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Abstract: The most widely used localization technology is the two-step method that localizes

transmitters by measuring one or more specified positioning parameters. Direct position determination

(DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer

superior localization performance. However, existing DPD algorithms such as maximum likelihood

(ML)-based and multiple signal classification (MUSIC)-based estimations are computationally

expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose

the use of a modular neural network for multiple-source DPD. In this method, the area of interest

is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to

detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis

function (RBF) neural networks are utilized for position estimation. Simulation results show that a

number of appropriately trained neural networks can be successfully used for DPD. The performance

of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional

MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore,

the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is

therefore an attractive choice for real-time applications.

Keywords: direct position determination (DPD); neural network; multiple signal classification

algorithm; maximum likelihood estimator

1. Introduction

In recent decades, neural network (NN) methods for localization have been studied intensively,

with radial basis function (RBF) networks [1–4] and multilayer perceptron (MLP) networks [5–8]

applied for localization. For real-time direction-of-arrival (DOA) estimation problems, a minimal

resource allocation network (MRAN) for DOA estimation under array sensor failure in a noisy

environment has been developed [9]. Results indicate the superior performance of MRAN-based DOA

estimation in the presence of different antenna effects, failure conditions, and noise levels. A modular

NN for the DOA estimation of two coherent sources has also been proposed [10]. A modified neural

multiple-source tracking algorithm (MN-MUST) [11] was developed for real-time multiple-source

tracking problems, wherein a spatial filtering stage was inserted to considerably improve the

performance of the system. For wireless sensor networks (WSNs), a flexible MLP-based model for the

accurate localization of sensors has been reported [12], with simulation experiments showing that the

location accuracy can be enhanced by increasing the grid sensor density. A new artificial neural network

(ANN) approach [13] has been developed to moderate the effect of miscellaneous noise sources and
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harsh factory conditions on the localization of wireless sensors. In terms of wireless communication

systems, a novel ANN algorithm that utilizes time-of-arrival (TOA) and angle-of-arrival (AOA)

measurements to locate mobile stations in non-line-of-sight environments has been proposed [14].

Additionally, a fingerprint-based localization methodology was applied in an experimental indoor

environment, and the processing received signal strength indicator (RSSI) information for determining

the position was used to train the NN [15]. Similarly, an MLP-NN has been applied to wireless local

area networks [16], where a flexible mapping was built between the raw received signal strength (RSS)

measurements and the position of the mobile terminal.

Clearly, the above localization methods are conventional two-step techniques that firstly estimate

positioning parameters (such as AOA, TOA, and RSS) and then use these parameters to determine the

source positions. It has been verified that conventional two-step localization methods are suboptimal,

because these positioning parameters are estimated at each base station separately, without using the

constraint that all parameters must correspond to the same transmitter. Weiss and Amar proposed the

direct position determination (DPD) method [17–21], which directly localizes transmitters from sensor

outputs. Compared with conventional two-step localization, DPD avoids the measurement-source

association problem in the estimation of positioning parameters for multiple-source scenarios,

leading to higher positioning accuracy. However, existing DPD methods, whether maximum

likelihood (ML)-based algorithms [17] or multiple signal classification (MUSIC)-based algorithms [18],

are computationally expensive, which makes it difficult to implement them in real time. To reduce the

computation time without loss of localization performance, we present an NN method for DPD. To the

best of our knowledge, no previous studies have applied the NN method to DPD. The difficulties in

applying NNs to DPD include the high-dimensional input space caused by the large amount of raw

data from multiple observers and the need for a large training set to cover different combinations of

the multiple source locations, signal-to-noise ratios (SNRs), and signal power ratios (SPRs).

To solve the above problems, we propose a modular NN scheme for multiple-source DPD.

The proposed method combines RBF and MLP NNs. In our scheme, the area of interest is divided into

multiple sub-areas, and RBF-NNs are trained as source location estimators for each sub-area while

MLP-NNs are trained to perform detection and filtering, which effectively reduces the size of the

training set. The preprocessing operations of dimension reduction and normalization greatly reduce

the dimension of the input space. Compared with conventional DPD methods such as ML-based and

MUSIC-based algorithms, the main advantage of the proposed method is that it avoids the need for a

peak search and the iteration process, which have high computational complexity, and can implement

DPD almost instantaneously. In addition, the proposed method can achieve adaptive learning and has

excellent generalization performance for samples outside the training set.

The remainder of this paper is organized as follows. The data model is described in Section 2.

Section 3 introduces a modular NN with an MLP-MLP-RBF structure for DPD. The performance of

the proposed method is studied and simulation results are presented in Section 4. Section 5 gives the

conclusions and future work of the article. The main notation used in this paper is listed in Table 1.

Table 1. Mathematical notation.

Notation Explanation

I identity matrix
||·|| the Euclidean norm of a vector

Re(·) the real part of an arithmetical expression
Im(·) the imaginary part of an arithmetical expression

(·)T transpose

(·)H conjugate transpose
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2. Data Model

Our study aims at line-of-sight passive location scenario of ultra-short-wavelength signals, for the

purpose of reconnaissance. Consider an outdoor scenario with J observer arrays, each consisting of Mj

sensors. Assume that there are P stationary transmitters radiating narrowband signals in the far field

of the arrays and that the signals are uncorrelated. We presume P < Mj, j = 1, 2, · · · , J and that the

signals received by the j-th array can be expressed as

xj(t) =
P

∑
p=1

sjp(t)aj(up) + nj(t) (1)

where up is the position of the p-th source; aj(up) is the steering vector of the p-th source for the j-th

array; and sjp(t) denotes the complex envelope of the p-th source reaching the j-th array at time t,

which has a circular complex Gaussian distribution N
C(0, σ2

sp), p = 1, 2, · · · , P, where the variance

σ2
sp is unknown. nj(t) is the background noise of the j-th array, which has a zero mean complex

Gaussian distribution with covariance matrix σ2
nI, where σ2

n is assumed to be known because it can be

estimated or measured in practical applications [22]. The noise and signals are assumed to be mutually

independent.

