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ABSTRACT Accurate and timely prediction of remaining useful life (RUL) of a machine enables the

machine to have an appropriate operation and maintenance decision. Data-driven RUL prediction methods

are more attractive to researchers because they can be deployed quicker and cheaper compared to other

approaches. The existing deep neural network (DNN) models proposed for the applications of RUL

prediction are mostly single-path and top-down propagation. In order to improve the prognostic accuracy

of the network, this paper proposes a directed acyclic graph (DAG) network that combines long short term

memory (LSTM) and a convolutional neural network (CNN) to predict the RUL. Different from the existing

prediction models combined with CNN and LSTM, the method proposed in this paper combines CNN and

LSTM organically instead of just using CNN for feature extraction. Moreover, when a single timestamp

is used as an input, padding the signals in the same training batch would affect the prediction ability of

the developed model. To overcome this drawback, the proposed method generates a short-term sequence

by sliding the time window (TW) with one step size. In addition, based on the degradation mechanism,

the piece-wise RUL function is used instead of the traditional linear function. In the experimental test,

the turbofan engine degradation simulation dataset provided by NASA is used to validate the proposed RUL

prediction model. By comparing with the existing methods using the same dataset, it can be concluded that

the prediction method proposed in this paper has better prediction capability.

INDEX TERMS Remaining useful life prediction, long-short-term memory network, convolutional neural

networks, turbofan engine.

I. INTRODUCTION

The prognostics and health management (PHM) of the

mechanical equipment has received much attention, and

the prediction of remaining useful life (RUL) is the

core of the PHM [1], [2]. By predicting the RUL of

the machine, it is possible to adjust the mechanical operation

and propose a maintenance strategy in a targeted manner [3].

There are three types of methods for predicting the RUL of

mechanical equipment: model-based prognostics, data-driven

prognostics, and hybrid approaches. Model-based prediction

uses a physical understanding (physical model) of the system

to predict the RUL. It can be further divided into micro-

level models [4] and macro-level models [5] based on the

The associate editor coordinating the review of this manuscript and
approving it for publication was Dong Wang.

modeling physics. Micro-level models, also known as dam-

age propagation models, need to consider assumptions

and simplifications in uncertainty management, which can

impose significant limitations on the method. A macro-level

model is a simplified representation of the system. It defines

the relationship between input variables, state variables, and

system output. Data-driven prognostics typically use pattern

recognition and machine learning techniques to detect the

state of the system [6]. A data-driven method is suitable for

applications in the complex system, as it does not require

a comprehensive understanding of the system. Modeling

strategies for data-driven prediction methods can be of two

types: 1) modeling cumulative damage and then inferring the

damage threshold, 2) learning the RUL directly from the data.

The classical data-driven prediction methods usually use

a stochastic model to describe the degradation process
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of the system. Considering it is difficult to calculate the

closed-form solution due to the state-dependent model,

Li et al. [7] proposed a general expression of age and

state-dependent models to describe the system degradation

processes. As different operating conditions and health condi-

tions would lead to different degradation processes of the sys-

tem, it makes the RUL prediction difficult. In order to solve

this problem, a wiener-process-model (WPM)-based method

[8] for RUL prediction was proposed by considering unit-to-

unit variability. To predict the RUL of mechanical equipment

with complex system structure and harsh operating environ-

ment, Hu et al. [9] combined the unscented Kalman filter

with a particle filter to replace the standard particle filter, and

used Markov chain Monte Carlo to improve the prediction

accuracy. Qian et al. [10] proposed a RUL prediction method

that combines enhanced phase space warping (PSW) with an

improved Paris crack propagation model. In their method,

PSW is enhanced by multidimensional autoregressive (AR)

models to improve accurate defect tracking and the Paris

crack growth model is modified by time segmentation algo-

rithm for real-time RUL prediction.

In the past decade, due to the rise of deep learning (DL),

data-driven prediction methods have focused more on the

use of flexible models such as various types of neural net-

works (NN). Yan et al. [11] combined deep denoising autoen-

coder (DDA) and regression operation and proposed a device

electrocardiogram (DECG) concept for predicting the RUL of

industrial equipment. Guo et al. [12] found that the accuracy

of predicting bearing RUL is greatly influenced by health

indicators, but existing signal extractionmethods cannot meet

the requirements. Therefore, 6 new similarly related features

and 8 classical time-frequency features were combined to

form a feature set and the monotonicity and correlation met-

rics were used to select the most sensitive features. Finally,

the selected sensitive features were used as input to the recur-

rent neural network (RNN). The echo state networks (ESNs)

have also been commonly used for mechanical RUL predic-

tion. Rigamonti et al. [13] resorted to ESNs to improve the

performance of individual ESN and used the improved ESN

for RUL prediction.

