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A Directionally Selective Small Target Motion

Detecting Visual Neural Network in

Cluttered Backgrounds
Hongxin Wang, Jigen Peng, Shigang Yue, Senior Member, IEEE

Abstract—Discriminating targets moving against a cluttered
background is a huge challenge, let alone detecting a target
as small as one or a few pixels and tracking it in flight. In
the insect’s visual system, a class of specific neurons, called
small target motion detectors (STMDs), have been identified as
showing exquisite selectivity for small target motion. Some of
the STMDs have also demonstrated direction selectivity which
means these STMDs respond strongly only to their preferred
motion direction. Direction selectivity is an important property
of these STMD neurons which could contribute to tracking small
targets such as mates in flight. However, little has been done
on systematically modeling these directionally selective STMD
neurons. In this paper, we propose a directionally selective
STMD-based neural network for small target detection in a
cluttered background. In the proposed neural network, a new
correlation mechanism is introduced for direction selectivity
via correlating signals relayed from two pixels. Then, a lateral
inhibition mechanism is implemented on the spatial field for size
selectivity of the STMD neurons. Finally, a population vector
algorithm is used to encode motion direction of small targets.
Extensive experiments showed that the proposed neural network
not only is in accord with current biological findings, i.e., showing
directional preferences, but also worked reliably in detecting
small targets against cluttered backgrounds.

Index Terms—Cluttered backgrounds, direction selectivity, nat-
ural images, neural modeling, small target motion detection.

I. INTRODUCTION

INTELLIGENT robots have shown great potential in re-

shaping human life in the future. However, artificial visual

systems so far are still struggling to provide a robot with the

required capacity to respond to the dynamic visual world in

real-time, like many animal species do. Among many visual

functionalities, detecting small moving targets is one of the

most important abilities for many animal species, e.g., finding
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mates in the distance, and it is also critical for a robot to track

small targets in a cluttered background.

Small target motion detection in visual cluttered back-

grounds is always considered as a challenging problem for

artificial visual systems. The difficulty is reflected in two

aspects: first, when a target is far away from the observer,

it always appears as a small dim speckle whose size may vary

from one pixel to a few pixels in the field of view. In this size,

shape, color and texture information cannot be used for target

detection. Second, small targets are often buried in cluttered

backgrounds and difficult to separate from noise. In addition,

ego-motion may bring in further difficulties to small target

motion detection.

Nature has provided a rich source of inspiration for small

target motion detection. Detecting small targets in naturally

cluttered backgrounds is critical for many insect species to

search for mates or track prey. As the result of millions of

years of evolution, the small target motion detection visual

systems in insects are both efficient and reliable [1], [2].

For example, dragonflies can pursue small flying insects with

successful capture rates as high as 97% relying on their well

evolved vision system [3]. Compared to the visual systems

of primate animals, insects’ visual systems achieve amazing

capability using relatively simple structures and a small num-

ber of neurons. Insects’ visual pathways are practical models

for designing artificial vision systems for small target motion

detection.

In the insect’s visual system, a class of specific neurons,

called small target motion detectors (STMDs), have been

identified as showing exquisite selectivity for small targets

(size selectivity) [2], [4], [5]. To be more precise, the STMD

neurons give peak responses to targets subtending 1◦ − 3◦ of

the viusal region, with no response to larger bars (typically >
10◦) or to wide-field grating stimuli. In addition, some STMD

neurons are directionally selective (direction selectivity) [6],

[7]. They respond strongly to small target motion oriented

along a preferred direction, but show weak or no, even fully

opponent response to null-direction motion. Null direction is

180◦ from the preferred direction. Although the postsynaptic

pathways of the STMD neurons are still under investigation

[8], it is clear that knowing the small target motion and its

direction at the same time is an advantage in tasks such as

tracking mates or intercepting prey.

The electrophysiological knowledge about the STMD neu-

rons and their afferent pathways revealed in the past few

decades makes it possible to propose quantitative STMD
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models, however, little has been done on systematically mod-

eling these directionally selective STMD neurons. As pioneers,

Wiederman et al. [9] developed elementary small target motion

detector (ESTMD) to account for size selectivity of the STMD

neurons. The ESTMD showed strong responses to small target

motion, but much weaker or even no responses to wide-field

motion. However, it did not consider direction selectivity and

showed no different responses to small target motion oriented

along different directions. Wiederman and O’Carroll [10]

mentioned that two hybrid models, i.e., elementary motion

detector (EMD)-ESTMD and ESTMD-EMD, could exhibit

both size and direction selectivities. In the further research

[11]–[13], these two models are successfully used for target

tracking. Although direction selectivity was noted in these

models, the direction selectivity in an STMD model should

be systematically investigated.

1) The existing STMD-based models, including ESTMD

[9], EMD-ESTMD [10], and ESTMD-EMD [10], have

not provided unified and rigorous mathematical descrip-

tion.

2) Wiederman and O’Carroll [10] and Bagheri et al. [11]–

[13] focused on the size selectivity, tracking mechanisms

and non-directionally selective properties, e.g., velocity

and contrast tuning. Since direction selectivity has not

been systematically studied, characteristics and perfor-

mance of the directionally selective STMD models, are

unclear.

3) The existing models have not shown the capacity for

encoding motion direction of small targets.

In this paper, we propose a neural network to model the spe-

cific STMD neurons with direction selectivity called DSTMD.

It can detect not only small target motion but also the mo-

tion direction in cluttered backgrounds. The proposed neural

network incorporates a new correlation mechanism which

correlates signals relayed from two pixels so as to introduce

directional selectivity. Then, a lateral inhibition mechanism

acting on correlation outputs is used for size selectivity.

Finally, a population vector algorithm is used to encode

motion direction of small targets. Systematic experiments are

carried out to validate the proposed neural network in complex

environments.

The main contributions of this paper can be summarized as

follows.

1) We develop a new directionally selective STMD-based

neural network (DSTMD) with unified and rigorous

mathematical description.

2) We systematically study and test both directionally se-

lective and non-directionally selective properties of the

developed neural network.

3) We propose a population vector algorithm to encode

motion direction of small targets.

The remainder of this paper is organized as follows. In

Section II, the related work will be reviewed. In Section III,

the proposed neural network is described in detail. In Section

IV, the experiments are carried out to test the performances of

the proposed neural network. We give further discussions in

Section V and finally in Section VI, we conclude this paper.

II. RELATED WORK

In this section, we review the related work on three motion

sensitive neurons, including the lobula giant movement de-

tector (LGMD) [14]–[16], lobula plate tangential cell (LPTC)

[17]–[19] and STMD [2], [4]–[7]. These three neurons are all

found in insects’ visual systems and have been extensively

studied.

A. Lobula Giant Movement Detector

LGMDs are collision sensitive neurons found in locusts

(certain species of short-horned grasshoppers) [14]–[16]. They

respond strongly to the objects approaching the insect on a

direct collision course while exhibiting little or no response

to receding objects. A great number of LGMD-based neural

networks [1], [20]–[24] have been developed. These neural

networks showed the same collision sensitivity as the LGMD

neuron and can detect collisions cheaply and reliably in

a complex background. Nevertheless, they are incapable of

detecting small target motion, and do not show size and

direction selectivities.

