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ABSTRACT

Short text clustering has become an increasingly impor-
tant task with the popularity of social media like Twitter,
Google+, and Facebook. It is a challenging problem due to
its sparse, high-dimensional, and large-volume characteris-
tics. In this paper, we proposed a collapsed Gibbs Sampling
algorithm for the Dirichlet Multinomial Mixture model for
short text clustering (abbr. to GSDMM). We found that GS-
DMM can infer the number of clusters automatically with
a good balance between the completeness and homogeneity
of the clustering results, and is fast to converge. GSDMM
can also cope with the sparse and high-dimensional problem
of short texts, and can obtain the representative words of
each cluster. Our extensive experimental study shows that
GSDMM can achieve significantly better performance than
three other clustering models.

Categories and Subject Descriptors

I.5.3 [PATTERN RECOGNITION]: Clustering—Algo-
rithms

Keywords

Short text clustering; Dirichlet Multinomial Mixture; Gibbs
Sampling

1. INTRODUCTION
Berkhin [4] discussed several important issues of cluster-

ing: 1) Setting of the number of clusters; 2) Ability to work
with high-dimensional data; 3) Interpretability of results; 4)
Scalability to large datasets. Short text clustering has all
the above challenges. Different from the normal text clus-
tering, short text clustering also has the problem of sparsi-
ty [1]. Most words only occur once in each short text, as
a result, the Term Frequency-Inverse Document Frequency
(TF-IDF) measure cannot work well in the short text set-
ting. Furthermore, if we use the Vector Space Model [25] to
represent the short texts, the sparse and high-dimensional
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vectors will result in waste of both memory and computation
time.

In this paper, we try to cope with the above challenges
of short text clustering. Specifically, we proposed a col-
lapsed Gibbs Sampling algorithm for the Dirichlet Multino-
mial Mixture model [20] for short text clustering (abbr. to
GSDMM). We also proposed the Movie Group Process (MG-
P) as an analogy of GSDMM.We can imagine the documents
as students in a movie discussion course, and the words of
a document as the movies the student has watched. The
short text clustering problem turns out to be clustering the
students into groups so that students in the same group will
share similar interests (similar movie lists), while students in
different groups will share different interests. The intuition
of MGP is that we can randomly assign the students to K
tables, then we ask each student to re-choose a table in turn
with two rules: 1) Choose a table with more students; 2)
Choose a table whose students share similar interests with
him. As this process goes on, some tables will grow larger
and others will vanish. Finally, only a part of the tables
will still have students and the students in each table will
share similar interests. In other words, we can cluster the
students into several groups in this way. With the help of
MGP, we explored how and why GSDMM works as well as
the meaning of its parameters.

We find that GSDMM has the following nice properties:
1) GSDMM can infer the number of clusters automatically;
2) GSDMM has a clear way to balance the completeness and
homogeneity of the clustering results; 3) GSDMM is fast to
converge; 4) Unlike the Vector Space Model (VSM)-based
approaches, GSDMM can cope with the sparse and high-
dimensional problem of short texts; 5) Like Topic Models
(e.g., PLSA [10] and LDA [6]), GSDMM can also obtain the
representative words of each cluster.

In the experimental study, we compared GSDMM with K-
means [13], the Hierarchical Agglomerative Clustering (HAC)
model [15], and DMAFP [11]. We did not choose other clus-
tering methods like Gaussian Mixture Model [5], Affinity
Propagation [8], and Spectral clustering [18], because they
are not scalable with high-dimensional and large-volume da-
ta like texts. We conducted experiments on four datasets
and evaluated the results with five metrics, and found that
GSDMM can achieve significantly better performance than
K-means, HAC, and DMAFP.

The contributions of this paper are summarized as follows.

• To the best of our knowledge, this is the first attempt
to apply the Dirichlet Multinomial Mixture (DMM)
model for short text clustering, and our experimental



study has validated its effectiveness. We find it can
cope with the sparse and high-dimensional problem of
short texts, and can obtain the representative words
of each cluster.

• We proposed a collapsed Gibbs Sampling algorithm
for DMM (abbr. to GSDMM) which can achieve very
good performance on short text clustering. Meanwhile,
GSDMM can infer the number of clusters automatical-
ly with a good balance between the completeness and
homogeneity of the clustering results, and is fast to
converge.

• We proposed the Movie Group Process (MGP) as an
analogy of GSDMM which can help us understand how
and why GSDMM works as well as the meaning of its
parameters.

The remainder of this paper is organized as follows. In
Section 2, we first propose the Movie Group Process (MGP),
then we introduce the DMM model and our GSDMM algo-
rithm. We discuss several important aspects of GSDMM in
Section 3. Section 4 describes the design of experiments to
evaluate the performance of our algorithm. In Section 5, we
review the related work of short text clustering. We finally
present conclusions and future work in Section 6.

2. APPROACH

2.1 Movie Group Process
In this part, we introduce an analogy for the short text

clustering problem. We will use this analogy in the whole
paper, and it can help us understand both the short text
clustering problem and our GSDMM algorithm.

We can imagine that the professor of a movie discussion
course plans to divide the students into several groups. She
expects the students in the same group have watched more
movies of the same, so they would have more things to dis-
cuss. The professor asks the students to write down the
movies they have watched within several minutes. (The list
will not be too long because the students do not have e-
nough time, and they will more likely write down movies
they watched recently or movies they love much.) Now,
each student can be represented with a list of movies. The
professor needs to find a way to cluster the students into sev-
eral groups. The goal is that students in the same group will
share similar interests (similar movie lists), while students
in different groups will share different interests.

