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Abstract

We prove that corruption, one of the most powerful mea-
sures used to analyze 2-party randomized communication
complexity, satisfies a strong direct sum property under
rectangular distributions. This direct sum bound holds
even when the error is allowed to be exponentially close
to 1. We use this to analyze the complexity of the widely-
studied set disjointness problem in the usual “number-on-
the-forehead” (NOF) model of multiparty communication
complexity.

1 Introduction

One of the most important problems in communication
complexity is the two party set disjointness function: Al-
ice and Bob are each given a subset of [n] and they want
to determine whether or not they share a common element
[2, 17, 28, 27]. A natural extension of two party disjoint-
ness is k party disjointness. Now there are k players, each
with private inputs x1, . . . , xk ⊆ [n] respectively, and again
they want to determine whether or not they share a com-
mon element. This problem, multiparty set disjointness
in the “number-in-hand” (NIH) model, has been the focus
of considerable research largely because randomized lower
bounds in this setting are related to the space complexity of
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randomized streaming algorithms that approximately com-
pute frequency moments of a data set [1]. After a sequence
of improved bounds [1, 29, 6, 7], nearly optimal bounds are
now known [10] for multiparty NIH set disjointness.

Another model of multiparty communication complexity
that is frequently studied is the “number-on-the-forehead”
(NOF) model [12] in which each player sees all but his/her
own input which metaphorically is on his/her forehead.
This model is extremely important, as linear lower bounds
for k = nε players for any explicit function would solve a
major open problem in circuit complexity. The only lower
bounds known so far hold for k ≤ log2 n players, and,
with one exception, use the discrepancy method [5, 13, 26]
in which it is required to show that the function is nearly
balanced on all large cylinder intersections. Thus, it is a
major challenge to develop new techniques for understand-
ing NOF multi-party protocols. Interestingly, the multiparty
NOF complexity of set disjointness even for three players is
almost completely open, and seems to be an important step
towards understanding multiparty NOF protocols in gen-
eral. This is because the discrepancy technique yields only
trivial bounds for set disjointness (because set disjointness
is constant on some very large cylinder intersections), so
progress here should involve a new kind of argument.

Additionally there are several other interesting applica-
tions of strong lower bounds for multiparty NOF complex-
ity of set disjointness. By a natural extension of the ideas
in [2] one can show that for k ≥ 2 the k-party set disjoint-
ness problem is “complete” for the k-party communication
complexity class k-NPcc. Thus, strong lower bounds for
set disjointness would prove a separation between nondeter-
ministic and deterministic (or randomized) multiparty NOF
communication complexity. Secondly, as we show in re-
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lated work [8], ω(log3 n) lower bounds for k-party NOF set
disjointness yield lower bounds for a large family of proof
systems known as tree-like, degree k−1 threshold systems.
Such systems are quite powerful, and include systems such
as the Chvatal-Gomory Cutting Planes proof system, and
all variations of the Lovasz-Schriver proof systems, in tree-
form. (We further showed that lower bounds of the form
ω(log n(log log n)2) also have non-trivial proof complexity
consequences.)

The best protocol known for the k-party NOF set dis-
jointness problem is the trivial one with complexity n in
which one player broadcasts its input; given the bounds for
the two-party case, when k is constant one should expect the
complexity of set disjointness to be nΩ(1) (if not Ω(n)). The
only previous lower bound for k-party NOF set disjointness
for k ≥ 3 is a bound of Wigderson that appears in [4] which
shows that the one-way 3-party NOF complexity of set dis-
jointness is Ω(

√
n). (The bound as stated is for a layered

pointer jumping problem which corresponds to the special
case of the disjointness problem in which the first player’s
input is one of

√
n disjoint subsets of [n] of size

√
n, the

second player’s input has one element in each of these
√

n
blocks and the third player’s input is an arbitrary vector of
n bits.)

In this paper, we make some further progress to-
ward understanding the NOF multiparty complexity of
set disjointness, by deriving several new lower bounds.
We prove that in the simultaneous NOF communication
model [3] the randomized k-party complexity of disjoint-
ness is Ω(n1/(k−1)/(k − 1)). We also obtain an Ω(n1/3)
lower bound in a model of 3-party NOF communication
complexity that does not have a one-way or simultaneous
requirement – in particular in a model (implicitly consid-
ered by Nisan and Wigderson [24]) in which one of the three
parties communicates once at the start and then the other
two parties alternate communication arbitrarily. Finally, in
the general model needed for the proof complexity bounds
above, we obtain an Ω(log n) lower bound for randomized
3-party NOF communication complexity of set disjointness
using techniques related to our Ω(n1/3) lower bound and a
Ω( log n

k−1 ) lower bound for its randomized k-party communi-
cation complexity based on our lower bound for simultane-
ous protocols.

To date, other than the Ramsey-theoretic bounds shown
in [12], general NOF communication complexity lower
bounds have all been proved using discrepancy which does
not suffice for analyzing disjointness. Our bounds are par-
ticularly interesting because they introduce a new method
for proving multiparty NOF bounds via an extension of a
measure used to analyze 2-party communication complex-
ity. As a key part of our argument we show that this 2-party
measure satisfies a direct sum property. This result is inter-
esting in its own right.

For a function f : I → O, the function f t : It → Ot

given by f t(x1, . . . , xt) = (f(x1), . . . , f(xt)). A com-
plexity measure C satisfies a direct sum property if and
only if C(f t) = Ω(tC(f)). This property is strict if and
only if the lower bound is essentially tC(f) rather than
Ω(tC(f)). Karchmer, Raz, and Wigderson [19] introduced
the direct sum problem in 2-party communication complex-
ity (in particular of Boolean relations) and showed that its
proof would yield a separation between NC1 and NC2.

Although the problem for Boolean relations is wide
open, there are a number of direct sum results for
2-party communication complexity of functions which
have been shown to have independent interest. A
strict direct sum property is known for nondeterminis-
tic and co-nondeterministic 2-party communication com-
plexity and direct sum properties are known for bounded-
round deterministic [18, 15] and bounded-round distribu-
tional/randomized [16] 2-party communication complexity.
(Note that one should only consider randomized computa-
tion with public randomness since the direct sum property
is not strictly true with private randomness, although there
is no essential distinction between these at complexities that
are Ω(log n). Note also that an alternative way to express
Wigderson’s bound for one-way 3-party NOF set disjoint-
ness in [4] can be derived from direct sum results for ran-
domized one-way 2-party communication complexity.)

While there are no universal direct sum results for un-
restricted deterministic or randomized 2-party communica-
tion complexity, there are a number of useful direct sum
results for the measures used to derive lower bounds for
these complexities. The first of these results was the obser-
vation [19] that the rank of the communication matrix used
for deterministic communication complexity lower bounds
satisfies a strict direct sum property.

For randomized communication complexity,
Shaltiel [30] proved that one major measure, discrep-
ancy, satisfies a direct product property and therefore
satisfies a direct sum property. Moreover, one of the most
important values of information complexity [11, 6] and
conditional information complexity [7] as lower bound
techniques for randomized communication complexity
is the very fact that these measures satisfy direct sum
properties under rectangular (or conditionally rectangular)
distributions.

Information complexity and discrepancy are incompa-
rable measures [6]. We show that a strictly more gen-
eral measure than discrepancy, corruption, which is often
a measure of choice for randomized communication com-
plexity bounds, satisfies a direct sum property for rectangu-
lar distributions.1 Corruption bounds, which we define in

1Although corruption bounds are frequently used, there does not seem
to be a consistent terminology for such bounds. We hope that the term
“corruption” is a suitable complement to “discrepancy”.
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the next section, were used for example lower bounds for
the 2-party communication complexity of the set disjoint-
ness function [2, 28], for which discrepancy is ineffective.
Moreover, Klauck [20] has shown that bounds based on cor-
ruption can be exponentially better than those based on dis-
crepancy.

We use the direct sum property for corruption to analyze
the direct sum of the set disjointness function and apply the
results in analyzing set disjointness in the multiparty NOF
model.

2 Discrepancy, Corruption, and Communi-
cation Complexity

Let f : I → O. For b ∈ O, a subset S ⊆ I is
called b-monochromatic for f if and only if f(s) = b for
all s ∈ S and is called monochromatic if and only if it is
b-monochromatic for f for some b ∈ O.

Let µ be a probability measure on I . For b ∈ O, a subset
S ⊆ I is called ε-error b-monochromatic for f under µ if
and only if µ(S ∩ f−1(b)) ≤ ε · µ(S). For f : I → {0, 1},
b ∈ {0, 1}, and S ⊆ I the b-discrepancy of f on S under µ,

discb
µ(f, S) = µ(S ∩ f−1(b)) − µ(S ∩ f−1(b)).