B. Lobula Plate Tangential Cell

LPTCs exhibit strong responses to wide-field motion, but

also to the motion of local, salient features [17]–[19]. The

first LPTC model which is the spatial integration of elemen-

tary motion detectors (EMDs), was originally inferred from

behavioral investigation of insects [25]. In the past decade,

considerable progress has been made in identifying the afferent

pathways and the characteristics of the LPTCs. To incorporate

these new biological findings, the EMD was adapted, giving

rise to several models, such as two-quadrant-detector (TQD)

[26], [27] and weighted-quadrant-detector [28]. The above-

mentioned models respond to objects’ motion, but they are

not size selective.

C. Small Target Motion Detector

Small target motion detectors are characterized by exquisite

size selectivity [2], [4], [5], some of which are also direc-

tionally selective [6], [7]. Wiederman et al. [9] proposed

the ESTMD, to model an STMD neuron with spatially in-

tegrated multiple ESTMDs. Although the ESTMD shows size

selectivity, it is not directionally selective.Wiederman and

O’Carroll [10] and Bagheri et al. [11]–[13] mentioned that

two hybrid models, i.e., EMD-ESTMD and ESTMD-EMD,

could exhibit both size and direction selectivities. However,

characteristics and performance of these directionally selective

STMD models, are unclear, since direction selectivity has not

been systematically studied.

III. FORMULATION OF THE MODEL

Following the typical multi-stage view of motion detection

in the insect’s visual system (schematically illustrated in Fig.

1), we devised a DSTMD in this paper. Fig. 2(a) shows the

schematic of one DSTMD cell and its presynaptic neural net-

work. The proposed neural network is composed of four neural

layers including the retina, lamina, medulla, and lobula. These
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Fig. 1. Schematic illustration of the insect’s visual system. The insect’s visual
system consists of four neural layers, including retina, lamina, medulla and
lobula (from top to bottom). Each neural layer contains numerous specialized
neurons illustrated by colored circular nodes. Luminance signals are first
perceived by ommatidia, further processed by LMCs (i.e., L1 and L2) and
medulla neurons (Mi1, Tm1, Tm2, Tm3), finally integrated in STMD neurons.
Note that the connection between the four medulla neurons and the STMD
neuron is speculative.
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Fig. 2. Schematic illustration of the proposed DSTMD and the existing
ESTMD models which exhibit selectivity for dark small targets. (a) Schematic
illustration of one DSTMD located at (x, y) with a preferred direction
θ. (b) Schematic illustration of one ESTMD located at (x, y). The most
significant difference between the DSTMD and ESTMD is that the DSTMD
integrates signals from two different positions (x, y) and (x′, y′) where
x′ = x + α1 cos θ, y′ = y + α1 sin θ, α1 is a constant. However, the
ESTMD integrates signals from a single position (x, y). Therefore, for each
position (x, y), the DSTMD has multiple model outputs corresponding to
different preferred directions θ while the ESTMD just has a single output
without direction selectivity. Abbreviation, GB: Gaussian blur, BPF: band-
pass filter, LI: lateral inhibition, ON/OFF: ON/OFF signals, D: time delay,
M and

∑
: multiplier and adder, S-LI: second-order lateral inhibition, θ-LI:

lateral inhibition implemented on θ.

four sequentially arranged neural layers have specific functions

and cooperate together for small target motion detection. In the

following sections, we will elaborate on the components and

functions of each layer.

A. Retina Layer

In the insect’s visual system, the retina layer contains a

great number of ommatidia (see Fig. 1). Each ommatidium is

composed of eight photoreceptors. Each photoreceptor views

a small region of the whole viusal filed and supplies a ’pixel’

of luminance information to ommatidia [29].

In the proposed neural network, image sequences are net-

work inputs, so we first construct a mapping from pixels

θ

α

Fig. 3. Schematic illustration of the mapping from pixels to photoreceptors.
Each small square denotes a pixel, corresponding to a photoreceptor. Each red
dotted rectangle which contains multiple pixels (photoreceptors), represents
the visual region of an ommatidium.

to photoreceptors. As depicted in Fig. 3, each small square

denotes a pixel, corresponding to a photoreceptor. The red dot-

ted rectangle which contains multiple pixels (photoreceptors),

represents the visual region of an ommatidium.

Specifically, let I(x, y, t) ∈ R denote varying luminance

values captured by photoreceptors where x, y and t are spatial

and temporal field positions. Then the response of an omma-

tidium is approximated by Gaussian blur. That is, the output of

an ommatidium with viusal region centered at (x, y) denoted

by P (x, y, t) is given by,

P (x, y, t) =

∫∫

I(u, v, t)Gσ1(x− u, y − v)dudv (1)

where Gσ1(x, y) is a Gaussian function, defined as

Gσ1
(x, y) =

1

2πσ2
1

exp(−
x2 + y2

2σ2
1

). (2)

B. Lamina Layer

In the insect’s visual system, large monopolar cells (LMCs),

such as L1 and L2, are postsynaptic neurons of the ommatidia

(see Fig. 1). They receive signals from the ommatidia and

show strong responses to luminance increments and decre-

ments, i.e., luminance changes [30], [31].

In the proposed neural network, each LMC is modeled

as a temporal band-pass filter to extract luminance changes

from input signals. Let L(x, y, t) denote the output of a LMC

located at (x, y). Then L(x, y, t) is defined by convolving the

ommatidium output P (x, y, t) with a temporal band-pass filter

H(t). That is,

L(x, y, t) =

∫

P (x, y, s)H(t− s)ds (3)

H(t) = Γn1,τ1(t)− Γn2,τ2(t) (4)

where Γn,τ (t) is a Gamma kernel, defined as

Γn,τ (t) = (nt)n
exp(−nt/τ)

(n− 1)!τn+1
. (5)

The illustration of the Gamma kernel Γn,τ (t) and temporal

band-pass filter H(t) is presented in Fig. 4.

In the insect’s visual system, the LMC receives lateral

inhibition from adjacent neurons before relaying its output

to the next layer. In the proposed neural network, L(x, y, t)
is convolved with an inhibition kernel W1(x, y, t) so as to

implement the lateral inhibition mechanism. That is,

LI(x, y, t) =

∫∫∫

L(u, v, s)W1(x− u, y − v, t− s)dudvds

(6)
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Fig. 4. (a) Gamma kernel Γn,τ (t) where n = 6, τ = 9. (b) Temporal
band-pass filter H(t) where n1 = 2, τ1 = 3, n2 = 6, τ2 = 9.

where LI(x, y, t) is the signal after lateral inhibition and

W1(x, y, t) is defined as,

W1(x, y, t) = WP
S (x, y)WP

T (t) +WN
S (x, y)WN

T (t) (7)

where WP
S (x, y), WN

S (x, y), WP
T (t), WN

T (t) are set as

WP
S = [Gσ2(x, y)−Gσ3(x, y)]

+ (8)

WN
S = [Gσ2

(x, y)−Gσ3
(x, y)]−, σ3 = 2 · σ2 (9)

WP
T =

1

λ1
exp(−

t

λ1
) (10)

WN
T =

1

λ2
exp(−

t

λ2
), λ2 > λ1. (11)

Here, [x]+, [x]− denote max(x, 0) and min(x, 0), respectively.

