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OPEN

ORIGINAL ARTICLE

A direct test of the diathesis–stress model for depression
L Colodro-Conde1,2,12, B Couvy-Duchesne1,3,12, G Zhu1, WL Coventry4, EM Byrne5, S Gordon1, MJ Wright3,6, GW Montgomery5,
PAF Madden7, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium13, S Ripke8,9,10, LJ Eaves11,
AC Heath7, NR Wray3,5, SE Medland1 and NG Martin1

The diathesis–stress theory for depression states that the effects of stress on the depression risk are dependent on the diathesis or
vulnerability, implying multiplicative interactive effects on the liability scale. We used polygenic risk scores for major depressive
disorder (MDD) calculated from the results of the most recent analysis from the Psychiatric Genomics Consortium as a direct
measure of the vulnerability for depression in a sample of 5221 individuals from 3083 families. In the same we also had measures of
stressful life events and social support and a depression symptom score, as well as DSM-IV MDD diagnoses for most individuals. In
order to estimate the variance in depression explained by the genetic vulnerability, the stressors and their interactions, we fitted
linear mixed models controlling for relatedness for the whole sample as well as stratified by sex. We show a significant interaction
of the polygenic risk scores with personal life events (0.12% of variance explained, P-value = 0.0076) contributing positively to the
risk of depression. Additionally, our results suggest possible differences in the aetiology of depression between women and men. In
conclusion, our findings point to an extra risk for individuals with combined vulnerability and high number of reported personal life
events beyond what would be expected from the additive contributions of these factors to the liability for depression, supporting
the multiplicative diathesis–stress model for this disease.

Molecular Psychiatry (2018) 23, 1590–1596; doi:10.1038/mp.2017.130; published online 11 July 2017

INTRODUCTION
A popular explanation for the aetiology of depression is the
diathesis–stress model.1–6 Initially developed to explain the origins
of schizophrenia in the 1960s5,6 and adapted for the study of
depression in the 1980s,1–4 this model states that stress may
activate a diathesis or vulnerability, transforming the potential of
predisposition into the actuality of psychopathology.7 The model
proposes that there is a synergism between the diathesis and
stress that yields an effect beyond their combined separate effects
into depressive symptomatology and thus, the effects of stress on
the depression risk are dependent on the diathesis. Implicit in this
theory is that there will be not only additive but multiplicative
interactive effects on the liability scale.7

Over 50 years ago Rosenthal6 described the diathesis–stress
theories as ‘the ones in which genuine meaning attaches to the
commonly repeated statement that heredity and environment
interact’. However, he criticised the vague formulations for the
predispositions and stressors that these theories propose. This
criticism has been highlighted by others like Monroe and Simons,7

who call for more research and more precise measures on the
‘conceptual essence’ of the diathesis–stress premise, that is, ‘the
nature of the interaction between elements in the aetiologic
process over time’. The diathesis–stress theory and research have

been criticised for being ‘unproductive, either theoretically or
empirically’.8

The genetically driven sensitivity to environments proposed by
the diathesis–stress model can be operationalised as a gene by
environment interaction (GxE). GxE studies have commonly
focused on single loci in candidate genes, such as the length
polymorphism (5HTTLPR) in the serotonin transporter gene
(SLC6A4), with mostly inconsistent or negative results.9–13 This
approach has limitations related to poor quality genotyping,
inconsistent types of interactions, inconsistent grouping of
genotypes, selective presentation of results, interactions arising
from the scale of measurement and publication bias.9 Moreover,
MDD is a polygenic trait, arising from the effect of multiple risk
variants, each with small effect sizes.14,15 Therefore, MDD is
influenced by many genetic variants of small effect, and it is more
likely that affected individuals carry a polygenic burden of risk
alleles rather than any single genotype of large effect. However,
the progress from a candidate gene to an hypothesis-free
genome-wide approach is hampered by the need for extremely
large samples due to expected small effect sizes as well as
necessarily imperfect assessment of environmental stressors
across large cohorts.16,17