The main disadvantage of the data-driven method is that

it has a wider confidence interval than other methods, and

it requires a large amount of data for training. Moreover, it is

difficult to get run-to-failure data, especially for new systems,

because running a system to failure can be a lengthy and

rather expensive process. So the public databases are usually

used to verify the proposed model, such as battery dataset and

turbofan engine degradation simulation dataset provided by

the prognostics CoE at NASAAmes, FEMTO bearing dataset

provided by FEMTO-ST institute.

Reusable lithium-ion batteries (LIB) have become a core

component of the energy supply for most devices. Therefore,

it is necessary to predict the RUL of LIB [14]. Ren et al.

combined the autoencoder with deep neural network (DNN)

to predict the RUL of LIB [15]. In order to solve the problem

that the battery capacity cannot be measured in operation,

Liu and Chen [16] proposed a new method combining indi-

rect health index (HI) and multi-Gaussian process regres-

sion (GPR)model. Most existing LIBRUL predictionmodels

have been developed using offline training data. However,

the load current, temperature, and state of charge of the

electric lithium-ion battery vary with the working condi-

tions. In this case, a well-trained prediction model is not

suitable for practical applications. To address this prob-

lem, Zhang et al. [17] proposed a RUL prediction model

combining the Box–Cox transformation (BCT) and Monte

Carlo (MC) simulation. In their model, BCT transforms the

available capacity data and builds a linear model between the

transformed capacities and cycles. MC simulation generates

RUL prediction uncertainty.

Bearings are the core components of the mechanical equip-

ment and their RUL prediction is also necessary. There are

many applications for validating models using the FEMTO

bearing dataset [18]. In order to overcome the problem of

feature extraction methods separated from RUL prediction

models, Ren et al. [19] proposed a multi-scale dense gate

multiplexing unit network (MDGRU) to predict the RUL of

bearings. Ren et al. [20] proposed a new method based on

deep convolution neural network (DCNN) to predict RUL

of bearings. A new feature extraction method was presented

to obtain the spectrum-principal-energy-vector. To solve

the problem that the two stages are mutually independent,

Wang et al. [21] proposed a newmodel with stage correlation

for RUL prediction. Many other methods to predict bearing

RUL using various feature extraction methods and DL archi-

tectures have been reported [22], [23].

Aircraft PHM is one of the most important applica-

tions as any short-term faults in the equipment can have

a significant impact on safety operation of the aircrafts.

Khelif et al. [24] used support vector regression to model

the direct relationship among sensor values or HIs and

estimate the RUL directly from the sensor values with-

out estimating the degradation state or failure threshold.

Ordóñez et al. [25] combined the auto-regressive integrated

moving average (ARIMA)model and support vector machine

algorithms to predict turbofan engine RUL. Many engine

RUL prediction models have been developed by establish-

ing a degradation model [26]–[28]. Among all methods for

engine RUL prediction, DNN-based methods account for

the majority. Zhang et al. [29] employed a multi-objective

evolutionary algorithm to evolve multiple DBNs simultane-

ously subject to accuracy and diversity as two conflicting

objectives. Li et al. [30] proposed a new deep CNN (DCNN)

prediction model to predict turbofan engine RUL. Long short

termmemory (LSTM) [31], [32] is a kind of RNN, which can

solve the problem of gradient disappearance and explosion

in long sequence training. Wu et al. [33] used the vanilla

LSTM network to obtain good RUL prediction in the case

of complicated operations, model degradation and strong

noise. Ellefsen et al. [34] established a semi-supervised

model for RUL prediction to provide high RUL prediction

accuracy, even with reduced amounts of labeled training data.
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FIGURE 1. Framework of proposed DAG network.

Zhang et al. [35] combined transfer learning and Bi-

directional long short term memory (BLSTM) network for

RUL prediction. In their approach, the model can first be

trained by different but related datasets and then fine-tuned

by target dataset.