Let us restate the Movie Group Problem more formally
and point out its relationship with the short text clustering
problem. The input is D students (documents) and each
student (document) is represented by a short list of movies
(words). The goal is to cluster the students (documents)
into several groups, so that students (documents) in the
same group are similar and students (documents) in differ-
ent groups are dissimilar. We define the number of distinct
movies (words) as V . The sparse characteristic of short text
means that V is really large (often larger than 105), while
the average number of words (L̄) in each short text is small
(often less than 102).

We first discuss the common similarity-based clustering
models for this problem before introducing our approach.
Common similarity-based models like K-means [13] and HAC
[15] for text clustering usually represent the documents with

the Vector Space Model (VSM) [25]. Each document (stu-
dent) is represented with a vector of length V . Each element
of the vector is the weight of the corresponding word (e.g.,
TF-IDF). Due to the sparse problem of short texts, most
words of the documents have TF=1, which means TF is al-
most useless in the representation of short texts. Although
each short document has only a small number of words, it is
represented with a vector of size V (often larger than 105).
This VSM representation of documents results in both high
time complexity and high space complexity, and is related
to the high-dimensional problem of the short texts.

We can imagine that the professor invites the students
into a huge restaurant and randomly assigns the students to
K tables. Then she asks the students to re-choose a table
in turn. We can expect that a student will choose a table
according to the following two rules:

• Rule 1: Choose a table with more students.

• Rule 2: Choose a table whose students share similar
interests (i.e., watched more movies of the same) with
him.

As this process goes on, some tables will grow larger and
others will vanish. We can expect that finally only a part
of the tables will still have students and the students in
each table will share similar interests. In other words, the
professor can cluster the students into several groups in this
way.

We call the above process as the Movie Group Process
(MGP). We can see that the above two natural rules are
related to the two goals of clustering: Completeness and
Homogeneity [24]. Completeness represents the objective
that all members of a ground true group are assigned to
the same cluster. Rule 1 of MGP tends to result in high
completeness, as it leads popular tables to be more popular
(larger clusters are more likely to get larger), and students
in the same ground true group are more likely to be in the
same table (cluster). This is also known as the “richer gets
richer” property. Homogeneity represents the objective that
each cluster contains only members of a single ground true
group. Rule 2 of MGP tends to result in high homogeneity,
because it leads the students in the same table to be more
similar (more likely to be in the same ground true group).

To our surprise, the Movie Group Process (MGP) is e-
quivalent to our collapsed Gibbs Sampling algorithm for the
Dirichlet Multinomial Mixture model (abbr. to GSDMM).
We will first introduce the Dirichlet Multinomial Mixture
model in the next section, then we will introduce our GSD-
MM algorithm in Section 2.3 and Section 2.4.

2.2 Dirichlet Multinomial Mixture
In this section, we introduce the Dirichlet Multinomial

Mixture (DMM) model used in Nigam et al. [20]. DMM is
a probabilistic generative model for documents, and embod-
ies two assumptions about the generative process: (1) the
documents are generated by a mixture model [17], and (2)
there is a one-to-one correspondence between mixture com-
ponents and clusters. When generating document d, DMM
first selects a mixture component (cluster) k according to
the mixture weights (weights of clusters), p(z = k). Then
document d is generated by the selected mixture component
(cluster) from distribution p(d|z = k). Thus we can charac-
terize the likelihood of document d with the sum of the total



Figure 1: Graphical model of DMM.

V number of words in the vocabulary
D number of documents in the corpus
L̄ average length of documents
~d documents in the corpus
~z cluster labels of each document
I number of iterations
mz number of documents in cluster z

nz number of words in cluster z

nw
z number of occurrences of word w in cluster z

Nd number of words in document d

Nw
d number of occurrences of word w in document d

Table 1: Notations

probability over all mixture components:

p(d) =
K∑

k=1

p(d|z = k)p(z = k) (1)

Here, K is the number of mixture components (clusters).
Now, the problem becomes how to define p(d|z = k) and
p(z = k). DMM makes the Naive Bayes assumption: that
the words in a document are generated independently when
the document’s cluster label k is known, and the probability
of a word is independent of its position within the document.
Then the probability of document d generated by cluster k
can be derived as follows:

p(d|z = k) =
∏

w∈d

p(w|z = k) (2)

Nigam et al. [20] assumes that each mixture component
(cluster) is a multinomial distribution over words, such that
p(w|z = k) = p(w|z = k,Φ) = φk,w, where w = 1, ..., V
and

∑
w φk,w = 1. They assume a Dirichlet distribution as

the prior for each mixture component (cluster), such that

p(Φ|~β) = Dir(~φk|~β). They also assume that the weight of
each mixture component (cluster) is sampled from a multi-
nomial distribution, such that p(z = k) = p(z = k|Θ) = θk,
where k = 1, ..., K and

∑
k θk = 1. In addition, they assume

a Dirichlet prior for this multinomial distribution, such that

p(Θ|~α) = Dir(~θ|~α).
The graphical model of DMM is shown in Figure 1. In

our short text clustering problem, we need to estimate the
mixture component (cluster) z for each document d. We
will introduce our GSDMM algorithm with the help of the
Movie Group Process (MGP) in the next section.