Let Γ be a collection of subsets of I . Writing monoχ for
monochromatic define

monob
µ,Γ(f) = max{µ(S) | S ∈ Γ is b-monoχ},

ε-monob
µ,Γ(f) = max{µ(S) | S ∈ Γ is ε-error b-monoχ},

discb
µ,Γ(f) = max{discb

µ(f, S) | S ∈ Γ}.
For Γ ⊆ P(I), define monoµ,Γ(f) =

max{monob
µ,Γ(f) | b ∈ O} and for f : I → {0, 1}

the discrepancy of f under µ, discµ,Γ(f) =
max{disc0

µ,Γ(f), disc1
µ,Γ(f)}; when µ is omitted it is

assumed to be the uniform distribution.
The following is a simple relationship between these

measures.

Proposition 1. For any function f : I → {0, 1}, distri-
bution µ on I , Γ ⊆ P(I), ε < 1/2, and b ∈ {0, 1},
discb

µ,Γ(f) ≥ (1 − 2ε)[ε-monob
µ,Γ(f)].

Proof. Let S ∈ Γ witness the value of ε-monob
µ,Γ(f) so that

µ(S) = ε-monob
µ,Γ(f) and µ(S ∩ f−1(b)) ≤ εµ(S). Then

discb
µ,Γ(f) ≥ discb

µ(f, S) ≥ (1− 2ε)µ(S) as required.

A combinatorial rectangle R on set X×Y is an element
A × B of P(X) × P(Y ). Combinatorial rectangles are
naturally associated with 2-party communication complex-
ity. Let D2(f) (N2

1 (f), N2
0 (f)) be the 2-party deterministic

(respectively nondeterministic, co-nondeterministic) com-
munication complexity of a function f : X × Y → O. For

example, the following is a standard way to obtain commu-
nication complexity lower bounds.

Proposition 2. Let Γ be the set of combinatorial rectangles
on X × Y . For any f : X × Y → {0, 1} and for any
probability measure µ on X × Y ,

(a) D2(f) ≥ log2(1/monoµ,Γ(f)),

(b) For b ∈ {0, 1},
N2

b (f) ≥ log2(µ(f−1(b))/monob
µ,Γ(f)).

An i-cylinder C on U = X1 × · · · × Xk is a set of the
form

{(x1, . . . , xk) ∈ U | g(x1, . . . , xi−1, xi+1, . . . , xk) = 1}
for some function g. A cylinder intersection on X1 × · · · ×
Xk is a set E =

⋂k
i=1 Ci where Ci is an i-cylinder on

X1 × · · · × Xk. Cylinder intersections are naturally asso-
ciated with the so-called “number-on-the forehead” (NOF)
model of k-party communication complexity in which the
i-th player sees every portion of the input except for the i-th
portion. For k = 2, cylinder intersections are combinatorial
rectangles.

Let Rk
ε (f) be the ε-error k-party randomized NOF com-

munication complexity of f . The following are the standard
discrepancy lower bounds for randomized communication
complexity (see for example [22]).

Proposition 3 (Discrepancy Bound). Let Γ be the set of
combinatorial rectangles on X × Y . Let f : X × Y →
{0, 1}, ε < 1/2, and µ be any probability distribution on
X × Y .

(a) R2
ε (f) ≥ log2((1 − 2ε)/discµ,Γ(f));

(b) for b ∈ {0, 1},
R2

ε (f) ≥ log2[(µ(f−1(b)) − ε)/discb
µ,Γ(f)].

More generally, for k ≥ 2, if f : X1 × · · · × Xk → {0, 1}
and Γ is replaced by the set of cylinder intersections on
X1 × · · · × Xk then

Rk
ε (f) ≥ log2[(µ(f−1(b)) − ε)/discb

µ,Γ(f)].

The 1 − 2ε in the numerator in (a) is the required total
correlation of the output of the protocol with the function
f . The numerator in (b) is the required correlation of the b
outputs of the protocol with the value of f . Observe that the
bound from part (a) can never be more than 1 more than the
maximum of the two bounds from part (b).

The discrepancy bound works well for functions such
as the inner product function in two party communication
complexity and for generalized inner product for multiparty
communication complexity.

However, it does not suffice to derive lower bounds for
the set disjointness problem among others. An alternative
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lower bound method that suffices for 2-party lower bounds
for set disjointness is based on a corruption bound which
says that any sufficiently large rectangle cannot be fully b-
monochromatic and is thus “corrupted” by some fixed frac-
tion of errors. Although it is implicit in many lower bound
arguments we state it explicitly here.

Lemma 4 (Corruption Bound). Let Γ be the set of com-
binatorial rectangles on X × Y . Let f : X × Y → O,
O′ ⊂ O, ε ≤ 1, and µ be any probability distribution on
X × Y . For ε′ < ε · µ(f−1(O′)),

R2
ε′(f) ≥ min

b∈O′
log2[(µ(f−1(O′))− ε′/ε)/ε-monob

µ,Γ(f))].

More generally, for k ≥ 2, if f : X1 × · · · × Xk → O and
Γ is replaced by the set of cylinder intersections on X1 ×
· · · × Xk then

Rk
ε′(f) ≥ min

b∈O′
log2[(µ(f−1(O′))− ε′/ε)/ε-monob

µ,Γ(f))].

Proof. We give the proof for k = 2; the argument for
k > 2 is completely analogous. By Yao’s Lemma R2

ε′(f)
is at least the maximum number of bits communicated by
the best ε′-error deterministic protocol under distribution
µ. Fix such any deterministic protocol and consider the
partition of X × Y into rectangles induced by the pro-
tocol. Let γ = maxb∈O′ ε-monob

µ,Γ(f). For b ∈ O′,
let αb be the total measure of inputs contained in rectan-
gles of measure at most γ on which the protocol outputs
b. There must be at least

∑
b∈O′ αb/γ such rectangles and

thus R2
ε′(f) ≥ log2(

∑
b∈O′ αb/γ).

We now bound
∑

b∈O′ αb. For any b 	= b′ ∈ O,
let ε′b→b′ the total measure of inputs on which the pro-
tocol answers b′ when the correct answer is b. Clearly
ε′ =

∑
b,b′:b�=b′ ε′b→b′ . By definition, the protocol answers b

on at least a µ(f−1(b))+
∑

b′ �=b ε′b′→b −
∑

b′ �=b ε′b→b′ mea-
sure of the inputs in f−1(b). By the definition of γ and
ε-monob

µ,Γ(f), any rectangle of measure larger than γ on
which the protocol answers b must have at least an ε pro-
portion of its total measure on which the correct answer
is not b; i.e., an ε proportion of its measure contributes to∑

b′ �=b ε′b′→b. Thus in total for b ∈ O we have

∑

b′ �=b

ε′b′→b ≥ ε · [µ(f−1(b))+
∑

b′ �=b

ε′b′→b −αb −
∑

b′ �=b

ε′b→b′ ].

Rearranging, we have

αb ≥ µ(f−1(b)) −
∑

b′ �=b

ε′b→b′ − (1/ε − 1)
∑

b′ �=b

ε′b′→b.

Summing this over all choices of b ∈ O′ we obtain
∑

b∈O′

αb ≥
∑

b∈O′

µ(f−1(b)) −
∑

b∈O′

∑

b′ �=b

ε′b→b′

− (1/ε− 1)
∑

b∈O′

∑

b′ �=b

ε′b′→b

= µ(f−1(O′)) − (1/ε)
∑

b,b′∈O′:b�=b′

ε′b→b′

−
∑

b∈O′

∑

b′ /∈O′

ε′b→b′ − (1/ε− 1)
∑

b/∈O′

∑

b′∈O′

ε′b→b′

≥ µ(f−1(O′)) − (1/ε)
∑

b,b′:b�=b′

ε′b→b′

= µ(f−1(O′)) − ε′/ε

which yields the claimed lower bound.

In the special case that the output set O = {0, 1} we
obtain the following corollary.

Corollary 5. Let Γ be the set of combinatorial rectangles
on X × Y . For any ε < 1/2 there is a constant cε > 0 such
that for f : X ×Y → {0, 1}, µ any probability distribution
on X × Y , and b ∈ {0, 1},

R2
ε (f) ≥ cε log2[(µ(f−1(b)) − ε)/ε-monob

µ,Γ(f))]

and the same lower bound holds for the case of Rk
ε (f)

where Γ is the corresponding set of cylinder intersections
on X1 × · · · × Xk.

Proof. We reduce the protocol error to ε′ = ε2 and then
apply Lemma 4 to obtain the claimed result. If ε is close
to 1/2, say ε ≥ 1/3 then repeating the ε-error protocol
O(1/(1 − 2ε)2) times and taking the majority answer en-
sures that the error is ≤ 1/9 ≤ ε2. If ε < 1/3 then repeating
the protocol O(1) times and taking the majority answer suf-
fices. In either case the lower bound for error ε2 is reduced
by only a small constant factor to yield a lower bound for
error ε.

