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1 Introduction 

One of the primary tasks of a computer vision system is to reconstruct, from two- 

dimensional images, such three-dimensional properties of a scene as the shape, motion, 

and spatial arrangement of objects. In monocular vision, an important goal is to recover, 

from time-varying images, the relative motion between a viewer and the environment, as 

well as the so-called structure of the environment. The structure of the environment is 

usually taken to be collection of the relative distances of points on the surfaces in the 

scene from the viewer. In theory at least, absolute distances can be determined from the 

image data if the motion is known. 

Three types of approaches, discrete, differential, and least-squares have been pursued 

in most of the earlier work in motion vision. Discrete methods establish correspondences 

between images of a point in the scene in a sequence of images in order to recover motion 

(see for example, Prazdny [1979], Roach & Aggarwal [1980], Longuet-Higgins [1981], 

Barnard & Thompson [1980], Mitiche [1984], Tsai & Huang [1984]). In the differential 

approach, the optical flow, an estimate of the velocity of the image of a point in the 

scene, as well as the first and second partial derivatives of the optical flow, are used to 

determine motion and the local structure of the surface of the scene (see Longuet-Higgins 

& Prazdny [1980], Waxman & Ullman [1983]). In the least-squares approach, motion 

parameters are found that are most consistent with the optical flow over the entire image 

(see Ballard and Kimball [1981], Bruss & Horn [1983], Adiv [1985]). 

Amongst the shortcomings of the discrete methods are that they require the solution 

of point correspondence problems and that they are not very robust, since information 

from a small portion of the image is used. To overcome the first problem, methods have 

been suggested that only require line or contour correspondence (see for example, Tsai 

[1983], Yen & Huang [1983], and Aloimonos & Basu [1986]); however, the computation is 

still based on information in a relatively small portion of the image. Differential methods 

exploit only local information and, therefore, are sensitive to inherent ambiguities in 

the solution when data is noisy. In fact, since these methods essentially work with a 

vanishingly small field of view, they are unable to estimate all components of the motion 

(Horn & Weldon [1986]). Methods based on the least-squares approach are more robust, 

however, they make use of the unrealistic assumption that the computed optical flow is 

a good estimate of the true motion field. Also, the iterative algorithms for estimating an 

optical flow field are computationally expensive. This motivates investigation of methods 

that directly use brightness derivative information at every image point. Several special 

cases of the motion vision problem have already been addressed using this notion. 

Negahdaripour [I9861 investigates the problem of recovering motion directly from the 

time-varying image. He shows that the solution can be determined easily in certain 

special cases. For example, when the motion is purely rotational, one only has to solve 

three linear equations in three unknowns (Aloimonos & Brown [I9841 apparently first 

reported a solution to this problem, followed by Horn & Weldon [1986], who also studied 
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its robustness). Another special case of interest is the one where the depth values of 

some points are known. The depth values at six image points are sufficient to recover 

the translational and rotational motion from six linear equations. In practice, to reduce 

the influence of measurement errors, the information from as many image points as 

possible should be used. If the variation in depth is negligible in comparison to the 

absolute distance of points on the surface, it can be assumed that the points are located 

at essentially at the same distance from the viewer, that is, the scene lies in a frontal 

plane. In this case, Negahdaripour [I9861 shows that the six translational and rotational 

motion parameters can also be obtained from six linear equations. 

When the scene is planar (but not necessarily a frontal plane) the results of the least- 

squares analysis of Negahdaripour & Horn [I9871 can be applied. This approach leads to 

both iterative and closed-form solutions. Negahdaripour [1986] further presents iterative 

and closed-form solutions for quadratic surfaces. Through examples using synthetic data, 

he shows that the iterative method gives a better estimate than the analytical one in the 

case of quadratic surface, and that it is not as robust as the method that applies in the 

case of planar surfaces. He also addresses the lack of robustness of certain analytical 

methods published in the computer vision literature for recovering motion, and explains 

why the iterative method of Negahdaripour & Horn [1987] for planar surfaces happens to 

we a give the same estimate as the analytical method. Finally, Horn & Weldon [I9861 g' 

treatment of several direct methods when the motion it is purely translational or purely 

rotational. 

In this paper, we present a direct method for recovering the motion of a viewer without 

making any assumptions about the shapes of the surfaces in the scene. We only impose 

a simple physical constraint: Depth must be positive. That is, a point on a surface must 

be in front of the viewer in order for it to be imaged. Unfortunately, the problem is 

still rather difficult to solve when motion consists of both translation and rotation of 

the viewer. We therefore first address the problem of a translating observer and present 

two examples. We then explain how our method can be extended if the motion involves 

rotation as well as translation of the viewer. The general method requires considerably 

more computation than the special one, and the solution may not be unique given noisy 

data. This is because of the inherent difficulty in distinguishing between rotation about 

some axis parallel to the image plane and translation along an axis that is perpendicular 

to this rotational axis (Jerian & Jain [1983]). This problem is most apparent when the 

field of view is small (Horn & Weldon [1986]). We demonstrate some of these problems 

by means of an example. 

2 Brightness Change Constraint Equation 

A viewer-centered coordinate system is chosen, the image is formed on a plane perpendic- 

ular to the viewing direction (which is along the z-axis), and the focal 1t.1 ~ g t h  is assumed 

to be unity, without loss of generality (Figure 1). Let R = (X, Y, z ) ~  be a point in the 



Figure 1. Viewer-centered coordinate system and perscpective projection. 

scene that projects onto the point r = (z, y, l)T in the image. Assuming perspective 

projection, we have 
1 

where Z = R 2 is the distance of the point R  from the viewer, measured along the 

optical axis. This is referred to as the depth of the point. 