2.3 Gibbs Sampling for DMM
In this section, we introduce the collapsed Gibbs Sampling

algorithm for the Dirichlet Multinomial Mixture model (ab-
br. to GSDMM), which is equivalent to the Movie Group
Process (MGP) introduced in Section 2.1.

The detail of our GSDMM algorithm is shown in Algo-
rithm 1, and the meaning of its variables is shown in Table
1. In the initialization step, we randomly assign the docu-

ments to K clusters, and record the following information:
~z (cluster labels of each document), mz (number of docu-
ments in cluster z), nz (number of words in cluster z), and
nw
z (number of occurrences of word w in cluster z). Then

we traverse the documents for I iterations. (In Section 4.4,
we found that GSDMM can achieve good and stable perfor-
mance when I equals five.) In each iteration, we re-assign
a cluster for each document d in turn according to the con-

ditional distribution: p(zd = z|~z¬d, ~d), where ¬d means the
cluster label of document d is removed from ~z. Each time
we re-assign a cluster z to document d, the corresponding
information in ~z, mz, nz, and nw

z are updated accordingly.
Finally, only a part of the initial K clusters will remain non-
empty, in other words, GSDMM can cluster the documents
into several groups. Through experimental study in Section
4.5, we found that the number of non-empty clusters found
by GSDMM can be near the true number of groups as long
as K is larger than the true number. GSDMM is also a soft
clustering model like Gaussian Mixture Model (GMM) [5],
since we can get the probability of each document belonging

to each cluster from p(zd = z|~z¬d, ~d).

Algorithm 1: GSDMM

Data: Documents in the input, ~d.
Result: Cluster labels of each document, ~z.
begin

initialize mz, nz, and nw
z as zero for each cluster z

for each document d ∈ [1, D] do
sample a cluster for d:
zd ← z ∼Multinomial(1/K)
mz ← mz + 1 and nz ← nz +Nd

for each word w ∈ d do

nw
z ← nw

z +Nw
d

for i ∈ [1, I ] do
for each document d ∈ [1, D] do

record the current cluster of d: z = zd
mz ← mz − 1 and nz ← nz −Nd

for each word w ∈ d do

nw
z ← nw

z −Nw
d

sample a cluster for d:

zd ← z ∼ p(zd = z|~z¬d, ~d) (Equation 4)
mz ← mz + 1 and nz ← nz +Nd

for each word w ∈ d do

nw
z ← nw

z +Nw
d

We can derive p(zd = z|~z¬d, ~d) from the Dirichlet Multi-
nomial Mixture (DMM) model, and find that it conforms
to the two rules of MGP introduced in Section 2.1. We
just introduce the results directly here, and will explain the
derivation details in the next section.

If we assume each word can at most appear once in each
document (In the movie group example, the assumption is
that a movie can at most appear once in each student’s
list). We can derive a quite elegant form of the conditional
distribution as follows:

p(zd = z|~z¬d, ~d) ∝

mz,¬d + α

D − 1 +Kα

∏
w∈d(n

w
z,¬d + β)

∏Nd

i=1(nz,¬d + V β + i− 1)
(3)



where Nd is the number of words in document d. In short
text setting, Nd is often less than 100.

The first part of Equation 3 relates to Rule 1 of MG-
P (Choose a table with more students). Here mz,¬d is the
number of students (documents) in table z without consider-
ing student d, and D is the total number of students. When
table z has more students, the first part tends to be larger,
and a student will tend to choose a table with more students.
As a result, the first part of Equation 3 tends to result in
large completeness, because it leads large tables (clusters)
to be larger and students in the same ground true group are
more likely to be in the same table (cluster). The second
part of Equation 3 relates to Rule 2 of MGP (Choose a ta-
ble whose students share similar interests with him). Here
nw
z,¬d and nz,¬d are the number of occurrences of movie w

in table z and the total number of movies in table z with-
out considering student d, respectively. When table z has
more students sharing similar interests with student d (i.e.,
watched more movies of the same), movies of student d will
appear more often in table z (with larger nw

z,¬d), and the
probability of student d choosing table z will be larger. As
a result, the second part of Equation 3 tends to result in
large homogeneity, because it can leads the students in the
same table to be more similar (more likely to be in the same
ground true group).

If we allow a word to appear multi-times in a document
(A movie can appear multi-times in a student’s list). We
can derive the conditional probability as follows:

p(zd = z|~z¬d, ~d) ∝

mz,¬d + α

D − 1 +Kα

∏
w∈d

∏Nw
d

j=1(n
w
z,¬d + β + j − 1)

∏Nd

i=1(nz,¬d + V β + i− 1)
(4)

where Nw
d is the number of occurrences of word w in doc-

ument d. We should note that the two parts of Equation 4
have similar relationship with MGP like that of Equation 3,
and the complexity of Equation 4 is the same as Equation 3.
The only difference between them is the numerator of their
second part. We will try to derive Equation 3 and Equation
4 from the Dirichlet Multinomial Mixture (DMM) model in
the next section.

