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A network is said to be survivable if it has sufficient
capacity for rerouting all of its flow under the failure of
any one of its edges. Here, we present a polyhedral
approach for designing survivable networks. We de-
scribe a mixed-integer programming model, in which
sufficient slack is explicitly introduced on the directed
cycles of the network while flow routing decisions are
made. In case of a failure, flow is rerouted along the
slacks reserved on directed cycles. We give strong valid
inequalities that use the survivability requirements. We
present a computational study with a column-and-cut
generation algorithm for designing capacitated surviv-
able networks. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

Given a graph, demands between pairs of nodes (com-

modities) and cost of installing capacity on the edges of the

graph, the capacitated network design problem (NDP) is to

install integer multiples of a capacity unit and route the flow

so that the total cost is minimized. A network is said to be

survivable if it admits a feasible flow under the failure

(removal) of any one of its edges. Existence of two edge-

disjoint paths between every pair of source and destination

nodes is a necessary condition for survivability of the net-

work, but this is clearly not sufficient. To ensure that the

flow on the network can be rerouted in the case of a failure,

sufficient spare (excess) capacity must be available on the

remaining edges of the network. Because overprovisioning

of capacity is a major concern due to the high investment

cost associated with installing capacity, designing capacity-

efficient survivable networks is a highly critical problem in

the telecommunications industry.

The capacitated survivable network design problem can

be formulated as a multicommodity network flow problem

for each failure scenario, linked by integral capacity vari-

ables [2]. However, there are at least two reasons as to why

such a model is not used in practice. The first one is that it

has a cubic number of variables and constraints in the

number of edges for a complete network and is, therefore,

impractical for designing networks except for very small

instances. The second reason is that its solution involves

globally rerouting flow on the network whether the flow of

a commodity is disrupted by the failed edge or not. Solu-

tions with minimal changes to no-failure flow are preferred

because it is highly undesirable in practice to manipulate

unaffected flow while restoring affected flows. Therefore, a

number of practical models and strategies have been devel-

oped for designing survivable networks that admit local

rerouting of flow on a failed edge; see for instance [3, 7, 14,

27]. The reader is referred to [25] for a survey on the

survivable network design problem.

Traditionally, to design and implement survivable net-

works one uses some variant of the following two different

strategies: protection or restoration. Protection techniques

completely identify ahead of time the routes that disrupted

flows will take and the capacities that will be used. Resto-

ration techniques determine which available capacity will

be used for a specific failure (and the routes that will be used

for each affected demand) when the failure occurs. We do

not discuss any dynamic restoration schemes, and focus on

protection.

Dedicated protection techniques [3, 12, 14] install and

assign spare capacity specifically for each commodity to

protect it against the different possible failures, i.e., spare

capacity is dedicated to a particular commodity. A signifi-

cant reduction in the amount of spare capacity can be

achieved by using a shared protection strategy [2, 7, 27]

when dealing with failures. In a shared protection scheme,

instead of preassigning spare capacity to protect each com-

modity of the network independently, spare capacity is

shared by more than one commodity, and used as required

to restore the disrupted flow.

Survivable network design strategies can also be broadly
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classified into two frameworks: hierarchical (nonjoint) and

integrated (joint). The hierarchical one (i.e., [17, 24]) in-

volves a two-stage approach; first, no-failure routing and

working capacities are determined, followed by rerouting of

disrupted flows and spare capacities. Solving these two

problems simultaneously in an integrated framework pro-

vides significant savings in installed capacity [23].

The advent of add/drop multiplexers introduced a tech-

nique known as Self-Healing Rings (SHRs) [3, 14, 18, 19,

25]. The topology of SHR networks is a set of rings (undi-

rected cycles) covering the nodes of the network. SHR

networks are inherently survivable, because the flow on a

failed edge on a ring can be sent along the ring in the reverse

direction. Even though SHRs provide good survivability

characteristics and extremely fast reconfiguration of flow,

imposing a ring topology on the telecommunication net-

work leads to inefficient capacity utilization, and therefore

high capacity cost.

Recently, there has been an increased effort in designing

hybrid networks that achieve reconfiguration times compa-

rable to the regime of rings, but without giving up the

desired capacity efficiency of a general/mesh network, i.e.,

a network with no restriction on its topology. There are

several ways in which hybrid networks are already being

implemented in telecommunication networks. The first one

is referred as “ring access and mesh transport.” In this

widely used form of hybrid networks, shared protection is

applied for backbone networks, and SHRs are used for

Local Area Networks (LANs). The second way of building

a hybrid network is through “meshed rings,” which is es-

sentially ring-based networking with inter-ring transitions

being managed by shared protection. In the third type of

hybrid networks, capacity is allocated on various cycles to

act as rings. Any fraction of a commodity may be routed on

these rings, and is inherently survivable (see [15] for de-

tails); the rest of the commodity is routed as in a mesh

network.

In this article, we focus on a fourth approach for design-

ing hybrid networks, which involves the use of specific

failure-flow patterns for shared protection of disrupted flow.

However, no particular topology is imposed on the network.

Thus, this approach uses a general/mesh network for no-

failure routing, but utilizes specified patterns for routing

flow in case of disruption. In particular, we use directed

cycles as our failure-flow patterns. We explicitly reserve

sufficient slack between flow on an arc and the capacity on

the arc using directed cycles of the network. We ensure that

the total slack on the cycles in the reverse direction is at

least equal to the flow on an arc. So when an edge fails, the

flow in either direction can be rerouted from between the

two ends of the edge along the slacks of the cycles in the

reverse direction. We first present the hierarchical optimi-

zation problem, and then extend it to the integrated optimi-

zation framework.

