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Abstract

We propose a Directed Sparse Graphical Model (DSGM)

for multi-target tracking. In the category of global opti-

mization for multi-target tracking, traditional approaches

have two main drawbacks. First, a cost function is defined

in terms of the linear combination of the spatial and ap-

pearance constraints of the targets which results a highly

non-convex function. And second, a very dense graph is

constructed to capture the global attribute of the targets.

In such a graph, It is impossible to find reliable tracks in

polynomial time unless some relaxation and heuristics are

used. To address these limitations, we proposed DSGM

which finds a set of reliable tracks for the targets without

any heuristics or relaxation and keeps the computational

complexity very low through the design of the graph. Ir-

respective of traditional approaches where spatial and ap-

pearance constraints are added up linearly with a given

weight factor, we incorporated these constraints in a cas-

caded fashion. First, we exploited a Hidden Markov Model

(HMM) for the spatial constraints of the target and obtain

most probable locations of the targets in a segment of video.

Afterwards, a deep feature based appearance model is used

to generate the sparse graph. The track for each target is

found through dynamic programming. Experiments are per-

formed on 3 challenging sports datasets (football, basket-

ball and sprint) and promising results are achieved.

Keywords: Sparse graph, Hidden markov model, Deep

feature, Dynamic programming.

1. Introduction

In computer vision, multi-target tracking is an active

field of research with application including but not limited

to video surveillance [5], crowd analysis [30], robotics nav-

igation, human behavior analysis [9], Computer Generated

Images (CGI), to name a few. In the context of Tracking-by-

Detection, target tracking can be divided into two discrete

steps i.e. target localization and target association. Usu-

ally, target localization is achieved through a discriminative

[22, 23] or generative [15] classifier. While target associa-

tion is a highly complex problem and different techniques

have been proposed in the literature. In a nutshell, target as-

sociation can be classified into recursive and non-recursive

techniques. In the class of recursive approaches, In the early

days of computer vision, Joint Probabilistic Data Associa-

tion Filtering (JPDAF) [8] is used for association. More

recently, Markov Chain Monte Carlo (MCMC) based sam-

pling techniques [31, 18] are exploited to solve association

problem. MCMC based approaches help to represent the

non-linear multi-modal distribution of the target state but as

the number of targets increases in the scene, a higher num-

ber of samples are needed to represent the posterior distribu-

tion appropriately. Therefore, they are not feasible for real

world scenarios. Different than sampling based approach,

A Kalman filter [4] is used in [29] where HoG features

model the appearance of targets. Moreover, the association

between the targets are established through Hungarian al-

gorithm. Yu et al. [33] come up with an Exchange Object

Context (EOC) model where the contextual information of

the targets are exploited for tracking. They define a cost

function in terms of target appearance, shape, the move-

ment and the background and used Hungarian algorithm for

the optimization. These approaches are considered local be-

cause only two frames are used to associate the targets using

bipartite graph matching [12].

Such approaches are computationally efficient but they

are not robust for long-term tracking. Compared to local

approaches, global approaches use a number of frames for

association. They work best for long term tracking but at

the cost of high computational complexity. In a nutshell,

global approaches have two drawbacks. First, they add spa-

tial and appearance constraints linearly with a given weight

factor and second, they use a fully connected dense graph

for finding reliable tracks. Due to the dense nature of the

graph, finding a reliable track in the graph is NP-hard and

usually some relaxation or heuristics are used in the lit-

erature to solve the optimization problem in deterministic

time. Berclaz et al. [3] proposed a 3D tracking technique

where the ground floor is discretized into disjoint grid and

11929



Figure 1: (A) HMM model is used to predict the possible locations of target in each frame. F1 to Fn corresponds to the

frame number. Where T1 and Tm is the first and mth target location, respectively. (B) HMM model helps to find the

possible location of targets. Deep feature based appearance model is exploited to define the edge cost of the directed graph.

Consequently, dynamic programming is used to get a reliable track for each target.