Now, suppose the viewer moves with translational and rotational velocities t  and w 

relative to a stationary scene. Then a points in the scene appears to move with respect 

to the viewer with velocity 

R t = - R X W - t .  

The corresponding point in the image moves with velocity (Negahdaripour & Horn [1987]) 

The velocities of all image points, given by the above equation, taken collectively, define 

a two-dimensional vector field that we call the image motion field. This has also at times 

been referred to as the optical flow field (see Horn [I9861 for a discussion of the distinction 

between optical flow and the motion field). 

The brightness of the image of a patch on the surface of some object may change 

for a number of different reasons including changes in illumination or shading. Image 

brightness changes will, however, be dominated by the effects of the relative motion of 

the scene and the observer provided that the surfaces of the objects have sufficient texture 
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and the lighting conditions vary slowly enough both spatially and with time. In this case, 

brightness changes due to changing surface orientation and changing illumination can be 

neglected and we may assume that the brightness of a small patch on a surface in the 

scene remains essentially constant as it moves. Let E(r, t) denote the brightness of an 

image point r at time t. Then the constant brightness assumption allows us to write 

where Et and Er = (Ez, Ey, o ) ~  denote the temporal and spatial derivatives of brightness 

respectively. 

If we substitute the formula for the motion field into this equation we arrive at the 

brightness change constraint equation for the case of rigid body motion (Negahdaripour 

& Horn [1987]), 
1 

where, for conciseness, we have defined 

s = ( E r x i ) x r  and v = r x s .  

In component form, s and v are given by 

A useful immediately consequence of the way the vectors r, s, and v are defined is that 

they form an orthogonal triad, that is 

r . s = O ,  r . v = O ,  and s . v = O .  

Note that the brightness change constraint equation is not altered if we scale both Z = 

R . 2 and t by the same factor, k say. We conclude that we can determine only the 

direction of translation and the relative depth of points in the scene; this well-known 

ambiguity is here referred to as the scale-factor ambiguity of motion vision. 

The brightness change constraint equation shows how the motion of the observer, 

{w,  t), and the depth of a point in the scene, 2, impose a constraint on the spatial 

and temporal derivatives of the image brightness corresponding to a point in the scene. 

Unfortunately, we cannot recover both depth and motion using this constraint equation 

alone. To show this, we solve the constraint equation for 2, in terms of the true motion 

parameters {w,  t), to obtain 
s - t  

Z = -  
c + v - w '  



Now, for an arbitrary motion {w', t'), depth values that satisfy the brightness change 

constraint equation can be determined using 

I z = -  
sa t '  

c + v . w l '  

(provided that the denominator is not zero). This may suggest that, for any choice of the 

pair {w',  t'), we can determine depth values such that the brightness change equation is 

satisfied at every image point. Clearly an infinitely number of solutions is possible since 

the motion parameters can be chosen arbitrarily. 

3 Positiveness of Depth 

The depth values of points on the visible portions of a surface in the scene are constrained 

to be positive; that is, only points in front of the viewer are imaged. In theory, any motion 

pair {wl,t') that gives rise to negative depth values cannot be the correct one. Thus, the 

problem is to determine the pair {w, t) that gives rise to positive depth values (2 > 0) 

over the whole image. One may well ask whether there is a unique solution; that is, given 

that the brightness change equation is satisfied for the motion {w, t) and the surface 

Z > 0, is there another motion {w', t') and another surface Z' > 0 that satisfies the 

brightness change equation at  every point in the image? In general, this is possible 

since, for example, an image of uniform brightness could correspond to an arbitrary 

uniform surface moving in an arbitrary way. Hence, the brightness gradients (or lack of 

brightness gradients) can conspire to make the problem highly ambiguous. In practice, 

given a sufficiently textured scene, it is more likely that we have the opposite problem: 

There is no solution because of noise in the images and the error in estimating brightness 

derivatives; that is, every possible set of motion parameters, including the correct ones, 

lead to some negative depth values. So we have to invent a method for selecting a solution 

that comes closest to being consistent with the image data. 

The problem is rather difficult when both rotation and translation are unknown. 

Therefore, we first restrict attention to the special case when either rotation is zero or 

is at least known. We then show how the procedure may be extended to deal with the 

general case. 

4 Pure Translation or Known Rotation 

Suppose the rotational component of motion is known. Then we can write the brightness 

change equation in the form 
1 z+ -(s. t) = 0, 
z 

where Z= c + v . w. For simplicity, we will from now on write c where Z should appear. 

The problem is still under-constrained if we restrict ourselves to the brightness change 

constraint equation alone. At each point, we have one constraint equation. Given n 
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image points we have therefore n constraint equations, but n + 2 unknowns (n depth 

values and two independent parameters required to specify the direction of translation). 

Most of these "solutions," however, are inconsistent with the physical constraint that 

Z > 0 for every point on the visible parts of the surfaces imaged. If we impose this 

additional constraint we may have many, only one, or no solution depending on the 

variety of brightness gradient directions in the image and the amount of noise in the 

data, as mentioned earlier. Note that we need to use constraint from a whole image 

region since the problem remains underconstrained if we restrict ourselves to information 

from a small number of points or a line. 

