, p. 759, 2020.

[3] R. K. Mohanty and M. K. Jain, “An unconditionally stable
alternating direction implicit scheme for the two space di-
mensional linear hyperbolic equation,” Numerical Methods
for Partial Differential Equations, vol. 17, no. 6, pp. 684–688,
2001.

[4] R. K. Mohanty, “An operator splitting method for an un-
conditionally stable difference scheme for a linear hyperbolic
equation with variable coefficients in two space dimensions,”
Applied Mathematics and Computation, vol. 152, no. 3,
pp. 799–806, 2004.

[5] R. K. Mohanty, “New unconditionally stable difference
schemes for the solution of multi-dimensional telegraphic
equations,” International Journal of Computer Mathematics,
vol. 86, no. 12, pp. 2061–2071, 2009.
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