Up to the constant cε, the above bound is of the same
form as that of Proposition 3 except that it uses corruption
rather than the discrepancy and, by Proposition 1, up to
small multiplicative and additive constants, the corruption
bound is superior.

3 A Direct Sum Theorem for Corruption
under Rectangular Distributions

3.1 Definitions and Notation

For a function f : X × Y → {0, 1}, define f t : Xt ×
Y t → {0, 1}t by f t(�x, �y) = (f(x1, y1), . . . , f(xt, yt))
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where �x = (x1, . . . , xt) and �y = (y1, . . . , yt). Given a
distribution µ on a set I , the distribution µt is a distribution
on It that is the cross product of t independent copies of µ
on each of the t coordinates.

We now make some definitions for sets S ⊆ X t × Y t.
Let T ⊆ [t] and U = [t]−T . For S ⊆ X t×Y t, let ST be the
set of projections of S on XT ×Y T . (If T is a singleton set
{j} then we write Sj for S{j}.) For (xU , yU ) ∈ XU × Y U

and S ⊆ X t×Y t let S(xU , yU ) be the set of all (�x′, �y′) ∈ S
such that x′

U = xU and y′
U = yU .

A distribution µ on X × Y is rectangular if and only if
there are probability distributions µX on X and µY on Y
such that µ(x, y) = µX(x)µY (y).

Finally, we say that S is rectangular with respect to
coordinates T if and only if for every (xU , yU ) ∈ SU ,
S(xU , yU )T is a combinatorial rectangle in XT × Y T .

3.2 The Direct Sum Theorem

For f : X × Y → O and µ a probability distribution on
X×Y , the ε-corruption bound for f over distribution µ with
respect to b, written corrbdb

µ(f, ε) is defined to be equal to
log2(1/ε-monob

µ,Γ(f)), where Γ is the set of combinatorial
rectangles on X × Y . One should think of the corruption
bound as a lower bound on the number of bits that need to
be communicated in order to achieve a protocol for f over
distribution µ with error at most ε.

We can re-express the bound from Corollary 5 as

R2
ε (f) ≥ cε(corrbdb

µ(f, ε) − log2(
1

µ(f−1(b) − ε
))

and the bound from Lemma 4 as

R2
ε′(f) ≥ min

b∈O′
corrbdb

µ(f, ε) − log2(
1

µ(f−1(O′)) − ε′/ε
).

Theorem 6 (Direct Sum Property for Corruption). Let
f : X × Y → {0, 1} and µ be a rectangular probability
distribution on X × Y . Let b ∈ {0, 1}, t be a positive
integer, and let v ∈ {0, 1}t be a binary vector with at least
t0 b’s. Let m = corrbdb(f, ε). If 1 > ε > 12mt/2m/8 then
corrbdv

µt(f t, 1 − (3/ε)(1 − ε/2)t0) ≥ t0 · corrbdb(f, ε)/6.

Observe that this lemma implies very strong error prop-
erties. It says that any large rectangle on which a protocol
P outputs a vector v with many b’s has the correct answer
on only an exponentially small fraction of the inputs under
distribution µt.

One can loosely interpret the above theorem in the fol-
lowing way. Suppose that we have a lower bound of k on
the number of bits that need to be communicated in order
to solve one instance of f , with error at most ε, via a cor-
ruption bound on, say b = 0. (That is, we know that any
rectangle for f with mostly 0’s must be small.) Then the

obvious protocol in order to solve t instances is to run each
of the k-bit protocols in order to solve all t instances with a
total of kt bits. Now, if the error is uncorrelated, the proba-
bility that the answer is correct over all of the t instances is
extremely large, namely 1 − (1 − ε)t. However, the bound
will not be quite this good because the known bound for one
copy/instance of f is obtained via corruption; that is, we
are only guaranteed that the problem is hard on 0-instances.
Thus the bit complexity of t instances as well as the error
will be a function of t0, the number of 0’s in v, rather than
a function of t.

As we will show shortly, we will apply the above theo-
rem to the set disjointness problem where there is a known
lower bound of Ω(

√
n) for b = 0. This enables us to prove

that solving t instances of set disjointness over a suitable
distribution requires on the order of t

√
n bits of communi-

cation, even to obtain a protocol that is correct on only an
exponentially small fraction of the inputs.

The general technique we use for our direct sum bound
follows a standard paradigm of iterated conditional proba-
bility analysis on the coordinates that allows one to prove
earlier proofs of direct product theorems for circuits that
allow one to prove Yao’s XOR lemma [14], Raz’s parallel
repetition theorem [25] and bounds on the complexity sav-
ings given by ‘help bits’ [9, 23].

The following lemma is the main tool we need to prove
the direct sum property of corruption. Its proof is the sole
reason that we need to restrict the distribution µ to be rect-
angular.

Lemma 7 (Key Lemma). Let f : X × Y → {0, 1} and
µ be a rectangular probability distribution on X × Y . Let
b ∈ {0, 1} and m = corrbdb

µ(f, ε) for ε < 1. Let k ≥ 1

and A×B ∈ P(Xk)×P(Y k). For integer K ′ ≥ 1 let K =

log(1−ε/6) 2−K′� = 
−K ′/ log2(1−ε/6)�. There are sets
P, Q, E ⊆ A×B such that the set of inputs (�x, �y) ∈ A×B
for which f(x1, y1) = b is contained in P ∪ Q ∪ E where

• µk(E) ≤ 21−K′

,

• µk(Q) ≤ (1 − ε/2)µk(A × B − P − E),

• µ(P1) ≤ K22−m.

Furthermore P , Q, and E are rectangular on coordinates
{2, . . . , k} and P1, Q1, and E1 are all disjoint.

Proof. We would like to upper bound the fraction of inputs
in A × B on which f(x1, y1) = b. The general idea of the
proof involves considering the set of projections (x1, y1) of
the elements of A×B on the first coordinate. This set forms
a rectangle on X ×Y . By definition of m = corrbdb

µ(f, ε),
if this set has µ measure larger than 2−m then f(x1, y1) = b
for at most a 1 − ε fraction of the projected pairs (x1, y1).

However, because the different (x1, y1) occur with dif-
ferent frequencies in A × B, the overall fraction of errors
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may be much smaller. To overcome this problem we group
the elements of A and B based on the number of exten-
sions their projections x1 or y1 have in A or B respectively.
We choose the groups so that each is a rectangle and in any
group there is very little variation in the number of exten-
sions. For any one of these groups containing at least a 2−m

fraction of (x1, y1) pairs we can apply the corruption bound
for f to bound below 1 the fraction of inputs on which the
function has output b. Any group that does not satisfy this
must be small. To keep the number of groups small we first
separate out one set consisting of those inputs where the
number of extensions is tiny. In our argument, Q will the
union of the large groups, P will be the union of the small
groups, and E will be the set of inputs with a tiny number
of extensions.

For T ⊆ [k] define µT on XT ×Y T as the cross product
µT on those coordinates. Define µT

X and µT
Y similarly so

that µT is the cross product of µT
X and µT

Y .
Let A1 be the set of projections of A on the first coor-

dinate and B1 be the set of projections of B on the first
coordinate. Choose δ = ε/6 and let T = {2, . . . , k}. Sort
the elements of A1 based on the number of their extensions.
For 1 ≤ i ≤ 
log(1−δ) 2−K′� = 
−K ′/ log2(1 − δ)� = K

let A1,i = {x1 ∈ A1 | i = 
log(1−δ) µT
X(A(x1)T )�} and

B1,i′ = {y1 ∈ B1 | i′ = 
log(1−δ) µT
Y (B(y1)T )�}. That is,

every point in A1,i has between a (1 − δ)i−1 and (1 − δ)i

measure of extensions in the T coordinates and similarly
for each B1,i′ . Let A1,i = {�x ∈ A | x1 ∈ A1,i} and
B1,i′ = {�y ∈ B | y1 ∈ B1,i′}. Let E = [(A−⋃K

i=1 A1,i)×
B]∪[A×(B−⋃K

i′=1 B1,i)]. By definition µk(E) ≤ 2·2−K′

.
For i, i′ ≤ K let R(i,i′) = A1,i × B1,i′ and then A ×

B = E∪⋃K
i=1

⋃K
i′=1 R(i,i′). By definition R

(i,i′)
1 = A1,i×

B1,i′ is the projection of R(i,i′) on the first coordinate. Also
by definition, every (x1, y1) ∈ R

(i,i′)
1 has at most a (1 −

δ)i+i′−2 and at least a (1 − δ)i+i′ measure of extensions in
R(i,i′) since

µT ((R(i,i′)(x1, y1))T ) = µT (((A × B)(x1, y1))T )

= µT (A(x1)T × B(y1)T )

= µT
X(A(x1)T ) · µT

Y (B(y1)T )

and for (x1, y1) ∈ R
(i,i′)
1 the first quantity in the product is

between (1 − δ)i−1 and (1− δ)i and the second is between
(1 − δ)i′−1 and (1 − δ)i′ . In particular, the measure of ex-
tensions of any two pairs (x1, y1), (x

′
1, y

′
1) ∈ R

(i,i′)
1 differ

by a factor between (1 − δ)2 ≥ (1 − ε/3) and 1.
Let G = {(i, i′) | µ(R

(i,i′)
1 ) = µ(A1,i ×B1,i′) ≥ 2−m}.