Before we discuss the general method, we show how a simplified constraint can be 

used to recover motion provided that so-called stationary points can be identified. We 

then present a more general procedure for locating the focus of ezpansion (FOE) and 

consequently the direction of motion. 

4.1 Stationary Points 

An image point where c = 0 will be referred to as a stationary point (Horn & Weldon 

[1986]). In the case of pure translation, (w = 0), a stationary point is one where the time 

derivative of brightness, Et, is zero. In order to exclude regions of uniform brightness from 

consideration, we restrict attention to points with non-zero brightness gradient (E, # 0). 

When c = 0, the brightness change equation reduces to 

and, if the depth is finite, this immediately implies that 

(We assume a finite depth range here-background regions at essentially infinite depth 

have to be detected and removed-see Horn & Weldon [1986].) Since Z drops out of the 

equation, we conclude that the depth value cannot be computed at a stationary point. 

These points, however, do provide strong constraints on the location of the FOE. 

In fact, with perfect data, just two non-parallel vectors sl and s2, at two stationary 

points, provide enough information to recover the translational vector t. We note that t 

is perpendicular to both sl  and sa and so must be parallel to the cross-product of these 

two vectors. That is, 

t = k (sl x s2), 

where k is some constant that cannot be determined from the image brightness gradients 

alone because of the scale-fac tor ambiguity. 

This approach can be interpreted directly in terms of quantities in the image plane: 

The brightness gradient at a stationary point is orthogonal to the direction to the FOE, 



or, equivalently, the tangent of the is+brightness contour at a stationary point passes 

through the FOE. Intersecting the tangents of the iso-brightness contours at two different 

stationary points allows us to determine the FOE (see the appendix for more details). 

In practice it will be better to apply least-squares techniques to information from 

many stationary points. Because of noise in the images, as well as quantization error, 

the constraint equation (s . t = 0) will not be satisfied exactly. This suggests minimizing 

the sum of the squares of the errors at every stationary point; that is, we minimize 

(In the above we have used the identity s . t = sTt.) Note that the resulting quadratic 

form can not be negative. 

Because of the scale-factor ambiguity we can only determine the direction of t, not 
2 

its magnitude, so we have to impose the constraint 11 t 11 = 1 (otherwise we immediately 

get the trivial solution t = 0). This leads to a constrained optimization problem. We can 

create an equivalent unconstrained optimization problem, with a closed-form solution, by 

introducing a Lagrange multiplier. We find that we now have to minimize 

The necessary conditions for stationary values of J are 

Executing the indicated differentiations we arrive at 

sisi t = A t  and tTt = 1. 

i=l 

This is an eigenvalue-eigenvector problem; that is, {t, A) is an eigenvector-eigenvalue pair 

of the 3 x 3 matrix 
n 

i=l 

This real symmetric matrix generally will have three eigenvalues and these eigenvalues will 

be non-negative since the quadratic form we started off with was non-negative definite. 

It is easy to see that J is minimized by the eigenvector associated with the smallest 

eigenvalue, since substitution of the solution yields 
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It should be noted that with just two stationary points, the 3 x 3 matrix has rank 

two since it is the sum of two dyadic products. The solution then is the eigenvector 

corresponding to the zero eigenvalue. Geometrically, this is the vector normal to the 

plane formed by s l  and s2, as discussed earlier. By the way, if t is an eigenvector, so is 

-t. While these two possibilities correspond to the same FOE, it may be desirable to 

distinguish between them. This can be done by choosing the one that makes most depth 

values positive rather than negative (see Horn & Weldon [1986]). 

The least-squares method just described can be interpreted in terms of quantities in 

the image plane also. At each stationary point, the tangent to the iso-brightness contour 

provides us with a line on which the FOE would lie if there was no measurement error. 

In practice these lines will not intersect in a common point due to noise. The position of 

the FOE may then be estimated by finding the point with the minimum (weighted) sum 

of squares of distances from the lines (see the appendix for more details). 

4.2 Constraints Imposed by Brightness Gradient Vectors 

We first assume that two translational motions and two surfaces 

change equation; that is, we have 

satisfy the brightness 

I 1 
c + -(s. t) = 0 and c + -(s. t') = 0. 

Z Z ' 
Here, {Z > 0, t) denotes the true solution and {Z' > 0, t') denotes a spurious (or 

assumed) solution. We will show that we must have Z = kZ' and t = kt', for some 

non-zero constant k, provided that there is sufficient texture and that we consider a large 

enough region of the image. This means that the solution is unique up to the scale-factor 

ambiguity. 

Solving for Z and Z' we obtain 

1 1 
Z=- - ( s . t )  and Z1=--(set1). 

C C 

The depth value cannot be computed at a point where c = 0; that is, at  a stationary 

point. We already know how to exploit the information a t  these points and so exclude 

them from further consideration, that is, we assume from now on that c # 0. 

Since Z is the true solution, we are guaranteed that 2 > 0. If {Z', t') is to be an 

acceptable solution, we must also have Z' > 0 and so 

1 zz' = -(s t)(s t') > 0. 
c2 

Now the focus of expansion (FOE) is the intersection of the translational velocity vector 

t and the image plane z = 1. It lies at 



provided that t t # 0 (otherwise, it is at infinity in the direction given by the vector t). 