2.4 Derivation of GSDMM
In this section, we try to formally derive the conditional

distribution p(zd = z|~z¬d, ~d) used in our GSDMM algorithm
as follows.

p(zd = z|~z¬d, ~d) =
p(~d, ~z|~α, ~β)

p(~d, ~z¬d|~α, ~β)
∝

p(~d, ~z|~α, ~β)

p(~d¬d, ~z¬d|~α, ~β)
(5)

where ¬d means document d is excluded from ~z and ~d. Now
we need to derive the full distribution p(~d, ~z|~α, ~β). From the

graphical model of DMM in Figure 1, we can see p(~d, ~z|~α, ~β) =

p(~d|~z, ~β)p(~z|~α). Then we need to derive p(~d|~z, ~β) and p(~z|~α).
Let us first investigate how to obtain p(~z|~α). We can see

that p(~z|~α) can be obtained by integrating with respect to
Θ as p(~z|~α) =

∫
p(~z|Θ)p(Θ|~α)dΘ. As mentioned in Sec-

tion 2.2, p(Θ|~α) is a Dirichlet distribution and p(~z|Θ) is
a multinomial distribution. With similar techniques of [9],

we can get p(~z|~α) = ∆(~m+~α)
∆(~α)

, where ~m = {mk}
K
k=1, and

mk is the number of documents (students) in the kth clus-
ter (table). Here we adopt the ∆ function in [9], and we

have ∆(~α) =
∏K

k=1
Γ(α)

Γ(
∑

K
k=1

α)
and ∆(~m + ~α) =

∏K
k=1

Γ(mk+α)

Γ(
∑

K
k=1

(mk+α))
=

∏K
k=1

Γ(mk+α)

Γ(D+Kα)
, where D is the number of documents in the

dataset, D =
∑K

k=1 mk.

Similarly, p(~d|~z, ~β) can be obtained by integrating with re-

spect to Φ as p(~d|~z, ~β) =
∫
p(~d|~z,Φ)p(Φ|~β)dΦ =

∏K

k=1
∆(~nk+

~β)

∆(~β)
,

where ~nk = {nw
k }

V
w=1, and nw

k is the number of occurrences

of word w in the kth cluster (table). Similarly, ∆(~β) =
∏V

w=1
Γ(β)

Γ(
∑

V
w=1

β)
and ∆(~nk+~β) =

∏V
w=1

Γ(nw
k +β)

Γ(
∑

V
w=1

(nw
k
+β))

=
∏V

w=1
Γ(nw

k +β)

Γ(nk+V β)
,

where nk is number of words (movies) in document (table)

k, that is, nk =
∑V

w=1 n
w
k .

Now the joint distribution becomes:

p(~d, ~z|~α, ~β) =
∆(~m+ ~α)

∆(~α)

K∏

k=1

∆(~nk + ~β)

∆(~β)

Then the conditional distribution in Equation 5 can be de-
rived as follows:

p(zd = z|~z¬d, ~d) ∝
p(~d, ~z|~α, ~β)

p(~d¬d, ~z¬d|~α, ~β)

∝
∆(~m+ ~α)

∆(~m¬d + ~α)

∆(~nz + ~β)

∆(~nz,¬d + ~β)

∝
Γ(mz + α)

Γ(mz,¬d + α)

Γ(D − 1 +Kα)

Γ(D +Kα)∏
w∈d Γ(n

w
z + β)∏

w∈d Γ(n
w
z,¬d + β)

Γ(nz,¬d + V β)

Γ(nz + V β)
(6)

where mz = mz,¬d + 1 and nz = nz,¬d + Nd. Because Γ

function has the following property: Γ(x+m)
Γ(x)

=
∏m

i=1(x+ i−

1). We can rewrite Equation 6 into the following form:

p(zd = z|~z¬d, ~d)

∝
mz,¬d + α

D − 1 +Kα

∏
w∈d Γ(nw

z +β)
∏

w∈d Γ(nw
z,¬d

+β)

∏Nd
i=1(nz,¬d + V β + i− 1)

(7)

When we assume each word can at most appear once in
each document (In the movie group example, the assumption
is a movie can at most appear once in each student’s list).

We can get
∏

w∈d Γ(nw
z +β)

∏
w∈d Γ(nw

z,¬d
+β)

=
∏

w∈d(n
w
z,¬d + β) since nw

z =

nw
z,¬d +1 holds, and Equation 7 turns out to be Equation 3.
When we allow a word to appear multi-times in each doc-

ument (A movie can appear multi-times in each student’s

list).We can get
∏

w∈d Γ(nw
z +β)

∏
w∈d Γ(nw

z,¬d
+β)

=
∏

w∈d

∏Nw
d

j=1(n
w
z,¬d + β +

j − 1) since nw
z = nw

z,¬d +Nw
d holds, and Equation 7 turns

out to be Equation 4.

3. DISCUSSION

3.1 Meaning of Alpha and Beta
In this part, we try to explore the meaning of α and β with

the help of the Movie Group Process (MGP) as introduced
in Section 2.1. From Equation 4, we can see that α relates
to the prior probability of a student (document) choosing a
table (cluster). If we set α = 0, a table will never be chosen
by the students once it gets empty, because the first part of
Equation 4 is now zero. When α gets larger, the probability
of a student choosing an empty table will also gets larger.



We can see β is in the second part of Equation 4 which
relates to Rule 2 of MGP (Choose a table whose students
share similar interests with him). If we set β = 0, a student
will never choose a table when its movie lists do not contain
a movie of the student. We can see this is not reasonable,
because other movies of the student may appear many times
in that table and he may share many similar interests with
the students of that table.