This paper proposes a DAG network based on LSTM

and CNN to improve the accuracy of the RUL prediction

of the machines. Moreover, a sliding time window (TW)

is used to extract data so that the input of the prediction

model has the same length of short-term time series. And

the piece-wise RUL function is applied instead of the tra-

ditional RUL function. The rest of the paper is organized

as follows: In Section 2, the methodology of the proposed

method is introduced. In Section 3, the validation dataset,

the preparation of the data, and the model evaluation method

are described. In Section 4, the validation results of the

proposed method using the validation database is reported.

Finally, Section 5 concludes the paper.

II. METHODOLOGY

A. FRAMEWORK OF PROPOSED DAG NETWORK

This paper presents a DAG network combining CNN and

LSTMnetworks for estimating the RUL ofmechanical equip-

ment. Although the combination of LSTM and CNN for RUL

prediction has been reported in the literature, the method

presented in this paper is different. Different from the DAG

structure presented in this paper, the existing prediction mod-

els of using both LSTM and CNN are all combined in a serial

manner. Hinchi and Tkiouat [36] used a combination of CNN

and LSTMnetworks, first applying CNN to extract signal fea-

tures and then input them into the LSTM network. However,

when the CNN is used as the feature extractor, the extracted

features have a great influence on the training of the LSTM

network, and the CNN cannot be corrected according to the

prediction error of the LSTM. To overcome this limitation,

the method presented in this paper places CNN and LSTM in

parallel into the DAG network. As shown in Fig. 1, the DAG

network contains two paths: LSTM path and CNN path.

There is no correlation between the two paths, but the output

of both paths affect the RULprediction. The constructedDAG

network is a holistic model that can correct each parameter

in the network according to the predicted error. The model

structure of the two paths can increase the stability and accu-

racy of the prediction, and the compact network structure

saves time and convenience in training. The collected data

is simply processed and input into the DAG network to train

the prediction network. The specific process is described

as follows:

1) Data preparation andmodel development: The first step

is to simply process the health-to-failure data as an

input to the DAG network. As shown in Fig.1, the sig-

nal has n features and the signal length is Ls cycles,

i.e., machine life span. The data is extracted by sliding

the time window (TW) with the length of tl cycles,

and the sliding step size is one cycle. The size of the

array extracted each time by TW is tl × n (length of

TW × numbers of features), and the number of arrays

is Ls-tl (life span−time window length). So now the

input data size is {tl × n}, the sampling size is Ls-tl ,

and the output is the corresponding RUL [Ls-tl , Ls-tl-

1. . . 1]. Then, the input data is transposed and cut into

m pieces (T1, T2. . .Tm) along the column direction to

obtain the data size {n × (tl/m)}×m. The processed

data is input into the two paths of the DAG network

and the obtained results will be summed and continue

to propagate forward.

2) Process of path 1: The data input to path 1 first goes

through a flatten layer, and the output data size is (n×

tl/m) × m. The output data of the flatten layer will be

entered as time series data into the LSTM 1 network

containingm cells. Let the LSTM 1 network contain u1
nodes. So the output data size of the LSTM 1 network

is u1 × m.

3) Process of path 2: The data input to path 2 is convoluted

first. The convolution operation is set as follows: filter

size is [k1, k2], i.e., convolution kernel size, the number
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of kernels is nk , and stride of the filter is [s1, s2]. The

output of the convolution will be used as the input to the

pooling layer. Pooling size is set to [p1, p2] and stride

is [ps1, ps2]. The data is finally processed through the

flatten layer. The output data size should be the same

as path 1.

4) Sum the outputs of two paths and continue to propagate

forward: The output vectors of the two paths will be

summed by elements-wise, which requires the output

of both paths to have the same dimension. The com-

bined data will be entered into the LSTM 2 network

with the number of nodes as u2. The output of the

last cell of the LSTM 2 network will be input to a

fully connected layer. The output node of the fully

connected layer is one, which gives the value of the

estimated RUL.

5) Correct the DAG network based on training error

between the actual output and the ideal output.

6) Repeat Step 2) – 5) until the maximum number of

training epochs is reached.

7) Finally, the trained network is used to predict the RUL.

B. LSTM NETWOK

The long-short term memory (LSTM) network [37] is a spe-

cial recurrent neural network (RNN) proposed to solve the

problem of gradient dispersion of the RNN. Fig. 2 shows

the information transfer and update between the LSTM cells.