We can similarly write 

for the focus of expansion corresponding to the assumed translational velocity t' (provided 

again that t' i # 0). We can write s = (Er x 5) x r in the form 

and, noting that r - 2  = 1, we obtain 

Therefore, we have 

that is, 

Similarly, we obtain 

s = (r. Er)i-  Er. 

s t = (r Er)(t 5) - Er t, 

s - t = ( t . i ) ( ( r - ' t ) . ~ . ) .  

s . ti = (ti 5) ((r - T') . Er). 

Substituting these into the inequality ZZ' > 0 we arrive at 

(t i) (ti i) ((r - 't) . Er) ((r - 'ti) . Er) > 0. 

If (t i) and (t' 5) have the same sign, we must have 

For convenience, we denote the term on the left-hand side of the inequality p from here 

on. So for ZZi > 0 we must have p > 0. (Note that if (t 5) and (t' . 2) have opposite 

signs, the inequality is reversed.) Without loss of generality, we assume from now on that 

the above constraint holds-the proof is similar in the opposite case, as we will indicate. 

For ti to be a possible translational motion, the inequality developed above must hold 

for every point r in the image region under consideration, that is, p > 0. At each point, 

Er is constrained to lie in a direction that guarantees that ((r -'t) E,) and ((r - . Er) 

have the same sign. In practice, a sufficiently large image region will contain some 

image brightness gradients that violate this constraint unless 't = 3. We will estimate 

the probability that an arbitrarily-chosen brightness gradient will violate this constraint. 

This probability varies spatially and we show that there is a line segment in the image 

along which the probability of violating the constraint becomes one. Furthermore we 

exploit the distribution in the image of places where Z' < 0 to obtain an estimate of the 

true FOE. 
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Half-Plane H- 

Figure 2. True and spurious (assumed) FOES define the positive and negative half-planes. 

4.2.1 Permissible and  Forbidden Ranges 

Define 
M 

x = ( t - r )  and X I = @ - I - ) .  

The vectors x and x' represent the line segments from a point P in the image, with 

coordinates r = ( x ,  y, l )T ,  to the true and spurious FOES, respectively. These are the 

line segments PF and PF' in Figure 2a. Note that the scalar product (x- Er) is positive 

if the angle between x and the brightness gradient vector at point P is less than 7r/2, 

and it is negative when the angle is greater than 7r/2. It is zero when x is orthogonal 

to the gradient vector. Similarly, the dot product (x' Er) is positive, negative, or zero 

when the angle between x' and the gradient vector at point P is less than, greater than 

or equal to n/2. 

We have, from the discussion in the previous section, the constraint p > 0 or, 

(provided that, as assumed, (t . i) and (t' 2) have the same sign). Now suppose that 

we define two directions in the image plane orthogonal to the vectors x and x' as follows 

(see Figure 2b): 

p = x x  i and p '=x 'x  i. 

The vector p gives the direction of a line that divides the possible directions of Er into 

two ranges with differing signs for (x Er). Similarly, the vector p' gives the direction of 

a line that divides the possible directions of Er into two ranges with differing signs for 

(x' . Er) 



Forbidden / 

(a) 6 lies within permistible region (b) 6 lies within forbidden region 

Figure 3. Permissible and forbidden ranges for the brightness gradient direction. 

Unless p happens to be parallel to p', we can express an arbitrary gradient vector Er 

in the form 

Er = CUP + PP', 

for some constants a and p. Then 

We see that the product denoted p is positive when E, lies between p and -pl (a > 0 

and /3 < 0) and when E, lies between -p and p' (a < 0 and p > 0). The union of these 

two ranges is called the permissible range for E, since it leads to positive depth values. 

Conversely, the product will be negative when E, lies between p and p' (a > 0 and 

p > 0) and when E, lines between -p and -p' (a < 0 and /3 < 0). The union of these 

two ranges is called the forbidden range for E, since it leads to negative depth values. 

Denoting the half-planes separated by the line parallel to p by H+ and H- and those 

separated by the line parallel to p' by HI+ and H1-, we define regions R1, . . . , R4 as 

follows: 

R~ = H+ n HI+, R3 = H -  n H'-, 

and 

R2 = H+ n H'-, R4 = H- n HI+. 

We see that Rl u R3 is the permissible range for E,, because Er has to lie in this 

region in order to satisfy the constraint 2' > 0. Conversely, the region R2 U R4 is the 

forbidden range for Er since 2' < 0 when Er lies in this region (see Figure 3). (Note 
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that the permissible range will be the region consisting of R2 and R4, and the forbidden 

range will consist of R1 and R3, when (t . i)(tl. &) < 0.) 

We now show that if ; # ;', then the vector Er has to lie in the forbidden region (and, 

therefore, Z' < 0) for some image points. Therefore, we must have 2 = to guarantee 

that Z' > 0 for every image point. In this case, Z = kZ' for some non-zero constant k. 

This implies that 
1 1 

or t = kt'. Since this means that we can recover the translational motion up to a scale 

factor, we conclude that the solution is unique up to the scale-factor ambiguity. 

4.2.2 Distribution of Points Violating the  Inequality Constraint 

Suppose now that the point P lies along the line passing through F and F', which we 

refer to as a FOE constraint line. Then we have 

for some 7. We see that 0 < 7 < 1 when the point P lies on the segment between the 

points F and F'. Also 7 < 0, if P lies on the ray emanating from F (segment FX) and 

7 > 1, if P it lies on the ray emanating from F' (segment FIX'). For points on the FOE 

constraint line, we have 

N N N N 
-1 x = t - r = r ( t - 7 )  and x ' = t l - r = ( 7 - l ) ( t - t ) .  