DMM assumes symmetric priors for the Dirichlet distri-
butions, in other words, it gives the same α’s for all tables
(clusters) and the same β’s for all movies (words). The same
α’s for all tables implies that different tables (clusters) are
equally important at start. This is consistent to our intu-
ition. While the same β’s for all movies implies that different
movies (words) are equally important. This is not reason-
able, for example, a movie watched by every student cannot
give any positive information for clustering the students into
groups, it actually will mislead the clustering algorithm. We
should give less emphasis on too popular movies (words that
appear in too many documents). Intuitively, we can achieve
this goal by giving larger β’s for these less important words.
This means that GSDMM has potential to incorporate the
global weighting metrics (e.g., IDF) for words which is a re-
ally important technique for document analysis. We plan to
explore this in future.

3.2 Relationship with Naive Bayes Classifier
The conditional distribution p(zd = z|~z¬d, ~d) in Equation

3 is equivalent to the Naive Bayes Classifier (NBC) [16]. In-
tuitively, we can assign document d to a cluster z with the

largest conditional probability p(zd = z|~z¬d, ~d) in Algorith-
m 1. However, in GSDMM we choose to sample cluster z

from the conditional distribution p(zd = z|~z¬d, ~d). GSDMM
can avoid falling into a local minimum which is a common
problem of EM-based algorithms in this way.

We should note that GSDMM has potentially well per-
formance for incremental clustering. We can first group a
number of documents into clusters with GSDMM, and a
Naive Bayes Classifier (NBC) is learned during this process.
Then each time a new document arrives, we can classify it
to one of the clusters with the Naive Bayes Classifier and
update the classifier (update ~z, mz, nz, and nw

z ). We plan
to explore this in future.

The conditional distribution p(zd = z|~z¬d, ~d) in Equation
4 is equivalent to the Bayesian Naive Bayes Classifier (BN-
BC) [22]. Rennie [22] points out that BNBC performs worse
in classification, because it over-emphasizes words that ap-
pear more than once in a test document. For example, if
word (movie) w appears twice in a document (student) d,
the contribution of w for Equation 3 is (nz,¬d+β)2, while the
contribution of w for Equation 4 is (nz,¬d+β)(nz,¬d+β+1).
The difference is greater when a word appears more fre-
quently in a document. However, this is a good property in
the text clustering problem, because words in a document
tend to appear in bursts: if a word appears once, it is more
likely to appear again [14],[23]. The conditional distribution

p(zd = z|~z¬d, ~d) in Equation 4 can give words that appear
multi-times in a document more emphasis, and allows GS-
DMM to capture the burstiness of words [7],[14].

3.3 Representation of Clusters
From Algorithm 1, we can see that GSDMM can assign

each document to a cluster. With the fact that the Dirichlet

distribution is conjugate to the multinomial distribution, we
have:

p(~φz|~d, ~z, ~β) = Dir(~φz|~nz + ~β) (8)

where ~nz = {nw
z }

V
w=1, and nw

z is the number of occurrences
of word w in the zth cluster (table).

From Equation 8, we can obtain the posterior mean of Φ
as follows:

φz,w =
nw
z + β

∑V

w=1 n
w
z + V β

(9)

where φz,w corresponds to the probability of word w being
generated by cluster z, and can be regarded as the impor-
tance of word w to cluster z. As a result, GSDMM can
obtain the representative words of each cluster like Topic
Models (e.g., PLSA [10] and LDA [6]).

3.4 Complexity of GSDMM
In this part, we analyze the time and space complexity of

GSDMM with a comparison of K-means [13]. The meaning
of the notations is shown in Table 1.

First, we analyze the space complexity of GSDMM and
K-means. From Algorithm 1, we can see GSDMM needs
to store ~z, mz, nz, and nw

z . Their size are D, K, K, and
KV , respectively. We can see none of them need much s-
pace. Actually, when dealing with huge datasets, GSDMM
spends most space to store the words in each document with
complexity O(DL̄). Where L̄ (often less than 102 in short
text corpus) is the average length of the documents. K-
means needs to represent the documents as vectors of size
V (often larger than 105). Therefore, the space complexity
of K-means is O(DV ). The vector space representation of
short documents wastes much space, because most of the
elements of the vectors are zero.

Next, we analyze the time complexity of each iteration of
GSDMM and K-means. From Algorithm 1, we can see that
for each iteration GSDMM needs to re-sample a cluster for
the D documents in turn, and for each document d, it com-

putes the conditional probability p(zd = z|~z¬d, ~d) for each

cluster z. The complexity of p(zd = z|~z¬d, ~d) in Equation 4
is linear to the average length of documents, L̄. Therefore,
GSDMM’s time complexity for each iteration is O(KDL̄).
The complexity of each iteration of K-means is O(KDS),
where S is the maximum number of non-zero elements in
the vectors of centroids of the clusters [26]. We should note
that the centroids of the clusters are not sparse, and S can
be really large (even close to V ).

4. EXPERIMENTAL STUDY

4.1 Data Sets

4.1.1 Google News

Similar to [2], we utilize Google News1 as one of the
labeled datasets to evaluate the clustering performance. In
the Google News, the news articles are grouped into clusters
(stories) automatically. We took a snapshot of the Google
News on November 27, 2013, and crawled the titles and
snippets of 11,109 news articles belonging to 152 clusters.
We manually examined this dataset, and found that it is
with really good quality (Almost all articles in the same

1http://news.google.com



cluster are about the same event, and articles in different
clusters are about different events).