A related combinatorial survivable graph problem is

studied in [13], where the edges of a graph are covered with

directed cycles. The authors show that a bridgeless undi-

rected planar graph* can be decomposed into directed cy-

cles where each edge is used exactly twice (once in each

direction). They conjecture that this result also applies to

any bridgeless graph and give a heuristic for finding di-

rected cycle covers of undirected graphs. In [22], the au-

thors cover the arcs of a directed graph using an overlay

graph.† These articles do not take into consideration de-

mands on the nodes, flows, capacities, or costs.

Another related work is [16], in which the authors first

determine edge capacities for the no-failure scenario, and

then add sufficient capacity on undirected cycles (p-cycles)

to protect working edge capacities. Their approach differs

from ours in the following aspects. First, they protect work-

ing capacities and not flows; hence, their model does not

utilize existing slack on the edges of the network. Second,

their model allows the p-cycles to reroute disrupted flow on

the chords.

The proposed models are presented in Section 2. In

Section 3, valid inequalities that explicitly consider the

survivability requirements are described. These inequalities

are used in a column-and-cut generation algorithm to

strengthen the linear programming relaxations of the for-

mulations. In Section 4, we present computational results

with the column-and-cut generation algorithm. We compare

capacity-efficiency of the models and the impact of the valid

inequalities in reducing the computation time when used as

cutting planes. Finally, in Section 5, we conclude with a

summary and directions for future research.

2. MODELS

In this section we present two mixed-integer program-

ming models for designing capacitated survivable networks.

We consider a common variant of the problem as it appears

in telecommunication networks, where capacity installed on

an edge can be used to send flow up to capacity in both

directions. Thus, the capacity is undirected even though

flow and cycles are directed. The results in this article can

be easily adopted to the case where capacity is directed. We

introduce sufficient slack on directed cycles of the network,

so that the flow on each arc can be rerouted along these

cycles in case of an edge failure. For ease of exposure and

the purpose of comparison, we first discuss a hierarchical

approach.

2.1. Hierarchical Approach

Here we present a hierarchical scheme for designing

capacitated survivable networks. In the first stage, the ca-

pacitated network design problem without survivability re-

quirements, NDP, is solved. In the second stage, an optimal

solution to NDP (a vector of flows and edge capacities) is

* A graph is bridgeless if its nodes cannot be partitioned into two groups

such that only one edge connects them.
† A graph superimposed on the original graph.
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used as input to a spare capacity installation model, where

sufficient slack is reserved on directed cycles so that the

flow on each arc can be safely rerouted along these cycles.

Formally, let G � (N, E) be an undirected graph with

node set N and edge set E. Let F be the set of all ordered

pairs (arcs) from E, i.e., F � {(ij), ( ji) : [ij] � E}. Let gij

be the flow quantity through arc (ij) � F, and w[ij] be the

capacity on edge [ij] � E in the solution to NDP. Let � be

the set of directed cycles of G� � (N, F). Define the cycle

variable zc to denote the amount of slack reserved on cycle

C � �. Define the capacity variable y[ij] as the amount of

spare capacity installed on edge [ij], and let h[ij] be the cost

of installing unit capacity on edge [ij] � E. Then the Spare

Capacity Installation (SCI) problem is formulated as

min �
�ij��E

h�ij�y�ij�

s.t.: �
C��:� ji��C

zc � gij � �ij� � F (1)

gij � �
C��:�ij��C

zc � w�ij� � y�ij� � �ij� � F

y�ij� � �� � �ij� � E, zc � �� � C � �. (2)

In SCI, spare capacity on a directed cycle provides coverage

for flows in the reverse direction to the arcs on the cycle (see

Fig. 1). Constraints (1) ensure that for each arc (ij) the total

slack reserved on the directed cycles using the reverse arc

( ji) is at least the total flow on (ij). Constraints (2) ensure

that total capacity installed on edge [ij] is large enough to

accommodate the flow routed on arc (ij) as well as the slack

reserved for cycles containing the arc. Notice that by scaling

the data without loss of generality (wlog) we may assume

that the capacity is installed in batches of one unit.

In Figure 1 we show two directed cycles, drawn in

dashed arcs, that cover the disrupted flow on arc (ab) in the

reverse direction. If edge [ab] fails, then the flow along arc

(ab) can be rerouted from node a to node b along these two

directed cycles if the sum of reserved slack on the cycles is

at least the flow quantity on (ab). Note that these cycles are

used to reroute not only the flow on arc (ab), but also of the

other arcs they contain.

2.2. Integrated Approach

Next we present the integrated optimization model that

makes flow routing and capacity installation decisions for

no-failure and failure cases simultaneously. Because routing

and capacity decisions are made together, the integrated

model gives a network with a cost that is at most the optimal

cost of the hierarchical scheme.

Let z, y, and h be defined as in Section 2.1. Let {(sk,

tk)}k�K be the commodity pairs of source and destination

nodes and dk be the supply at sk for tk, k � K. Let bi
k be the

supply of commodity k at node i, i.e., bsk

k � dk, btk

k � �dk,

and bi
k � 0 for i � N�{sk, tk}. Also define variable xij

k as

the flow of commodity k through arc (ij) � F in the

no-failure case, and let eij
k be the cost associated with

routing each unit of commodity k � K. Then the problem

of Routing of Flows and Slacks on Cycles (RFC) is formu-

lated as

min �
�ij��F

�
k�K

eij
k xij

k � �
�ij��E

h�ij�y�ij�

s.t.: �
�ij��F

xij
k � �

� ji��F

xji
k � bi

k, � i � N, � k � K (3)

�
k�K

xij
k � �

C��:� ji��C

zc � 0 � �ij� � F (4)

�
k�K

xij
k � �

C��:�ij��C

zc � y�ij� � �ij� � F (5)

y�ij� � �� � �ij� � E, zc � �� � C � �,

xij
k

� �� � �ij� � F, � k � K.