Polygenic risk scores (PRS) provide a novel opportunity to test
the diathesis–stress model, since PRS can be conceptualised as an
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indicator of the diathesis and will likely prove a much stronger
instrument than any single risk gene. PRS estimation uses
Genome-Wide Association Study (GWAS) results to predict the
genetic risk of each individual in an independent genotyped
sample; PRS are estimated as the sum of risk alleles weighted by
their respective independently estimated effect sizes.18 Note that,
since GWAS are currently underpowered to detect all common
genetic risk variants in complex traits, the variance explained by
the PRS is usually lower than the twin heritability.18

The first ones to use PRS for MDD to test for GxE interaction in
MDD were Peyrot et al.17 Using a sample of 1645 participants with
a DSM-IV diagnosis for MDD and 340 screened controls from the
Netherlands Study of Depression and Anxiety, they showed
increased effects of PRS on MDD in the presence of childhood
trauma, with evidence for interaction. Musliner et al.19 studied the
association between PRS-MDD, stressful life events (SLEs) and
depressive symptoms in a sample of 8761 participants from the
Health and Retirement Study in the United States. SLEs were
operationalised as a dichotomous variable indicating whether
participants had experienced at least one stressful event in the
previous 2 years. Depressive symptoms were measured using an
8-item Center for Epidemiological Studies Depression subscale
and operationalised as both a dichotomous and a continuous
variable. They found that both SLEs and PRS were significantly and
independently associated with depressive symptoms, but found
no evidence that SLEs moderated the association between PRS-
MDD and depressive symptoms. Instead, their results were
compatible with an additive model. Most recently, Mullins
et al.20 examined the idea using 1605 cases with recurrent MDD
and 1064 controls all with SLE data, and a subset of 240 cases and
272 controls with childhood trauma data from in the RADIANT UK
study. Both PRS and SLEs were significant predictors of case/
control status but no interactions were found between PRS for
MDD and SLEs, in agreement with previous findings by Musliner
et al.19 Significant interactions were found between PRS and
childhood trauma but, contrary to Peyrot et al.,17 there was an
inverse association with depression status. In summary, these
studies do not present consistent results. Studies to date have
used the first wave of GWAS data (MDD1) from the Psychiatric
Genomics Consortium (PGC) MDD working group (PGC-MDD),
based on 9240 cases and 9519 controls,14 and so are likely
underpowered.
We report here a direct test of the diathesis–stress model for

depression using PRS for MDD and measures of SLEs and social
support (SS; lack of SS being considered a stressor); we predict
diathesis using an updated version of PGC-MDD GWAS results
(N total = 159 601, after excluding QIMR data). Given the higher
lifetime risk of MDD in women,21 we also tested the hypothesis in
sexes separately.

MATERIALS AND METHODS
Phenotypic data were collected as part of a general Health and Lifestyle
questionnaire (HLQ) mailed to adult twins enroled in the Australian Twin
Registry between 1988 and 1992.22–24 It included self-report questions
about depression, recent personal or network SLEs (PSLE, NSLE) and SS.
The content and details of data collection have been previously
described.22–24 Data used in this analysis were collected in three waves.
The first wave ran between 1988 and 1992 (N=5843) and targeted adult
twins (mean age 41.2, s.d. = 12.8, range 24–86, 61.0% females).23 The
second wave (N= 3646, collected between 1990 and 1992) focused on
younger twins (mean age 23.2, s.d. = 2.2, range 16–31, 65.6% females) and
the questionnaire was slightly adapted to cover some of the more
common issues of that age group.22,23 Finally, the last wave (N=236)
targeted twin pairs whose information was partially missing from the
original 1980 survey, using the same questionnaire (collection between
1990 and 1992, mean age 42.0, s.d. = 9.9, range 27–73, 58.5% females). This
study was approved by the Queensland Institute of Medical Research
Human Research Ethics Committee and the storage of the data follows

national regulations regarding personal data protection. All of the
participants provided informed consent.
Depression scores were calculated by combining the seven depression

items from the Delusions-Symptoms-States Inventory (DSSI)25,26 with five
depression items from the Symptom CheckList (SCL-90).27 The factor
structure of the scale has been reported previously in the younger data
set22 and the score has been used in several publications.9,22,23,28,29