Equation (1) can be written in matrix form as

xj(t) = Ajsj(t) + nj(t) (2)

where Aj = [ aj(u1), aj(u2), · · · , aj(uP)] is the array manifold matrix of the j-th array, which has

dimensions of Mj × P, and sj(t) = [sj1(t), sj2(t), · · · , sjP(t)].

The covariance matrix of the signals at the output of the j-th array is

Rj = E{xj(t) x
H
j (t)} = AjPjA

H
j + σ2

nI (3)

where Pj = E{sj(t)s
H
j (t)} is the covariance matrix of the signals’ complex envelope.

Assuming that the number of snapshots is K, the covariance matrix of the signals received by the

j-th array can be estimated as

R̂j =
1

K

K

∑
k=1

xj(k)x
H
j (k) (4)

The SNR and SPR are defined as

SNR = 10log10(σ
2
s1/σ2

n) (5)

SPRp = 10log10(σ
2
s1/σ2

sp), p = 1, 2, · · · , P (6)

On the basis of (1)–(4), for each array, we obtain a mapping relationship G: RDP→CM

(D denotes the dimension of position space; generally, D = 2 or 3) from the space

of the source position u = [uT
1 , uT

2 , · · · , uT
P]

T
to the space of the antenna element output

xj(t) = [x1j(t), x2j(t), · · · , xMj j(t)]
T, j = 1, 2, · · · , J. By combining information from the J arrays,

a new mapping relationship G′: RDP→CMJ can be obtained from the space of the source position

u = [uT
1 , uT

2 , · · · , uT
P]

T
to the space of all antenna element outputs x(t) = [xT

1 (t), xT
2 (t), · · · , xT

J (t)]
T

.

3. A Modular NN for DPD

In this section, we propose a modular NN (Figure 1) combining two MLP-NN modules and

one RBF-NN module for DPD. This MLP-MLP-RBF network consists of four parts: sample data

preprocessing, detection, spatial filtering, and position estimation. In the sample data preprocessing

phase, we calculate the covariance matrix R̂j, j = 1, 2, · · · , J and perform a dimension reduction for
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each observer. A joint dimension-reduced structure z (Section 3.1) is input into the detection and

spatial filtering stage. We choose the covariance matrix as the NN input because it contains enough

statistical information about the position of the signal. The area of interest is divided into a number

of sub-areas. For each specific sub-area, one MLP-NN is trained to detect the presence of a signal,

one MLP-NN is trained to filter out signals outside that sub-area, and another RBF-NN is trained to

produce an estimation of the source position. When the NN in the detection stage detects a source in a

certain sub-area, the NNs in the corresponding spatial filtering stage and the position estimation stage

are activated to complete the spatial filtering and the target position estimation.

Sample Data Preprocessing

1 2 3 J

MLPNN 

for 

Sub-area 1

MLPNN 

for 

Sub-area 2

MLPNN 

for 

Sub-area Q

MLPNN  

for 

Sub-area 1

MLPNN  

for 

Sub-area 2

MLPNN 

for 

Sector Q

Detection Stage

Spatial Filtering  

Stage

Incident Signals

Position Output

RBFNN 

For

 Sub-area 1

RBFNN 

for 

Sub-area 2

RBFNN 

for 

Sub-area Q

Position Estimation  

Stage

z

1sz
Qsz2sz

 

 

Figure 1. The block diagram of the MLP-MLP-RBF network.

This subdivision of region can greatly reduce the size of the training set. Assuming that there

are Y training samples in a single source scenario, the number of training samples increases to YP

in the presence of P sources. If subdivision of region is not implemented, the size of the training set

is enormous, because it grows exponentially with the number of sources. However, there is also a

trade-off between memory resources and positioning accuracy. A smaller sub-area will result in a

greater number of NNs, but the accuracy will be improved. In practice, the number of NNs for the

proposed MLP-MLP-RBF method depends on the available memory resources.

In addition to the huge reduction for the size of the training set, there are two reasons why we

use multistage processing:

(1) For multiple-source localization scenarios, a single-stage network has the problem that the

same input data corresponds to different outputs, which leads to the failure of convergence

in the network training process. For example, we consider the case of two sources located at

u1 = (x1, y1) and u2 = (x2, y2). The output vectors [x1, y1, x2, y2]
T and [x2, y2, x1, y1]

T correspond

to the same input data, which will result in the confusion and make the network unable to

converge in the training process, and this situation gets worse as the number of sources increases.

This paper overcomes this problem using the subdivision of region and spatial filtering.
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(2) The NN with a single stage requires to know exactly the number of sources to determine the

number of network output units, otherwise the localization will fail. In our study, this assumption

is not necessary due to the existence of the detection stage.

It is the ingenious combination of multiple stages (detection, filtering, and position estimation)

that enables NN-based multiple-source DPD. Moreover, the detection stage is only responsible for

the target detection, which will not affect the final localization performance. The filtering stage may

cause performance loss, but the loss is insignificant with effective training. As can be seen from

simulation results in Section 4, performance of the proposed method is generally better than that of

the MUSIC-DPD algorithm at low SNRs and can approach the ML accuracy at high SNRs.

NN training takes a long time; however, the characteristics of offline and parallel learning mean

that real-time positioning will not be affected. Compared to the traditional MUSIC-based DPD

algorithm, the proposed method avoids the need for eigenvalue decomposition and peak search

processes, which have high computational complexity. The proposed algorithm only needs to complete

a series of addition and multiplication operations to estimate the source position, a procedure that is

more suitable for real-time applications. In addition, experimental results show that the positioning

accuracy of the MLP-MLP-RBF is comparable to that of the traditional MUSIC-based DPD algorithm.