By assumption about f , for every (i, i′) ∈ G,

µ(A1,i × B1,i′ ∩ f−1(b)) ≤ (1 − ε)µ(A1,i × B1,i′).

Let Q(i,i′) be the set of elements of in R(i,i′) for which the

first coordinate answer is b. Since elements in R
(i,i′)
1 =

A1,i × B1,i′ have a µT measure of extensions in R(i,i′) be-
tween (1 − ε/3) and 1,

µk(Q(i,i′)) ≤ (1 − ε)µk(R(i,i′))/(1 − ε/3)

≤ (1 − ε/2)µk(R(i,i′)).

Let Q =
⋃

(i,i′)∈G Q(i,i′) and P =
⋃

(i,i′)/∈G R(i,i′). Then

µk(Q) ≤ (1 − ε/2)µk(
⋃

(i,i′)∈G

R(i,i′))

= (1 − ε/2)µk(A × B − P − E).

Furthermore for the projection P1 of P on the first coor-
dinate, µ(P1) < K22−m. Observe that the conditions
that determine whether an element (�x, �y) ∈ A × B is in
Q or P is based solely on the the (x1, y1) coordinates of
(�x, �y) so each of Q and P is rectangular with respect to
T = {2, . . . , k}.

Proof of Theorem 6. By symmetry we can assume without
loss of generality that b = 0 and the first t0 coordinates of v
are 0. We will classify inputs in R based on the properties of
their projections on each of the t0 prefixes of their coordi-
nates based on the trichotomy given by Lemma 7. Lemma 7
splits the set of inputs in any rectangle R based solely on
their the first coordinate into a tiny error set E of inputs, a
set P of inputs among which there are very few choices for
the first coordinate and a set Q of the remaining inputs on
which an output of 0 for that coordinate can be correct only
on a (1 − ε/2) fraction of inputs.

The sets of inputs corresponding to sets P and Q will be
further subdivided using Lemma 7 based on the properties
of their second coordinate, etc. For j ≤ t0 we will group
together all the tiny error sets E found at any point into a
single error set which also will be tiny. For the remaining
inputs the decomposition over the various coordinates leads
to disjoint sets of inputs corresponding to the branches of a
binary tree, depending on whether the input fell into the P
or Q set at each each application of Lemma 7. At each stage
we either get a very small multiplicative factor in the upper
bound on the total number of inputs possible because of the
lack of variation in the coordinate (the case of set P ) or we
get a small multiplicative factor in the upper bound on the
fraction of remaining inputs on which the answer of 0 can
be correct (the case of set Q). For α ∈ {p, q}t0 we will
write Sα for the set of inputs such that for each j ∈ [t0], the
input is in a P set at coordinate j when αj = p and in a Q
set at coordinate j when αj = q. Out of t0 coordinates, one
of p or q must occur at least t0/2 times which will be good
enough to derive the claimed bound.

Define µT for T ⊆ [t] as in the proof of Lemma 7. For
α ∈ {p, q}j define #p(α) (resp. #q(α)) to be the number
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of p’s (resp. q’s) in α. For 0 ≤ j ≤ t0 and α ∈ {p, q}j

we will define sets Sα, Ej ⊆ Xt × Y t, with the following
properties for each j ≤ t0:

1. R ∩ (f t)−1(v) ⊆ Ej ∪ ⋃
α∈{p,q}j Sα.

2. For every α ∈ {p, q}j, Sα is rectangular with respect
to coordinates j + 1, . . . , t.

3. For U = {1, . . . , j}, the sets Sα
U for different α ∈

{p, q}j are disjoint.

4. For α ∈ {p, q}j−1,
µt(Sαq) ≤ (1 − ε/2)[µt(Sα) − µt(Sαp)].

5. For U = {1, . . . , j},
µU (Sα

U ) ≤ 
−mt/ log(1 − ε/6)�2j2−#p(α)m for any
α ∈ {p, q}j.

6. µt(Ej) ≤ 2j2−mt.

Define Sλ = R and E0 = ∅ where λ is the empty string.
Clearly all the properties are satisfied for j = 0.

For each α ∈ {p, q}j we apply Lemma 7 to build the sets
Sαp, Sαq , and Ej+1 from sets Sα and Ej as follows.

Let α ∈ {p, q}j . Let U = {1, . . . , j} and T = [t] − U .
For each (xU , yU ) ∈ Sα

U , Sα(xU , yU )T can be expressed
as A(xU ,yU ) × B(xU ,yU ). Apply Lemma 7 with k = t − j
and K ′ = mt to A(xU ,yU ) × B(xU ,yU ) to obtain disjoint
sets P(xU ,yU ), Q(xU ,yU ), and E(xU ,yU ) that contain all in-
puts of Sα(xU , yU ) on which the j+1-st output 0 is correct.
(Lemma 7 yields sets P , Q, and E that are defined on coor-
dinates j+1, . . . , t but we extend them to all coordinates by
including (xU , yU ) in all of the sets.) These sets are disjoint
on coordinate j, rectangular on coordinates j +2, . . . , t and
for K = 
−mt/ log2(1 − ε/6)� satisfy

µT ((E(xU ,yU ))T ) ≤ 21−mt,

µ((P(xU ,yU ))j+1) ≤ K22−m, and

µT ((Q(xU ,yU ))T ) ≤ (1 − ε/2)

× µT (Sα(xU , yU )T − (P(xU ,yU ))T ).

For α ∈ {p, q}j define

Sαp =
⋃

(xU ,yU )∈Sα
U

P(xU ,yU ),

Sαq =
⋃

(xU ,yU )∈Sα
U

Q(xU ,yU ),

and define

Ej+1 = Ej ∪
⋃

α∈{p,q}j

⋃

(xU ,yU )∈Sα
U

E(xU ,yU ).

Properties 1, 2, and 3 for j + 1 follow immediately from
Lemma 7.

Furthermore,

µt(Sαq)

= µt(
⋃

(xU ,yU )∈Sα
U

Q(xU ,yU ))

=
∑

(xU ,yU )∈Sα
U

µt(Q(xU ,yU ))

=
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})µT (Q(xU ,yU ))

≤
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})

× (1 − ε/2)µT (Sα(xU , yU )T − (P(xU ,yU ))T )

= (1 − ε/2)[
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})µT (Sα(xU , yU )T

−
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})µT (P(xU ,yU ))T )]

= (1 − ε/2)[µt(Sα) − µt(Sαp)]

which proves that property 4 is satisfied for j + 1.
Also,

µt(Ej+1)

= µt(Ej ∪
⋃

α∈{p,q}j

⋃

(xU ,yU )∈Sα
U

µt(E(xU ,yU )))

≤ µt(Ej) +
∑

α∈{p,q}j

∑

(xU ,yU )∈Sα
U

µt(E(xU ,yU ))

= µt(Ej)

+
∑

α∈{p,q}j

∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})µT ((E(xU ,yU ))T )

≤ 2j2−mt

+
∑

α∈{p,q}j

∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )})µT ((E(xU ,yU ))T )

≤ 2j2−mt + µU (
⋃

α∈{p,q}j

Sα
U ) 21−mt

≤ 2j2−mt + 21−mt ≤ 2(j + 1)2−mt,

which proves that property 6 is satisfied for j + 1.
Finally, for property 5 observe that for α ∈ {p, q}j ,

µU∪{j+1}(Sαp
U∪{j+1})

= µU∪{j+1}(
⋃

(xU ,yU )∈Sα
U

(P(xU ,yU ))U∪{j+1})

=
∑

(xU ,yU )∈Sα
U

µU∪{j+1}((P(xU ,yU ))U∪{j+1})

=
∑

(xU ,yU )∈Sα
U

µU ({(xU , yU )}) · µ((P(xU ,yU ))j+1)
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= µU (Sα
U ) · µ((P(xU ,yU ))j+1)

≤ µU (Sα
U ) · K22−m

≤ K2j2−#p(α)m · K22−m

= K2(j+1)2−#p(αp)m

and

µU∪{j+1}(Sαq
U∪{j+1}) ≤ µU∪{j+1}(Sα

U∪{j+1})

= µU (Sα
U ) · µ(Sα

j+1)

≤ µU (Sα
U )

≤ K2j2−#p(α)m

= K2j2−#p(αq)m.