The HLQ also assessed PSLE and NSLE, adapted from the List of
threatening experiences.30 For PSLE, participants were asked to report
adverse events (divorce, marital separation, broken engagement or steady
relationship, separation from other loved one or close friend, serious illness
or injury, serious accident, burgled or robbed, laid off or sacked from job,
other serious difficulties at work, major financial problems, legal troubles or
involvement with police, living in unpleasant surroundings) that happened
in the last 12 months. In addition, they were asked if they had had serious
problems getting along with their close network (spouse, someone living
with you, for example, child/elderly parent, other family member, co-twin,
a close friend, neighbour or workmate) in the past 12 months. These 19
yes/no items were summed to calculate the PSLE score.
NSLE was calculated from 21 yes/no questions, in which the participants

could report death, injury or crisis that their close network (spouse, child,
mother/father, co-twin, other brother/sister, other relative, someone else
close to them) experienced in the last 12 months.
Perceived social support was measured using the Kessler Perceived

Social Support Measure.31 Several publications from our group have made
use of these data.9,23,28,32–34

We used Item Response Theory (IRT),35,36 which weights the item
responses by their difficulty and discrimination, to calculate individuals’
scores of depression, PSLE, NSLE and SS. First, we performed an
exploratory non-parametric IRT analysis of the KernSmoothIRT package in
R.37 It allows estimation of the probability of endorsing each option of each
item as a function of the latent underlying trait (known as Item Response
Step Functions: IRSF), without any constraint on the shape of the fitted
curve.36 We used it to confirm the monotonicity of IRSF necessary to
ensure the property of stochastic ordering on the sum score.38 It further
allows choosing the most appropriate parametric IRT models based on the
shapes of the non-parametric IRSF.
IRSF plotted in Supplementary Figures 1–4 show, for all scales and items,

monotonic IRSF in the normal range of the latent trait continuum (-2 2).
Small breaches of monotonicity were observed for extreme values of the
latent trait and can be attributed to small numbers of participants that lead
to unstable non-parametric kernel estimation (as indicated by widening
95% confidence intervals). Consequently, we estimated the IRT scores
using a two-parameter logistic model in WinBUGS v. 1.4.339 that constrains
all left asymptotes to be 0 and all right asymptotes to be 1. In such a
model, the IRSF only differ in terms of difficulty and discrimination.35,40

Such IRT scores are maximum likelihood estimates of the latent trait and
carry the same information as a sum score while presenting more normal
distributions, thus reducing the influence of extreme values in later
analyses.
Missingness in the depression items was limited to o2% of the

respondents and most of the missing answers (88 or 60%) were found in
the item ‘recently, I have lost interest in sex or have found not found sex
pleasurable’. The 1.6% of the respondents who omitted this item tended to
be females (P-value= 4.2e− 04), 4 months older on average (P-value= 9.7
e− 06), and with a slightly higher DSSI score (+0.1 pts, P-value= 3.6e− 05).
Missingness not at random (that is, potentially dependent on depression
level) implies that excluding participants may create a sampling bias. Thus,
we chose to impute the missing observations using WinBUGS (described in
Wray et al.,34 Rietschel et al.41) using age, sex and the depression items as
predictors. Overall, due the low missingness rate imputation should have
little influence on the results.
Lifetime DSM-IV depression diagnoses were obtained in most of the