Constraints (4) ensure that for each arc (ij) the total slack

reserved on the directed cycles using the reverse arc ( ji) is

at least the total flow on (ij). Constraints (5) ensure that

capacity installed on edge [ij] is large enough to accom-

modate the flow routed on arc (ij) as well as the slack

reserved for cycles using the arc. Observe that if constraints

(4) and the cycle variables z are dropped from RFC, we

obtain the network design problem without survivability

restrictions, NDP.

For all practical purposes, the cost of sending flow on arc

(ij) is insignificant when compared to the cost of installing

capacity on edge [ij] (eij � h[ij]); we keep eij in the

formulation for generality. No cost is associated with the

cycle variables, because (a) we wish to compare the cost of

the survivable network with that of NDP, and (b) flow is

routed using cycle variables only if there is a failure.

2.3. Pricing Cycle Variables

RFC has only one more constraint (4) for each arc than

the network design problem without survivability require-

FIG. 1. Two directed cycles protecting the flow on (ab).
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ments. This is a big advantage of the model in being able

solve large instances. However, the number of cycle vari-

ables is exponential in the number of arcs, and all of the

variables cannot be included in the formulation when solv-

ing large instances. Therefore, we develop a column gener-

ation method to include the cycle variables into the formu-

lation as they are needed when solving its linear

programming (LP) relaxation.

Given an LP relaxation solution to RFC, we search for a

directed cycle C in G� that has at least three arcs such that

zc has a negative reduced cost. Let (u, v) be the dual

variables corresponding to constraints (4) and (5), respec-

tively. For each arc (ij) on cycle C, the variable zc appears

twice in the formulation: in constraint (4) for arc ( ji) with

coefficient �1 and in constraint (5) for arc (ij) with coef-

ficient �1. Hence, the reduced cost of cycle C is ¥ij�C (uji

� vij). Let qij � uji � vij be the cost of arc (ij) � F.

Notice that because u, v � 0, q is unrestricted in sign.

Accordingly, we define the Cycle Pricing Problem

(CPP): given a directed graph G� � (N, F) and a cost

function q : F � �, either find a negative-cost directed

cycle in G� with at least three arcs, or conclude that no such

cycle exists. It is easy to show that CPP can solved with a

variant of the Bellman-Ford algorithm [1] that ignores cy-

cles with two arcs in O(�F��N�2). A delayed column gener-

ation approach that finds negative cycles with at least three

arcs is developed and used to add the cycle variables into

the formulation as needed.

3. STRONG VALID INEQUALITIES

Cutting plane methods have been successfully used in

solving network design problems; see [5], [6], [8], [9], [10],

[11], [20], [21]. In this section, we describe polyhedral

inequalities that explicitly utilize the cycle variables for

ensuring survivability of the network. Because the inte-

grated model RFC produces solutions with lower cost than

the hierarchical model SCI, we develop inequalities for

RFC.

3.1. Residual Capacity Inequalities

The first class of valid inequalities we describe are de-

rived from the capacity constraints (5). Inequalities that

completely describe the related set conv{ xij � ��
K , y[ij] �

�� : ¥k�K xij
k � y[ij], xij

k � dk @k � K} are given in [20]

and shown how to separate in polynomial time in [6]. These

inequalities are referred to as the residual capacity inequal-

ities, and are of the form

�
k�S

�dk � xij
k� � f�D � y�ij��, (6)

where S � K, f � D � D, and D � ¥k�S dk.

It can be shown that all nontrivial facets of conv{ xij �

��
K , z � ��

� , y[ij] � �� : ¥k�K xij
k � ¥c�� zc � y[ij], xij

k

� dk @k � K} have zero coefficient for the unbounded

continuous variables zc [4]. Therefore, residual capacity

inequalities (6) are the only class of cutting planes for RFC

that can be derived from the capacity constraints (5).

3.2. Two-Partition Inequalities

We derive valid inequalities for RFC from its 2-com-

modity 2-partition relaxations. Let ( A, B) be a nonempty

partitioning of the nodes of G. Let [AB] be the edges with

one end in A, the other in B; corresponding to these edges,

let AB be the arcs directed from A to B, and BA be the arcs

directed from B to A. Let dA denote the total supply in A for

nodes N�A (referred to as commodity A), and dB denote the

total supply in B for nodes in N�B (referred to as commodity

B). We assume wlog that dA � dB. Consider the following

2-commodity 2-partition relaxation of RFC

xA� AB� � xA�BA� � dA (7)

xB�BA� � xB� AB� � dB (8)

xij
A � xij

B � zij � y�ij� � �ij� � AB � BA (9)

0 � xij
A � xij

B � zji � �ij� � AB � BA (10)

z� AB� � z�BA�, (11)

where xij
A and xij

B denote the flow on arc (ij) for commodities

A and B, respectively, zij the slack reserved for cycle

variables on arc (ij) and y[ij] the capacity installed on edge

[ij]. Constraints (7) and (8) are obtained by aggregating the

flow balance constraints across the partition. Constraints (9)

and (10) are the capacity and survivability constraints for

the arcs in the partition. Constraint (11) states that the total

slack reserved for cycles across the partition is the same in

either direction, because any directed cycle that goes across

the partition (using arcs in AB) has to come back across the

partition (using arcs in BA) (see Fig. 2). We denote the

convex hull of all points satisfying (7), (8), (9), (10), and

(11) by �2. Clearly, all feasible points of RFC are contained

in �2.

Before presenting the general form of 2-partition ine-

qualities, we motivate and explain the simplest version of

the inequalities. The total flow of commodity A on arcs in

FIG. 2. Two-partition.