Thus property 5 is satisfied for j + 1.
This implies all the properties required for the inductive

hypothesis and we have produced the desired sets. We now
use all these properties to derive the upper bound on µt(R∩
(f t)−1(v)):

By property 1, R ∩ (f t)−1(v) ⊆ Et0 ∪ ⋃
α∈{p,q}t0 Sα.

Therefore for α ∈ {p, q}t0 with #p(α) ≥ t0/2,

µt(Sα) ≤ µ{1,...,t0}(Sα
{1,...,t0}

)

≤ K2t02−#p(α)m

≤ K2t02−t0m/2

so µt(
⋃

α∈{p,q}t0 :#p(α)≥t0/2

Sα) ≤ 2t0K2t02−t0m/2.

We now upper bound the total measure of Sα for
#p(α) ≤ t0/2.

CLAIM: For every j ≤ t0, µt(
⋃

α∈{p,q}t0 : #q(α)=j Sα) ≤
(1 − ε/2)jµt(R).

The claim is clearly true for j = 0. For any α ∈ {p, q}∗,
by multiple applications of property 4,

µt(
⋃

i≤t0−|α|−1

Sαpiq)

=
∑

i≤t0−|α|−1

µt(Sαpiq)

≤
∑

i≤t0−|α|−1

(1 − ε/2)[µt(Sαpi

) − µt(Sαpi+1

)]

≤ (1 − ε/2)µt(Sα)

since the sum telescopes. Let Aj = (p∗q)j ∩ {p, q}≤t0

be the set of all strings of length up to t0 that end in
a q and have a total of j q’s. The above for α = λ
implies that µt(

⋃
α′∈A1

Sα′

) ≤ (1 − ε/2)µt(R). We
can also apply the above to all α ∈ Aj to yield that
µt(

⋃
α′∈Aj+1

Sα′

) ≤ (1 − ε/2)µt(
⋃

α∈Aj
Sα) and thus by

induction that µt(
⋃

α∈Aj
Sα) ≤ (1 − ε/2)jµt(R). Finally,

since Sαp ⊆ Sα for any α we derive that

µt(
⋃

α∈{p,q}t0 : #q(α)=j

Sα) = µt(
⋃

α∈Aj

Sαpt0−|α|

)

≤ µt(
⋃

α∈Aj

Sα)

≤ (1 − ε/2)jµt(R)

and the claim is proved.
Thus the total

µt(
⋃

α∈{p,q}t0 : #p(α)<t0/2

Sα)

= µt(
⋃

α∈{p,q}t0 : #q(α)>t0/2

Sα)

≤ (2/ε)(1 − ε/2)t0/2µt(R).

Putting it all together we have

µt(R ∩ (f t)−1(v))

≤ µt(Et0) + µt(
⋃

α∈{p,q}t0

Sα)

= µt(Et0) + µt(
⋃

α∈{p,q}t0

#p(α)≥t0/2

Sα) + µt(
⋃

α∈{p,q}t0

#p(α)<t0/2

Sα)

≤ 2t02
−mt +2t0K2t02−t0m/2 +(2/ε)(1− ε/2)t0/2µt(R).

Since − log2(1 − ε/6) > −√
2 ln(1 − ε/6) ≥ √

2ε/6 and
ε > 6mt/2m/8, K = 
−mt/ log2(1 − ε/6)� < 2m/8/23/2

and therefore

2t0K2t02−t0m/2 < 2−t0m/4/22t0 .

Therefore if µt(R) ≥ 2−t0m/6 and, since the condition on
ε implies that m ≥ 24,

µt(R ∩ (f t)−1(v))

< 2t02
−mt + 2−t0m/4/22t0 + (2/ε)(1 − ε/2)t0/2µt(R)

< 2−t0m/4 + (2/ε)(1 − ε/2)t0/2µt(R)

≤ 2−t0m/24µt(R) + (2/ε)(1 − ε/2)t0/2µt(R)

≤ 2−t0µt(R) + (2/ε)(1 − ε/2)t0/2µt(R)

≤ (3/ε)(1 − ε/2)t0/2µt(R)

as required.

The following is a direct sum theorem for randomized
communication complexity derived from corruption bounds
on cross product distributions on rectangles.
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Theorem 8. Let f : X × Y → {0, 1} and let µ be
a rectangular distribution on X × Y . For b ∈ {0, 1},
p = µ(f−1(b)), ε < p, if t is an integer such that log2 t ≤
corrbdb

µ(f, ε)/32 and ε ≥ 9 ln(pt)/pt then there are con-
stants c, c′, c′′ > 0 such that

R2
1−(1−ε)c′′pt(f

t) ≥ cpt · corrbdb
µ(f, ε) − c′pt.

Proof. Without loss of generality for ease of notation we
assume b = 0, write m for corrbd0

µ(f, ε) and assume that
m is sufficiently large.

We will apply Lemma 4 with the set O′ = {v ∈
{0, 1}t | v has ≥ pt/4 0’s}. Let Is be the set of all inputs
(�x, �y) ∈ X t × Y t such that f t(�x, �y) contains precisely s
0’s. By definition µt(Is) = Pr[B(t, p) = s] where B(t, p)
is the binomial distribution that is the sum of t Bernoulli tri-
als with success probability p. Therefore µt(

⋃
s<pt/4 Is) ≤

2−pt/2 and thus µ(f−1(O′)) ≥ 1 − 2−pt/2.
For log2 t ≤ m/32, ε ≥ 9 ln(pt)/pt > 1/t, for suffi-

ciently large m, ε ≥ 12mt/2m/8 and (4/ε)(1− ε/2)pt/4 <
(1 − ε)c′′pt for some constant c′′ > 0. We can then apply
Theorem 6 to show that for every v ∈ O′, corrbdv

µt(f t, 1−
(3/ε)(1 − ε/2)pt/4) ≥ ptm/24. By Lemma 4, for δ =
(3/ε)(1 − ε/2)pt/4 and δ′ < 1,

R2
1−δ′(f) ≥ ptm

24
− log2(

1

µ(f−1(O′) − (1 − δ′)/(1 − δ)
).

Since ε < p, for δ′ = (4/ε)(1 − ε/2)pt/4, δ′ ≥ δ + 21−pt/2

and (1−δ′)/(1−δ) ≤ 1−21−pt/2. Thus µ(f−1(O′)−(1−
δ′)/(1 − δ) ≥ 2−pt/2 by our lower bound on µ(f−1(O′)).
Therefore R2

1−δ′(f) ≥ ptm/24 − pt/2. We choose c =
1/24 and c′ ≥ 1/2 to ensure that the bound is non-trivial
only when m is large enough for the above conditions on m
to hold. This yields the claimed bound.

Set Disjointness

Define the k-party set-disjointness function for X1 =
· · · = Xk = {0, 1}n by DISJk,n : X1 × · · · ×Xk → {0, 1}
by DISJk,n(x1, . . . , xk) = 1 if for there is some j ∈ [n]
such that xi,j = 1 for all i ∈ [k] and DISJk,n(x1, . . . , xk) =
0 otherwise. We drop the subscript n if it is understood from
the context.

Babai, Frankl, and Simon [2] obtained a 2-party random-
ized communication complexity lower bound for DISJ2 by
showing that for some constant ε > 0 corrbd0

µ(DISJ2, ε)
is Ω(

√
n) and p = µ(f−1(0)) is constant where µ is the

rectangular distribution given by Prµ[xi = 1] = Prµ[yi =
1] = n−1/2 independently. Theorem 8 immediately allows
us to derive the following bound from this result:

Corollary 9. For some constant δ < 1, for any integer t,
R2

1−δt(DISJt2) is Ω(t
√

n).

Remark 1. Using the direct sum property for conditional
information complexity and the lower bound of [7], for fixed
error ε < 1 one can obtain the bound R2

ε(DISJt
2) is Ω(tn).

However this bound is incomparable to the above corollary
which allows exponentially small correctness.

In general we are interested in the complexity of
Rk

ε (DISJk). A natural distribution on X1 × · · · × Xk to
consider is νk under which Prνk

[xi,j = 1] = n−1/k for ev-
ery i and j independently. This is the natural extension to
DISJk of the distribution of [2],

4 3-party NOF Communication Complexity
of Disjointness

Here we consider the computation of DISJ3 and write
X, Y, Z for the 3 components of the domain. In the NOF
(number-on-the-forehead) model we identify 3 parties, the
X player who receives (y, z) as input, the Y player who
receives (x, z) as input and the Z player who receives (x, y)
as input. The natural distribution ν = ν3 on X×Y ×Z has,
independently, Prν [xi = 1] = Prν [yi = 1] = Prν [zi =
1] = n−1/3.