K-shortest path algorithm is used to find reliable tracks for

the targets. Russell et al. [25] introduced a directed acyclic

hyper-graph which can capture the long range interaction

among the targets in the scene. The trajectories of the tar-

gets are optimized through global MAP criteria and com-

plexity of the algorithm is linear w.r.t the number to tar-

gets, and the number of frame considered for the optimiza-

tion. However, the algorithm requires an upper bound on

the number of targets to be tracked in the scene. Roshan et

al. [24] formulate tracking as a graph clique problem and

proposed a two stage tracking framework. Initially, video

is divided into clusters and local association is established

within clusters through Tabu-search which gave the track-

lets. In the 2nd stage, association is established among the

clusters to obtain the final smooth trajectories of the target.

Afshin et al. [6] used the same approach but a generalized

optimization scheme was adopted and all the trajectories in

the temporal window are obtained at once. This approach

works well if the number of targets are small. If the number

of target increases, the number of edges in the fully con-

nected graph increases exponentially and optimization be-

comes very difficult as shown in Fig 2. Similarly, Zhu et al.

[36] proposed a multi-stage tracking framework for multi-

target tracking. Initially, Ada-boost is used to get the initial

movement of the targets and get the trajectory fragments.

Then Hungarian algorithm is used to optimized these frag-

ments. And finally, energy minimization based extrapo-

lation algorithm is exploited to achieve final trajectories.

Likewise, Anton et al. [2] introduced a complicated cost

function which models all the attributes of the targets and

used conjugate gradient decent to solve the non-convex op-

timization problem. They introduce transdimentional jump

moves to avoid the local minima. Similarly, Zhang et al.

[35] formulated multi-target tracking as network flow prob-

lem and used conditional random field to find the reliable

tracks.

The backbone of these approaches is the generation of

dense graph. In the dense graph, a target could be asso-

ciated to a completely irrelevant counterpart just because

of the structure of the graph. Although the cost function

penalizes the targets which are far away but irrelevant as-

sociation are considered in the optimization scheme which

makes it intractable. Motivated by this fact, we adopted a

different approach to construct the graph. Spatial and ap-

pearance constraints are salient features for target associa-

tion but rather than combining them in a single cost func-
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tion, we use these features in a cascaded fashion. The key

contributions of the paper are two-folds:

• We define a better graphical model for multi-target

tracking. In the context of spatial constraints, HMM

is exploited to reduce the search space for target asso-

ciation.

• The edge cost of the graph is defined through deep fea-

tures and dynamic programming is used to find the op-

timal set of trajectories for the targets.

The rest of the paper is organized in the following way:

In section 2, a brief overview of the proposed approach is

given. In section 3, HMM is explained that helps in finding

most probable locations of the targets. Section 4 explain

a similarity metric that is used to define the similarity be-

tween the targets. Section 5 elaborate deep feature based

appearance model that define the edge cost of the graph. In

section 6, the graphic model formulation and dynamic pro-

gramming based optimization strategy is explained. Quan-

titative results are given in section 7 and section 8 summa-

rizes the paper with concluding remarks.

2. Proposed Method

The block digram is given in Fig 1. The input to the algo-

rithm is the target hypothesis in each frame. Target hypoth-

esis can be generated with a detector or manual annotation.

For the spatial constraints, we adopted a Hidden Markov

Model (HMM). The nodes in the graph are assumed to have

linear Gaussian distribution. A constant velocity model is

adopted as the dynamic model of the HMM. Each target is

associated with an individual HMM. Hence, highly prob-

able positions are predicted for each target. This scheme

helps to reduce the solution space and while constructing

the graph, rather than connecting nodes densely, only a sub-

set of nodes are connected which are predicted by HMM. In

Fig. 2, a graphical depiction of different graphical structure

are given. While constructing the graph, targets are mod-

eled through deep features and the similarity score of target

across the frames is used as the edge cost. The similarity

between two targets are found through mutual information.