C. Medulla Layer

In the insect’s visual system, medulla neurons including

Tm1, Tm2, Tm3 and Mi1, are downstream neurons of the

LMCs (see Fig. 1). The Mi1 and Tm3 respond selectively to

luminance increments, with the response of the Mi1 delayed

relative to the Tm3 [31]. Conversely, the Tm1 and Tm2 re-

spond selectively to luminance decrements, with the response

of the Tm1 delayed relative to the Tm2 [32].

In the proposed DSTMD and the existing ESTMD [9],

the modeling methods for these four medulla neurons, are

different. These two modeling methods are introduced as

follows, respectively.

1) Medulla Neuron Modeling of DSTMD: As the Tm3 and

Tm2 neurons respond strongly to luminance increments and

decrements, we use the positive and negative parts of the LMC

output LI(x, y, t) to define the outputs of the Tm3 and Tm2,

denoted by STm3 and STm2, respectively. That is,

STm3(x, y, t) = SON(x, y, t) (12)

STm2(x, y, t) = SOFF(x, y, t) (13)

where SON and SOFF represent the positive and negative parts

of LI(x, y, t), respectively. That is,

SON(x, y, t) = [LI(x, y, t)]
+ (14)

SOFF(x, y, t) = −[LI(x, y, t)]
− (15)

where S
ON

(x, y, t) and S
OFF

(x, y, t) are also called ON and

OFF signals (see the ON and OFF in Fig. 2), which reflect

luminance increase and decrease, respectively.

Since the Mi1 (or Tm1) is a temporally delayed version of

the Tm3 (or Tm2), the output of the Mi1 (or Tm1) is defined

by convolving STm3(x, y, t) (or STm2(x, y, t)) with a Gamma

kernel. That is,

SMi1
D(nN ,τN )(x, y, t) =

∫

STm3(x, y, s)ΓnN ,τN (t− s)ds (16)

STm1
D(nF ,τF )(x, y, t) =

∫

STm2(x, y, s)ΓnF ,τF (t− s)ds (17)

where SMi1
D(nN ,τN ) and STm1

D(nF ,τF ) represent the outputs of the

Mi1 and Tm1, respectively. nN , nF are orders of the Gamma

kernels while τN , τF are time constants.

2) Medulla Neuron Modeling of ESTMD: The most signifi-

cant difference between the medulla neuron modeling methods

of the DSTMD and ESTMD is that the ESTMD uses laterally

inhibited ON and OFF signals to define the outputs of the

medulla neurons. This can be seen in Fig. 2 that the ESTMD

implements a second-order lateral inhibition mechanism fol-

lowing ON and OFF signals while the DSTMD does not. In

the ESTMD, the outputs of the Tm3 and Tm2 denoted by

S̃Tm3 and S̃Tm2, are defined as,

S̃Tm3(x, y, t) =
[

∫∫

SON(u, v, t)W2(x− u, y − v)dudv
]+

(18)

S̃Tm2(x, y, t) =
[

∫∫

SOFF(u, v, t)W2(x− u, y − v)dudv
]+

(19)

where SON and SOFF are the ON and OFF signals defined in

(14) and (15); W2(x, y) is the second-order lateral inhibition

kernel, defined as

W2(x, y) = A[g(x, y)]+ +B[g(x, y)]− (20)

where A,B are constant, and g(x, y) is given by

g(x, y) = Gσ4
(x, y)− e ·Gσ5

(x, y)− ρ (21)

where Gσ(x, y) is a Gaussian function and e, ρ are constant.

Similarly, the outputs of the Tm1 and Mi1 are defined as the

temporally delayed outputs of the Tm3 and Tm2, which are

obtained by convolving S̃Tm3(x, y, t) and S̃Tm2(x, y, t) with a

Gamma kernel. That is,

S̃Mi1
D(nN ,τN )(x, y, t) =

∫

S̃Tm3(x, y, s)ΓnN ,τN (t− s)ds (22)

S̃Tm1
D(nF ,τF )(x, y, t) =

∫

S̃Tm2(x, y, s)ΓnF ,τF (t− s)ds (23)

where S̃Mi1
D(n

N
,τ

N
) and S̃Tm1

D(n
F
,τ

F
) stand for the outputs of the

Mi1 and Tm1, respectively.

In the following, we discuss the implementation of the

second-order lateral inhibition mechanism. Existing biological

research [33] asserts that the size selectivity of the STMD

neurons is shaped by the second-order lateral inhibition mech-

anism. However, where this second-order lateral inhibition

mechanism occurs remains elusive. Although the ESTMD

implements this second-order lateral inhibition mechanism

on medulla neurons, it is just speculative and there is no

neuroanatomical evidence for it. On the other hand, we notice

that the LPTC neurons also receive signals from medulla
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neurons [31], [34]. If the medulla neurons which provide

signals to the LPTC neurons, are laterally inhibited, the

LPTC neurons would show strong size selectivity (this will

be demonstrated in the experiment Section IV-B). This may

conflict with the finding that the LPTCs do not exhibit size

selectivity [17]–[19]. To satisfy both size selectivity of the

STMDs and size insensitivity of the LPTCs, we infer that

the second-order lateral inhibition mechanism may happen

on the STMD pathway rather than medulla neurons in the

implementation of our proposed neural network.

D. Lobula Layer

In the insect’s visual system, the STMD neurons integrate

signals from the medulla layer. They respond strongly to small

target motion, but show weak or no response to wide-field

motion (size selectivity) [2], [4], [5]. Besides, some STMDs

exhibit strong responses to small target motion oriented along

a preferred direction, but show weak or no response to

opposite-direction motion (direction selectivity) [6], [7].

In the proposed neural network (DSTMD), a new correlation

mechanism and a second-order lateral inhibition mechanism

are introduced for direction and size selectivities, respectively.

For comparison with the proposed neural network, the existing

non-directionally selective ESTMD [9] is also presented in the

following.

1) ESTMD: In the ESTMD, the output of an STMD neuron

located at (x, y), denoted by D̃(x, y, t), is defined as,

D̃(x, y, t) = S̃Tm3(x, y, t)× S̃Tm1
D(n3,τ3)

(x, y, t). (24)

As we can see from (24), the output of an STMD neuron

located at (x, y) is defined by the multiplication of the Tm1

and Tm3 outputs at the same position. Since medulla neural

signals from at least two different positions are needed for

detecting motion direction [35], the ESTMD is able to detect

the presence of target motion, but not the target’s motion

direction.