We further divided the dataset into three datasets: Title-
Set (TSet), SnippetSet (SSet), and TitleSnippetSet (TSSet).
The TitleSet and SnippetSet only contain the titles and snip-
pets, respectively, while the TitleSnippetSet contains both
the titles and snippets. We use these three datasets to test
the performance of different clustering methods on short
texts with different length.

4.1.2 TweetSet

In the 2011 and 2012 microblog tracks at Text REtrieval
Conference (TREC)2 , totally 109 queries were used. Using
a standard polling strategy, the NIST assessors evaluated
the tweets submitted for each query by the participants into:
spam, not relevant, relevant, and highly-relevant. We regard
the queries as clusters and the highly-relevant tweets of each
query as documents in each cluster. After removing the
queries with none highly-relevant tweets, we constructed a
dataset with 89 clusters and totally 2,472 tweets. We refer
this dataset as TweetSet.

4.1.3 PreProcessing

For all datasets, we conducted the following preprocess-
ing: (1) Convert letters into lowercase; (2) Remove non-latin
characters and stop words; (3) Perform stemming for word-
s with the WordNet Lemmatizer of NLTK3 ; (4) Remove
words whose length are smaller than 2 or larger than 15; (5)
Remove words with document frequency less than 2.

4.2 Evaluation Metrics
In this part, we introduce the evaluation metrics used in

this paper: Homogeneity (H), Completeness (C), V-Measure,
Adjusted Rand Index (ARI), Normalized Mutual Informa-
tion (NMI), and Adjusted Mutual Information (AMI). We
used the implementation of these metrics in sklearn4 in the
experimental study.

Homogeneity, Completeness, and V-Measure are used in
[24]. Homogeneity represents the objective that each cluster
contains only members of a ground true group and complete-
ness represents the objective that all members of a ground
true group are assigned to the same cluster. V-measure is an
entropy-based measure which explicitly measures how suc-
cessfully the criteria of homogeneity and completeness have
been satisfied, and is actually equivalent to Normalized Mu-
tual Information (NMI) that we will discuss later [3]. As a
result, we will only report NMI in our experimental results.

We want to assign two documents to the same cluster if
and only if they are similar, and clustering can be viewed
as a series of pair-wise decisions. Rand index measures the
percentage of decisions that are correct. Adjusted Rand In-
dex (ARI) is the corrected-for-chance version of Rand index,
whose expected value is zero [12].

Normalized Mutual Information (NMI) is often used in
literature, which measures the amount of statistical informa-
tion shared by the random variables representing the cluster
assignments and the ground true groups of the documents.
However, NMI is not adjusted for chance and will tend to in-
crease as the number of different labels (clusters) increases.
Adjusted Mutual Information(AMI) [19] corrects the effect

2http://trec.nist.gov/data/microblog.html
3http://www.nltk.org
4http://scikit-learn.org
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Figure 2: Performance of the models on the TweetSet.

GSDMM K-means DMAFP
NMI 0.874 ± 0.007 0.732 ± 0.007 0.852 ± 0.009
H 0.853 ± 0.010 0.692 ± 0.009 0.831 ± 0.010

TSet C 0.896 ± 0.006 0.775 ± 0.006 0.875 ± 0.007
ARI 0.693 ± 0.043 0.133 ± 0.030 0.657 ± 0.051
AMI 0.831 ± 0.012 0.639 ± 0.011 0.814 ± 0.015
NMI 0.896 ± 0.006 0.759 ± 0.008 0.868 ± 0.008
H 0.871 ± 0.008 0.754 ± 0.009 0.846 ± 0.011

SSet C 0.921 ± 0.005 0.764 ± 0.009 0.892 ± 0.007
ARI 0.746 ± 0.014 0.262 ± 0.017 0.703 ± 0.018
AMI 0.853 ± 0.009 0.708 ± 0.008 0.819 ± 0.012
NMI 0.928 ± 0.004 0.834 ± 0.005 0.901 ± 0.008
H 0.911 ± 0.005 0.836 ± 0.005 0.889 ± 0.006

TSSet C 0.945 ± 0.003 0.832 ± 0.005 0.912 ± 0.004
ARI 0.789 ± 0.018 0.370 ± 0.029 0.736 ± 0.023
AMI 0.897 ± 0.006 0.800 ± 0.006 0.847 ± 0.009

Table 2: Performance of GSDMM, K-means, and DMAFP
on TitleSet, SnippetSet, and TitleSnippetSet.

of agreement solely due to chance between clusterings, simi-
lar to the way Adjusted Rand Index (ARI) corrects the Rand
index.

4.3 Comparison of clustering models
In this part, we compare the performance of GSDMM

with K-means [13], HAC [15], and DMAFP [11]. K-means
and HAC are two popular similarity-based clustering model-
s. DMAFP [11] is a state-of-the-art model-based clustering
approach which can infer the number of clusters automati-
cally.

For K-means and HAC, we set K at the true number of
clusters of each dataset. For DMAFP and GSDMM, we set
the initial number of clusters at 500 for all datasets. For K-
means and DMAFP, we set the number of initializations at
20 to cope with their problem of falling into local maximum,
and in each run we stop the algorithm when the relative
change of the objective function or log marginal probability
is less than 1e−7. For GSDMM, we set the number of iter-
ations at 30, α = 0.1, and β = 0.1 for all datasets. We run
each model 20 times on each dataset, and report the mean
and standard deviation of their performance measured by
the five evaluation metrics introduced in Section 4.2.