cohort in two telephone interview follow-up studies using the clinical
Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA42,43 in
1992–1993 and 1996–2000 (see Supplementary Figure 5 for a summary of
the phenotypic data collection). Details of data collection are described
elsewhere.29,44–47 The depression score significantly predicted lifetime
DSM-IV MDD status assessed 4–7 years later44,45 (odds ratio = 1.96, 95%
confidence intervals 1.85–2.08, P-value = 3.0e− 108, N=8607), which
translates to a 6.1-fold increased odds of MDD between participants in
the top and bottom deciles of depression IRT scores (Figure 1a), so
demonstrating the utility of the score. For our analysis we used the
continuous IRT score rather than the binary diagnosis, as continuous
models provide greater statistical power than logistic regressions (499.9%
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Figure 1. (a) Increased odds of DSM-IV MDD diagnosis per decile of depression IRT score assessed 4–7 years previously. (b) Association between
MDD–PRS and depression scores (main effects, one-sided tests, results expressed in % of variance explained). Full sample analyses using the two
versions of the polygenic risk scores (PRS) were run in the same target data set with the exact same covariates. Red bars indicate positive
correlation with the depression score. PRS were calculated using different P-value thresholds from the Genome-Wide Association Study summary
statistics. The most conservative only includes independent loci with genome-wide significant single-nucleotide polymorphism (SNPs)
(P-valueo5e− 8), while the least conservative include the most significant SNP of each haplotype (P-valueo1). (c) Association between self-
reported stress (personal stressful life events (PSLE) or network stressful life events (NSLE), lack of social support (SS)) and depression IRT score
(main effect, one-sided tests, results expressed in % of variance explained). Blue bars indicate negative correlations and red bars indicate positive
correlations with the depression score. Dashed bars indicate sex-specific effects. (d) Variance of the depression score explained by the interaction
between PRS and PSLE (two-sided tests). Dashed bars indicate sex-specific effects. We focused on the association with the PRS comprising all
haplotypes but the other associations are also reported for completeness. Blue bars indicate negative correlations and red bars indicate positive
correlations with the depression score. (e) Increase in depression score (fitted values, vertical axis) as a function of PSLE and MDD-PRS. For
example, the effect of the PSLE–diathesis interaction is visible when comparing the bottom (minimal PSLE) and top (maximal PSLE) edges of the
surface. The difference in slopes indicates that PSLE mediates the effect of the genetic predisposition on the depression score. From right to left,
results for the whole sample, females and males. In all analyses, we accounted for familial relatedness using a kinship matrix (a) or a genetic
relatedness matrix calculated from SNPs (b–d). For a we used R package ‘hglm’

77 to estimate the odds ratios (Student's t-test to test the
significance of the fixed effects). For panels b–d, the parameters of the model were estimated using GCTA 1.26.0 (Student's t-test to test the
significance of the fixed effects).62 All analyses controlled for age, age2, sex, age× sex and age2 × sex interactions, study, array and the first four
genetic principal components in the outcome variable and predictors.60 IRT, Item Response Theory; MDD, major depressive disorder.
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vs 88.0%, N=5221, odds ratio = 1.1, beta = 0.095, with α=0.05, proportion
of cases and s.d. of outcome and predictor measured in our sample) and is
available for larger sample size (5179 vs 5221 with IRT score).
DNA collected from blood was genotyped using commercial arrays