2) DSTMD: In the DSTMD, the correlation output of

an STMD neuron located at (x, y) with a preferred motion

direction θ, denoted by D(x, y, t; θ), is defined as,

D(x, y, t; θ) = STm3(x, y, t)×
{

STm1
D(n5,τ5)

(x, y, t)

+ SMi1
D(n4,τ4)

(x′, y′, t)
}

×STm1
D(n6,τ6)

(x′, y′, t)

(25)

where

x′ = x+ α1 cos θ

y′ = y + α1 sin θ
(26)

and α1 is a constant, θ ∈ {0, π
4 ,

π
2 ,

3π
4 , π, 5π

4 , 3π
2 , 7π

4 }.

As we can see from (25), four medulla neural signals from

two different positions, i.e., (x, y) and (x′, y′), are used to

define the output of an STMD neuron located at (x, y) (see

Fig. 2, two multipliers and one adder). These four medulla

neural signals include the outputs of the Tm1 and Tm3 located

at position (x, y), i.e., STm1
D(n5 ,τ5 )

(x, y, t) and STm3(x, y, t), the

outputs of the Tm1 and Mi1 located at position (x′, y′), i.e.,

A

B

θ

1α
( , )x y

( ', ')x y

(a)

θ

α

Excitatory Region 

Inhibitory Region 

(b)

Fig. 5. (a) Schematic illustration of relative position between A (x, y) and B
(x′, y′). α1 is the distance between A and B while θ is the angle between line
segment AB and the horizontal line. (b) Schematic illustration of excitatory
and inhibitory regions of the second-order lateral inhibition mechanism.

STm1
D(n

6
,τ

6
)(x

′, y′, t) and SMi1
D(n

4
,τ

4
)(x

′, y′, t) (the full deriva-

tion of (25) is shown in the supplementary materials). The

schematic illustration of relative position between (x, y) and

(x′, y′) is presented in Fig. 5(a). For a given position (x, y),
we can choose a series of (x′, y′), corresponding to different

directions θ. Thus, a series of correlation outputs D(x, y, t; θ)
with different preferred motion directions θ can be defined. For

a given direction θ0, D(x, y, t; θ0) gives the strongest output

to small target motion oriented along direction θ0, with weak

or no outputs to motion oriented along other directions. That

is, D(x, y, t; θ) shows direction selectivity.

After the signal correlation, the DSTMD implements the

second-order lateral inhibition mechanism on D(x, y, t; θ) for

size selectivity. That is,

DI(x, y, t; θ) =
[

∫∫

D(u, v, t; θ)W2(x− u, y − v)dudv
]+

(27)

where DI(x, y, t; θ) is the signal after lateral inhibition and

[x]+ denotes max(x, 0), W2(x, y) is defined in (20).

The schematic illustration of inhibition kernel W2(x, y) is

shown in Fig. 5(b). As can be seen, the inhibition kernel

W2(x, y) contains two components, i.e., excitatory and in-

hibitory regions. For the kernel W2(x, y), its surround inhibi-

tion is set as three times as strong as the center excitation. In

this case, once the target’s size exceeds the excitatory region, it

will receive strong inhibition. When the target is smaller than

the excitatory region, the amount of excitation will increase as

the rise of target size. That is, the DSTMD prefers the target

whose size is equal to the excitatory region and exhibits size

selectivity.

Following the second-order lateral inhibition mechanism,

the DSTMD inhibits model output D
I
(x, y, t; θ) at directions

more than 45◦ apart by convolving D
I
(x, y, t; θ) with an

inhibition kernel W3(θ). That is,

E(x, y, t; θ) =
[

∫

D
I
(x, y, t;ϕ)W3(θ − ϕ)dϕ

]+

(28)

where [x]+ denotes max(x, 0) and W3(θ) is defined as

W3(θ) = Gσ6
(θ)−Gσ7

(θ). (29)

where Gσ(x, y) is a Gaussian function.

In the DSTMD, E(x, y, t; θ) is regarded as the output of

the STMD neurons.

This article has been accepted for inclusion in a future issue of IEEE Transactions on Cybernetics. 
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TABLE I
PARAMETERS OF THE DSTMD AND ESTMD

Eq. Parameters

(1) σ1 = 1

(4) n1 = 2, τ1 = 3, n2 = 6, τ2 = 9

(8), (9) σ2 = 1.5, σ3 = 3

(10), (11) λ1 = 3, λ2 = 9

(20) A = 1, B = 3

(21) σ4 = 1.5, σ5 = 3, e = 1, ρ = 0

(24) n3 = 5, τ3 = 25

(25) n4 = 3, τ4 = 15, n5 = 5, τ5 = 25, n6 = 8, τ6 = 40

(26) α1 = 3

(29) σ6 = 1.5, σ7 = 3

E. Motion Direction Estimation

In the insect’s visual system, the STMD neurons are be-

lieved to be upstream of target selective descending neurons

(TSDNs) [4], [6], [8]. Further biological research [8] found

that eight pairs of the TSDNs are able to encode motion

direction of targets by a population vector algorithm.

In the proposed neural network, we estimate motion direc-

tions of targets by populating the model output E(x, y, t; θ)
along different directions θ. That is,

MD(t) =
∑

(x,y)∈Target

∑

θ

(E(x, y, t; θ) cos θ, E(x, y, t; θ) sin θ)

(30)

where MD(t) denotes the motion direction of the small target

at time t, (x, y) ∈ Target stands for the position of the STMD

neurons which respond to the small target motion.

F. Parameter Setting

Parameters of the proposed neural network (DSTMD) and

ESTMD are given in Table I. These parameters are tuned

manually based on empirical experiences and will not be

changed in the following experiments unless stated.

The proposed neural network is written in Matlab (The

MathWorks, Inc., Natick, MA). The computer used in the

experiments is a PC with one 2.50 Ghz CPU (Core i7

4710MQ) and windows 7 operating system. The source code

can be found at https://github.com/wanghongxin/DSTMD.

IV. RESULTS AND DISCUSSIONS

The proposed neural network is tested on image sequences

produced by Vision Egg [36]. The Vision Egg is a open-

source programming library that allows scientists to produce

arbitrary visual stimuli (http://visionegg.org/). Such stimuli

involve traditional stimuli such as sinusoidal gratings, or may

be more complex, 3-D, and naturalistic scenes. The image

sequences used in this paper can be divided into two categories

depending on background types. The first category contains

image sequences showing small target motion against white

backgrounds. This category is used to test the basic properties

of the proposed neural network, such as tuning properties (see

Sections IV-B and IV-C), direction selectivity (see Section

IV-D). The other category contains image sequences showing

BV

TV

Fig. 6. Representative frame of the input image sequence. A small rectangle
highlighted by the white circle, is moving against the cluttered background.
This rectangle whose size and luminance are set as 5× 5 pixels and 0, is the
small target needed to be detected. The arrows VT and VB denote the motion
directions of the small target and the background, respectively. The velocities
of the small target and the background are all set as 250 pixel/s.

small target motion against naturally cluttered backgrounds.