We process the video sequence as a whole. Once the graph

is constructed with proper edge cost, dynamic programming

formulation proposed in [20] is used to find reliable track

for each target. In the following sections, each step of the

proposed DSGM is explained.

3. Hidden Markov Model

A Hidden Markov Model (HMM) is a probabilistic se-

quence model which maps a set of observations to corre-

sponding labels based on the likelihood probability. The se-

quence of observations could be words, sentences or pedes-

trian in the context of tracking. The model calculates the

probability over possible labels and choose the one which

maximizes the probability. For tracking, the set of observa-

tions is the targets location in a frame and the labels are the

unique IDs that are assigned to it. For generating a sparse

graph, HMM suits the best because most probable location

of a target is obtained by combining the prior knowledge

of the state and the current observations. State of an obser-

vation corresponds to a spatial location of target in the 2D

space. Mathematically,

xt = ft(xt−1, vt−1) (1)

xk corresponds to a spatial location of target in the 2D

space, vk−1 is the process noise and fk is a function which

transforms the previous state of a target to its current state.

In a video sequence, the observation of a target is obtained

sequentially, therefore, the goal of HMM is to estimate the

optimal target state x from the available observation i.e.

zt = ht(xt, nt) (2)

nt is the measurement noise and ht is a function which re-

lates the observation zt to the target state. Hence, HMM

recursively approximate target state xt at time t, consider-

ing the observation z1:k. In probabilistic terms, the goal of

state estimation can be translated to estimating the follow-

ing posterior distribution:

p(xt|z1:t) (3)

It is assumed that the initial pdf p(xo|zo) is known. For

target tracking, it essentially shows the initial location of

a target. With the given information, the posteriors pdf

p(xt|z1:t) is recursively obtained in two steps: prediction

and update.

By generalizing the prior assumption, the pdf

p(xt−1|z1:t−1) is assumed to be known. The predic-

tion step uses the equation 1 to obtain the prior pdf at time

t. In the Bayesian sense, equation 1 can be approximated

through Chapman-Kolmogorov equation as follow;

p(xt|z1:t−1) =
∑

xt−1

p(xt|xt−1, z1:t−1) (4)

By first order Markovian assumption,

p(xt|z1:t−1) =
∑

xt−1

p(xt|xt−1)p(xt−1|z1:t−1) (5)

In the update step, the observation zt is used to find the

posterior pdf at time t as ;

p(xt|z1:t) = p(xt|z1:t−1, zt) (6)

Using Bayes’ rule
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p(xt|z1:t) =
p(xt|z1:t−1)p(zt|xt)

p(zt|z1:t−1)
(7)

p(xt|z1:t) ≈
∑

xt−1

p(xt|xt−1)p(xt−1|z1:t−1)p(zt|xt) (8)

The denominator p(zk|z1:k−1) is a constant w.r.t to the

state vector x and can be ignored. p(xt|x1:t−1) correspond

to the previous known state of target and treated as the

prior. For motion of the targets, a constant velocity model

is assumed which approximates p(xt−1|z1:t−1). Similarly,

the observation model which is the targets location in each

frame is modeled by p(zt|xt). Equations 5 and 8 form the

theoretical basis of HMM. Further details are beyond the

scope of this paper, interested readers my refer to [21, 32].

We instantiate a HMM model to each target. In section 4,

an approach based on mutual information is explained that

is used to establish congruity among the observations with

corresponding model.

4. Mutual Information

Let’s assume two targets t1,k and t2,(k+1) at time instant

k and (k + 1) in a video sequence. Mutual information

(MI) is a similarity metric that measure the mutual depen-

dence between t1,k and t2,(k+1). Intuitively, it measures

the information two targets share [19]. If t1,k and t2,(k+1)

are completely different from each other, then knowing one

can’t give any information about other and hence mutual in-

formation would be zero. In the other case, when t1,k and

t2,(k+1) are very similar, one can be used to represent the

other. In this case, mutual information would give the en-

tropy of t2,(k+1) (or t1,k). Among different possible repre-

sentation of MI, representation in terms of Kullback-Leibler

divergence [14] is suitable for our tracking application. For

the sake of convince, we can drop the subscript k and (k+1)
in the mathematical formulation and can write as,