Compared with the RNN network, the cell state of the LSTM

has changed. It consists of a long-term state ofCt and a short-

term state ht . The change in LSTM cell status relies on three

control gates: forget gate, input gate, and output gate.

FIGURE 2. Diagram of LSTM cell.

The forget gate ft is realized by (1), and its function is to

selectively forget the information of the previous LSTM cell

state.

ft = σ (Wf · [ht−1, xt ] + bf) (1)

where σ ( ) is activation function sigmoid = 1/(1+ exp(-x)),

Wf is the weight matrix of the forgot gate, ht−1 is the short-

term state of previous LSTM cell, xt is the input of t-th LSTM

cell, and bf is the bias vector of forgot gate.

The input gate consists of two parts, which are realized

by (2) and (3). The vector it generated by (2) determines

which information in the short-term state ht−1 is used to

update the new cell state. The C̃t generated by (3) will be

added to the long-term cell state after being filtered by it .

it = σ (Wi · [ht−1, xt ] + bi) (2)

C̃t = tanh(Wc · [ht−1, xt ] + bc) (3)

where Wi and Wc are the weight matrix of the input gate,

bi and bc are the bias vector of input gate, and activation

function tanh = (exp(x)− exp(−x))/(exp(x)+exp(−x)).

Then update the long-term state of Ct based on the output

of the forget gate and the input gate.

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (4)

where ⊗ is the element-wise multiplication, and Ct−1 is the

long-term state of the previous LSTM cell.

The output gate also consists of two parts, which are real-

ized by (5) and (6).

ot = σ (Wo · [ht−1, xt ] + bo) (5)

ht = ot ⊗ tanh(Ct ) (6)

where Wi is the weight matrix of the output gate and bi is

the bias vector of input gate.

C. 2D-CONVOLUTIONAL LAYER

Inspired by the visual center of a cat, the idea of convolutional

neural networks (CNN) [38] has gradually emerged after

several generations’ efforts. The CNN has achieved good

results in both speech analysis and image recognition, among

which the LeNet and the Alex-Net are widely known for their

super high image recognition accuracy. The weight-sharing

structure of CNN makes it more similar to biological neural

networks, reducing the complexity of the network model

and reducing the number of weights. Moreover, CNN can

use a 2-dimensional (2D) array as an input, thus avoiding

the complicated feature extraction and data reconstruction

process in the traditional recognition algorithms. The convo-

lutional layer is the core of the CNN that includes convolution

operations and activation operations.

The convolution operation is shown in Fig. 3. A slid-

ing convolutional filter moves vertically and horizontally to

extract data from 2D-input. The size of the filter should be

the same as the size of the convolution kernel. The filter size

in Fig. 3 is [3, 2], and the sliding step size for traversing

the input vertically and horizontally is [2, 2]. There are three

types of convolution kernels, corresponding to three feature

maps. One convolution operation is as follows: the result

matrix of the dot product of the convolution filter and the

convolution kernel is summed, and then a bias term is added.

With the translation of the convolution filter in the horizontal

and vertical directions, the convolution operation is repeated

to obtain a complete feature map.

The convolution operation and the activation operation can

be calculated by (7) and (8).

znij = sum(kn ⊗ xfij) + bn (7)

Yn = ϕ(Zn) (8)

where Znij is the output of convolution operations, n represents

the n-th feature maps, i and j correspond to the number of

steps of the convolution filter in the vertical and horizontal
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FIGURE 3. 2D-convolution operation.

FIGURE 4. Pooling operation.

directions, sum(*) operation adds all the elements in *, kn is

the convolution kernel matrix, xfij is the filter matrix, bn is

the bias term, and ϕ( ) is an activation function.

D. POOLING LAYER

Themain purpose of the pooling layer is to compress the input

by down sampling without affecting the input quality. On one

hand, the pooling operation can simplify the computational

complexity of the network by compressing the input. On the

other hand, feature compression is performed to extract the

main features. Fig. 4 shows the pooling layer operation,

where the input matrix dimension is [3, 3], pooling size is

[2, 2], and pooling sliding step size for traversing the input

vertically and horizontally is [1, 1]. There are many types

of pooling operations, such as average pooling, maximum

pooling, and overlapping pooling.