4.1 Z → (Y ↔ X) Computation

As an approach for obtaining size-depth tradeoff lower
bounds in circuit complexity Nisan and Wigderson [24]
suggested analyzing the 3-party NOF complexity of func-
tions of the form f(x, h, i) = h(x)i for H a family of
universal hash functions h : X → {0, 1}n. They showed
that sufficiently strong lower bounds on the communication
complexity when the i-player holding (h, x) communicates
first (and then ceases interaction) would suffice to derive
functions not computable in O(log n) depth and linear size
simultaneously.

We analyze the (randomized) communication
complexity of set disjointness in this model which
we write mnemonically as DZ→(Y ↔X)(DISJ3) and
R

Z→(Y ↔X)
ε (DISJ3).

Theorem 10. DZ→(Y ↔X)(DISJ3) is Ω(n1/3) and for ε <

1/2, R
Z→(Y ↔X)
ε (DISJ3) is Ω((1 − 2ε)n1/3/ logn).

Proof. We follow the general approach of [24] but use a
direct sum bound for corruption in place of a discrepancy
bound for universal hash function families. Note that al-
though the basic approach and bound of [24] is correct,
there is an issue with the proof in [24] that is discussed and
corrected below.

Fix any Z → (Y ↔ X) protocol P computing DISJ3
and let C(P ) be the total number of bits communicated in
P . Let t = n1/3. View each string x, y, z as a sequence of t
blocks, x1, . . . , xt, y1, . . . , yt, z1, . . . , zt ∈ {0, 1}n/t.
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Given P we first construct a Z → (Y ↔ X) proto-
col P ′ that computes (DISJ2(x1, y1), . . . , DISJ2(xt, yt)) in
which the Z-player sends C(P ) bits and the X and Y play-
ers together send tC(P ) bits: Consider runs of the proto-
col P with different choices of z ∈ Z , in particular with
z = zj = 0(j−1)n/t1n/t0(t−j)n/t for j = 1, . . . , t. For
z = zj , DISJ3(x, y, z) = DISJ2(xj , yj). Also observe that
for each of these choices, the message mZ(x, y) sent by
the Z-player is independent of the choice of z. On input
(x, y), the new protocol P ′ simulates P on inputs (x, y, zj)
for j = 1, . . . , t except that, since the message sent by the
Z-player is the same in each case, the Z-player sends this
message only once. P ′ then outputs the tuple of results.

Observe that the function computed by P ′ does not
depend on the choice of z so we define a new protocol
P ′′(x, y) = P ′(x, y, 0n). In protocol P ′′ the Z-player re-
ceives (x, y) as input as before but the X player only re-
ceives x and the Y player only receives y. (We swap the
names of the X and Y players to avoid confusion.) Af-
ter the Z-player’s communication of C(P ) bits, the X-
and Y -players exchange tC(P ) bits in order to compute
DISJt2,n/t(x, y).

Sequentially fix the communications of the players as
follows: Consider the distribution ν on X × Y × Z de-
fined above and let µ be the induced distribution on x and
y. Let p = Prµ[DISJ2(x

j , yj) = 0] be the probability that x
and y intersect in block j. By construction, p is an absolute
constant. For a vector v, write #0(v) to be the number of
0’s in v. Since P ′′ is always correct, by Chernoff bounds

Pr
µ

[#0(P
′′(x, y)) <

pt

4
] = Pr

µ
[#0(DISJt

2,n/t(x, y)) <
pt

4
]

< 2−pt/2 ≤ 1/2.

Since the set of possible messages is prefix-free and |mz | ≤
C(P ), there is some mz such that

Pr
µ

[mZ(x, y) = mz and #0(P
′′(x, y)) ≥ pt

4
] > 2−C(P )−1.

Fix that mz .
At this point in [24], the communications of the X and

Y players are fixed to frequent strings mx and my and the
claim is made that the set of inputs on which the communi-
cations mx and my occur is a rectangle. Unfortunately, this
is not necessarily the case; for example, it is violated by a
protocol in which mz = 1 if and only if x1 = y1 and the
X-player and Y -player toggle each bit they communicate
depending on mz . Instead we apply a more complicated
argument.

Let Smz ⊆ X × Y be the set of inputs on which
mZ(x, y) = mz . For a possible communication sequence
mXY of the X and Y players we say that x is consistent
with (mz , mXY ) if and only if there is some y such that

(x, y) ∈ Smz and the communication in P ′′ by the X- and
Y -players is mXY after the Z-player has sent mz . The
definition is analogous for y. Let
AmXY (mz) = {x ∈ X | x is consistent with (mz , mXY )},
BmXY (mz) = {y ∈ Y | y is consistent with (mz , mXY )}.

By the usual argument for 2-party protocols, for mz

fixed, the different rectangles RmXY (mz) = AmXY (mz)×
BmXY (mz) are disjoint; moreover the communication un-
der P ′′ is (mz , mXY ) for every input in RmXY (mz)∩Smz .
For simplicity write RmXY for RmXY (mz). Let S ⊆ Smz

be the portion of Smz on which #0(P
′′(x, y)) ≥ pt/4. By

construction µ(S) ≥ 2−C(P )−1.
There are at most 2tC(P ) valid choices for mXY . By

Markov’s inequality, at least 1/2 of the measure of S has
communication mXY = mxy such that

µ(Rmxy ∩ S) ≥ 2−tC(P )−1µ(S) ≥ 2−(t+1)C(P )−2.

For any such mxy clearly µ(Rmxy ) ≥ 2−(t+1)C(P )−2. For
such an mxy, let the output of P ′′ with communication
given by (mz, mxy) be v. By construction, #0(v) ≥ pt/4.

By Theorem 6 applied to DISJ2,n/t there are constants
δ < 1 and c′ > 0 such that corrbdv

µ(DISJt2,n/t, 1 − δt) ≥
c′t

√
n/t. Therefore for (t + 1)C(P ) + 2 ≤ c′t

√
n/t, by

definition,

Pr
µ

[DISJt2,n/t(x, y) = v | (x, y) ∈ Rmxy ] ≤ δt.

By the assumption that P ′′ is always correct,
DISJt2,n/t(x, y) = v for all (x, y) ∈ Rmxy ∩ S.
Thus µ(Rmxy ∩ S) ≤ δtµ(Rmxy). Therefore if
(t+1)C(P )+2 ≤ c′t

√
n/t then 2−C(P )−2 ≤ µ(S)/2 ≤ δt

since the various rectangles Rmxy are disjoint. It follows
that C(P ) is Ω(min{t, √n/t}) which is Ω(n1/3) since
t = n1/3.

The case of randomized complexity is very similar al-
though a little more complicated. We first repeat the proto-
col P in parallel and take the majority answer to reduce
its error from ε to 1/(8t). This increases the communi-
cation complexity C(P ) by a factor that is O( log t

1−2ε ). We
then use Yao’s lemma with the distribution ν to derive a
deterministic protocol P ∗ with complexity C(P ∗) that is
O( log t

1−2εC(P )) and has error at most 1/(8t) on the distribu-
tion ν.

We apply the above argument with P ∗ replacing P to
obtain a protocol P ′′ computing DISJt

2,n/t(x, y) in which
the Z-player sends C(P ∗) = O( log t

1−2εC(P )) bits based on
(x, y) and the X and Y players interact sending a total of
tC(P ∗) bits based on x and y respectively. The error of
P ′′ is the probability under ν (and therefore under µ since
P ′′ does not depend on the value of z) that any one of the
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t components of its answer is incorrect which is at most
t · 1/(8t) = 1/8 by a union bound. In this case,

Pr
µ

[#0(P
′′(x, y)) ≥ pt/4 and P ′′(x, y) = DISJt

2,n/t(x, y)]

≥ Pr
µ

[P ′′(x, y) = DISJt
2,n/t(x, y)]

− Pr
µ

[#0(DISJt2,n/t(x, y) < pt/4)]

> 7/8 − 2−pt/2 > 3/4.

Each possible communication string m = (mZ , mXY ) is
associated with a set of inputs Tm ⊆ X × Y on which
the output of P ′′ is constant v(m) and these sets partition
X×Y . Since at most 1/4 of the inputs in X×Y have either
an error in P ′′ or few 0’s in the output of P ′′, by Markov’s
inequality at least 1/2 the measure of inputs in X × Y are
contained in sets Tm for which the output of P ′′ on the in-
puts in Tm has at least pt/4 zeros and the probability that
this output is correct is at least 1/2 the measure of Tm.