This category is used to test the detection performance of the

proposed neural network in complex backgrounds (see Section

IV-A and IV-E). All image sequences can be reproduced by

the Vision Egg with the same parameters (given before each

experiment). The video images are 500 (in horizontal) by 250
(in vertical) pixels and temporal sampling frequency is set as

1000 Hz.

A. Contribution of Various Neurons

To evaluate the characteristics of the neurons in the pro-

posed neural network, we observe and analyze their outputs.

For an input image sequence I(x, y, t), where x ∈ [0, 500]
pixel, y ∈ [0, 250] pixel, t ∈ [0, 1000] ms (see Fig. 6), we first

fix y and t as y0 = 125 pixel and t0 = 1000 ms, then illustrate

I(x, y0, t0) with respect to x in Fig. 7(a). Similarly, the outputs

of other neurons are presented in the subplots below.

Fig. 7(a)-(c) shows the input luminance signal I(x, y0, t0),
ommatidium output P (x, y0, t0) and LMC output L(x, y0, t0),
respectively. Compared to the input signal, the ommatid-

ium output demonstrates little difference and is just slightly

smoothed. This is because the ommatidium is modeled as

a spatial Gaussian filter to smooth the input luminance sig-

nals. The LMC output displays significant difference from

the ommatidium output. More precisely, the LMC output

becomes the band-pass-filtered version of the ommatidium

output. From the other perspective, the LMC output reveals

the luminance changes of pixels, where the positive values

correspond to luminance increase while the negative values

suggest luminance decrease.

Fig. 7(d) and (e) illustrates the outputs of the Tm3 and Tm2

modeled by the DSTMD and ESTMD, respectively. Compared

to Fig. 7(d), the outputs of the Tm3 and Tm2 are largely

suppressed in Fig. 7(e). This is because the ESTMD uses the

laterally inhibited ON and OFF signals to define the outputs

of the Tm3 and Tm2 (see (18) and (19)), while the DSTMD

utilizes the ON and OFF signals directly (see (12) and (13)).

Fig. 7(f) and (g) demonstrate the medulla signals used for the

signal correlation in the DSTMD and ESTMD, respectively.

As can be seen, four medulla signals are used for the signal

correlation in the DSTMD whereas only two medulla signals

are utilized in the ESTMD.

Fig. 7(h) and (i) displays the outputs of the proposed

DSTMD model and the existing non-directionally selective

This article has been accepted for inclusion in a future issue of IEEE Transactions on Cybernetics. 
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Fig. 7. Outputs of various neurons in the DSTMD and ESTMD models where x ∈ [0, 500] pixel, y0 = 125 pixel, t0 = 1000 ms. In each subplot, the
horizontal axis denotes the location of neurons (x coordinate) while the vertical axis represents neural outputs. (a) Input signal I(x, y0, t0). (b) Ommatidium
output P (x, y0, t0). (c) LMC output L(x, y0, t0). (d) Outputs of the Tm3 and Tm2 modeled by the DSTMD, i.e., STm3(x, y0, t0) and STm2(x, y0, t0). (e)

Outputs of the Tm3 and Tm2 modeled by the ESTMD, i.e., S̃Tm3(x, y0, t0) and S̃Tm2(x, y0, t0). (f) Medulla neural outputs used for the signal correlation
in the DSTMD, i.e., STm3(x, y0, t0), SMi1

D(3,15)
(x, y0, t0), STm1

D(5,25)
(x, y0, t0) and STm1

D(8,40)
(x, y0, t0). (g) Medulla neural outputs used for the signal

correlation in the ESTMD, i.e., S̃Tm3(x, y0, t0) and S̃Tm1
D(5,25)

(x, y0, t0). (h) DSTMD output E(x, y0, t0; θ). In this subplot, the DSTMD outputs to the

small target are further shown in the polar coordinate system, where the angular coordinate denotes the preferred motion direction θ while the radial coordinate

stands for the model output along this preferred direction. (i) ESTMD output D̃(x, y0, t0).

ESTMD model, respectively. From these two subplots, we can

see that both the DSTMD and ESTMD show the strongest

response at x = 250 which is the location of the small

moving target. At the other positions, both models exhibit

much weaker or even no response. For example, both models

demonstrate little response to the tree trunk located between

x = 450 and x = 480, which is regarded as a large object.

The above results indicate that both the DSTMD and ESTMD

are only interested in small target motion.

Comparing Fig. 7(h) with 7(i), we can find that the major

difference between the DSTMD and ESTMD is direction

selectivity. More precisely, in Fig. 7(h), the DSTMD has

eight outputs E(x, y0, t0; θ) corresponding to eight preferred

directions θ, θ ∈ {0, π
4 ,

π
2 ,

3π
4 , π, 5π

4 , 3π
2 , 7π

4 }. However, in Fig.

7(i), the ESTMD only has one output D̃(x, y0, t0) lacking

of direction information. To clearly show direction selectivity,

the DSTMD outputs to the small target are illustrated in polar

coordinate (see the right part of Fig. 7(h)). As can be seen, the

DSTMD exhibits the strongest output along direction θ = π
which is consistent with the motion direction of the small

target. The other seven outputs of the DSTMD decrease as

the corresponding direction θ deviates from the small target

motion direction.

This article has been accepted for inclusion in a future issue of IEEE Transactions on Cybernetics. 
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Target 

Background d

dw

h

T
V

h

Fig. 8. External rectangle and neighboring background rectangle of a small
target. The arrow VT denotes the motion direction of the target. w represents
target width while h stands for target height.

B. Tuning Properties

We test four basic properties of the proposed neural net-

work, including Weber Contrast sensitivity, velocity selectivity,

width selectivity and height selectivity. These four properties

are basic properties of the STMD neurons and are used

to distinguish the STMD neurons in biology [2], [5], [7].

Here, Weber Contrast sensitivity refers to that the STMD

neural response increases with the increase of Weber Contrast.

Velocity selectivity refers to that the STMD neurons show the

strongest response to a specific velocity (optimal velocity).

Above or below this optimal velocity will result in the signifi-

cant decrease of neural responses. Width selectivity and height

selectivity are similar to velocity selectivity.

We first give definitions of Weber Contrast, width and

height. As it is shown in Fig. 8, width represents the target

length extended parallel to the motion direction while height

denotes the target length extended orthogonal to the motion

direction. If the size of a target is w × h, the size of its

background rectangle is (w + 2d) × (h + 2d), where d is

a constant which equals to 10 pixels in this paper. Weber

Contrast is defined by the following equation,

Weber Contrast =
|µt − µb|

255
(31)

where µt is the average pixel value of the target, µb is the

average pixel value in neighboring area around the target.

We perform four experiments to illustrate four basic proper-

ties of the proposed neural network. In these four experiments,

image sequences which display a small target moving against

the white background, are used as the model input. The initial

parameters of the small target including luminance, velocity,

width and height, are set as 0, 250 pixel/second, 5 pixels and 5
pixels, respectively. In each experiment, we change one of four

target parameters while fix other three parameters, then record

corresponding model outputs. The recorded tuning curves are

displayed in Fig. 9.