Figure 2 shows the performance of GSDMM, K-means,
HAC, and DMAFP on the TweetSet. First, we can see that
GSDMM performs significantly better than K-means and
HAC in terms of all the five metrics. This is because GSD-
MM can infer the number of clusters automatically with a
good balance between the completeness and homogeneity of
the clustering results. We will discuss this more deeply in
Section 4.5. Second, GSDMM also performs better than D-
MAFP. This is because DMAFP is an EM-based algorithm
which has the problem of falling into a local minimum, while
GSDMM does not have the problem of falling into a local
minimum as discussed in Section 3.2. We should note that
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Figure 3: Number of clusters found by GSDMM with differ-
ent number of iterations on the four datasets.
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Figure 4: Performance of GSDMM with different number of
iterations on the four datasets.

GSDMM is much simpler than DMAFP, and we can under-
stand how and why GSDMM works as well as the meaning of
its parameters with the analogy of MGP. Third, GSDMM’s
ARI is significantly better than that of K-means and HAC.
This means GSDMM’s performance is much better than the
random label assignments, while K-means and HAC are just
a little better than the random case.

We find that HAC is not scalable with the Google News
datasets. This is because the space complexity of HAC is
quadratic in the number of documents. Therefore, we only
report the performance of GSDMM, K-means, and DMAFP
on the Google News datasets in Table 2. First, we can see
GSDMM can achieve better performance than K-means and
DMAFP on all the three datasets measured by all the five
evaluation metrics. Second, we can see all the three mod-
els can achieve better performance on datasets with longer
documents, which means we can improve the performance of
short text clustering by enriching their representation with
methods like [2]. Third, GSDMM can achieve relatively
good performance on the TitleSet, even better than the per-
formance of K-means on the TitleSnippetSet. This validates
the effectiveness of GSDMM for short text clustering.

4.4 Influence of the number of iterations
In this part, we try to investigate the influence of the num-

ber of iterations to the number of clusters found by GSDMM
and the performance of GSDMM. We set the initial number
of clusters at 500, α = 0.1, and β = 0.1 for all datasets.

Figure 3 shows the number of clusters found by GSDMM
with different number of iterations. From Figure 3, we can
see that the number of clusters drops quickly and almost gets
stable within about ten iterations. We take the TweetSet as
an example to explain this phenomenon. In the initializa-
tion step, GSDMM randomly assigns the 2,472 documents
(students) of the TweetSet to 500 clusters (tables). For each
iteration, GSDMM enumerates the students and lets them
re-choose a table according to the two rules of MGP intro-
duced in Section 2.1 in turn. In the beginning, some clusters
get large quickly, because once they are chosen by a studen-
t, they are more likely to be chosen by other students that
share similar interests with them. Similarly, some clusters
vanish quickly. We can see that on the TweetSet, after one
iteration the number of non-empty clusters drops to about
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Figure 5: Number of clusters found by GSDMM with differ-
ent values of K on the four datasets.
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Figure 6: Performance of GSDMM with different values of
K on the TitleSnippetSet.

300 and after two iterations the number of non-empty clus-
ters drops to about 160. With more iterations the allocation
of documents will get stable.

Figure 4 shows the performance of GSDMM with different
number of iterations measured by NMI on the four datasets.
From Figure 4, we can see only after two iterations, GS-
DMM can achieve quite good performance, and can reach
stable performance with about five iterations on all the four
datasets. GSDMM can update the model every time it re-
assigns a document to a cluster which means it can update
the model D times in each iteration (D is the number of
documents in the corpus), as a result, GSDMM can con-
verge really fast. We can also see the standard deviations
of the 20 runs of GSDMM are almost zero which means the
performance of GSDMM is highly stable.

4.5 Influence of K
In this part, we try to investigate the influence of K to the

number of clusters found by GSDMM and the performance
of GSDMM. We fix the number of iterations at 10, α = 0.1,
and β = 0.1 for all datasets.

Figure 5 shows the number of clusters found by GSDMM
with different values of K on the four datasets. From Figure
5, we can see the number of clusters found by GSDMM grows
when we enlarge K, and can finally get stable. The stable
number of clusters found by GSDMM is near the ground
true number of groups which means GSDMM can infer the
number of clusters automatically when K is large enough.

Figure 6 shows the performance of GSDMM with differ-
ent values of K on the TitleSnippetSet, and we have similar
results on the other three datasets. Intuitively, we know a
clustering algorithm will tend to have high completeness and
low homogeneity when K is small. This is because when K
is small, the algorithm can more easily assign the documents
belonging to the same ground true group to the same cluster
(high completeness), while more difficult to divide the docu-
ments in different ground true groups into different clusters
(low homogeneity). Similarly, a clustering algorithm will
tend to have high homogeneity and low completeness when
K is large. From Figure 5, we can see the performance of
GSDMM conforms to the above intuition when K is smal-
l. Different from the above intuition, GSDMM can achieve
both high completeness and high homogeneity when K is
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Figure 7: Number of clusters found by GSDMM with differ-
ent values of α on the four datasets.
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Figure 8: Performance of GSDMM with different values of
α on the TweetSet.

larger than the true number of clusters. This is because GS-
DMM can balance the completeness and homogeneity of the
clustering results with Equation 4 which relates to the two
rules of MGP as discussed in Section 2.3.