Therefore since there are only 2C(P∗) choices of mZ ,
we can fix an mz such that the total µ measure of sets
Tm on which mZ(x, y) = mz , #0(v(m)) ≥ pt/4, and
Prµ[P ′′(x, y) = DISJt

2,n/t(x, y) | (x, y) ∈ Tm] ≥ 1/2 is
at least 2−C(P∗)−1. Let Smz be the set of inputs consistent
with communication mz and let S ⊆ Smz be the set of in-
puts (x, y) such that for some mXY and m = (mz, mXY ),
P ′′ has communication m on input (x, y), #0(v(m)) ≥
pt/4, and Prµ[P ′′(x, y) = DISJt

2,n/t(x, y) | (x, y) ∈
Tm] ≥ 1/2. Clearly µ(S) ≥ 2−C(P∗)−1.

Again there are at most 2tC(P∗) possible communica-
tion strings mXY between the X and Y players in P ′′

that, together with mz , define the set Tm. As above,
each choice of mXY yields a rectangle RmXY (mz) such
that Tm = RmXY (mz) ∩ S. By the same reason-
ing as above at least a 1/2 fraction of S is covered by
disjoint rectangles Rmxy(mz) such that µ(Rmxy(mz) ∩
S) ≥ µ(S)2−tC(P∗)−1 ≥ 2−(t+1)C(P∗)−2 and thus
µ(Rmxy(mz)) ≥ 2(t+1)C(P∗)−2. For any such choice of
mXY = mxy and m = (mz , mxy), and the correctness of
P ′′ on Tm implies that

Pr
µ

[DISJt
2,n/t(x, y) = v and (x, y) ∈ Tm]

≥ µ(Tm)/2 = µ(Rmxy ∩ S)/2.

However,

Pr
µ

[DISJt2,n/t(x, y) = v(m) and (x, y) ∈ Tm]

≤ Pr
µ

[DISJt2,n/t(x, y) = v(m) and (x, y) ∈ Rmxy(mz)]

≤ δtµ(Rmxy(mz))

for (t + 1)C(P ) + 2 ≤ c′t
√

n/t and some δ < 1 by
Theorem 6 applied to DISJt

2,n/t. Since the various Rmxy

are disjoint and µ(
⋃

mxy
(Rmxy (mz) ∩ S)) ≥ µ(S)/2 ≥

2−C(P∗)−2, summing up over all m we obtain that if
(t + 1)C(P ) + 2 ≤ c′t

√
n/t then

2−C(P∗)−2 ≤ µ(S)/2

≤ µ(
⋃

mxy

(Rmxy(mz) ∩ S))

≤ δtµ(
⋃

mxy

Rmxy(mz)) ≤ δt,

we obtain that C(P ∗) is Ω(t).
Thus C(P ∗) is Ω(min{t, √n/t}). This implies that

log t
1−2εC(P ) is Ω(min{t, √n/t}). Since t = n1/3 this yields
the claimed bound.

4.2 General 3-party NOF Computation

In this we prove an Ω(log n) lower bound on the unre-
stricted 3-party NOF computation of set disjointness. Al-
though this is not yet strong enough to imply lower bounds
for lift-and-project proof systems it is of independent inter-
est since it is the first lower bound for general multiparty
NOF communication complexity proved via a corruption
bound that does not follow from a discrepancy bound.

Theorem 11. For any ε′ < 1/2, R3
ε′(DISJ3) is

Ω((1 − 2ε′)2 log n).

To prove this theorem we use the following simple char-
acterization of 3-cylinder intersections.

Proposition 12. A set E is a 3-cylinder intersection on X×
Y ×Z if and only if there is a set S ⊆ X × Y and for each
z ∈ Z there is a combinatorial rectangle Rz ∈ P(X) ×
P(Y ) such that E =

⋃
z∈Z((Rz ∩ S) × {z}).

Proof. By definition, a 3-cylinder intersection E consists
of the intersection of an X-cylinder, a Y -cylinder, and a Z-
cylinder. We can write the Z-cylinder as S × Z for some
S ⊆ X × Y . Under permutation of the components we
can write the X- and Y -cylinders as T × X and U × Y
respectively for T ⊆ Y × Z and U ⊆ X × Z . For each
z ∈ Z write Tz = {y ∈ Y | (y, z) ∈ T } and Uz = {x ∈
X | (x, z) ∈ U}. Define Rz = Uz × Tz . Clearly Rz is
a rectangle on X × Y . Moreover by definition, for each
z ∈ Z , (x, y, z) ∈ E if and only if (x, y) ∈ S, y ∈ Tz and
x ∈ Uz; i.e., for each z ∈ Z , (x, y, z) ∈ E if and only if
(x, y) ∈ S and (x, y) ∈ Rz , as required.

Proof of Theorem 11. Let t = n1/3. Define a distribution
ν on X × Y × Z as follows: Choose z uniformly at ran-
dom from {zj = 0(j−1)(n/t)1n/t0(t−j)n/t | j ∈ [t]} and
independently choose each bit of x and y independently as
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above, with Prν [xi = 1] = Prν [yi = 1] = n−1/3. Clearly
ν(DISJ−1

3 (0)) = p where p is an absolute constant as above.
Let Γ be the set of all cylinder intersections on X ×

Y × Z . We prove that for some γ > 0 and any ε < 1,
ε-mono0

ν,Γ ≤ n−γ . The claimed lower bound then follows
by repeating the protocol O( 1

(1−2ε′)2 ) times to reduce the
error below p/2 and then applying Corollary 5.

Consider any cylinder intersection E on X ×Y ×Z and
write E =

⋃
z∈Z((S ∩Rz)× {z}) for S ⊆ X × Y and Rz

rectangles on X × Y . Suppose that ν(DISJ−1
3 (1) ∩ E) ≤

ε · ν(E). It is sufficient prove that ν(E) ≤ n−γ .
Because of the definition of ν we can assume without

loss of generality that E =
⋃t

j=1(S∩Rzj )×{zj}. Let µ be
the measure induced on X×Y by ν. For each (x, y) ∈ S let
J(x,y) ⊆ [t] be the set of j ∈ [t] for which (x, y) ∈ Rzj and
DISJ3(x, y, zj) = 0. This implies that DISJ2(xj , yj) = 0

for all j ∈ J(x, y). Let t0 = 
 (1−ε)ν(E)t
2 � and let

S′ = {(x, y) ∈ S | |J(x,y)| ≥ t0}.

By the error assumption for E, ν(E ∩ DISJ−1
3 (0)) ≥ (1 −

ε)ν(E). Let E′ = {(x, y, zj) ∈ E | (x, y) ∈ S′} be the
of elements of E whose (x, y) components are in S ′. By
definition,

ν((E − E′) ∩ DISJ−1
3 (0)) ≤ t0 − 1

t
µ(S − S′)

<
(1 − ε)ν(E)t/2

t
µ(S)

≤ (1 − ε)ν(E)/2.

Therefore ν(E′) ≥ ν(E′ ∩ DISJ−1
3 (0)) ≥ (1 − ε)ν(E)/2

and thus µ(S′) ≥ ν(E′) ≥ (1 − ε)ν(E)/2.
We now consider a rectangular refinement of the rect-

angles Rzj . For j = 1, . . . , t write Rzj = Aj × Bj for
Aj ⊆ X and Bj ⊆ Y . For α, β ∈ {0, 1}t define the rectan-
gle

Rα,β = (
⋂

j:αj=1

Aj ∩
⋂

j:αj=0

Aj)× (
⋂

j:βj=1

Bj ∩
⋂

j:βj=0

Bj).

By definition, these 22t rectangles are mutually disjoint.
Every (x, y) ∈ S is in some Rα,β for which αj = βj = 1
for all j ∈ J(x,y) and thus Rα,β ⊆ ⋂

j∈J(x,y)
Rzj . In partic-

ular, by definition DISJ3(x, y, zj) = 0 for all j ∈ J(x,y) and
thus DISJ3(x, y, zj) = 0 for all j ∈ J(x,y). Therefore each
Rα,β that contains a point of S ′ has an associated set of t0
values j ∈ [t] such that DISJ3(x, y, zj) = 0 for all elements
of Rα,β ∩S′. This implies that there is a fixed set of at least
t0 outputs of DISJt

2,n/t(x, y) that are 0 for all elements of
Rα,β ∩ S′.

By Theorem 6 and the corruption bound for 2-party
disjointness, there are some constants c, δ > 0 and such

that for any α, β if µ(Rα,β) ≥ 2−ct0
√

n/t then µ(Rα,β ∩
S′) ≤ δt0µ(Rα,β). At most 22t−ct0

√
n/t measure of

points in S′ can be covered by rectangles Rα,β for which

µ(Rα,β) < 2−ct0
√

n/t. Since the rectangles Rα,β cover-
ing S′ are disjoint, by the corruption bound the total mea-
sure of the part of S ′ covered by rectangles Rα,β with

µ(Rα,β) ≥ 2−ct0
√

n/t is at most δt0 . Therefore µ(S′) ≤
δt0 + 22t−ct0

√
n/t which, for t = n1/3, is at most δt0 +

2−(ct0−2)t. Therefore (1 − ε)ν(E)/2 ≤ δt0 + 2−(ct0−2)t.
Since t0 ≥ (1 − ε)ν(E)t/2, ν(E) is O( log t

t ) which is
O( log n

n1/3 ) as required.