M(t1, t2) = DKL(p(t1, t2)||p(t1)× p(t2)) (9)

Where DKL is the Kullback-Leibler divergence. p(t1, t2) is

the joint distribution of the targets and modeled by concate-

nating the feature vectors of the two targets. Similarly, p(t1)
and p(t2) is the marginal distribution and corresponds to the

feature vector of the targets. Equation. 9 can be simplified

through marginalization and conditioning as;

M(t1, t2) =
∑

t2

p(t2)
∑

t1

p(t1|t2) log
p(t1|t2)

p(t1)
(10)

=
∑

t2

p(t2)DKL(p(t1|t2)||p(t1))

M(t1, t2) = Et2{DKL(p(t1|t2)||p(t1))}

Thus, MI is the expectation of the Kullback-Leibler diver-

gence of the univariate distribution p(t1) of t1 from the con-

ditional distribution p(t1|t2) of t1 given t2. Hence, MI helps

to establish the correspondence between the targets location

and the corresponding HMM model. In section 5, deep fea-

ture is explained that is exploited to define the p(t1), p(t2)
and p(t1, t2).

5. Deep Features

Over the past few years, techniques based on deep neu-

ral networks (DNNs) has become the method of choice for

traditional computer vision problems such as image clas-

sification, object detection, speech recognition, to name a

few. For vision tasks, the superior performance of such net-

work comes from the fact that they learn high level features

from the visual data through statistical learning over a large

amount of labeled data set. Essentially, such DNN learns

an optimal representation of the input space. The higher

is the quality and quantity of labeled data, the better rep-

resentation it learns. Different architectures of DNN are

proposed in recent years and they have been the winners

[13, 34, 28, 11] of Image-net challenge since 2012. DNNs

are essentially hierarchical models and based on the depth

and organization of different layers, various architectures

have been proposed [13, 34, 28, 11, 27]. A common trend

in these architectures are, the deeper the network, the bet-

ter the performance. Depth of the network means introduc-

ing more layers in the network, which introduces more non-

linearity in the network and as a result helps in mitigating

over-fitting problem. Moreover, by increasing the depth of

the network, features become more salient and gives better

target representation [10]. For example, ResNet [11], the

2015 winner of Imagenet challenge is 20 times deeper than

AlexNet [13] and 8 times deeper than VGGNet [27]. How-

ever, by increasing depth of the network i.e. introducing

more layers in the network, the complexity of network in-

creases. An optimal solution is to keep a balance between

the depth of the network against the performance of the net-

work.

A typical DNN is trained end to end but its architecture

can be divided into two functional blocks i.e. feature extrac-

tion and classification. Feature extraction is done through

learned filters while fully connected layer is responsible for

the classification. In [26], the authors has shown that even

if a Convolutional Neural Network (CNN) is trained on a

generic data-set and used as a generic feature extractor, it

still gives better performance than hand-crafted features. In-

spired from this concept, we fine-tune a CNN model on our

dataset and use it to model the appearance of the targets.

Next section 5.1 briefly explain the concept of fine tuning.
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Figure 2: (a) Target association based on bipartite graph matching [29]. Each target in the current frame t is connected to all

the other targets in the next frame. (b) Target association based on GMCP [24]. In this setting, a set of frames are considered

and all the target in each frame are connected to all the other targets in the set of frames. (c) Target association based on

proposed DSGM. It is clear from the graphical depiction that due to the spatial constraints, the number of edges have been

reduced compared to bipartite and GMCP.