(Illumina 317 K, 370 K, 610 K, ‘1st generation’, or Core Exome plus Omni-
family, ‘2nd generation’.48–50) and imputed from a common
single-nucleotide polymorphism (SNP) set to the 1000 Genomes (Phase
3 Release 5) reference panel, (http://www.1000genomes.org/)51,52 a
strategy that allows genotype data from different arrays to be combined.
Observed genotypes were cleaned (by batch) for call rate (⩾95%); minor
allele frequency, MAF (⩾1%); Hardy–Weinberg equilibrium (P⩾ 10− 3;
PLINK1.953), GenCall score (⩾0.15 per genotype; mean ⩾ 0.7) and standard
Illumina filters, before integrating batches and re-running the quality
control and Mendelian checks. We imputed the genotype data via the
University of Michigan Imputation Server54 or in-house (chr. X only) using
the 1000 genomes Phase 3 Release 5 ‘mixed population’ reference panel),
(http://www.1000genomes.org/)51,52 with phasing by SHAPEIT55,56 fol-
lowed by imputation using minimac3.57 ‘1st generation’ and ‘2nd
generation’ were imputed separately due to poor overlap between
observed markers. Imputation was based on 277 690 (‘1st generation’)
and 240 297 (‘2nd generation’) observed markers; and the two combined
after imputation to maximise sample size. This resulted in 9 411 304 SNPs
available for analysis, after quality control.
PRS58,59 were calculated from the imputed genotype dosages, using

GWAS summary statistics from the most recent PGC-MDD release (9 July
2016), with the exclusion of the contribution of QIMR, for a final
sample of 49 524 cases and 110 074 controls (see Supplementary Table
1 for cohort contributions). For comparison, we also calculated the PRS
using the first wave GWAS summary statistics published by the
PGC-MDD.14 From our data, we excluded SNPs with low imputation
quality (r2o0.6) and MAF below 1%. We selected the most significant
independent SNPs using PLINK1.953 in order to correct for signal
inflation due to linkage disequilibrium (criteria linkage disequilibrium
r2o0.1 within windows of 10 MBp). We calculated eight different PRS
using different P-value thresholding of the GWAS summary statistics
(see Supplementary Table 2 for number of SNPs included in each
threshold). Histograms of PRS for MDD (1000G imputation, GWAS results
from July 2016), together with the histograms of the IRT scores for
depression, PSLE, NSLE and SS scores are reported in Supplementary
Figure 6.
Our final sample comprised 5221 individuals (from 3083 twin families) of

European ancestry with available phenotypic and genetic data (mean age
at questionnaire 35.7, s.d. = 12.2, range 17–85, 65.6% females). Covariates
(age, age2, sex, age× sex and age2 × sex interactions, and the first four
genetic principal components) were regressed from the PRS and the stress
scores before inclusion in the models to guard against confounding
influences on the PRS–stress interactions.60

In order to estimate the variance explained by the PRS, the stressors and
their interactions in the depression score, we then fitted linear mixed
models, which controlled for relatedness for the whole sample as well as
stratified by sex. The parameters of the model were estimated using GCTA
1.26.0 (Student's t-test to test the significance of the fixed effects) that
accounts for twin relatedness using a genetic relatedness matrix (GRM).
The linear model used is as follows:
Depression= intercept+b×Covariates+c×PRS_z+d×PSLE_z+e×NSLE_z

+f×SS_z+g×PRS_z × PSLE_z+h×PRS_z ×NSLE_z+i×PRS_z × SS_z+j ×G
With b, c, d, e, f, g, h, i the vectors of fixed effects.
Covariates used in this analyses were age, sex, age2, sex × age,

sex × age2, GWAS array, wave and first four genetic principal components.
Note that sex and its interaction were not included when stratifying the
analyses by sex.
PSLE_z, SS_z, NSLE_z and PRS_z are the residuals of the scores after

regressing out the covariates listed above.
G is the random effect that models the sample relatedness G~ N

(0, GRM), with GRM the N×N matrix of relatedness estimated from SNPs.
We used OpenMx61 to calculate the heritability and correlations

(likelihood-ratio test, using a kinship matrix to account for familial
relatedness) of the depression score and the stressors, correcting for
age, sex, age2, sex × age, sex × age2 and wave. Following the significant
genetic correlations estimated from twin models, we investigated how
much of the variance in stress scores could be accounted for by the MDD-
PRS. We controlled for age, age2, sex (and their interactions), study,
imputation batch and four genetic principal components. Model
parameters were estimated using GCTA 1.26.062 that accounts from twin
relatedness.