As it is shown in Fig. 9(a), the outputs of the DSTMD and

ESTMD increase with the increase of Weber Contrast, until

reach maximum at Weber Contrast = 1. This reveals that the

DSTMD and ESTMD exhibit Weber Contrast sensitivity. In

Fig. 9(b), the outputs of the DSTMD and ESTMD all peak

at velocity = 300 pixel/s and decrease significantly when the

target velocity is above or below 300 pixel/s. This suggests

that the DSTMD and ESTMD have a preferred velocity and

exhibit velocity selectivity. Similar variation trends can be seen

in Fig. 9(c) and (d) which reveal the width selectivity and

height selectivity of the DSTMD, respectively.

In the following, we carry out an experiment to demonstrate

the hypothesis raised in Section III-C. The hypothesis is that

if the medulla neurons which provide signals to the LPTC

neurons [17]–[19], are laterally inhibited, the LPTC neurons

would show strong size selectivity. In order to demonstrate

this point, we first adopt TQD model [26], [27] to simulate

the LPTC neurons. Then we use the medulla neuron modelling

methods of DSTMD and ESTMD to simulate medulla neurons,

respectively. For TQD which receives signals from medulla

neurons modeled by DSTMD, we denote it as TQD. For

TQD which receives signals from medulla neurons modeled

by ESTMD, we denote it as TQD(LI). The only difference

between the TQD and TQD(LI) is that medulla neurons pro-

viding signals to the TQD(LI), are laterally inhibited. Finally,

we test the four basic properties of the TQD and TQD(LI).

The recorded tuning curves are presented in Fig. 10.

As it can be seen from Fig. 10(a), (b) and (c), the TQD

and TQD (LI) display little difference. They all exhibit Weber

Contrast sensitivity and velocity selectivity, but do not show

the width selectivity. In Fig. 10(d), although both TQD and

TQD (LI) have a local maximum at height = 5, they show

differences with increasing height. As the continuous increase

of the height, the output of the TQD firstly has a slight drop

and finally tends to be stable around 0.9. In contrast, the output

of the TQD (LI) decreases significantly and finally tends to be

stable around 0.05. Above results indicate that the TQD(LI)

exhibits height selectivity. This contradicts with the biological

finding that the LPTC neurons are not size selective [17]–

[19]. To avoid conflict with the biological finding on the LPTC

neurons, we adopt the new medulla neuron modeling method

and implement the second-order lateral inhibition mechanism

on the STMD neuron pathways.

C. Parameter Sensitivity

In the last section, we have demonstrated that the pro-

posed neural network shows four basic properties, i.e., Weber

Contrast sensitivity, velocity selectivity, width selectivity and

height selectivity. In this section, we further evaluate the

impacts of three sets of parameters, including (n4, τ4), (n5, τ5)
and (σ4, σ5), on the four basic properties. These three sets of

parameters are defined in (21) and (25).

We conduct three experiments to assess the effects of these

three sets of parameters, respectively. In each experiment, we

change one set of parameters while keep other two sets of

parameters at their initially assigned value [see Table I], then

record corresponding model outputs. In the first experiment,

(n4, τ4) is set as (1, 5), (2, 10), (3, 15), (4, 20), (5, 25), (6, 30).
In the second experiment, (n5, τ5) is set as (3, 15), (4, 20),
(5, 25), (6, 30), (7, 35), (8, 40). In the third experiment,

(σ4, σ5) is set as (1.0, 2.0), (1.5, 3.0), (2.3, 4.6), (2.8, 5.6),
(3.7, 7.4). The recorded tuning curves of the proposed neural

network under different parameter settings, are presented in

Fig. 11–13.

In the first and second experiment, we illustrate that the

parameter (n4, τ4) and (n5, τ5) have large impact on the

velocity selectivity and width selectivity, but show little effect

on the Weber Contrast sensitivity and height selectivity. More

This article has been accepted for inclusion in a future issue of IEEE Transactions on Cybernetics. 
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Fig. 9. Tuning properties of the proposed neural network (DSTMD) and ESTMD. In each subplot, the horizontal axis represents one of target parameters
(Weber Contrast, velocity, width, and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning
curves. (c) Width tuning curves. (d) Height tuning curves.
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Fig. 10. Tuning properties of the TQD and TQD(LI). In each subplot, the horizontal axis represents one of target parameters (Weber Contrast, velocity, width,
and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning curves. (c) Width tuning curves.
(d) Height tuning curves.
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Fig. 11. Tuning properties of the proposed neural network under different parameter (n4, τ4). In this experiment, (n4, τ4) is set as (1, 5), (2, 10), (3, 15),
(4, 20), (5, 25), (6, 30) while the other parameters are fixed. In each subplot, the horizontal axis represents one of the target parameters (Weber Contrast,
velocity, width, and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning curves. (c) Width
tuning curves. (d) Height tuning curves.
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Fig. 12. Tuning properties of the proposed neural network under different parameter (n5, τ5). In this experiment, (n5, τ5) is set as (3, 15), (4, 20), (5, 25),
(6, 30), (7, 35), (8, 40) while the other parameters are fixed. In each subplot, the horizontal axis represents one of the target parameters (Weber Contrast,
velocity, width, and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning curves. (c) Width
tuning curves. (d) Height tuning curves.

precisely, from Fig. 11(a) and (d), we can see that the increase

of (n4, τ4) have not induced any significant changes of the

Weber Contrast tuning curve and the height tuning curve.

However, with the increase of (n4, τ4), as shown in Fig. 11(b)

and (c), the peak velocity decreases while the peak width

increases. In Fig. 12, the parameter (n5, τ5) has similar effect

with (n4, τ4) on the four basic properties.

The reasons for the above results are—in the proposed
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Fig. 13. Tuning properties of the proposed neural network under different parameter (σ4, σ5). In this experiment, (σ4, σ5) is set as (1.0, 2.0), (1.5, 3.0),
(2.3, 4.6), (2.8, 5.6), (3.7, 7.4) while the other parameters are fixed. In each subplot, the horizontal axis represents one of the target parameters (Weber
Contrast, velocity, width, and height) while the vertical axis denotes normalized model outputs. (a) Weber Contrast tuning curves. (b) Velocity tuning curves.
(c) Width tuning curves. (d) Height tuning curves.
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Fig. 14. Schematic illustration of the luminance changes of the position A
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The red arrow denotes luminance decrease signal (OFF signal) while the blue
arrow represents luminance increase signal (ON signal). Let α1, w and v
stand for the distance between position A and B, target width and velocity,
respectively. Then we have ∆t1 = α1

v
,∆t2 = w

v
.

neural network, τ4 and τ5 are positively correlated to α1

v
and

w
v

, respectively, where α1, v and w stand for the distance

between position A and B, the peak velocity and the peak

width, respectively. Once α1 is given, the increase of τ4 (or

τ5) will result in the decrease of the peak velocity v and the

increase of the peak width w.