The average pooling operation and the maximum pooling

operation can be calculated by (9) and (10).

dnij = Ave pooling(yfij) (9)

dnij = Max pooling(yfij) (10)

where dnij is the output of pooling operation, n represents the

n-th feature maps, i and j correspond to the number of steps

of the pooling filter in the vertical and horizontal directions,

yfij is the pooling filter matrix, Ave_pooling(*) operation

takes average over all the elements in *, and Max_pooling(*)

operation selects the maximum element in *.

E. FLATTEN LAYER AND FULLY CONNECTED LAYER

The role of the flatten layer is to flatten several 2D or 3D data.

The output is a flatten layer a one-dimensional vector. Fig. 5

shows the flatten operation, turning the data into one dimen-

sion in order to make it as an input to the fully connected

layer.

The fully connected layer connects all the nodes between

the adjacent layers, so that the features extracted from the

front can be integrated. Due to its fully connected nature,

FIGURE 5. Flatten operation.

FIGURE 6. A simplified diagram of the simulation engine in C-MAPSS [39].

the full connected layer usually has the largest amount of

parameters. The calculation process of the fully connected

layer can be expressed by (11).

H = ϕ(Wfcs + bfc) (11)

where Wfc is the weight matrix of the fully connected layer,

bfc is the bias vector, s is the inputs, and H is the output

matrix.

III. EXPERIMENTAL TEST

In this section, the C-MAPSS simulated turbofan engine

dataset is used to validate the proposed DAG prediction

model. The main contents of this section include: description

of the C-MAPSS database, sensors data selection, data nor-

malization, definition of piece-wise RUL function, andmodel

evaluation.

A. C-MAPSS DATASET DESCRIPTION

The degradation data of the turbofan engine used in this

paper was simulated by C-MAPSS developed by NASA [39].

A simplified diagram of the simulation engine is shown

in Fig. 6. The main components includes: fan, low pres-

sure compressor (LPC), high pressure compressor (HPC),

combustor, high pressure turbine (HPT), low pressure tur-

bine (LPT), and nozzle. C-MAPSS was developed on MAT-

LAB software and Simulink environments. It includes many

editable input parameters that allow the user to enter spe-

cific values, such as Fuel flow, Fan flow modifier, and Fan

pressure-ratio modifier, etc. The input to the C-MAPSS con-

tains 14 factors that affect the degradation of the turbofan

engine, and the output of the simulation model represents the

health condition of the turbofan engine.
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TABLE 1. 21 Sensor outputs of the simulation engine running.

A description of the 21 simulation outputs of C-MAPSS is

shown in Table 1. The legend of column 5 ‘Trend’ represents

the degradation trend of the output, where ↑ indicates that

the parameter is ascending with time, ↓ indicates that the

parameter is descending with time, and ∼ indicates that the

parameter is irregular with time. In this paper, 14 outputs with

regular trend [40] are selected as inputs to the DAG network.

The C-MAPSS dataset can be divided into four sub-

datasets according to different operating conditions and fault

modes. A description of four sub-datasets is given in Table 2.

Each sub-dataset contains training data, test data, and the

actual RUL corresponding to the test data. The training data

contains all the engine data from a certain health state to

the fault, while the test data is a piece of data before the

engine running fault. Moreover, the training and test data

respectively contain a certain number of engines with dif-

ferent initial health states. Due to the different initial health

states of the engines, the running cycles of different engines

in the same database are different. Taking the FD001 database

as an example, the test dataset contains 100 engines, with a

maximum running cycle of 303 and aminimum running cycle

of 31. In order to test all the engine in the test set, the sliding

window length is usually smaller than the minimum running

cycles in the test set. The data size obtained by the sliding TW

processing was 30× 14, the training samples was 17731, and

the test sample size was 100.

B. DATA NORMALIZATION

According to Table 2, 14 out of 21 sensor outputs were

selected for RUL prediction, and the output value of

these 14 sensors ranged from a tens to thousands. Com-

monly used standardization methods: linear normaliza-

tion and z-score normalization can be realized according

TABLE 2. Description of the C-MAPSS dataset.

to (12) and (13), respectively.

yci = (xci − x̄c)/σ c (12)

yci = (xci − xcmin)/(x
c
max − xcmin) (13)

where xci is the i-th output of sensors c, x̄c is the average

value of all outputs of sensor c, σ c is the standard deviation

of all outputs of sensor c, xcmin is the minimum value of

sensor c output, xcmax is the maximum value of sensor c

output, and yci is the normalized data. The data normaliza-

tion processing method selected in this paper is the z-score

normalization.