To reduce the size of the dataset required for the training process, the MLP-NNs in the detection

stage are trained with fewer sample data as they only classify the input vectors. More refined data are

used to train RBF-NNs in the position estimation stage, as these achieve the high-resolution DPD.

Remark 1. In practical applications, the sources may be located anywhere in space, but generally we can obtain

a priori knowledge about the approximate area where the sources are located before localization. We can subdivide

the corresponding region based on this prior knowledge, thus avoiding the subdivision of the whole space. Even if

this prior knowledge cannot be obtained, we can use an AOA-based two-step processing estimator [23], including

AOA estimation using the MUSIC algorithm and the pseudo-linear weighted least-square (PLWLS) location

method using the AOA estimates, to obtain the initial estimate of the source positions, and then subdivide the

corresponding region according to this initial estimate.

Remark 2. If a source is located in the frontier of a sub-area, false or missed detections for this source may

occur, which may result in the failure of the final localization, although it is unlikely to happen. To overcome

this problem, we can adjust the centers of sub-areas when the output of a certain NN in the detection stage is

around 0.5.

Remark 3. The resolution capability of the proposed technique is affected by the size of the sub-area. In practice,

we can improve the resolution of the proposed method by further subdividing the sub-areas, of course at the cost

of more memory resources. This phenomenon also reflects a trade-off between memory resources and resolution

capability.

3.1. Sample Data Preprocessing

In the sample data preprocessing phase, we conduct the following tasks: (1) eliminate the

dependency of the covariance matrix on SNR; (2) eliminate the dependency of the covariance matrix

on σ2
s1 by dimension reduction and normalization. We first compute the covariance matrix for each

array and denote the elements of this matrix by

Rj =













R
j
11 R

j
12 · · · R

j
1M

R
j
21 R

j
22 · · · R

j
2M

...
...

...

R
j
M1 R

j
M2 · · · R

j
MM













, j = 1, 2, · · · , J (7)
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Exploiting the estimated noise power σ2
n , Rj = Rj − σ2

nI is calculated as

Rj =













R
j
11 − σ2

n R
j
12 · · · R

j
1M

R
j
21 R

j
22 − σ2

n · · · R
j
2M

...
...

...

R
j
M1 R

j
M2 · · · R

j
MM − σ2

n













, j = 1, 2, · · · , J (8)

Using all of the elements in (6) as input will result in a high-dimensional input space. To reduce

the dimension of the training samples without loss of information, we make full use of the Hermitian

feature of Rj, and can therefore consider only the elements of the upper triangular part of (6).

Furthermore, if it is a uniform linear array, then when the sources are uncorrelated, all entries of

the covariance matrix starting from the second row are linear combinations of the entries in the

first row [9]. Eventually, the first row of the covariance matrix is sufficient to represent the entire

covariance matrix.

Collecting the elements from the first row of the covariance matrix [10] together, we have

bj = [R
j
11 − σ2

n , R
j
12, · · · , R

j
1M]

T
(9)

As the NN does not deal directly with complex numbers, we need to extract the real and imaginary

parts of each element in bj to reconstruct a (2M − 1)-dimensional vector:

bj = [Re(R
j
11 − σ2

n), Re(R
j
12), Im(R

j
12), · · · , Re(R

j
1M), Im(R

j
1M)]

T
(10)

bj is normalized as

zj =
bj

∣

∣

∣

∣bj

∣

∣

∣

∣

(11)

All elements from [13] for all of the arrays are then collected in the (2M − 1)J × 1 vector:

z = [zT
1 , z

T
2 , · · · , z

T
J ]

T
(12)

Next, z is fed into the NN as the input vector.

According to (3), it can easily be obtained that

Rj = AjRSA
H
j = σ2

s1Aj













1 0 · · · 0

0 σ2
s2/σ2

s1 · · · 0
...

...
. . .

...

0 0 . . . σ2
sP/σ2

s1













A
H
j , j = 1, 2, · · · , J (13)

Therefore, we eliminate the dependence of the covariance matrix on the signal power σ2
s1

after normalization.

After our preprocessing scheme, the number of input neurons in the input layer is reduced from

2M2 J to (2M − 1)J. The proposed preprocessing scheme removes a large number of redundant or

irrelevant information and reduces the dimension of the signal parameter space. Hence, the network

can be trained more effectively.

3.2. Detection Stage

The “detection stage” uses MLP-NNs with two hidden layers. MLP-NNs are known to be

powerful classifiers that can provide superior performance to other classifiers [24]. The MLP-NNs

give a global approximation of a nonlinear mapping, so they may require a long training time. In the
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particular case, the training convergence speed of this network type is slower, but more accurate than

that of the RBF-NN, which is the main reason we apply MLP-NNs in the detection stage. As a classifier,

the output of an MLP network is 0 when the sources are outside the observed sub-area and 1 when

the source is inside the associated sub-area. The number of neurons in the input and output layers is

(2M − 1)J and 1, respectively. In addition, we can use fewer training samples because of the binary

nature of the output. Note that the “tan-sigmoid” activation functions are used for all neurons in the

hidden layer. The output of l-th neuron in the hidden layer can be expressed as

fl(z) =
2

[1 + exp(−2(wT
l z + bl))]

−1
− 1 (14)

where z represents the input of NN and wl and bl represent the weight vector and the bias, respectively,

with respect to the l-th neuron in the hidden layer. The “purelin” activation functions are used for

neurons in the output layer.

For each MLP-NN in this stage, the specific training steps are as follows (we consider the case of

two sub-areas, as illustrated in Figure 2, and do not permit two sources in one sub-area).


 

  

“ ” 



Δ Δ Δ Δ







Δ

2
SPR  (dB)

1
 (m)x 1mx

1ny

2k
x

2l
y

1 12 2 2
(SPR , , , , )

m nh k l
x y x yz

2
SPR

h

1
 (

m
)

y

2
 (m)x

2
 (

m
)

y

1
x

1y


1
x

2
y



 

Figure 2. Illustration of the training data structure.