Observe that the corruption bound under the distribution
used in the proof of Theorem 11 is asymptotically tight: The
X or Y player simply has to send 
log2 t� bits specifying
the value of j and then the Z player can simply compute
DISJ3(x, y, zj).

There are natural distributions one could consider, such
as the distribution ν3. The proof is a little more involved
but it is possible to obtain similar corruption bounds for
cylinder intersections under ν3. These alternate distribu-
tions have potential utility in deriving much larger lower
bounds. For example, we would like to improve the lower
bound to something that is Ω(nδ) for some δ > 0. The key
limitation of the method of proof of Theorem 11 is the step
in which we create the rectangular refinement of the set of
rectangles.

5 k-party NOF Communication Complexity
of Disjointness

5.1 Simultaneous k-party NOF Computation

The communication complexity in the NOF simultane-
ous messages case can be analyzed using the techniques of
Babai, Gal, Kimmel and Lokam [3]. In this model the in-
puts are distributed in the usual NOF fashion but there is
no interaction. Each player sends a single message to a ref-
eree who uses their contents to evaluate the function. We
write DX1||···||Xk(f) and R

X1||···||Xk
ε (f) for the determin-

istic and ε-error randomized simultaneous NOF communi-
cation complexity of f .

Following [3] we directly analyze the complexity of
this problem when one of the players, say player k,
acts as the referee. We denote such protocols as
(X1|| · · · ||Xk−1) → Xk protocols and, for example, use
R

(X1||···||Xk−1)→Xk
ε (f) to denote the complexity in this

case. Clearly, R
X1||···||Xk
ε (f) ≥ R

(X1||···||Xk−1)→Xk
ε (f).

The general idea of the approach in [3] is to find a small
collection of possible inputs Qi in each of the components
Xi for i ∈ [k − 1] with the property that taking all their
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combinations together yields a large number of different
subproblems player k might need to solve. The only in-
formation that player k receives about xk is from the other
players so the information from all their possible messages
must be enough to differentiate among these possibilities.

Let X1 = . . . = Xk = {0, 1}n which we also iden-
tify with P(n) and we write x ∩ y for the string whose i-th
coordinate is 1 if and only if the i-th coordinate of both x
and y are 1. Thus DISJk(x1, . . . , xk) = 1 if and only if
x1 ∩ · · · ∩ xk 	= ∅. We will refer to elements of {0, 1}n

interchangeably as sets or vectors. For C and D subsets of
{0, 1}n write C � D = {x ∩ y | x ∈ C, y ∈ D}.

Proposition 13. For � ≥ 1 there exist Q1, . . . , Q� ⊆
{0, 1}n such that |Qi| = n1/� and Q1 � · · · � Q� is the
set of all singleton sets in [n].

Proof. Let m = n1/� and view [n] as an �-dimensional cube
of side m. Let Qi = {Qi1, . . . , Qim} be the partition of [n]
into subsets of size m�−1 given by the m layers along the
i-th dimension in this cube. Since the different sets within
each Qi are disjoint, all-nonempty sets in Q1 � · · · �Q� are
disjoint. An element j ∈ [n] can be indexed by its coordi-
nates (j1, . . . , j�) in each of the � dimensions of this cube.
Clearly {j} = Q1j1 ∩ Q2j2 ∩ · · · ∩ Q�j�

.

For 0 ≤ ε ≤ 1 define H2(ε) = ε log2
1
ε +(1−ε) log2

1
1−ε

and let H be the binary entropy function.

Theorem 14.

R(X1||···||Xk−1)→Xk
ε (f) ≥ (1 − H2(ε))n

1/(k−1)/(k − 1).

Proof. We apply Yao’s lemma and analyze the complex-
ity C(P ) of an ε-error deterministic protocol P under dis-
tribution µ given as follows: Apply Proposition 13 with
� = k − 1 to obtain sets Q1, . . . , Qk−1 ⊆ {0, 1}n with
|Qi| = m = n1/(k−1) such that Q1 � · · · � Qk−1 contains
all singleton subsets of [n]. For each j ∈ [n] we can identify
a (unique) tuple �xj = (xj

1, . . . , x
j
k−1) ∈ Q1 × · · · × Qk−1

such that {j} = xj
1 ∩ · · · ∩ xj

k−1. Define distribution µ on
X1 × . . .×Xk by by choosing j uniformly at random from
[n] and independently choosing a uniformly random subset
xk ⊆ [n] to produce the tuple (xj

1, . . . , x
j
k−1, xk).

Observe that for inputs given non-zero probability under
distribution µ, DISJk(�xj , xk) = 1 if and only if j ∈ xk . It
follows that the set {DISJk(�xj , xk)}j∈[n] completely deter-
mines xk . If the protocol P were always correct, then we
could encode xk by listing all the possible messages that
could be sent by players 1, . . . , k−1 for any of the possible
extensions �xj on the first j coordinates since these would be
sufficient to determine the values of {DISJk(�xj , xk)}j∈[n]

and thus the bits of xk . Although there are n = mk−1 dif-
ferent extensions of xk , for each player 1, . . . , k − 1, given
xk there are only mk−2 = n1−1/(k−1) different messages

possible since player i’s message does not depend on the i-
th coordinate. Thus the total number of bits required would
be at most (k−1)n1−1/(k−1)C(P ) which must be at least n
since they are sufficient to encode xk and we would obtain
C(P ) ≥ n1−1/(k−1)/(k − 1).

Since P has error at most ε this vector �v of possible mes-
sages would instead only be sufficient to determine each bit
of xk with error at most ε under distribution µ. This implies
that Hµ(xk | �v) ≤ H2(ε)n. Thus

n = Hµ(xk) ≤ Hµ(�v) + Hµ(xk | �v)

≤ (k − 1)n1−1/(k−1)C(P ) + H2(ε)n.

Rearranging, we have (k − 1)n1−1/(k−1)C(P ) ≥ (1 −
H2(ε))n which yields the claimed bound.

5.2 General k-party NOF Computation

We obtain lower bounds for general k-party NOF com-
munication complexity as a simple consequence of Theo-
rem 14 using a simulation of general protocols by simulta-
neous protocols.

Theorem 15. For any ε < 1/2, Rk
ε (DISJk) is Ω( log n

k−1 ).

Proof. Given an ε-error k-party NOF protocol P for DISJk

of total complexity C(P ) define a simultaneous protocol P ′

for DISJk as follows. Each player sends a vector of length
2C(P ) that of all bits that the player would have sent in pro-
tocol P for every prefix of communications in which it is
his turn to speak. Therefore by Theorem 14,

2Rk
ε (DISJk) ≥ (1 − H2(ε))n

1/(k−1)/(k − 1)

and thus

Rk
ε (DISJk) ≥ log2[(1 − H2(ε))n

1/(k−1)/(k − 1)]

≥ log2 n

k − 1
− log2(

k − 1

1 − H2(ε)
)

which is Ω( log n
k−1 ).

6 Discussion

Given that the best known upper bound for disjointness is
O(n) and the proximity of our Ω(log n) lower bounds to the
ω(log3 n) or ω(log n(log log n)2) lower bounds required
for the proof complexity consequences in [8], it might seem
that we have come most of the way to our goal. However
there is still some way to go to understand the problem. For
example it is not at all clear how one might extend the bound
in Theorem 10 or even the one-way lower bound in [4] to
4 players. The problem is that it is not at all clear how
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to prove any form of direct sum theorem even for one-way
3-party communication complexity. An impediment to ex-
tending our bounds to this case is the failure of the 3-party
analogue of our method for Lemma 7 because, even for a
cross-product distribution, the density of a 3-cylinder inter-
section is not determined by the densities of the cylinders
involved in the intersection.

We have shown two different methods for deriving
Ω(log n) lower bounds on the general 3-party NOF com-
plexity of disjointness. One reason to consider both meth-
ods is that the properties from which they are derived seem
to be incomparable. The proof of Theorem 11 yields bounds
on corruption for large 3-cylinder intersections that may
be give useful insight into obtaining larger bounds. These
bounds do not seem to follow from Theorem 15 but this has
the advantage of a somewhat simpler proof and a result that
applies more generally.

Finally, we note that independent of this work Klauck,
Spalek, and de Wolf [21] derive similar bounds to Corol-
lary 9 for 2-party quantum communication complexity us-
ing the polynomial method.
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