C. RUL TARGET FUCTION

The RUL defines the time that the equipment can still operate.

It is generally considered that the RUL decreases linearlywith

time. However, in practical application, the degradation of

the equipment at the beginning of operation is not obvious.

As shown in Fig. 7(a), the signals have not significant trend

within the assumed health range of green. This paper applies

a piece-wise linear function to represent the RUL, as shown

in Fig. 7(b). According to [41] based on the CMAPSS dataset,

the largest RUL value in piece-wise linear function was

set to 125.

FIGURE 7. Engine #1 in FD001 dataset: (a) normalized 14 signals as
inputs of DAG network and (b) piece-wise linear RUL function.
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D. MODEL EVALUATION

When using the trained model to predict the RUL, there is

a prediction error (h = RULpredict − RULactual) between

the predicted RUL and the actual RUL. The model can be

evaluated by an evaluationmethod using the prediction errors.

Two commonly used evaluation methods [42] are described

as follow:

1) RMSE: For the evaluation of the RUL prediction

model, RMSE is a commonly used method with the

same penalties for early and late predictions.

RMSE =

√

√

√

√

√

1

N
·

N
∑

j=1

h2j (14)

where hj is the prediction error, N is the test sample

size.

2) Score: The scoring function was first proposed at

the international conference on prognostics and health

management (PHM08) to be used to evaluate the data

challenge model. Mathematical calculations can be

achieved by (15), which have different penalties for

early and late predictions.

score =

N
∑

j=1

sj, sj =







e−
hj
13 − 1, hj < 0

e
hj
10 − 1, hj ≥ 0

(15)

Figure 8 compares the two evaluation methods. The sim-

ilarity between the two methods is that the closer the pre-

diction error is to 0, the smaller the output. The difference

between the twomethods is that RMSE has the same penalties

for early and late predictions, while score is different.

IV. RESULTS AND ANALYSIS

A. PREDICTED FINAL RUL OF EACH TEST ENGINE

The proposed DAG network was used to predict the

RUL of the engine of the C-MAPSS datasets. Taking the

FD001 database as an example, the TW length was set

to 30, and the data size obtained after data cutting was

{14 × 3} × 10. The LSTM 1 cell node was set to 21, con-

taining 10 cells. The output of each cell was saved and input

to the next layer.

FIGURE 8. Comparison of two evaluation methods: Score and RMSE.

FIGURE 9. Final RUL predicted for each engine by DAG network:
(a) FD001 dataset, (b) FD002 dataset, (c) FD003 dataset, and
(d) FD004 dataset.

The size of the convolution kernel in path 2 was [3, 2], the

number of kernel was 3, and the sliding step size was [2, 2].

The pooling size was set to [1, 2] and stride was [1, 2]. The

cell node of LSTM 2 was set to 10, and the output mode was

‘last mode’, i.e., only the output of the last cell was saved.

Finally, a fully connected layer with an output node of 1 was

used. When the model was back propagated, ‘rmsprop’ was

used as the optimizer, the learning rate was set to 0.005, and

the mini-batch was set to 100. The sliding TW lengths of

different sub-datasets were different, as shown in Table 2.

The DAG network was trained with four sub-datasets in the

C-MAPSS dataset and tested with all test engines. The test

results of each test engine in the test set are shown in Fig. 9.

The 4 graphs correspond to 4 sub-datasets, the horizontal

axis is the number of engines, the vertical axis is the RUL,

the blue solid line in the graph represents the predicted

RUL, and the yellow dash-dotted line represents the actual

RUL. The number of test engines in datasets FD001 and

FD003 is less than the remaining two sub-datasets. Moreover,

it can be seen roughly from Fig. 9 that the coincidence degree

between the predicted RUL curve and the actual RUL curve
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FIGURE 10. Distribution histogram of prediction error: (a) FD001 dataset,
(b) FD002 dataset, (c) FD003 dataset, and (d) FD004 dataset.

in graphs (a) and (c) is better than graphs (b) and (d). This

observation can be further confirmed by Fig. 10.

Fig. 10 shows the test engines error distribution histogram

of the 4 test datasets, including the RMSE of each test dataset.