We further explain why τ4 and τ5 are positively correlated

to α1

v
and w

v
. In Fig. 14, we present the luminance changes of

position A and B when a dark small target moves from B to

A. In the equation (25), the DSTMD uses four medulla signals

from position A (x, y) and B (x′, y′) to define the output of

STMD neurons. Combining Fig. 14 with the equation (25),

we point out that these four medulla signal are: 1) ON signal

of position A (x, y), corresponding to S
Tm3

(x, y, t); 2) ON

signal of position B (x′, y′) with time delay order n4 and

time delay length τ4, corresponding to S
Mi1

D(n
4
,τ

4
)
(x′, y′, t); 3)

OFF signal of position A (x, y) with time delay order n5

and time delay length τ5, corresponding to S
Tm1

D(n
5
,τ

5
)
(x, y, t);

4) OFF signal of position B (x′, y′) with time delay order n6

and time delay length τ6, corresponding to S
Tm1

D(n6 ,τ6 )
(x′, y′, t).

In the DSTMD, we set τ4, τ5 and τ6 as ∆t1, ∆t2 and ∆t1 +
∆t2, respectively. Since ∆t1 = α1

v
and ∆t2 = w

v
, then we

have τ4 = α1

v
and τ5 = w

v
. That is, τ4 and τ5 are positively

correlated to α1

v
and w

v
, respectively.

In the third experiment, we demonstrate that the parameter

(σ4, σ5) has large impact on the height selectivity, but shows

little effect on the other three properties. As it can be seen from

Fig. 13(a)-(c), the tuning curves have little changes with the
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Fig. 15. Motion trace of the small target where color denotes the direction
of the strongest output of the proposed neural network.

increase of (σ4, σ5); in contrast, the peak height of the height

tuning curve increases, as presented in Fig. 13(d). Here, we

point out that the peak height is positively correlated to the size

of the excitatory region of the lateral inhibition mechanism

(see Fig. 5(b)). In the proposed neural network, the size of the

excitatory region is determined by σ4 and σ5, where the higher

(σ4, σ5) means the larger excitatory region, i.e, the larger peak

height.

D. Direction Selectivity and Motion Direction Estimation

In this section, we illustrate how the proposed neural net-

work encode motion directions of small targets. In the experi-

ment, an image sequence which displays a small target moving

against the white background, is used as the network input.

The luminance and size of the small target are set as 0 and 5×5
pixels, respectively. The coordinate of the small target at time

t is (500− 250 · t+300
1000 , 125+15 · sin(4π t+300

1000 )), t ∈ [0, 1000]
ms. Fig. 15 presents the motion trace of the small target. The

motion direction of the small target varies between 142.98◦

and 217.01◦ when it moves along this motion trace.

We select six positions on the motion trace (A–F, in Fig.

15). The outputs of the DSTMD at these six positions are

normalized, then shown in polar coordinate (see Fig. 16).

In each subplot of Fig. 16, we can see that the smaller

difference between the preferred direction θ and the actual

motion direction (shown in Fig. 17), the stronger DSTMD

output tuned to this direction θ. These directionally selective

outputs are used to encode the motion direction of the small

target by the population vector algorithm. Fig. 17 and Table

II show the estimated motion direction and the actual motion

direction at the six positions. As can be seen, the difference

between the estimated direction and actual direction is smaller

This article has been accepted for inclusion in a future issue of IEEE Transactions on Cybernetics. 
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Fig. 16. (a)-(f) Normalized DSTMD outputs at the position A–F. In each subplot, the angular coordinate represents the preferred motion direction of the
DSTMD while the radial coordinate denotes the strength of the DSTMD output tuned to this preferred direction.
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Fig. 17. (a)-(f) Estimated motion direction (red) and actual motion direction (blue) at the position A–F. In each subplot, the red line is highly overlapped
with the blue line. That is, the estimated motion direction is quite close to the actual motion direction.

TABLE II
ESTIMATED MOTION DIRECTION AND ACTUAL

MOTION DIRECTION AT THE SIX POSITIONS

Position Estimated Actual Difference

A 144.25◦ 143.12◦ 1.13◦

B 152.36◦ 151.21◦ 1.15◦

C 166.83◦ 166.88◦ 0.05◦

D 180.37◦ 181.63◦ 1.26◦

E 195.93◦ 197.80◦ 1.87◦

F 214.24◦ 215.53◦ 1.29◦

than 2◦ at these six positions. We further estimate the motion

direction of the small target at each position of the motion

trace. The maximal difference between the estimated motion

direction and actual motion direction is 3.17◦. Above results

indicate that the proposed neural network provides a good

estimation for the motion direction of the small target.

E. Target Detection in Cluttered Backgrounds

In this section, we test the ability of the proposed neural net-

work for detecting small targets against cluttered backgrounds.

For a given detection threshold γ, if there is a position (x0, y0),
time t0 and direction θ0 which satisfy the DSTMD output

E(x0, y0, t0; θ0) > γ, then we believe that a small target is

detected at position (x0, y0) and time t0. Two metrics are

defined to evaluate the detection performance. That is,

DR =
number of true detections

number of actual targets
(32)

FA =
number of false detections

number of images
(33)

where DR and FA denote the detection rate and false alarm

rate, respectively. The detected result is considered correct if

the pixel distance between the ground truth and the result is

within a threshold (5 pixels).

In the first three experiments, we investigate the influences

of three target parameters (size, luminance and velocity) on

TABLE III
SETTINGS OF THE PARAMETERS INCLUDING TARGET LUMINANCE, SIZE

AND HORIZONTAL VELOCITY FOR THE FIRST THREE EXPERIMENTS

Luminance Size Velocity (V x
T

)

Experiment 1 0, 25, 50 5× 5 250

Experiment 2 0 3× 3, 5× 5, 8× 8 250

Experiment 3 0 5× 5 200, 250, 350

BV

Fig. 18. Representative frame of the input image sequence. The small target
is highlighted by the white circle. The white arrow VB denotes the motion
direction of the background.

the detection performance. In each experiment, we change one

of the target parameters while fix the other two parameters,

then record the detection performance of the models under

this parameter setting. The parameter settings of the first

three experiments are shown in Table III. All input image

sequences are produced using the same background image

where a representative frame is given in Fig. 18. In all input

image sequences, the background is moving from left to right

and its velocity is set as 250 pixel/s. A small target is moving

against the cluttered background, and its coordinate at time t
is (500 − V x

T
· t+300

1000 , 125 + 15 · sin(4π t+300
1000 )), t ∈ [0, 1000]

ms where V x
T

denotes the horizontal velocity. The receiver

operating characteristic (ROC) curves of the three experiments

with respect to target luminance, size and horizontal velocity

V x
T

, are displayed in Fig. 19.

In Fig. 19(a), we can see that the lower target luminance

is, the better ESTMD and DSTMD perform. This is because

the decrease of target luminance can induce the increase of

Weber Contrast (see Fig. S3 in the supplementary material).