5.1. Transfer Learning

Any machine learning algorithm works under the as-

sumption that the training and test data are drawn from same

feature space and has the same distribution. However, in

most real world applications, this is not true. If the distri-

bution of the data changes, the brute force approach is to

retrain the whole model on the new data. This approach is

feasible for simple models. However, when it comes to deep

architecture, millions of training samples are needed to re-

train the network. This is clearly not feasible and in most

cases it’s not even possible to collect such large amount

of data. For such problems, transfer learning is the opti-

mal tool. In our case, we truncated the full network into

its functional blocks and removed the classification part of

the CNN. We keep the lower layers of the network intact

because lower layers in a CNN are responsible for extracted

low layer features which are common in every object. How-

ever, we re-train the higher layer with our comparatively

smaller dataset so that the feature extraction of CNN is fine-

tuned to our specific tracking problem. We use the fined

tuned CNN to model the appearance of the targets and to

calculate the probabilities p(t1), p(t2) and p(t1, t2) as ex-

plained in 4.

6. Global Optimization

The HMM model approximates the most probable loca-

tions for the targets. It helps to avoid the redundant and

irrelevant connection in the directed acyclic graph that is

generated from the whole video sequence to approximate

smooth trajectories for the targets. In a nutshell, HMM

provides a ground for introducing sparsity in the graph.

Once the graph is generated, we apply dynamic program-

ming formulation proposed in [20] to get the trajectories for

the targets. In Fig. 2, a visual comparison is given which

shows the graphical structure of bipartite graph matching,

the GMCP [24] and our proposed DSGM. It is obvious from

the graph that both bipartite and GMCP have many redun-

dant connections. However, due to HMM, DSGM has very

few connections. In the next section 6, the formulation of

DSGM is explained.

6.1. Graphical Model

Once the potential locations of the targets are known in

all the frames, the tracking problem is formulated as min-

cost flow [35]. It is an optimization problem [1] and the

idea is to figure out the most reasonable way of delivering

a certain amount of flow through a network of nodes and

edges. Let G = (V,E) be a directed acyclic graph with

a set of V nodes and E edges. Each edge ei,j ∈ E has

a cost pi,j which is the price of a flow moving from node

ni ∈ V to nj ∈ V . Each edge ei,j ∈ E may have a capacity

ci,j which shows the amount of flow that can pass through

the edge. The optimization variable in the min-cost flow

problem is the edge flow. The flow on an edge ei,j ∈ E can

be expressed as fi,j . Then the optimization model can be

written as:

Minimize
∑

(i,j)∈E

pi,jfi,j (11)

while in vector form:

Minimize
∑

p × f (12)

where p is the vector of all edge cost and f the vector of all

edge flows. Usually, the optimization of eq. 12 is subjected

to

∑

i:(i,j)∈E

fi,j −
∑

j:(j,i)∈E

fj,i = n(i) (13)

for all i ∈ E. The constraint of eq. 13 is known as

mass balance constraint and n(i) indicates the net flow of a
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node. At a time instant t, the capacity of an edge is set to 1

which enforces the unique label constraint for each target.

The nodes in the graph represent the targets in the scene

and modeled through deep features 5 and the edge cost pi,j
is calculated through a mutual information that is explained

in section 4.

6.2. Bayesian Inference

For the inference and optimization, we followed similar

formulation like [20]. The vector valued state variable s

indicates the spatial position ρ of a target at time instant τ .

s = (ρ, τ) s ∈ V (14)

where V is the set of all nodes in the graph. The track

of a single target can be written as a set of state vector

L = {s1, s2, ..., sn}. The tracks of all the targets can be

represented by a super set Z = {L1, L2, ...., LM} where

M is the total number of targets in a video sequence. It is

assumed that the tracks of the targets are independent from

each other. Due to spatio-temporal dependence, each track

can be seen as a variable length Markov chain. In the con-

text of Bayesian inference, the posterior distribution of the

set of trajectories can be written as:

P (Z|O) = P (Z)P (O|Z) (15)

P (O|Z) is the observation model that shows the proba-

bility of observing M targets at O locations given the set Z.

O is the set of locations of all the targets.