The horizontal axis represents the error between the predicted

RUL and the actual RUL. The vertical axis represents the

number of engines corresponding to the error region. It can

be seen from the figure that the error spans of FD001 and

D003 are smaller, and the corresponding RMSE values are

also lower. The prediction error distribution of FD001 and

FD003 is concentrated between [− 20, 20], and the predic-

tion errors of other two datasets are concentrated between

[− 40, 40]. According to Table 2, the datasets FD002 and

FD004 contain data of six working conditions. They are

more complicated than the other two datasets and the RUL

prediction challenge for these two datasets is even greater.

The reason why the prediction result of FD001 is slightly

better than FD003 is that there are two fault modes in FD003.

The predictionmethods validated by the C-MAPSS dataset

in the past 4 years are presented in Table 3. The RMSE

and score of the different prediction methods are compared

in Table 4 and Table 5.

The second column in Table 4 is the year in which the

prediction method was proposed. It can be found that the pre-

diction results are gradually getting better as the newmethods

are proposed. It can be seen from Table 4 that the RMSE

values of the 4 sub-datasets obtained by the proposed method

are the lowest of all methods in the table. Similarly, the scores

of the predictedRUL results are shown in Table 5. One can see

from Tale V that the proposed method has the lowest scores

except for in dataset FD003. It can be seen from Fig. 8 that the

lower the score and RMSE, the better the RUL prediction of

the model. The score of proposed method for FD003 dataset

is higher than several of the compared methods because there

TABLE 3. The existing prediction methods validated by CMAPSS dataset.

TABLE 4. Compare the prediction RMSE with other methods.

TABLE 5. Compare the prediction scores with other methods.

is one large late prediction in the 100 test engines. As can be

seen fromFig. 9(c) and Fig. 10(c), the RUL estimate of engine

#16 is a late prediction, and the prediction error is within the

range of 50-60, which is the reason for the larger score.

Fig. 11 shows the effect of the TW length on the prediction

results of the developed model. The figure shows the boxplot

of each engine final RUL prediction error and the RMSE

under different TW lengths. It can be seen from the figure that

as the length of the TW increases, the engine prediction
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FIGURE 11. Each engine prediction error boxplot and RMSE curves of
FD001 dataset under different TW length.

error is increasingly concentrated near zero and the RMSE

also drops. It can be concluded that increasing the length of

the time window can enhance the prediction accuracy of the

model.

B. PREDICTED FULL LIFE CYCLES OF EACH TEST ENGINE

The previous section presents the results of using the model

to predict the final RUL of the each test engine. Next, this

section presents a complete prediction of the degradation

process for each test engine. Fig. 12 shows the predicted

degradation process and the actual degradation process for

the 4 randomly selected engines from all the 100 test engines.

During the test, the sliding TW was used to process the data.

The predicted RUL corresponds to the life of the last time

series in the TW. So the abscissa of the prediction curve

does not start from 0. And the length of the blank before the

prediction curve is equal to the length of the TW. The value

at the top of the graph is the RMSE of the predicted result

of the engine. Fig. 13-15 presents the predicted degradation

process of 4 engines for the other three sub-datasets. The

RUL prediction results of Fig. 12(c), (d), and Fig. 14(d) are

very good, especially for the prediction of the RUL at the last

cycle. Observing these three graphs, it can found that when

the remaining period of the test engine is large, the time cycle

span is also large. In contrast, it can be concluded by compar-

ing Figures 14(b) and (d) that the smaller the predicted RUL

and the time cycle span, the larger the prediction error. The

longer the engine runs, the more pronounced the degradation

of the engine. When the model is trained, the ‘memory’ of

the model for the late stage of degradation is deeper than the

early stage. So the predicted result is getting better and better

with time cycles. Both Fig. 13(a) and Fig. 14(c) show that

the prediction results in the later period of the time cycle are

better than the early stage.

The actual RUL in Fig. 12(b) and 13(c) is a straight line,

but the predicted RUL curve is different. The reason for this

may be that this paper replaces the original linear function

with a piecewise linear RUL function. So that it is possible for

the engine to have a degradation trend but the corresponding

RUL has not changed. Therefore, it can be inferred that the

FIGURE 12. Predicted RUL of 4 engines in FD001 dataset: (a) engine # 46,
(b) engine # 65, (c) engine # 76, and (d) engine # 92.