The product of interest to us here, p, is then given by 

It is clear that p will be negative when 0 < 7 < 1, unless the gradient vector is orthogonal 

to FF' (note that FF' is the vector (; - ?)). The point P is a stationary point if the 

gradient vector is orthogonal to the line FF', and we have excluded such points from 

consideration. This implies that, for points on the line segment FF', the depth values 

Z' are guaranteed to be negative (unless the point happens to be a stationary point). 

The product p is positive when -y < 0 or 7 > 1. So in this case the depth values are 

guaranteed to be positive for points along the rays F X  and FIX', unless the point is a 

stationary point. (The situation is reversed when (t i) (t' . 2) < 0, with positive depth 

values along FF' and negative ones along the rays F X  and FIX'.) 

A probability value can be assigned to each image point as a measure of the likelihood 

that Z' < 0 at that image point. Since Z' < 0 if the gradient vector lies outside the 

permissible range, we can conclude that the probability distribution filnction depends on 

8 ,  the angle between the vectors x and x', as well as on the distribution of the brightness 

gradient vectors. 
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Small Permissible Region 
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Figure 4. Relationship between the size of the permissible range and the relative position of an image 

point with respect to the FOE constraint line. 

When I9 is small, the permissible range for E, consists of a large set of allowed direc- 

tions (see Figure 4a). Therefore, the points where I9 is small are likely to have positive 

depth values even for an incorrect translational vector t'. These are points that are either 

at some distance laterally from the FOE constraint line or are in the vicinity of the two 

rays F X  and FIX'. 

Conversely, when 8 is large, the permissible range for E, comprises a small set of 

directions (see Figure 4b). Therefore, it is more likely that the brightness gradient lies 

outside this range, giving rise to negative depth values. In the extreme case when 0 = T 

(that is, the point lies along FF') the depth values are guaranteed to be negative (unless 

the point is a stationary point). The forbidden range for a point on FF' contains all 

possible directions for E, excluding only the line orthogonal to FF'. 

Suppose that the probability distribution of the gradient vectors is independent of 

the image position and is rotationally symmetric; that is, all directions of the brightness 

gradients are equally likely. It is not difficult to see that the probability that a point in 

the image plane gives rise to a negative depth value is then given by 

A chord of a circle subtends a constant angle. It follows that the constant probability 

loci are circles that pass through F and F', and that there is symmetry about the FOE 

constraint line (see Figure 5a). 
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This can be shown algebraically as follows: Let Q be the projection of an image point 

P on XX', and let 0 be the midpoint of the FOE constraint line FF' (see Figure 5b). 

Further, let O1 be the angle between PF and PQ, while O2 is the angle between PF' and 

PQ, and define 
1 

f = I F F ' I ,  h = IPQI, and s = IOQI. 

Then, we have 

Using the identity 

f - s  
tanO1 = - f + s  

h 
and tan02 = -. 

h 

tan O1 + tan 82 
tan 0 = tan(O1 + 82) = 

1 - tan 81 tan 02 ' 

we arrive at 

tan0 = 2hf 
s 2 +  h2 - f a '  

The locus of points with constant 0 (and, equivalently, constant tan 0) is thus determined 

by the equation 

s2 + h2 - f 2  = 2khf, 

for some constant k. This can be written in the form 

which is the equation of a circle centered at (s, h) = (0, k f )  that passes through (s, h) = 

(f, 0) and (s, h) = (- f ,  0). Solving for 8 we obtain 

O = tan-' 
2hf 

s2+h2-  f 2 '  

and, therefore, 

For constant s (where s < f ) ,  this function has a maximum of 1 for h = 0; that is, on 

the line segment FF'. 

To summarize, we have shown that there are points in the image that give rise to a 

negative depth value if an incorrect translation vector (t') is assumed. These points are 

more likely to be found in the vicinity of the line segment that connects the incorrect 

focus of expansion to the true one (later this is exploited to locate the true focus of 

expansion). As F' approaches F, the region around FF' that is likely to contain points 

with negative depth values shrinks in size. In the limit when F' coincides with F, all 

depth values become positive. (When the product (t i) (i ' . 6 )  is negative, the situation 

is reversed. In this case, it is more likely that the points i r~ I tie vicinity of FF' will give 



Figure 6. Constant probability loci for 2' < 0. 

rise to positive depth values and the points along or in the vicinity of F X  and FIX' will 

give rise to negative depth values, but otherwise similar conclusions can be drawn.) 

The true FOE is at infinity when t E = 0. First consider the situation where t'. 2 = 0 

for a spurious solution. Then we have 

Using these, we obtain 

(S . t) (S . t') = (t . Er) (t' . Er). 