RESULTS
PRS for MDD significantly predicted the depression score
(maximum variance explained= 0.46%. P-value = 5.01e− 08,
Figure 1b, right panel), which represents a substantial improve-
ment compared to PRS predictions based on earlier GWAS14

(Figure 1b, left panel, variance explained= 0.08%, P-value = 0.018),
reflecting the increased sample size of the GWAS discovery
samples.63,64 The main effects of PSLE, NSLE and lack of SS were
also significant, explaining, respectively, 12.9%, 0.3% and 3% of
the depression score variance (Figure 1c), with effects in the
expected directions. Lack of SS predicted more of the depression
score in women than it did in men (between sex differences,
P-value = 4.7e− 03) but there were no other differences between
sexes that reached significance.
The significance of main effects allowed testing the significance

of the interaction between each stress type (PSLE, NSLE, lack of SS)
and the most predictive PRS (using all SNPs: Po1). The interaction
with PSLE was significant (0.12% of variance explained, P-value =
0.0076) and contributed positively to the risk of depression,
predominantly in women (Figure 1d). Overall, the variance
explained by PRS main effect plus the interaction was comparable
in men (0.73%) and women (0.60%). The interaction was not
significant in men while explaining almost as much variance as the
main effect in women. However, there was no significant differ-
ence when comparing the size of the interaction across sexes (P-
value = 0.21). For completeness, interactions between each
stressor and all PRS are also reported in Supplementary Figure 7.

DISCUSSION
Our finding of a significant diathesis–PSLE interaction points to an
extra risk for individuals with combined vulnerability and high
number of reported PSLE beyond what would be expected from
their additive contributions to liability (Figures 1d and e). In the full
sample 0.58% of the depression score variance was explained by
the PRS and interaction, of which ~ 80% corresponds to the main
effects and ~ 20% to the interaction. As the power of the PRS
increases with larger GWAS,63 and if these proportions are
maintained, the interaction explaining about 20% of the
heritability would be typical of the size of GxE estimates for other
traits in other species.65 We cannot dismiss the possibility of
diathetic interactions with NSLE or SS, as the power of our study is
still limited by the PRS instrument63 and our sample size. This is
evidenced by our measure of genetic predisposition still only
explaining a small fraction of the depression score variance
(Figure 1b), in comparison with the twin-based heritability
(Supplementary Figure 8 and Sullivan et al.66), or even the SNP
heritability for MDD (h2SNP = 0.2118). Note that for all psychiatric and
complex traits, it is common that the variance explained by PRS
corresponds to a fraction of the heritability, especially when only a
few variants are known.67 Much larger GWAS samples are required
to better differentiate the true SNP signals from the noise and to
provide a greater level of prediction.63

We confirmed using a twin analysis of the data set (1110 MZ
pairs, 1032 DZ pairs, 961 singletons) that our measure of
depression and all three stress measures are moderately heritable
(30–40%, P-valueo2.1e− 25; Supplementary Figure 8), as
reported previously.68,69 Additive genetic and unique environ-
ment (AE) models showed the best fit to the data and shared
environment could not explain the association (P-valueo1.7e−03).
We also replicated that self-reported measures of stress are
genetically correlated with the depression score (Supplementary
Figure 9).70,71

PRS for MDD predicted PSLE and SS (P-valueo0.001), no
significant association was observed with NSLE (Supplementary
Figure 10). This is consistent with heritability and genetic
correlation results reported from twin models.
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On the scale of measurement for depression that we have used,
our results support the multiplicative diathesis–stress model for
depression proposed in the 1980s. In addition, our results suggest
possible differences in the aetiology of depression between
women and men, which may have implications for the tailoring of
treatments. However, we must caution that the presence and size
of interaction are completely dependent on the scale of
measurement and more perfectly normal scales for depression
and stressors may have produced a different result.65,72 For
example, using a simple sum score for depression, with an
extreme reverse-J distribution yields an even larger and more
significant estimate of interaction (0.39% variance explained;
P-value = 6.8e− 07) whereas using logistic regression to analyse
the binary DSM-IV diagnosis, predicated on an underlying normal
liability, produces a smaller and only marginally significant
estimate (0.06% variance explained; P-value = 0.059), although
this analysis has much lower power than using a continuous
variable.
In addition, the substantial genetic correlation between PSLE