204 NETWORKS—2004



AB must be at least dA. Furthermore, total slack reserved for

cycles on the arcs AB (going from A to B and back) must be

sufficient to cover this flow. Consequently, the net capacity

across this partition must be at least the sum of these two

values, each of which must be at least dA. Finally, because

the capacity variables are integral, capacity across the par-

tition is lower bounded by 2dA, i.e.,

y��AB�� � 2dA. (12)

The following theorem states that this lower bound is not

only tight, but also that inequality (12) is indeed strong.

Recall that by assumption dA � dB and define rA � 2dA

� 2dA.

Theorem 3.1. For any nonempty 2-partition (A, B) of G

with �[AB]� � 3, the 2-partition inequality (12) is facet-

defining for the convex hull of feasible solutions of RFC if

the two subgraphs formed by the removal of the edges [AB]

are 2-connected, and either rA 	
1

2
or dA 	 max{dB, 2}.

Proof. Consider an arbitrary equation

�
�ij��F

�
k�K

	ij
kxij

k � �
�ij��E


�ij�y�ij� � �
C��

�czc � � (13)

on the variables ( x, y, z). For each commodity k, consider

an arbitrary arborescence (Tk) rooted at sk (source of com-

modity k). Because by adding appropriate multiples of (3)

(for commodity k) for all nodes in the depth-first sequence

of Tk, we can eliminate the coefficients of the flow variables

corresponding to arcs in Tk in (13); wlog we assume 	ij
k �

0, @(ij) � Tk @k. Let y� be an arbitrary feasible solution

that satisfies (12) at equality. Later in the proof, we show the

existence of such y� under the assumptions of the theorem.

We will use y� to derive other feasible points that satisfy

(12) at equality, and prove that they define (13) up to a

scalar multiple, and a multiple of equalities (3). Let 
 be an

infinitesimally small positive constant, and d� � dA � rA

� 1.

We first show that 
[ij] � 0, @[ij] � E�[AB]. For any

edge [ij] � E�[AB], we increase the capacity by one unit to

get a new feasible solution y
 that still satisfies (12) at

equality. Substituting y� and y
 into (13), we get 
[ij] � 0

for all [ij] � E�[AB]. Let �� be the set of all cycles that do

not contain any edges in [AB].

We now show that �c � 0, @C � ��. Consider again

the feasible solution y
 obtained by adding one unit of

capacity to y� on all edges [ij] � E�[AB]. This new

solution also satisfies (12) at equality. For any cycle C, we

increase the slack reserved for the cycle by one unit to get

a new feasible solution y� that also satisfies (12) at equality.

Substituting y
 and y� into (13), we get �c � 0, C � ��.

Next we prove that 	ij
k � 0, @(ij) � F�( AB � BA), k

� K. Consider the feasible solution y
 obtained by adding

one unit of capacity to y� on all edges [ij] � E�[AB];

redirecting the flow such that there exists some positive flow

on all arcs in Tk�( AB � BA), for each commodity k (note

that this can be done without increasing the flow on the arcs

in AB � BA); and increasing the slack reserved on cycles

in �� such that the new flow is covered (because the

subgraphs obtained by removing [AB] are 2-connected).

Because there exists unused capacity on all edges in

E�[AB], y
 is feasible, and also satisfies (12) at equality. For

commodity k, consider any arc (ij) � F�( AB � BA � Tk).

We can redirect 
 additional units of flow through this arc

by changing flow by 
 units only among the arcs in Tk

(using the fundamental circuit). We satisfy (4) by reserving

additional slack on cycles in �� that cover arcs on which

flow is increased. This new solution ( y�) is feasible, be-

cause unused capacity exists on these edges by definition of

y
, and also satisfies (12) at equality. Substituting y
 and y�

into (13), we get 	ij
k � 0, (ij) � F�( AB � BA), k � K.

For the coefficients 
[ij], [ij] � [AB], we treat the case

rA 	
1

2
separately from dA 	 max{2, dB}. For both cases,

we only need to route commodities that have source and

destination in opposite sides of the 2-partition (commodities

A and B) using the arcs in AB � BA. Because the two

subgraphs formed by removing [AB] are 2-connected, all

other commodities can be routed using arcs in F�( AB �

BA), and can be covered using cycles that do not cross the

2-partition (��). For all feasible points considered in the rest

of the proof, we install sufficiently large capacity on edges

in E�[AB] and slack on cycles in �� while still satisfying

(12) at equality.

CASE 1. rA 	
1

2
. Consider the feasible solution y� shown in

Figure 3. Here, flow on arcs are x(ij)1

A � dA and x( ji)2

B � dB.

Slack reserved on cycles are zc1
� dA � 
 and zc2

� 
.

Installed capacity on edges are y[ij]1
� dA and y[ij]2

� dA. Because rA 	
1

2
, 2dA � 2dA; thus y� satisfies

(12) at equality. Furthermore, we can obtain some other

feasible solution y
 by choosing another edge [ij]3 instead

of either [ij]1 or [ij]2 because the subgraphs obtained by

removing [AB] are connected, and there exists sufficient

spare capacity on all the arcs. This new solution still satis-

fies (12) at equality. Substituting such pairs of solutions into

(13), we get 
[ij] � 
, @[ij] � [AB].