The half-planes {H+, H-) and {HI+, H1-) are now defined by the vector t and t', instead 

of x and x' for the case t . E # 0 (that is, we need to replace x and x' by t and t', 

respectively, in our earlier analysis). Since these vectors are constants, we conclude that 

0 (in this case, this becomes the angle between the two vectors t and t') is the same 

for every image point. If the distribution of brightness gradient vectors is rotationally 

symmetric and independent of the image position, each image point can give rise to a 

negative depth value with probability equal to 8 / ~ .  We conchde that the depth values 

will be negative for some image points unless t = t'. Similar Orguments can be made 

when only one of the FOES lies at infinity. 
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4.2.3 Locating t he  Focus of Expansion using Gradient Vectors 

It is somewhat easier to locate the FOE when it lies within the field of view than when it 

lies outside. We first compute the sign of the depth values using an initial estimate of the 

solution, ?, in the brightness change constraint equation. We then determine the cluster 

of negative depth values. The first method to be presented here uses the fact that the 

centroid of this cluster is expected to lie half-way between the true FOE and the assumed 

FOE. That is, because of the symmetry of the probability distribution, we have for the 

expected position of the centroid 

Then the position of the FOE can be estimated using: 

This estimate will be biased if the border of the image cuts off a significant portion of the 

cluster. Nevertheless, a simple iterative scheme can be based on the above approximation 

that updates the estimate as follows: 

where (E)" is the centroid of the cluster of points with negative depth values obtained 

using the estimate (?)" for the FOE. The cluster will shrink at each iteration, so in 

subsequent computations we may restrict attention to the image region containing the 

major portion of the previous cluster rather than the whole of the initial image region 

under consideration. 

Other methods we have investigated work even when the FOE is outside the field of 

view. Suppose that we identify at least two FOE constraint lines corresponding to two 

assumed FOES. The intersection of these lines will be the estimated FOE. In practice 

more than two FOE constraint lines are used to reduce the effects of measurement error. 

These lines will no longer all intersect in a common point because of noise in the images, 

quantization error, and error in the estimate of brightness derivatives. It makes sense 

then to choose as the estimate of the true FOE the point with the least sum of squares 

of distances from the constraint lines. 

The axis of symmetry or axis of least inertia of the clusters of positive and negative 

depth values for a particular assumed FOE can be chosen as the FOE constraint line. 

Alternatively, we may employ a direction histogram method. In this case, we need to 

determine the line through the assumed FOE along which the largest number of negative 

depth values are found on one side of the assumed FOE, and the largest number of 

positive depth values on the other side (Negahdaripour [1986]). 



To summarize, we first choose arbitrary points in the image as estimates of the FOE. 

For each assumed FOE, we determine the signs of the depth values at each image point 

using the brightness change equation, and then the FOE constraint line using either a 

clustering technique or a histogram method. Finally, we use the best estimate of the 

common intersection of the constraint lines corresponding to the assumed FOEs as the 

best estimate of the FOE. 

Even when the FOE is outside the field of view (including the case t - 2  = 0 where the 

FOE is at infinity) we should choose the estimates of the FOE to be in the image plane. 

Otherwise, the whole FOE constraint line (FF') lies outside the field of view and the 

clusters of negative or positive depth values cannot be properly identified. The FOE is 

still determined from the best estimate of the common intersection of the FOE constraint 

lines; however, the intersection will be outside the image plane. 

The accuracy of the estimate of the location of the FOE will depend on the choice 

of the assumed FOEs and the resulting shape and size of the clusters of negative and 

positive depth values. These, in turn, depend on the distribution of the directions of the 

brightness gradient, that is, the "richness of texture" in the images. 

5 Unknown Rotation 

The problem of locating the FOE from gradient vectors has similar properties to those 

of the problem of estimating the location of the FOE from optical flow vectors, in the 

following sense: When the motion is pure translation, the FOE can be determined rather 

easily from the intersection of the optical flow vectors (using the fact that these vectors 

point toward the FOE for a departing motion and emanate from the FOE for an ap- 

proaching motion). Unfortunately, these vectors do not intersect at the FOE when the 

rotational component is non-zero. Similarly, we expect that the FOE constraint lines 

will not intersect at a common point when the rotational component is non-zero (and is 

unknown). 

An intuitively appealing approach is one that assumes some rotation vector in order to 

discount the contribution of the rotational component before we apply the method given 

for the case of a purely translational motion (Prazdny [1981] suggested this procedure 

to decouple the rotational and translational components of the motion field). Obviously, 

the estimate we obtain for the FOE is likely to be very poor if the rotational component 

is not chosen accurately. This, however, is exactly the behavior we want if our method is 

to work in the general case. That is, in order to have a distinct peak in the measure we 

use as a criterion for selecting the best estimate of the FOE, we should have a large error 

when we assume a rotation far from the correct one. The measure of "badness," denoted 

e(w),  can be the total square distance of the estimated FOE from the constraint lines. 

Then the best estimate of the motion parameters is the one that minimizes this error. 

It is not possible to compute this function for every possible rotation. An approach for 

dealing with this problem follows. 
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Suppose, an upper bound for each component of the rotational vector w is available; 

for example, it is known that 1 wil 5 w y ,  If each interval from -w? to w y  is divided 

into n smaller intervals, we can restrict the search to the n3 discrete points in w-space. 

Let us denote a point in this space by Wijk  for i, j ,  k = 1, 2 ,. . ., n. For each possible 

point in this space (that is, for each wijk) we estimate the location of the FOE using 

the method given earlier. We store the value of the error e(wijk) for the best FOE in 

each case. The best estimate of the rotation corresponds to a minimum of the error 

function. To obtain an even more accurate result we may perform a local search in the 

neighborhood of Wijk .  

6 Selected Examples 

Through examples, we show that it is possible to determine the location of the true FOE 

from the distribution of the clusters of positive and negative depth values around the 

assumed FOE. In these examples, we have used synthetic data so that the underlying 

motion is known exactly. The focal length is assumed to be unity and the image plane is 

a unit square divided into 64 rows of 64 picture cells. The half-angle of the field of view 

of is thus tan-' 0.5 w 27'. The positive z-axis points towards the right and the positive 

y-axis points downward. Positive depth values and the spatial brightness derivatives 

were chosen randomly. The depth values vary in a range of one to nine units. The 

time derivative Et = c of image brightness was computed 

constraint equation, 
-I 

To simulate the effect of noise, random noise was added to 

using the brightness change 

both E, and c = Et. 