• Step 1. Construct the training set for the grid format.

(1) Predefine a training step (or resolution) denoted by ∆x1, ∆y1, ∆x2, and ∆y2, and calculate

z(SPR2h, x1m, y1n, x2k, y2l) using (10).

(2) Form a training set
{

0(or1)
∣

∣

∣
z(n)

}n=Ntrain

n=1
of Ntrain observations, in which 1 represents

the existence of the source and 0 indicates no signals within the corresponding sub-area.

Here, z(n) is the input in the training process, and 0 (or 1) is the expected output, i.e.,

the supervision signal.

• Step 2. Construct and train the MLP-NNs properly.

(1) Construct the appropriate network structure (specific construction process is described in

Section 4.1).

(2) Feed the samples from the training set into the MLP-NN successively, and use Bayesian

regularization (BR) [25] to train the NN (the BR algorithm is widely used because of its

excellent generalization performance and prevention of overfitting).

• Step 3. Generate a validation set to test the generalization performance of the trained network.

The verification set is generated in a similar way to Step 1, but with an offset ∆shift based on the

training step in Step 1.
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Remark 4. In Step 1, it is not necessary to set variations of the SNR in the training set, because the input to the

NNs (the vector z) eliminates the dependency on the SNR.

3.3. Spatial Filtering Stage

The purpose of the spatial filtering stage is to eliminate signals from outside the corresponding

sub-area. The MLP-NNs are still used, but unlike in Section 3.2, they now act as filters. The number of

neurons in both the input and output layers is (2M − 1)J. When the output of the NN in the detection

stage is 1, the NN of the corresponding sub-area in this stage is activated.

The inputs to the spatial filtering network are the vectors z, as for the detection stage. The output

of the spatial filter network for sub-area q is zsq, q = 1, · · · , Q, which does not include the signals

from other sub-areas. For instance, there are Q incident sources
{

s1(t), s2(t), · · · , sQ(t)
}

, and only

source sq(t) is in sub-area q. This procedure can be illustrated in Figure 3, where the red star

represents the source. The input to the NN, z, is computed through Equation (10) using signals
{

s1(t), s2(t), · · · , sQ(t)
}

, and the output zsq is computed through Equation (10) again, but the signal

is now sq(t). Through the training process, the MLP-NNs learn and generalize this mapping (z → zsq) .

In the testing phase, an accurate filtering result can be obtained for samples from outside the training

set. The training process is similar to that described in Section 3.2 and is not repeated here.







Sub-area 1 Sub-area 2

1
( )s t 2

( )s t

Sub-area q

( )qs t

Sub-area Q

( )Qs t

1 2
{ ( ),  ( ), ,  ( )}Qs t s t s tz

MLPNN for sub-area q

{ ( )}sq qs tz

Sub-area 1 Sub-area 2 Sub-area q

( )qs t

Sub-area Q

 

2 1( )M J D

    σμ

l l μ 

Figure 3. Illustration of the spatial filter network.

3.4. Position Estimation Stage

The NNs in this stage are trained to estimate the source position. When the output of the

NNs in the detection stage is 1, the NN of the corresponding sub-area in this stage is activated.

The number of neurons in the input and output layers is (2M − 1)J and D (the dimension of position

space), respectively.

This stage uses an RBF-NN, which is characterized by a radial basis function as the transmission

function for hidden layer neurons. The most commonly used radial basis function is the Gaussian

function:

φl(zsp) = exp(−
∣

∣

∣

∣zsp − µl

∣

∣

∣

∣/2σ2
l ) (15)

where l represents the l-th hidden layer neuron and µl and σ2
l represent the center and the width of

the Gaussian activation function, respectively. A three-layer RBF-NN is a local approximation of a

nonlinear mapping and can approximate any nonlinear function. It has a faster learning convergence

rate than MLP-NN, which is why we apply RBF-NNs in the position estimation stage.
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The parameters that must be trained in the RBF-NN are the appropriate number of hidden layers

L, the center and width {µl , σ2
l }

L

l=1
, and the weight between layers W. To select reasonable values for

these parameters, the training process is as follows:

• Step 1. Construct a training set {up

∣

∣

∣
z
(n)
sp }

n=Ntrain

n=1
as for Step 1 in Section 3.2. The only difference is

that because of the existence of the spatial filtering network, the training set for the RBF-NN only

needs to be constructed in the corresponding sub-area of responsibility, thus reducing the number

of training samples. Here, z
(n)
sp obtained from the sample data preprocessing is the input in the

training process, and the true source position up is the expected output, i.e., the supervision signal.

• Step 2. Train the network by combining unsupervised and supervised learning strategies.

Let L =: 1 and compute the following in turn.

(1) Adopt unsupervised learning (expectation maximum (EM) algorithm [26]) to initialize

some inherent parameters {µj, σ2
j }

J

j=1
in the hidden layer.

(2) Feed the training samples generated in Step 1 into the RBF-NN successively, and use a

supervised learning strategy (Levenberg–Marquardt (LM) algorithm [27]) to determine

the weight W.

(3) Calculate the root mean square error (RMSE) and the number of neurons in the hidden

layer. If one of them reaches the predefined criteria, pause the iteration process; otherwise,

set L =: L + 1 and return to (1).

• Step 3. Generate a validation set to test the generalization performance of the trained network.

The specific process is similar to that of Step 3 in Section 3.2.

In the next section, we illustrate our proposed NN approach via a series of numerical simulations.

4. Simulation Results

In this section, we study the performance of the NNs in the detection, filtering, and position

estimation stages. The performance of the proposed network (Section 3) is then evaluated for different

SNRs, SPRs, and source location parameters up = (xp, yp), p = 1, · · · , P. In the experiments, we

assume there are four available observer arrays, as presented in Figure 4 (the red star and blue triangle

represent the source and observer array, respectively), which can receive and locate the radiated source

signals. The positions of the observers are listed in Table 2. Each observer array is equipped with a

six-element uniform linear array (ULA).