FIG. 3. Feasible solution y�.
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CASE 2. rA �
1

2
, dA 	 max{2, dB}. Consider the solution

y� shown in Figure 3. Here, flow on arcs are x(ij)1

A � dA

� rA � 2
, x(ij)2

A � rA, x(ij)3

A � 2
, x( ji)2

B � max{dB � d�,

0} and x( ji)3

B � min{dB, d�}. Slack reserved on cycles are

zc1
� dA � 1 � 
, zc2

� 
, zc3
� 1 � rA � 2
, zc4

� rA

� 
, and zc5
� 3
/ 2. Installed capacity on edges are y[ij]1

� dA � 1, y[ij]2
� 1 and y[ij]3

� dA. Because rA �
1

2
,

dA � dA � 2dA � 1 � 2dA; thus, y� satisfies (12)

at equality. Furthermore, we can obtain another feasible

solution y
, that satisfies (12) at equality, by interchanging

the values (flow, cycle, capacity) on edges [ij]2 and [ij]3,

because the subgraphs obtained by removing [AB] are con-

nected, and there exists sufficient spare capacity on all the

arcs. Substituting such pairs of solutions y� and y
 into (13),

we get 
[ij] � 
, @[ij] � [AB].

For the rest of the coefficients, we define Xij and Zij as the

total flow and slack reserved for cycles on arc (ij), respec-

tively. We note that for the solution y� (for both cases), we

have Xij � Zji and Xij � Zij � y[ij], (ij) � AB � BA,

whenever y[ij] 	 0. For instance, consider edge [ij]2 in

Case 2. Here, X(ij)2
� rA, Z( ji)2

� zc4
� rA � 
 	 X(ij)2

and X( ji)2
� max{dB � d�, 0} � 1 � rA, Z(ij)2

� zc3

� zc5
� 1 � rA � 
/ 2 	 X( ji)2

. Furthermore, X(ij)2

� Z(ij)2
� 1 � 
/ 2 � y[ij]2

and X( ji)2
� Z( ji)2

� 1 � y[ij]2
.

Hence, we can get a new feasible solution ( y
) by reserving


 additional units of slack on any cycle C � ����. This

new solution ( y
) satisfies (12) at equality. Substituting y�

and y
 into (13), we get �c � 0, c � ����.

Now for commodity k, consider any arc (ij) � ( AB �

BA)�Tk. Starting with solution y�, we can redirect 
 addi-

tional units of flow through this arc by changing flow by 


units only among the arcs in Tk (using the fundamental

circuit). Furthermore, we satisfy (4) by reserving additional

slack on some cycle in � that covers arc (ij). This new

solution ( y�) is feasible because unused capacity exists on

all edges by definition of y�, and also satisfies (12) at

equality. Substituting y� and y� into (13), we get 	ij
k � 0,

(ij) � ( AB � BA)�Tk. Finally, plugging y� into (13), we

get � � 2dA
. Dividing (13) by 
, we arrive at (12). ■

Defining �i � 2di and ri � 2di � 2di for i � {A,

B}, we can generalize inequality (12) to include flow and

cycle variables in both directions of the 2-partition.

Theorem 3.2. For S1 � AB, S2 � BA, the 2-partition

inequalities

rAy��S1�� � �1 � rA� y��S2�� � xA� AB�S1� � z� AB�S1�

� xA�S2� � xA�BA��S1�� � rA�A (14)

rBy��S2�� � �1 � rB� y��S1�� � xB�BA�S2� � z�BA�S2�

� xB�S1� � xB� AB��S2�� � rB�B (15)

are valid for �2.

Proof. We show the validity of inequality (14). Relax-

ing the flow balance constraint for commodity A, we get

xA� AB� � dA � xA�BA��S1��.

Using (11) and the fact that the slack reserved for cycles

containing arcs AB is greater than the flow in the reverse

direction, we have

z� AB� � dA � xA�S2�.

Because the capacity installed on a set of arcs is greater than

the net flow and the slack reserved on cycles containing

these arcs, we get

y��S1�� � z� AB�S1� � xA� AB�S1� � xA�S1� � z�S1�

� z� AB�S1� � xA� AB�S1�.

Finally, adding these three inequalities, we have

y��S1�� � xA� AB�S1� � z� AB�S1�

� xA�S2� � xA�BA��S1�� � 2dA.

Subtracting and adding y([S2]) from/to the left-hand side

and applying mixed-integer rounding [26] to the resulting

inequality, we obtain the inequality (14). Validity of (15)

can be shown in the same way by considering commodity B

instead of commodity A. ■

Note that when S1 � AB and S2 � A, inequality (14)

reduces to (12). For a fixed 2-partition ( A, B), the separa-

tion problem of (14) is easy. Given ( y� , x� , z�), if rAy� [ij] � x� ij
A

� z� ij � x� ji
A for (ij) � AB, then we include (ij) in S1; if (1

� rA) y� [ij] � x� ij
A for (ij) � BA, then we include (ij) in S2.

The separation for inequality (15) is similar.

Inequalities (14) are not always facet-defining for �2;

however, they are facet-defining for the convex hull of the

1-commodity 2-partition relaxation of RFC, i.e.,

xA� AB� � xA�BA� � dA (16)

xij
A � zij � y�ij� � �ij� � AB � BA (17)

0 � xij
A � zji � �ij� � AB � BA (18)

z� AB� � z�BA� (19)

under mild conditions.

Theorem 3.3. Let �1 denote the convex hull of points

satisfying the 1-commodity 2-partition relaxation (16)–(19).

The inequality
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rAy��S1�� � xA� AB�S1� � z� AB�S1�

� xA�BA��S1�� � rA�A (20)

is facet-defining for �1 if and only if rA 	 0 and S1 
 A.

Proof. First, we prove that (20) is not facet-defining for

�1 if rA � 0 or S1 � A. If rA � 0, (20) reduces to

z( AB�S1) � x( AB�S1) � x(BA�[S1]) � 0, which is

dominated by the sum of the nonnegativity constraints of

AB�S1 and the survivability constraints of (BA�[S1]). On

the other hand, if S1 � A, then the inequality reduces to

z( AB) � xA( AB) � xA(BA) � rA�A, which is dominated

by z( AB) � z(BA) � xA( AB) � dA (because 2dA

� rA�A).