6.1 Example One: Focus of Expansion in the Image 

In this example, we consider an observer approaching a scene; the motion parameters are 

w = (0, 0, o ) ~  and t = (0, 0, I ) ~ ;  that is, there is no rotation and the focus of expansion 

is at the center of the image plane. Figure 6 shows the regions of negative (white) and 

positive (black) depth values for several assumed FOES. The diagrams in columns one 

through four show the results when the added noise has a mean of about 20%, 40%, 60%, 

and SO%, respectively. These plots show that the negative and positive depth values form 

symmetric clusters with respect to the line from the assumed FOE to the true FOE. Using 

these maps, it is possible to estimate the location of the true FOE with good accuracy 

even when there is as much as 80% noise in the data. 

6.2 Example Two: Focus of Expansion at Infinity 

In this example, w = (.I, 0, o ) ~  and t = (0, - 1, o ) ~ ,  that is, the  focus of expansion is at 

infinity along the negative y-axis. Here the rotational comporlt,rl I is non-zero but assumed 



Figure 6. Regions with positive (black) and negative (white) depth values when noise is added to bright- 

ness derivatives; Example one, focus of expansion in the field of view. See text for explanation. 
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known. Figure 7 shows the regions of negative (white) and positive (black) depth values 

for several assumed FOEs with random noise added to the brightness derivatives. The 

diagrams in columns one through four show the results when the added noise has a mean 

of about 20%, 40%, 60%, and 80%, respectively. We can determine the direction toward 

the true FOE at infinity with good accuracy with as much as 40% noise in the data. The 

results deteriorate to some extend with 60% noise for some of the assumed FOEs. With 

80% noise in the data, it is hard to define the clusters of positive and negative depth 

values and so the FOE cannot be located accurately. 

6.3 Example Three: Unknown Rotation 

In this example, we investigate the sensitivity of the solution to local variations due to 

non-zero rotational parameters. The motion is toward the scene with no rotation (as in 

example one) so that the true FOE is at the origin of the image plane. The depth values 

vary in a range from one to nine units with an average of about five units. To study the 

dependency of the solution on the choice of the rotational vector, the procedure given in 

the previous examples was repeated for six values of the rotational vector with 40% noise 

in the data. The results are shown in Figure 8. Again, the regions with negative depth 

are shown in white and the regions with positive depth are in black. 

The f i s t  column shows the results for an assumed rotation of w' = (.05,0, o ) ~ .  These 

results show that the estimated FOE is located on the positive y-axis around y = 0.25 

(since the axis of symmetry of the clusters of negative depth values for the assumed 

FOEs intersects the y-axis around y = 0.25). Interestingly, this is consistent with a 

translation of t' = (0, .25, Therefore, we have overestimated the rotation about the 

x-axis by 0.05 radians and the translation along y-axis by about 0.25 units. As explained 

earlier, with noisy data, it is possible to interpret a rotation about the positive x-axis as 

a translation in the direction of the negative y-axis, scaled by the distance of the object 

from the viewer (note that the average of depth values is about five units). In this case, 

we need to add a translation in the positive y direction to offset the rotation about the 

positive x-axis. 

The second column shows the results for an assumed rotation of w' = (-.05,0, o ) ~ .  
In this case, the estimated FOE is along the negative y-axis at a distance of about 0.25 

units from the origin. This is consistent with a translation vector t' = (0, -0.25, 

The same conclusion as in the previous case can be made; we need to add a translation 

in the negative y direction to offset the rotation about the negative x-axis. 

The third column shows the results for an assumed rotation of w' = (0,0.05, o ) ~ .  In 

this case, the FOE constraint lines do not seem to have a common intersection point. This 

is good news since the conclusion is that the assumed rotation cannot be correct. The 

situation is different for w' = (0, -0.05, o ) ~  (the results are shown in the fourth column). 

In this case, the axes of symmetry of the negative depth clusters seem to intersect around 

the point ? = (0.25, o ) ~ .  This is consistent with a translation of t' = (0.25,0, I ) ~ .  



a m d  FOE t at = (0.4.0) 

Figure 7. Regions with positive (black) and negative (white) depth values when noise is added to bright- 

ness derivatives; Example two: Focus of expansion at infinity. See text for explanation. 
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u' = (-0.05,0,0) w' = (0, 0.05,O) u' = (0, -0.05,O) 

krumod FOE t 

humad FOE t at 7 = (-0.4,0.4) 

Figure 8. Positive (black) and negative (white) depth regions with noise added to brightness derivatives; 

Example three: Unknown Rotation. See text for explanation. 



Again, with noisy data, it is possible to interpret a rotation about the negative y-axis 

as a translation in the negative x direction scaled by the distance of the object from the 

viewer. In this case, we need to add a translation in the positive x direction to offset the 

rotation about the negative y-axis. 

The remaining plots from the leftmost column to the rightmost column (Figure 8, 

continued) are for an assumed rotation of w = (0,0,0.05)~, w = (0,0,-0.05)~, w = 

(0,0,0.1)~, and w = (0,0, -0.1)~, respectively. 