σμ
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

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Figure 4. Simulation environment.
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Table 2. Positions of observer arrays (units: m).

Observer No. 1 2 3 4

xi −2000 2000 2000 −2000
yi −2000 −2000 2000 2000

The number of snapshots is set to K = 200. To avoid spatial aliasing, the distance between

adjacent elements in the ULA was set to half a wavelength, that is, d = λ/2.

Considering that MUSIC-based and ML-based methods have better performance than the classical

beamforming-based method for small AOA separation, in the simulation, we compare the proposed

MLP-MLP-RBF method with MUSIC-based and ML-based DPD methods [14] to show the superiority

of our method. To reduce the computational burden of MUSIC-DPD and facilitate the analysis,

we study a special case of two sub-areas, as shown in Figure 5. We assume that there is at most one

source in each sub-area. In addition, the MUSIC-DPD search strategy uses 20 m coarse search steps

and 1 m fine search steps to reduce the computational complexity.

− −

− −


 λ

Sub-

area1

Sub-

area2

x

y

0 300

300

600

600

900

900

 

   Δ Δ Δ Δ Δ


 dB



   ˆ ˆ ˆ

n




 

ˆ

Figure 5. Two sub-areas with 300 m by 300 m.

In the training patterns, the training step (or grid resolution) is set to ∆x1 = ∆y1 = ∆x2 = ∆y2 =

20 (m) (Section 3.2, Figure 2) and an offset of ∆shift = 5 (m) is used for the validation patterns.

The MLP-NN with 12 neurons in both hidden layers is applied in the detection stage, and the

MLP-NN with two hidden layers of 24 neurons each is applied in the spatial filtering stage (The reasons

for this structural configuration are discussed in Section 4.1). We set SPR = 0 dB and SNR = 30 dB,

and then randomly select 50 pairs of test samples within the two sub-areas and locate them using

the trained MLP-MLP-RBF network. Figures 6 and 7 show the simulation results for sub-area 1

and sub-area 2, respectively, where the actual and estimated locations are represented by the circle

and crisscross symbols, respectively. The simulation results verify the feasibility of the proposed

MLP-MLP-RBF method for DPD and demonstrate the high positioning accuracy of our approach.

In the following subsections, the positioning performance of the proposed MLP-MLP-RBF method

is evaluated in detail. We conduct N = 500 Monte Carlo (MC) experiments and evaluate the estimation

accuracy in terms of the RMSEp =

√

1
N

N

∑
n=1

∣

∣

∣

∣

∣

∣
û

n
p − un

p

∣

∣

∣

∣

∣

∣

2
, p = 1, 2, where û

n
1 and û

n
2 are the network

responses for the n-th MC experiment. Similarly, the mean relative error MREp = 1
N

N

∑
n=1

||ẑn
sp−zn

sp||
||zn

sp||
, p =

1, 2 is used to evaluate the performance of the filtering network. On this basis, the following figures

show boxplots of RMSE or MRE values calculated for different combinations of {u1, u2}. In other words,

in the following simulations, we conduct N = 500 MC experiments for each different combination of

{u1, u2}. The boxplots [28] show the minimum, lower quartile, median, upper quartile, and maximum
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to visually represent the statistical characteristics of the data. The whiskers extending from each

end of the box to the maximum and minimum show the extent of the remaining values. The values

beyond the ends of the whiskers are treated as outliers. The whisker length is set to 1.5 times the

interquartile range. The purpose of applying boxplots in this paper is to illustrate the RMSE and

MRE for different combinations of source positions on the same coordinates, which results in a more

effective visualization of the positioning performance of the proposed method.

σ σ

Figure 6. Simulation results of MLP-MLP-RBF for sub-area 1.

σ σ

Figure 7. Simulation results of MLP-MLP-RBF for sub-area 2.

Three basic assumptions are made in the simulations: (1) The array manifold is known exactly;

(2) there is at most one source in each sub-area; (3) all radiated signals can be received by each observer.

Note that the proposed method makes no assumptions about the array structure: as long as the

array manifold is known, it can be applied directly to the nonuniform array scenario (at this point,

bj is composed of the elements of the upper triangular part of (8)). Furthermore, the transmitters must

radiate steady-state signals, otherwise the performance of the proposed method will deteriorate.

Remark 5. The simulation data used in this study is computer-generated. The generated two source signals both

follow zero mean circular complex Gaussian distribution with different signal powers σ2
s1 and σ2

s2. The signals

received at the sensors are contaminated with statistically independent complex Gaussian white noise of power

σ2
n . The signals and noise are mutually independent. The received signal power is inversely proportional to the

square of the distance between the source and observer array.
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4.1. Study of the MLP-NN Performance in the Detection Stage

In this subsection, we mainly study the performance of the MLP-NN in the detection stage.

The number of hidden layers and neurons in each hidden layer in the MLP-NN is not usually known

beforehand, and the optimum value is generally found through an investigation. Following [29],

an iterative process is applied to dynamically adjust the network configuration. Finally, an MLP-NN

with good statistical properties is obtained. In the simulations described in this subsection, we use the

MLP-NNs with two hidden layers each containing 12 neurons. Moreover, according to the analysis in

Section 3.2, the number of neurons in input and output layers is (2M − 1)J = 44 and 1, respectively.

The network is trained for 200 epochs.