6.2.1 Prior

Given track independence assumptions which states that the

tracks of targets are independent from one another, each

track can be seen as a variable length Markov chain and

the distribution can be written as:

P (Z) = P (L1, L2, ..., LM ) (16)

In compact form, it can be written as,

P (Z) =
M
∏

i=1

P (Li) (17)

where

P (L) = Ps(s1)Pe(sn)

{

N−1
∏

n=1

P (sn+1|sn)

}

(18)

Ps(s1) is the probability of trajectory L starting at s1 and

Pe(sn) corresponds to the probability of a track ending at

sn. Similarly, P (sn+1|sn) is the node transition probability

which is obtained through deep features. The edge cost pi,j
that is computed in 4 corresponds to this probability and a

transition is only executed if it is higher than certain thresh-

old ǫ.

Datasets Methods MOTA MOTP

AFL Anton et al. [16] 32.0% 64.1%

Milan et al. [17] 29.7% 63.3%

Dicle et al. [7] 16.7% 60.8%

Proposed DSGM 28.4% 62.8%

Sprint Proposed DSGM 35.9% 52.0%

Basketball Proposed DSGM 25.8% 43.7%

Table 1: Quantitative results of our DSGM. The results

show that our method perform better than [7] and gives

comparable performance to [16, 17] both on MOTA and

MOTP.

6.2.2 Observation Model

Let O is the set of all the spatial locations of targets in a

video segment. Our aim is to find P (O|Z). Due to the na-

ture of our tracking problem, the following two conditions

are imposed:

• A target hypothesis can only be associated to a single

track L.

• At a given time instant t, a spatial location can only be

occupied by a single target i.e. Li ∩ Lj = ∅ where

i 6= j.

Both conditions ensure a unique label for each target. Math-

ematically,

P (O|Z) =
∏

L∈Z

∏

s∈L

Pt(os)
∏

i∈V \L

Pnt(oi) (19)

Where Pt(os) is the probability of a spatial location be-

longing to a target and Pnt(oi) is the probability of a loca-

tion being background. Our aim is to find the optimal set

of trajectories with the minimum cost. In other words, the

aim is to find the maximum a posteriori (MAP) of the tracks

given the target observation O in all the frames.

Z∗ = argmax
Z

P (Z)P (O|Z) (20)

Eq. 20 can be seen as the dual of eq. 12. For the optimiza-

tion of the trajectories, we follow the algorithm of [20].

7. Experiment

The approach is tested on 3 sport games (sprint, football

and baseball). Few frames are shown in Fig 3. There is large
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variation in the appearance of the targets and due to severe

articulations, the target representation changes substantially

from frame to frame. Basketball dataset consists of 725

frames with a frame rate of 20. Similarly, bolt sequence

consists of 350 with same frame rate. The football dataset

AFL has comparatively low resolution and low frame rate

with a total of 299 frames. The target hypothesis in each

frame are generated with manual annotation with a bound-

ing box enclosing the target. For the deep features, Alexnet

[13] is fine-tuned on our own dataset with Matconvnet tool-

box. The processing is performed on Intel core i7 with 16

GB RAM. The threshold ǫ is set to 0.6. Quantitative results

are shown on MOTA/MOTP metrics. Tracking results are

presented in Table 1 along with comparative results from

the literature. The results of [7, 16, 17] are taken from the

corresponding papers.

8. Conclusion

We propose a Directed Sparse Graphical Model (DSGM)

for multi-target tracking which finds a set of tracks for the

targets without assuming any heuristics or relaxation. Due

to fewer connections, the computational complexity is very

low for estimating the trajectories in the graph. Different

from traditional approaches, we incorporated spatial and

appearance constraints in a cascaded fashion. The spatial

constraints are imposed through a HMM which finds the

most probable locations of the targets in a segment of video.

While the appearance constraints helps to find the edge cost

of the directed acyclic graph. The appearance of targets are

modeled through deep features. The track for each target

is found through dynamic programming. Experiments are

performed on 3 challenging sports dataset (football, basket-

ball and sprint) and promising results are achieved.
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[5] S. Coşar, G. Donatiello, V. Bogorny, C. Garate, L. O. Al-
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