Next, we prove that (20) is facet-defining if rA 	 0 and

S1 
 A. Let fij and gij denote the unit vectors of flow and

cycle variables, respectively, for (ij) � AB � BA, and h[ij]

denote the unit vector of the capacity variables for [ij] �

[AB].

Let ¥(ij)�AB�BA (	ijxij
A � �ijzij) � ¥[ij]�[AB] 
[ij]y[ij]

� 
0 define an arbitrary hyperplane that contains the face

induced by (20) and (st) � S1. Because all points of �1

satisfy xA( AB) � xA(BA) � dA and z( AB) � z(BA), we

may add multiples of these equalities to a valid inequality

without changing it; therefore wlog we assume 	st � �st

� 0. Consider the following points of the face. Let u0

� �Ah[st] � dAgst � dAgts � dAfst. From points u0

� h[ij], we see that 
[ij] � 0, @[ij] � [AB]�[S1]. From

points u0 � 
gst � h[ij] � 
gji, we get �ij � 0, @(ij)

� BA�[S1]. Similarly, from the point u0 � 
gst � 
gts, we

get �ts � 0. From points u0 � 
gts � 
fst � h[ij] � 
gij

� 
fji, we get �ij � �	ji, @(ij) � AB�S1. For the rest of

the coefficients, consider points v
ij � u0 � h[st] � rAgts

� rAfst � h[ij] � rAgji � rAfij and wij � u0 � h[st]

� rAgst � h[ij] � rAgij, for (ij) � AB�{(st)}. Comparing

u0 and v
ij, we have 
[st] � rA	ij, @(ij) � AB�S1. On the

other hand, comparing u0 and wij, we have 
[st] � rA�ij,

@(ij) � AB�S1. From wij and wij � 
gij � 
gji, we get �ij

� �ji, @(ij) � S1�{(st)}. Further, comparing v
ij and wij,

we get 	ij � 0, @(ij) � S1�{(st)}. From v
ij and v

ij � 
fst

� 
fij � 
gij � 
gji, we get �ij � ��ji, @(ij)

� S1�{(st)} and �ij � �ji � 0, @(ij) � S1�{(st)}.

Comparing u0 and wij, we also get 
[st] � 
[ij], @[ij] �

[S1]. Also, from points wij and wij � 
gst � 
gts � 
fst

� 2
gij � 
fji, we get 	ji � 0, @(ij) � S1�{(st)}. From

the point u0 � 
gst � 
gts � 
fst � 
fts, we get 	ts � 0.

Finally, plugging in these coefficients for u0, we find that

�A
[st] � 
0. Therefore, the points described above define

the hyperplane up to a scalar multiple and a multiple of the

two equalities. Dividing all coefficients by 
[st]/rA, we

arrive at (20). Hence, we have shown that the face of �1

induced by (20) has 5�[AB]� � 2 affinely independent

points. ■

EXAMPLE 1. Here we illustrate the 2-partition inequalities on

a small example. Consider the graph with four nodes in

Figure 4. In this example, there are 3 commodities: s1 � i,

t1 � l, d1 � 1; s2 � j, t2 � l, d2 � 0.4; s3 � k, t3 � j,

d3 � 1.4. Suppose in the LP solution all demands are

satisfied using the arcs directly connecting the source nodes

to the destination nodes, i.e., xil
1 � 1, xjl

2 � 0.4, xkj
3 � 1.4

and survivability is ensured using cycle ijkli with slack 1

and cycle jklj with slack 0.4. Thus, zij � 1, zjk � 1.4, zkl

� 1.4, zli � 1, zlj � 0.4, and zero for all other arcs.

Installing capacities fractionally gives y[ij] � 1, y[il] � 1,

y[ jk] � 1.4, y[ jl] � 0.4, y[kl] � 1.4. Observe that this

solution satisfies all of the constraints (3)–(5).

Now consider the 2-partition defined by A � {i, j, k}, B

� {l}. For this partition, dA � 1.4 and dB � 0. Thus, we

have �A � 3, rA � 0.8 and the corresponding inequality

(12) is

y�il� � y� jl� � y�kl� � 3, (21)

which is violated by the given fractional solution. Suppose

we increase y[ jl] until inequality (21) is no longer violated.

Now, the allocation to capacity variables is y[ij] � 1, y[il]

� 1, y[ jk] � 1.4, y[ jl] � 0.6, y[kl] � 1.4.

For the same 2-partition A � {i, j, k}, B � {l},

inequality (14) with S1 � {(il ), (kl )}, S2 � A is

0.8y�il� � 0.8y�kl� � xjl
1 � xjl

2 � xlj
1 � xlj

2 � zjl � 2.4. (22)

This inequality with continuous variables is violated by the

new fractional point. Again, suppose we increase y[kl] until

inequality (22) is no longer violated. Now, the capacity

variables take the values y[ij] � 1, y[il] � 1, y[ jk] � 1.4,

y[ jl] � 0.6, y[kl] � 1.5. We resume this example in Section

3.3 after introducing a more general class of inequalities.

3.3. Three-Partition Inequalities

In this section we show how to generalize the 2-partition

inequalities for 3-partitions of the graph. The ideas pre-

sented here can be extended to k-partitions for k 	 3 as

well.

Mixed-Integer Inequalities. Consider a nonempty 3-par-

tition ( A, B, C) of the nodes of G. As before, AB is defined

as the arcs directed from A to B, and the other arc sets are

FIG. 4. Example: Two-partition inequality.
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defined in the same way. For each proper subset U of {A, B,

C}, we again let dU denote the total supply of U. More

precisely, dU � {¥k dk : sk � U, tk � N�U}. As before,

�U � 2dU and rU � 2dU � 2dU. Further, we divide

each set of edges into two groups ([AB] into [AB1] and

[AB2], etc.).