As mentioned in Section 3.2, we can use a training set containing fewer training samples to train

the NNs because of the binary nature of the output. Compared with the spatial filtering and position

estimation stages, we set a larger training step, ∆x1 = ∆y1 = ∆x2 = ∆y2 = 50 (m), and hold both SNR

and SPR constant. The testing step is set to ∆x1 = ∆y1 = ∆x2 = ∆y2 = 5 (m). The corresponding

response of the MLP-NN for sub-area 1 is shown in Figure 8 (similar results are obtained for sub-area

2), from which we can conclude that the trained MLP-NN offers good generalization performance and

can also carry out accurate detections for most samples outside the training set. The detection accuracy

reaches 98.1%. Moreover, the detection errors tend to occur at the edges of the sub-area. To solve

this problem, we train the network using variable training steps. We set a smaller training step of

∆x1 = ∆y1 = ∆x2 = ∆y2 = 10 m within 50 m of the sub-area boundary and keep the training step in

other regions constant. The corresponding response of the MLP-NN trained with variable training

steps for sub-area 1 is shown in Figure 9, from which we can observe that the detection errors at the

edges of the sub-area are significantly reduced and the detection accuracy has increased to 99.8%.

Of course, the improvement in detection accuracy is acquired at the cost of computational resources.

Next, we fix u2 = (800, 800) m and select the source location u1 at random. The performance

of the detection network is then evaluated by the probability of correct detection (PCD), which is

the ratio of the number of correct detections to the total number of detections. In Figures 10 and 11,

we show boxplots of PCD values calculated for 50 different u1 and 500 MC experiments under different

SNR conditions. Compared with the network trained with uniform steps, the network trained using

variable steps has fewer outliers and the detection performance of the latter has improved.

σ

 

   Δ Δ Δ Δ

   Δ Δ Δ Δ

   Δ Δ Δ Δ

Figure 8. MLP-NN response in the detection stage for sub-area 1 (uniform training step).
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

Figure 9. MLP-NN response in the detection stage for sub-area 1 (variable training step).



Figure 10. PCD of MLP-NN in the detection stage for sub-area 1 (uniform training step).



 

Figure 11. PCD of MLP-NN in the detection stage for sub-area 1 (variable training step).

4.2. Study of the MLP-NN Performance in the Spatial Filtering Stage

According to the analysis in Section 3.3, the number of input neurons is equal to the number of

output neurons in this stage; both are set to (2M− 1)J = 44 under this simulation scenario. The number

of hidden layers and the number of neurons in the hidden layer are determined in the same manner

described in Section 4.1. The MLP-NNs with two hidden layers each containing 24 neurons are

employed, and the number of neurons in both the input and output layers is (2M − 1)J = 44.
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The network is trained for 200 epochs. For constant simulation conditions, Figure 12 shows the curve

of MRE versus SNR. The testing set includes 50 random combinations of {u1, u2}, covering the whole

region of the two sub-areas, for SNR values from 0–35 (dB) in steps of 5 (dB). For each combination of

SNR, u1, and u2, we conduct 500 MC experiments.

 

 

–

 

 2


 dB

Figure 12. MRE of the MLP-NN in spatial filtering stage versus SNR for sub-area 1. SPR = 0 (dB).

As can be seen from Figure 12, the trained MLP-NN displays excellent spatial filtering

performance, especially under high SNR conditions.

4.3. Study of the RBF-NN Performance in the Position Estimation Stage

The existence of a spatial filtering network means that the RBF-NN need only respond to one

source in the corresponding sub-area, thus greatly reducing the size of the training set. Following [5],

the number of hidden neurons in the RBF-NN is determined by the minimal resource allocation

strategy. Finally, the number of neurons in input, hidden, and output layers is (2M − 1)J = 44, 40,

and D = 2, respectively. The maximum number of neurons, spread of RBFs, and mean squared

error goal are set to 500, 1, and 10−5, respectively (For the specific training process, see Section 3.4).

We consider the same simulation conditions as described in Section 4.2. The simulation results are

shown in Figure 13. We can see that the trained RBF-NN offers high localization accuracy and small

variance in the high SNR situation (SNR ≥ 15 dB).

 

 

–

 






Figure 13. RMSE of the RBF-NN in position estimation stage versus SNR for sub-area 1. SPR = 0 dB.
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4.4. Study of the Network Generalization for Different SNRs

In the following subsections, we combine the previously trained NNs in the manner of Figure 1

and study the performance of the complete MLP-MLP-RBF network. The test set comprises 50 random

combinations of {u1, u2}, covering the whole region of the two sub-areas. We fix SPR = 0 dB and

vary the SNR in the range −10–35 dB in steps of 5 dB. Figures 14–16 show RMSE1 of the proposed

MLP-MLP-RBF method, the MUSIC-DPD algorithm, and the ML-DPD algorithm, respectively.

− – –

 dB

Figure 14. RMSE of the proposed MLP-MLP-RBF network versus SNR for sub-area 1.

− – –

 dB

Figure 15. RMSE of the MUSIC-DPD algorithm versus SNR for sub-area 1.

− – –

 dB

Figure 16. RMSE of the ML-DPD algorithm versus SNR for sub-area 1.

As expected, compared with the MUSIC-DPD algorithm, the proposed MLP-MLP-RBF method

has a lower RMSE value at high SNRs (SNR ≥ 15 dB) and smaller variance. Furthermore, we find that
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the proposed method exhibits better localization performance than the MUSIC-DPD algorithm in the

case of low SNRs (SNR ≤ 10 dB). This can be interpreted as the MUSIC-DPD algorithm suffering from

the thresholding effect, whereas the MLP-MLP-RBF method is more robust at high noise levels. On the

other hand, the proposed MLP-MLP-RBF method can attain the ML accuracy at high SNRs.

4.5. Study of the Network Generalization for Different SPRs

The effect of variations in SPR on the position estimation performance is now studied.

The simulation conditions are as previously described. We fix SNR = 15 dB and vary SPR from

−10–10 dB in steps of 2 dB. Note that our MLP-MLP-RBF network is trained with SPR = 0 dB, and the

goal here is to evaluate the performance of the network with SPR values for which the network is not

trained. The simulation results are shown in Figures 17–20. As expected, the sources in sub-areas 1

and 2 have high positioning accuracy under high and low SPR conditions, respectively. This can be

explained by the fact that with an increase in SPR, the power of the first source becomes higher than

that of the second source. From these figures, we can observe that compared with the MUSIC-DPD

algorithm, the proposed network offers higher localization accuracy in the range −6 ≤ SPR ≤ 2 dB for

sub-area 1 and −2 ≤ SPR ≤ 8 dB for sub-area 2.