A careful review of these plots reveals that, for each assumed rotation, the FOE 

constraint lines do not intersect at a common point, but seem to intersect in points lying 

on a circle centered at the origin with radius proportional to the assumed rotation rate 

about the optical axis. To explain this, we need to remember that a rotation about 

the optical axis generates motion field vectors that are tangent to concentric circles with 

center at the FOE (the origin in this case). For a rotation of the viewer about the positive 

z-axis (the optical axis) the mot ion field vectors travel counterclockwise. Conversely, they 

are clockwise for a rotation about the negative z-axis. Take rotation about the positive 

z-axis, for example (results shown in the first and third columns). Along the negative 

y-axis (remember this points upward) the motion field vectors point from right to left 

(and increase in magnitude linearly with y). This is indicated by the shift in the negative 

depth cluster toward the negative x-direction (second row in the first and third columns). 

Along the positive x direction, these vectors point upward (and increase in magnitude 

linearly with x). This appears as an upward shift in the negative depth cluster (third 

row in the first and third columns). 

The same behavior is observed in the plots in the last two rows of the first and third 

columns. In each case, the negative depth cluster is shifted somewhat in the direction 

consistent with a rotation about z-axis. This implies, as mentioned earlier, that the axes 

of symmetry of these clusters do not intersect at a common point (the origin) because 

of the shifts, but rather intersect at several points that are located approximately on a 

circle with center at the origin and radius proportional to the magnitude of the assumed 

rotation. The plots in the second and fourth columns for a rotation about the negative 

z-axis show a similar behavior except that the shifts are now in the opposite directions. 

Therefore, we expect that the axes of symmetry of the clusters intersect almost at a 

common point when the magnitude of rotation about z-axis tends toward zero; that is, 

the correct rotation is assumed (see also the plots given in the first example). 

7 Summary 

In this paper we have shown that one can exploit the positiveness of depth as a constraint 

in order to estimate the location of the focus of expansion when the motion is either purely 

translational or the rotational component is known. The approach is based on the fact 

that when an arbitrary point in the image is chosen as the FOE, the depth values that 

are computed based on the assumed FOE tend to form cluster> of  positive and negative 
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M' = (0.0, -0.06) w' = (0, 0,O.l) ,,' = (0, 0, -0.1) 

Figure 8. Continued. 



values around the line that connects the assumed FOE to the true FOE; that is, the 

line that we referred to as the FOE constraint line. These clusters are symmetrical with 

respect to the FOE constraint line and can be used to determine the direction toward the 

true FOE; that is, the orientation of the FOE constraint line. By finding the common 

intersection of several such constraint lines, it is possible to obtain a reasonable estimate 

of the true FOE. In two selected examples, we showed that when the rotation is known, 

the method we suggested can give a good estimate of the location of the FOE in the 

presence of noisy data (with noise of as much as 60%). 

When the rotational component is not known (and is non-zero), these constraint lines 

do not have a common intersection point. This is reminiscent of the fact that motion 

field vectors do not intersect at a common point when the viewer rotates about some 

axis through the viewing point as well as translating in an arbitrary direction. In this 

case, we proposed a method based on discounting the component due to rotation (by 

assuming some arbitrary rotation) before we apply the method developed for the case of 

pure translation. Ideally, a reasonable estimate of the FOE is obtained only when the 

correct rotation is assumed; this corresponds to a distinct optimum solution. We have not 

implemented the method to evaluate the accuracy of the solution; however, we presented 

an example to demonstrate the behavior of the solution, with noisy data, where the 

rotation vector was varied locally. The results showed some of the difficulties we have to 

deal with in estimating 3-D motion when the rotational component of motion is unknown. 

For example, several interpretations were possible (based on a qualitative analysis) related 

to the ambiguity in distinguishing rotation from translation (appropriately scaled by 

the average distance of the viewer from the scene). These interpretations, however, are 

consistent with those obtained from the corresponding noisy two-dimensional optical flow 

estimate by other means. 
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8 Appendix-Image Plane Formulae for the FOE 

Some of the results presented above have been expressed concisely using vector notation. 

It is occasionally helpful to develop corresponding results in terms of the components 

of these vectors. Consider, for example, the methods for recovering the FOE from the 

brightness gradient at stationary points (where c = 0). Let the FOE be at ? = (xo, yo, l)T. 

At a stationary point, s . t = 0, and so s = 0 (unless t . E = 0). This in turn can be 

expanded to yield 

Z O E Z  + y0Ey = x E Z  + yEY 

that is, the brightness gradient is perpendicular to the line from the stationary point to 

the FOE. 

Now suppose that we have the brightness gradient at two stationary points, (xl, yl) 

and (x2, y2) say. Then 

xoEzl + yoEyl = + yiEyl, 

which gives us 

YO(EZ~EY~ - E z 2 E y l )  = (x1EZ1 + ~ i E y , ) E z ,  - (x2E2, + yzEy,)EZl. 

This in turn yields the location of the FOE, (xo, yo), provided that the brightness gradients 

at the two stationary points are not parallel. This result corresponds exactly to 

Next, consider the case were many stationary points are known. Suppose there are n 

such points. Then we may wish to minimize 
n 

i= 1 

Differentiating with respect to s o  and yo and setting the results equal to zero yields, 

a set of equations that can be solved for the location of the FOE in a similar way to that 

used to solve the set of equations above. (This produces a result that, in the presence 

of noise, will be slightly different from the one given in vector form earlier, since we are 

here enforcing the condition (?. 2) = 1 rather than (t . t) = 1.) 
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