Note that the ESTMD and DSTMD all show Weber Contrast

This article has been accepted for inclusion in a future issue of IEEE Transactions on Cybernetics. 
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Fig. 19. ROC curves of the first three experiments with respect to target luminance, sizes and velocities. (a) Experiment 1, different target luminance. Legend
’ESTMD-0’ and ’DSTMD-0’ represent the ROC curves of the ESTMD and DSTMD when target luminance equals to 0, respectively. Similar explanations
for other legends. (b) Experiment 2, different target sizes. Legend ’ESTMD-3’ and ’DSTMD-3’ represent the ROC curves of the ESTMD and DSTMD
when target size equals to 3 × 3 pixels, respectively. Similar explanations for other legends. (c) Experiment 3, different horizontal velocities (V x

T
). Legend

’ESTMD-200’ and ’DSTMD-200’ represent the ROC curves of the ESTMD and DSTMD when the horizontal velocity V x
T

equals to 200 pixel/s, respectively.
Similar explanations for other legends.
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Fig. 20. Experiment 4. (a) Representative frame of the input image sequence. (b) Weber Contrast of the small target during time period t ∈ [0, 1000] ms. (c)
ROC curves of the ESTMD and DSTMD. (d) Motion directions detected by the DSTMD in the sample 510, 570, 600, 630, 700 frames. No motion direction
detected by the ESTMD. (e) Actual motion directions in the sample 510, 570, 600, 630, 700 frames. (f) Motion directions detected by the DSTMD from
the 500th to the 700th frame. (g) Actual motion directions from the 500th to the 700th frame.

sensitivity, so the higher Weber Contrast can elicit the stronger

model output. From Fig. 19(b) and 19(c), we can see that when

the false alarm rate is given, the target size of 5 × 5 (or the

velocity of 250) has higher detection rate compared to the

target size of 3 × 3 and 8 × 8 (or the velocity of 200 and

350). This is because the ESTMD and DSTMD all exhibit

size and velocity selectivities. They show the strongest output

to the target whose size (or velocity) equals to 5×5 pixels (or

250 pixel/s), but weaker outputs to the object whose size (or

velocity) is higher or lower than 5× 5 pixels (or 250 pixel/s).

In the fourth and fifth experiment, we evaluate the per-

formance of the proposed neural network in different back-

grounds. Two input image sequences with different back-

grounds are displayed in Fig. 20(a) and Fig. 21(a), respec-

tively. In these two image sequences, the backgrounds are

all moving from left to right and their velocities are set as

250 pixel/s. A small target whose luminance and size are

set as 0 and 5 × 5 pixels, is moving against the cluttered

backgrounds. The coordinate of the small target at time t is

(500− 250 · t+300
1000 , 125+15 · sin(4π t+300

1000 )), t ∈ [0, 1000] ms.

Fig. 20(c) and Fig. 21(c) demonstrate the ROC curves for

the two image sequences, respectively. As can be seen, the

detection rates of the DSTMD (or ESTMD) in Fig. 21(c) are

much lower than those in Fig. 20(c). There are two reasons

for the above result: 1) the background in Fig. 21(a) is more

cluttered compared to Fig. 20(a), which means that it contains

more small-target-like background features and 2) the Weber

Contrast in Fig. 21(b) is much lower than that in Fig. 20(b),

suggesting that the models exhibit much weaker outputs to the

small target in the fifth experiment.

Fig. 20(d) displays the motion directions detected by the

DSTMD in the sample 510, 570, 600, 630, 700 frames while

Fig. 20(f) illustrates the motion directions detected by the

DSTMD from the 500th to the 700th frame. As it is shown,

these detected motion directions are quite close to the actual

motion directions in Fig. 20(e) and 20(g). No motion direction

is detected by the ESTMD, because it is not directionally

selective. Similar results can be seen in Fig. 21(d)-(g).

The proposed neural network is further tested on a set

of real videos. The experimental results are presented in the

supplementary materials, due to the page limit.

This article has been accepted for inclusion in a future issue of IEEE Transactions on Cybernetics. 
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Fig. 21. Experiment 5. (a) Representative frame of the input image sequence. (b) Weber Contrast of the small target during time period t ∈ [0, 1000] ms. (c)
ROC curves of the ESTMD and DSTMD. (d) Motion directions detected by the DSTMD in the sample 510, 570, 600, 630, 700 frames. No motion direction
detected by the ESTMD. (e) Actual motion directions in the sample 510, 570, 600, 630, 700 frames. (f) Motion directions detected by the DSTMD from
the 500th to the 700th frame. (g) Actual motion directions from the 500th to the 700th frame.

V. FURTHER DISCUSSIONS

In the above sections, the presented neural network

(DSTMD) demonstrated a reliable ability to detect small

targets and motion directions against complex backgrounds.

Nowadays, for vision-based mobile robots, their visual sensors

are becoming more reliable while computation ability is more

powerful. These make it possible for mobile robots, such as

unmanned aerial vehicle (UAV), equipped with the presented

neural network to detect small moving targets in the distance

in the real world.

In the insects’ visual system, numerous neurons work

together to extract different cues from the real world. For

example, the LMCs extract motion information while the

amacrine cells capture contrast information from input visual

signals [37], [38]. Integrating these two types of information

may contribute to the improvement of detection performance

of the STMD neurons in cluttered backgrounds. In the future,

the cooperation of these specialized neurons needs to be taken

into consideration.

A number of bio-inspired neural networks based on firing-

rate methods, spiking neural networks or convolutional neural

networks [39]–[41], have been used for target detection, track-

ing and navigation. Although these neural networks perform

well, they cannot distinguish small target motion from large

object motion. Detecting target motion is relatively easy,

but distinguishing different target motion in terms of the

targets’ sizes is more challenging and difficult. For example,

a naturally cluttered background always contains small targets

such as insects, and large objects such as bushes, trees or rocks.

Due to the camera motion, these large objects are moving

with the background. In this case, the above-mentioned neural

networks can detect both small and large object motion, but

cannot distinguish them.

In engineering, small target motion detection can be per-

formed by infrared detection methods [42]. However, these

infrared methods always require significant temperature differ-

ences between objects of interest (such as rockets and jets) and

the background. This largely limits their application, because

such significant temperature difference is rare in the natural

world. Different from the infrared methods, the presented

neural network uses normal images as input and provides a

vision-based method for small moving target detection.

VI. CONCLUSION

In this paper, we proposed a visual neural network

(DSTMD) to simulate the directionally selective STMD neu-

rons. Direction selectivity is obtained by correlating signals

from two positions while size selectivity is introduced by the

second-order lateral inhibition mechanism. Motion directions

of detected targets are estimated by the population vector

algorithm. Systematic experiments showed that the presented

STMD-based neural network can detect not only small moving

targets, but also motion directions against complex back-

grounds. In the future work, various visual neurons which ex-

tract different cues simultaneously, will be integrated together

to improve detection performance.
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