− –

–

  
  

Figure 17. RMSE of the proposed MLP-MLP-RBF network versus SPR for sub-area 1.



− –

–

  
  

Figure 18. RMSE of the MUSIC-DPD algorithm versus SPR for sub-area 1.
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Figure 19. RMSE of the proposed MLP-MLP-RBF network versus SPR for sub-area 2.

Figure 20. RMSE of the MUSIC-DPD algorithm versus SPR for sub-area 2.

From the above simulation results, we can conclude that the proposed MLP-MLP-RBF method

performs similarly to the MUSIC-DPD algorithm. The results show that the MLP-MLP-RBF network

offers good generalization performance for SNRs and SPRs that do not appear in the training set.

4.6. Study of the Network Performance for Different Snapshots

In this subsection, we examine the localization performance of the proposed method for different

snapshots. We fix SPR = 0 dB, SNR = 30 dB, and vary the number of snapshots from 50 to 1000 times

in steps of 50 times. Other simulation conditions are as described above. Figures 21 and 22 show

the RMSE1 of the proposed MLP-MLP-RBF method and the MUSIC-DPD algorithm, respectively,

with respect to the number of snapshots.

From the simulation results, we can see that the localization accuracy of both the proposed method

and the MUSIC-DPD algorithm increases with the number of snapshots. However, as the number of

snapshots continues to increase, the improvement in accuracy slows considerably. Moreover, under

these simulation conditions, 200 snapshots are sufficient to meet the required localization accuracy;

this is why 200 snapshots were used in the previous simulations.
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Figure 21. RMSE of the proposed MLP-MLP-RBF network versus the number of snapshots for

sub-area 1.

  



– –

0 5λ λ λ 1 5λ 0 5λ

Figure 22. RMSE of the MUSIC-DPD algorithm versus the number of snapshots for sub-area 1.

4.7. Comparison of the Processing Time

To highlight the superiority of our MLP-MLP-RBF network, we now compare the processing

time of the proposed method with that of the MUSIC-DPD and ML-DPD algorithms. Note that the

MUSIC-DPD algorithm uses a search strategy with a 20 m coarse search step and 1 m fine search step.

The computations are executed in Matlab R2017a on a PC with Intel Core i7-3520 CPU.

The simulation conditions are set to u1 = (150, 220) m, u2 = (830, 710) m, SNR = 10 dB, and

SPR = 0 dB, and all other conditions are the same as previously described. The simulations are based

on 500 MC runs. The average processing times in each stage and the total runtimes of the two methods

are shown in Table 3. Our MLP-MLP-RBF network requires only about 0.04 s to perform position

estimation, which is much faster than the MUSIC-DPD and ML-DPD algorithms. The simulation

results also indicate that the proposed MLP-MLP-RBF method can effectively solve the real-time

multisource localization problem.
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Table 3. Comparison of three algorithms in processing time.

Method Stage CPU Average Processing Times/s Total Time/s

MLP–MLP–RBF

data preprocessing 0.0013

0.0383
detection 0.0105

spatial filtering 0.0146
position estimation 0.0119

MUSIC-DPD N/A a 1.2027 1.2027
ML-DPD N/A 6.3508 6.3508

a N/A means the algorithm is not multi-stage.

4.8. Study of the Network Performance for Nonuniform Arrays

The purpose of this subsection is to verify the feasibility of the proposed method for nonuniform

arrays. The positions of the observers are listed in Table 4. Each observer array is equipped with a

six-element nonuniform linear array. For simplicity, the distance between adjacent elements in each

array was set to 0.5λ, λ, λ, 1.5λ, and 0.5λ, respectively. Assume that two sources are located in the

two sub-areas of Figure 23. The other simulation conditions and the network configuration are as

described above.

Table 4. Positions of observer arrays (units: m).

Observer No. 1 2 3 4

xi −3000 3000 3000 −3000
yi −3000 −3000 3000 3000

− −

− −

x

y

0 150

400

-150

700

Sector2

-400

-700

Sector1

 

0 dB and vary the SNR in the range −10–
–

Figure 23. Two sub-areas with 300 m by 300 m.

The test set comprises 50 random combinations of {u1, u2}, covering the whole region of the

two sub-areas. We fix SPR = 0 dB and vary the SNR in the range −10–35 dB in steps of 5 dB.

The simulation results given by the three algorithms are shown in Figures 24–26. As expected,

the proposed MLP-MLP-RBF method can be applied to nonuniform arrays directly. Moreover, we can

obtain a conclusion similar to that for the uniform array scenario; that is, the proposed method has a

higher localization accuracy than the MUSIC-DPD algorithm at low SNRs (SNR<B) and can attain the

ML accuracy at high SNRs.
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− −

− −

0 dB and vary the SNR in the range −10–
–

Figure 24. RMSE of the proposed MLP-MLP-RBF network versus SNR for sub-area 1.



Figure 25. RMSE of the MUSIC-DPD algorithm versus SNR for sub-area 1.



Figure 26. RMSE of the ML-DPD algorithm versus SNR for sub-area 1.

4.9. Study of the Network Performance for Different Sizes of Sub-Area

To provide a general guideline for how to balance memory resources with positioning accuracy,

we study the localization performance of the proposed method for different sizes of sub-area with

various numbers of observers and antennas. We first set the simulation conditions as previously

described. We consider four observers at the positions listed in Table 2. Each observer array is

equipped with a six-element uniform linear array. We fix SPR = 0 (dB), u1 = (0, 0) m, and select the
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source location u2 at random. Figure 27 shows the RMSE1 of the proposed MLP-MLP-RBF method

with respect to SNR for different sizes of sub-area (100 m × 100 m, 200 m × 200 m, and 300 m × 300 m).