and depression hinders attributing the interaction solely to a GxE
effect. To investigate this point, we broke down PSLE into events
in which the individual may have played an active role (PSLE-
active: divorce, separation, having difficulty at work, financial or
legal troubles, not getting along with people) as opposed to
passive role73,74 (PSLE-passive: illness, accident, being burgled,
sacked or living in unpleasant surroundings) and calculated the
IRT score for them. This follows previous publications reporting
that PSLE-active was more heritable than PSLE-passive,73,74 which
we confirmed in our sample (twin h2PSLE-Active = 0.29, 95%
confidence interval 0.24–0.34; h2PSLE-Passive = 0.11, 0.05–0.17). We
tested whether the less heritable PSLE-passive may drive the
observed interaction, which may point towards a more likely GxE
interaction. However, in the models, active PSLE explained most of
the variance explained by the PSLE score (r2PSLE- Active = 10.5%,
P-value = 3.2e–123 vs r2PSLE-Passive = 0.77%, P-value = 4.1e− 12) and
the interaction (r2PSLE-Active × PRS = 0.085%, P-value = 0.030 vs
r2PSLE-Passive × PRS = 0.0084%, P-value = 0.46) (results given for the
PRS ‘Po1’, consistent with our other analyses, see Supplementary
Figure 12 for all details). This approach was unable to confirm the
nature of the interaction, since both PSLE-active and -passive are
significantly heritable.
To tackle this question more directly, we calculated environ-

mental and genetic factor scores for PSLE (PSLE-E and PSLE-A) via
an independent pathway model fitted to the 19 items of the PSLE
questionnaire75 (Supplementary Figure 13). Conceptually, this
divides the IRT PSLE score, which estimates the (phenotypic) latent
trait underlying the participants’ responses in the questionnaire,
into its additive genetic and environmental dimensions
(Supplementary Figures 13 and 14). We then replaced the PSLE
IRT score by each of its components in a mixed model to
investigate the source of the interaction: GxG if interaction
between PRS and PSLE-A or GxE if interaction between PRS and
PSLE-E. As in our previous analyses, we regressed covariates out of
the factor scores and also included them in the model. The model
including PSLE-E was the best fitting as indicated by lower Akaike
information criterion, AIC (AICPSLE-E = 2645, AICPSLE-A = 2798).
Further, the interaction term points towards a greater GxE effect,
as the interaction between PRS and PSLE-E explains 0.11% of the
variance (P-value = 0.0076), although we cannot rule out the
presence of an interaction with PSLE-A (r2 = 0.076%, P-value =
0.037) (results given for the PRS ‘Po1’, see Supplementary
Figure 15 for more details). Results showed a similar pattern when
we modelled the A and E factors of PLSE-active.
Notwithstanding the above caveats, more work is needed to

evaluate different mechanisms of interaction, including a bi-causal
relationship between PSLE and depression or molecular interac-
tion (for example, through methylation changes). We are aware of
potential confounds of interaction analyses: in addition to

sensitivity of the analyses to the properties of the scale76 and
unavoidable departures from normality in the outcome and
predictors as discussed above (Supplementary Figures 6 and 11),
problems may also arise from the stress and depression measures
being self-reported in the same questionnaire, and the fact that
the stress measures are genetically correlated with the outcome
variable. Replication of our findings in independent cohorts,
consideration of other variables such as the perceived impact of
stressors and improvement of PRS via larger GWAS and larger
samples with both depression and risk factors evaluated will allow
us further to refine our understanding of the aetiology of
depression.
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