FIGURE 13. Predicted RUL of 4 engines in FD002 dataset: (a) engine # 9,
(b) engine # 45, (c) engine # 170, and (d) engine # 182.

engine in Fig. 12(b) is healthy in an earlier state, while the

engine in Fig. 13(c) is going to degrade. Fig. 15(b) can verify

the previous inference that the predicted RUL is maintained

at the early time cycle. And the predicted RUL has changed

when there is a degradation trend but the actual RUL has not

decreased.

Next, the prediction results of the three methods are com-

pared, wheremethod 1 is LSTMonlywithoutWT processing,

method 2 is CNN only without data cutting, and method

3 is the proposed DAG network. Fig. 16 shows a boxplot

of the RMSE of all test engine prediction results for the

three methods. It can be seen from the figure that the RMSE
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FIGURE 14. Predicted RUL of 4 engines in FD003 dataset: (a) engine # 25,
(b) engine # 34, (c) engine # 85, and (d) engine # 92.

FIGURE 15. Predicted RUL of 4 engines in FD004 dataset: (a) engine # 33,
(b) engine # 41, (c) engine # 135, and (d) engine # 183.

distribution region of the proposed method is lower and rel-

atively concentrated. Method 1 without TW processing has

the largest RMSE distribution span, which indicates that the

prediction of early time cycles is not good when the entire

time sequence is used as input.

Fig. 17 presents the distribution of all prediction engine

score for the three methods. Compared to RMSE, the score

distribution of each test engine is more dispersed. This is

because the score for each test engine is the cumulative of all

cycle errors of the engine. So the number of predicted cycles

of the test engine will affect the score. Observing the results

FIGURE 16. Comparison of 3 methods in terms of RMSE boxplot for each
engine of the 4 sub-datasets: (a) FD001 dataset, (b) FD002 dataset,
(c) FD003 dataset, and (d) FD004 dataset.

FIGURE 17. Comparison of 3 methods in terms of scores box plot for
each engine of the 4 sub-datasets: (a) FD001 dataset, (b) FD002 dataset,
(c) FD003 dataset, and (d) FD004 dataset.

TABLE 6. Comparison the training time of different methods.

of all the 4 datasets, it is not difficult to find that the proposed

DAG method has the best prediction results.

The computational time can be reflected in the training

time of the diagnostic model. Therefore, the training time

is an important indicator for evaluating the quality of the

diagnostic model. The FD001 dataset was first processed by

TW, and then the obtained data was input into three models:

LSTM, CNN, and the proposed method. The training epochs

and training mini-batch were set to 40 and 200, respectively

for all three models. Table 6 provides the training time for

the 3 models tested. It can be seen from Table 6 that the

training time of 81.84s for the CNN model is the shortest.

The training time of 138.17s for the proposed method is

shorter than the training time of 304.35s for the LSTMmodel.

Because the LSTM network involves processing time series

data, the training time of the proposed method and the LSTM
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model is longer than the CNN model. The proposed method

reduces the time series length of the LSTM network through

data cutting process and flatten layer. Moreover, the CNN

path and the LSTM path are in a parallel connection, the pro-

posed method has a shorter propagation path than the LSTM

methods. Therefore, the proposed method takes less training

time in comparison with the LSTM model.

V. CONCLUSIONS

In this paper, a new DAG network structure including LSTM

and CNN was proposed. The sliding TW was applied to

process the raw data into a data table with the same length

of time sequence. And the traditional linear RUL function

was replaced by the improved piece-wise linear function

according to the fault occurrence mechanism. The turbofan

engine degradation simulation dataset provided by NASA

was used to validate the developed prediction model. The

following conclusions can be drawn:
1) Compared with the RUL prediction methods present in

recent 4 years using the C-MAPSS dataset validation,

the overall prediction results of the proposed method

in terms of RMSE and score are better than other

methods. This shows that the prediction capability of

the proposed method is better than the existing RUL

prediction methods.

2) Increasing the length of the sliding TW can improve the

prediction accuracy of the developed model.

3) Since the performance degradation in the later period of

the operation is more obvious, the model has a deeper

‘memory’ of the late stage of degradation during the

training. As a result, when the whole life cycle of each

engine is predicted, the prediction accuracy at the late

stage of degradation is better than that at the early stage.

4) Compared with using CNN or LSTM methods alone,

the prediction accuracy of the proposed two-path DAG

network is better.
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