Next, we consider two observers with six antennas and four observers with four antennas, respectively,

and the other simulation conditions are as described above. The simulation results are shown in

Figures 28 and 29.

Figure 27. RMSE of the proposed method using four six-element-ULA-equipped observers for different

sizes of sub-area.

Figure 28. RMSE of the proposed method using two six-element-ULA-equipped observers for different

sizes of sub-area.

Figure 29. RMSE of the proposed method using four four-element-ULA-equipped observers for

different sizes of sub-area.
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From these figures, we can see that a smaller sub-area will result in a higher localization accuracy.

Moreover, these simulation results also indicate that the positioning accuracy improves with the

number of observers and antennas. Based on this, when there are enough observers and antennas

available (the reachable positioning accuracy is high), we can reduce the number of sub-areas and

achieve a certain positioning accuracy with less computational resources. If the observers and antennas

are relatively scarce, we need to further subdivide the sub-areas to achieve the desired positioning

accuracy at the cost of more memory resources.

4.10. Comparison of the Resolution Capability for the Proposed Method and MUSIC-DPD Algorithm

The main advantage of MUSIC algorithm is its high resolution. In this subsection, we attempt to

compare the resolution capability of the proposed MLP-MLP-RBF network with that of MUSIC-DPD

method. Since the proposed technique is based on NN computation, it has no spectrum; so, it is

difficult to compare their resolution capability under the standard definition of resolution. Next,

we design and conduct a set of simulation experiments to reveal that the proposed method has better

resolution capability than MUSIC under low SNR conditions. We fix SPR = 0 dB, SNR = −10 dB,

u1 = (−500, 0) m, and u2 = (500, 0) m, and the other simulation conditions are the same as described

in Section 4.8. Figures 30 and 31 show the spectrum of the MUSIC-DPD algorithm and simulation

results of the proposed method for 30 MC experiments, respectively.

−
  

 

Figure 30. Spectrum of the MUSIC-DPD algorithm.

−
  

 

Figure 31. Simulation results of the proposed method for 30 MC experiments.

From Figures 30 and 31, we can conclude that when MUSIC-DPD algorithm fails due to the overlap

of two original spectral peaks at a low SNR, the proposed MLP-MLP-RBF network can distinguish



Sensors 2018, 18, 1925 23 of 26

two sources clearly. The simulation shows the resolution capability of the proposed technique from

a certain aspect. As can be seen from Remark 3, the resolution capability of the proposed method

depends on the size of the sub-area; however, in practice, we can improve the resolution by further

subdividing the sub-areas.

4.11. Study of the Network Performance for Other Arrangement of Observer Positions

In this subsection, we examine the localization performance of the proposed method for other

observer position arrangement. We consider four observers at the positions listed in Table 5. Without

loss of generality, each observer array is equipped with a six-element nonuniform linear array.

The simulation environment is shown in Figure 32. Assume that two sources are located in the

two sub-areas of Figure 33. The other simulation conditions are the same as described in Section 4.8.

Table 5. Positions of observer arrays (units: m).

Observer No. 1 2 3 4

xi −6000 −2000 2000 6000
yi 0 0 0 0

−6000 −2000

1 2 3 4

1
( )s t

2
( )s t

 

x

y

0 dB and vary the SNR in the range −10–
–

Figure 32. Simulation environment.
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0 dB and vary the SNR in the range −10–
–

Figure 33. Two sub-areas with 300 m by 300 m.

We fix SPR = 0 dB and vary the SNR in the range −10–35 dB in steps of 5 dB. The simulation

results for three algorithms mentioned above are shown in Figures 34–36. As expected, the proposed

MLP-MLP-RBF method can be well-generalized to other observer position arrangements. Furthermore,

we can get the same conclusion as that in Sections 4.4 and 4.8, thus it is not repeated here.
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−6000 −2000

0 dB and vary the SNR in the range −10–
–

Figure 34. RMSE of the proposed MLP-MLP-RBF network versus SNR for sub-area 1.

 

– –

•
•

Figure 35. RMSE of the MUSIC-DPD algorithm versus SNR for sub-area 1.

– –

•
•

Figure 36. RMSE of the ML-DPD algorithm versus SNR for sub-area 1.

5. Conclusions and Future Work

In this paper, we have proposed a new NN-based DPD algorithm (MLP–MLP–RBF) for multiple

sources. The MLP-MLP-RBF network performs the DPD through data preprocessing, detection,

spatial filtering, and position estimation stages. The originalities of the proposed MLP-MLP-RBF

network are the dimension reduction and normalization for all array sample covariance matrixes,

the implementation of the spatial filtering network that effectively filters out the sources beyond the



Sensors 2018, 18, 1925 25 of 26

relevant sub-area, and the subdivision of region that greatly reduces the amount of training data

required. These novel developments enable multiple-source DPD. We have also elaborated on the

construction and training processes of two types of NNs in various stages.

Finally, several simulation experiments are conducted to verify the superiority of the new

algorithm and the validity of the theoretical derivation. The performance of the NNs in the detection,

filtering, and position estimation stages is verified. The proposed MLP-MLP-RBF network shows good

generalization performance for a wide range of SNR and SPR values, and its performance is generally

better than that of the MUSIC-DPD algorithm at low SNRs and can attain the ML accuracy at high SNRs.

Furthermore, a key advantage of this approach over the MUSIC-DPD and ML-DPD algorithms is its

ability to provide the DPD almost instantaneously, making it suitable for real-time implementation.

Currently, the proposed method only uses the angle information of the radiated signals in the

two-dimensional positioning scene. In future work, we will extend the method to overcome the

following issues:

• Multiple target localization combining angle and delay information.

• Location estimation in three dimensions.

• Extending the detection stage to estimate the number of sources for a sub-area.
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