Now, each of the six proper subsets of {A, B, C} results

in a nonempty 2-partition (U, N�U) of the nodes of G. For

each of them, we obtain a subclass of intermediate 2-parti-

tion inequalities as follows: choose S1 � {(ij) : i � U, j

� N�U, [ij] � [AB1] � [BC1] � [AC1]}, and S2 � A.

Below, we present two such inequalities, corresponding to

U � {A} (S1 � AB1 � AC1) and U � {B} (S1 � BA1

� BC1), respectively.

rAy��AB1� � �AC1�� � xA� AB2 � AC2� � z� AB2 � AC2�

� xA�BA2 � CA2� � rA�A (23)

rBy��BA1� � �BC1�� � xB�BA2 � BC2� � z�BA2 � BC2�

� xB� AB2 � CB2� � rB�B (24)

Adding (23) and (24), and mixed-integer rounding [26] the

resulting inequality, we get the 3-partition inequality

r�rA � rB� y��AB1�� � rAy��AC1�� � rBy��BC1��

� xA� AB2 � AC2� � xB�BA2 � BC2� � xA�BA2 � CA2�

� xB� AB2 � CB2� � z� AB2 � BA2 � AC2 � BC2�

� r��rA � rB� (25)

where

� � rA�A � rB�B

rA � rB

 and r �
rA�A � rB�B

rA � rB

� rA�A � rB�B

rA � rB

.

There are exponentially many inequalities of the form

(25) depending on how [AB], [BC], and [AC] are parti-

tioned into groups. Nevertheless, for a fixed 3-partition ( A,

B, C), the separation problem for (25) is simple. Given ( y� ,

x� , z�), (ij) � AB is included in AB1 if r(rA � rB) y� [ij] � x� ij
A

� x� ji
A � x� ij

B � x� ji
B � z� ij � z� ji, in AB2 otherwise; whereas

(ij) � BC is included in BC1 if rBy� [ij] � x� ij
B � x� ji

B � z� ij,

in BC2 otherwise. Finally, (ij) � AC is included in AC1 if

rAy� [ij] � x� ij
A � x� ji

A � z� ij, in AC2 otherwise.

Similar to (25), we can get fourteen more 3-partition

inequalities for the 3-partition ( A, B, C) by choosing other

pairs of proper subsets of {A, B, C} to form the interme-

diate 2-partition inequalities ((2
6) in total).

Integer Inequalities. We present another class of 3-par-

tition inequalities written in terms of the integral capacity

variables; that is, for the nonempty partition ( A, B, C), we

let [AB1] � [AB], [AC1] � [AC] and [BC1] � [BC].

Defining S1 and S2 as before, we have the three 2-partition

inequalities with only capacity variables

y��AB�� � y��AC�� � 2 max�dA, dBC�,

y��AB�� � y��BC�� � 2 max�dB, dAC�,

y��AC�� � y��BC�� � 2 max�dC, dAB�.

By adding these three inequalities, dividing by 2 and round-

ing up the right-hand side, we obtain the 3-partition inequal-

ity

y��AB�� � y��AC�� � y��BC�� � �

2
, (26)

where � � 2 max{dA, dBC} � 2 max{dB, dAC} � 2

max{dC, dAB}.

EXAMPLE 1 (cont.). Consider the fractional solution xil
1 � 1,

xjl
2 � 0.4, xkj

3 � 1.4; zij � 1, zjk � 1.4, zkl � 1.4, zli

� 1, zlj � 0.4; and y[ij] � 1, y[il] � 1, y[ jk] � 1.8, y[ jl]

� 0.6, y[kl] � 1.5, illustrated in Figure 5.

By enumerating among all subsets S1, S2 for all the

2-partitions, it can again be seen that no 2-partition inequal-

ity violates this solution. However, for 3-partition A � {i,

j}, B � {k}, C � {l}, we have dA � 1.4, dB � 1.4, dC

� 0, dAB � 1.4, dAC � 0, dBC � 1.4. Correspondingly,

� � 9 and the 3-partition inequality (26)

y�il� � y� jl� � y� jk� � y�kl� � 9/ 2

is violated by the fractional point.

4. COMPUTATIONAL RESULTS

In this section we present computational results with a

column-and-cut generation algorithm for solving the models

introduced in Section 2. We compare the capacity require-

ments of the models and test the effectiveness of the valid

inequalities given in Section 3 in reducing the solution times

when used as cutting planes.

The column-and-cut generation algorithm is imple-

FIG. 5. Example: Three-partition inequality.

208 NETWORKS—2004



mented using the callable library of CPLEX‡ Version 8.1

Beta. All experiments are done on a 2GHz Intel Pentium4

Linux workstation with 1GB memory. The data set consists

of random instances of networks with number of nodes

(�N�) ranging from 5 to 12. The instances have 75% edge

density and 50% demand density. More precisely, this

means that each of the �N�(�N� � 1)/ 2 edges (and both the

directed arcs corresponding to that edge) exists with prob-

ability 0.75, and that each of the �N�(�N� � 1) demand pairs

exists with probability 0.5. The demand values are chosen

from 0.1 � IntUni [1, 20].

The cycle variables with negative reduced cost are gen-

erated as explained in Section 2.3. Because CPLEX does

not allow addition of variables to the formulation in the

branch-and-bound tree, cycle variables are generated only at

the root node of the tree. It must, therefore, be noted that the

solutions and gap reported at termination are for the formu-

lation with cycles generated at the root node of the tree.

In the first experiment we compare the network design

model without survivability requirements, NDP, and the

hierarchical and integrated models of survivable network

design models using directed cycles, SCI and RFC, respec-

tively. In particular, in Table 1 we present the time taken to

solve the three models and the total capacity installed with

each model. If a problem is solved within 1 hour, we report

the objective value of the solution and the elapsed CPU time

in seconds (time); otherwise, we report the objective value

of the best-known feasible solution (zub), and the gap

(endgap) between this solution and the best lower bound

at termination (zlb) as a percentage of the best lower

bound, i.e., endgap � 100 � (zub � zlb)/zlb.

Comparing the capacity requirements of the models, we

observe that SCI needs about 100% more capacity than the

no-survivability model NDP, whereas RFC requires on the

average 80% more capacity. Comparing the models in terms

of ease of solvability, we see that SCI takes the least amount

of time. However, one must keep in mind that we first need

to solve NDP before we can use its solution as an input to

SCI. Interestingly, RFC is not any harder to solve than NDP.

This is important, because RFC incorporates survivability.

Later in this section, we will also see that RFC scales well

with increasing network size when solved in a column-and-

cut framework using the cutting planes proposed in Sec-

tion 3.

Next, we investigate the effect of the valid inequalities

described in Section 3 in reducing the number of branch-

and-bound nodes (nodes) and solution times (time),

when used as cutting planes to improve the linear program-

ming relaxations. Residual capacity inequalities are added

using the linear-time separation method given in [6] for

each arc at the root node of the branch-and-bound tree. We

enumerate all two partitions with at most three nodes in one

partition and all three partitions with at most two nodes in

two of the partitions, and add the corresponding inequalities

with only capacity variables whenever they are violated in

the tree.

In Table 2 we report the number of cuts added (cuts),

improvement of the integrality gap at the root node

(rootimp), the number of branch-and-bound nodes

(nodes), and the solution times or gap at termination, with

and without the polyhedral cuts. The default CPLEX cuts

are added in both runs. The results for experiments using

only the CPLEX cuts are reported under heading (1) and

results for experiments using both CPLEX and polyhedral

cuts are reported under heading (2). All runs have a time

limit of 10 hours. We see in Table 2 that more than twice as

much integrality gap improvement is observed at the root

node when polyhedral cuts are added. This leads to signif-

icant reduction in the number of nodes and solution time. In‡ CPLEX is a trademark of ILOG, Inc.

TABLE 1. Comparison of the models.

Size

�N�

Time/(endgap) zub

NDP SCI RFC NDP SCI RFC

5 0.03 0.01 0.06 50.5 110.3 103.5

6 0.16 0.02 0.23 129.5 251.7 235.6

7 0.27 0.03 2.29 103.4 222.3 189.4

8 2.88 0.04 14.0 146.6 286.2 259.6

9 517.1 0.15 20.9 172.7 364.9 311.6

10 (1.6) 0.21 (0.3) 235.8 457.6 432.4

11 1216 0.16 (0.8) 289.3 562.7 527.1

12 (3.1) 0.30 (2.7) 326.0 641.2 592.1

TABLE 2. Effect of cutting planes.

Size

�N�

Cuts Rootimp Nodes Time/(Endgap)

(1) (2) (1) (2) (1) (2) (1) (2)

5 24 20 76.5 77.1 47 36 0.06 0.06

6 22 24 30.6 100 279 0 0.23 0.01

7 34 35 24.0 72.0 2298 203 2.29 0.35

8 46 58 34.6 78.7 7060 547 14.0 1.76

9 50 47 38.1 77.3 7122 196 20.9 1.33

10 67 90 31.4 74.6 2,009,857 88,145 4876 267

11 116 164 41.2 67.6 2,177,271 65,744 12,296 552

12 142 188 22.3 50.0 2,111,101 1,762,640 (2.2) (1.2)
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general, the improvement in the solution time is more than

an order of magnitude. Based on these computations, we

conclude that the cutting planes developed in Section 3

improve the performance of the algorithm significantly.

In the final experiment we tested how well the column-

and-cut generation algorithm scales for large instances. For

this, we ran the algorithm for instances ranging from 20 to

70 nodes for ten hours. In Table 3 we report the number of

cycles added (cycles), the number of cuts added (cuts),

percentage improvement at the root node (rootimp), total

number of nodes in the branch-and-bound tree (nodes),

and the gap at termination (endgap). Although none of the

instances could be solved to optimality, the gap at termina-

tion was less than 1% for all instances. To some extent, the

drop in the gap at termination for larger instances can be

attributed to the fact that the LP relaxations of the formu-

lation seem to get stronger with increasing problem size.

This fact reiterates the scalability of our model (and meth-

odology). These experiments suggest that the proposed

methodology is a computationally effective way for design-

ing capacitated survivable networks.

5. CONCLUSIONS

We introduced a new methodology for designing capac-

itated survivable networks, that explicitly reserves slack on

directed cycles. We first presented the hierarchical optimi-

zation model, and then extended it to an integrated model

that makes all routing and capacity decisions simulta-

neously. Even though the number of variables in the models

is exponential in the size of the input graph, they were

generated in polynomial time in a column generation frame-

work.

We also developed strong polyhedral cutting planes for

the integrated capacitated survivable network design model.

Finally, we compared the models and the effectiveness of

the cutting planes computationally using a column-and-cut

generation algorithm. The integrated approach provided

savings of about 10% over the hierarchical scheme. The

polyhedral cuts reduced the solution times by an order of

magnitude.

Our experiments suggest that the proposed methodology

is a computationally effective way for designing capacitated

survivable networks. At the same time, we can reduce the

capacity requirements further by considering other failure-

flow patterns; for instance, directed p-cycles to route dis-

rupted flows when their chords fail as well. The models and

pricing subproblems change significantly in this case. We

will study the polyhedral structure of this more complicated

failure flow pattern in a subsequent article.
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