4.6 Influence of Alpha
In this part, we try to investigate the influence of α to the

number of clusters found by GSDMM and the performance
of GSDMM. We fix the number of iterations at 10, the initial
number of clusters at 300, and β = 0.1 for all datasets.

Figure 7 shows the number of clusters found by GSDMM
with different values of α on the four datasets. We can see
the number of non-empty clusters found by GSDMM grows
slightly with the increase of α on the TweetSet and TitleSet.
We investigate the clustering results of these two datasets,
and find that larger α tends to result in clusters with only
one document. We can explain this phenomenon with the
Movie Group Process (MGP). In the extreme case, when
we set α = 0, a table will be discarded after it gets empty.
Because the first part of Equation 4 is now zero for empty
tables, and a student (document) will never choose an emp-
ty table (cluster). When α gets larger, a student will have a
larger probability to choose an empty table. However, once
a table gets empty, it will have a low probability of growing
large because the “richer gets richer” property of MGP. As a
result, the number of non-empty clusters found by GSDMM
will get larger slightly with the increase of α, and GSDMM
will result in more clusters with only one document. We can
see that the number of non-empty clusters found by GSDM-
M tends to be stable in the SnippetSet and TitleSnippetSet.
This is because the average length of the documents is larg-
er in these two datasets, and the second part of Equation 4
plays a more important rule. The students are more likely
to choose a table according to their interests, as a result, the
empty tables have a lower probability of being chosen.

Figure 8 shows the performance of GSDMM with differ-
ent values of α on the TweetSet, and we have similar results
on the other three datasets. From Figure 8, we can see the
performance of GSDMM is stable with different values of α.
We also conducted experiments by ranging α from 1 to 10,
and found that the performance of GSDMM drops slowly
when α is larger than one. We conducted experiments to
investigate the performance of GSDMM when α = 0, and
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Figure 9: Number of clusters found by GSDMM with differ-
ent values of β on the four datasets.
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Figure 10: Performance of GSDMM with different values of
β on the TweetSet.

found that GSDMM almost does not result in clusters with
only one document when α = 0. We should note that we can
also speed up GSDMM by setting α to zero. Because when
α = 0, we can just discard clusters (tables) that get emp-
ty as they will never be chosen again, which means K can
decrease with the running of GSDMM. In Section 3.4, we an-
alyzed the time complexity of GSDMM, which is O(KDL̄).
We can see that GSDMM can get faster with the decrease
of K. We should note that Equation 4 cannot be derived
from DMM when α = 0, because α is the parameter of the
Dirichlet distribution in DMM and must be larger than zero.
This means the new algorithm should be related to another
model, and we plan to investigate this more deeply in future.

4.7 Influence of Beta
In this part, we try to investigate the influence of β to the

number of clusters found by GSDMM and the performance
of GSDMM. We fix the number of iterations at 10, the initial
number of clusters at 300, and α = 0.1 for all datasets.

Figure 9 shows the number of clusters found by GSDMM
with different values of β on the four datasets. From Figure
9, we can see the number of clusters found by GSDMM
drops when we enlarge β. This is because β is in the second
part of Equation 4 which relates to Rule 2 of MGP (Choose
a table whose students share similar interests with him).
When β is small, the probability of a student choosing a
table is more sensitive to nw

z,¬d (the number of occurrences
of word w in cluster z). In other words, GSDMM gives
more emphasis on the student’s interests when β is small,
and the students will have a larger probability to choose a
table based on their interests rather than the popularity of
tables. As a result, GSDMM will result in more non-empty
tables (clusters) when β is small. Similarly, when β is large,
GSDMM will result in fewer non-empty tables.

Figure 10 shows the performance of GSDMM with differ-
ent values of β on the TweetSet, and we have similar results
on the other three datasets. From Figure 10, we can see
the completeness of GSDMM grows when we enlarge β. We
can understand this phenomenon through Figure 9, where
the number of clusters found by GSDMM drops when we
enlarge β. As a result, students (documents) in the same
ground true group are more likely to be in the same table
(cluster), and GSDMM will result in larger completeness



when we enlarge β. Similarly, we can understand why the
homogeneity of GSDMM drops when we enlarge β. There-
fore, β can be used for adjusting the performance of GSDM-
M. GSDMM can result in relatively more clusters and high
homogeneity with small β, and relatively fewer clusters and
high completeness with large β.

4.8 Scalability of GSDMM
In this part, we compare the scalability of GSDMM with

DMAFP, K-means, and Mini-batch K-means [26]. Mini-
batch K-means [26] is a variant of K-means which uses mini-
batches to reduce the computation time. Different from K-
means, every time Mini-batch K-means assigns a document
to a cluster, it updates the centroid of that cluster. We
should note that our GSDMM algorithm also updates the
model every time it assigns a document to a cluster.

To the best of our knowledge, there is no large short tex-
t datasets that can be used to test the scalability of the
clustering models. As a compromise, we copied the Title-
Set 2 times, 4 times, 8 times,...,until 256 times. By this
way, we obtained nine different datasets scaling from 11,109
documents to 2,843,904 documents. For GSDMM, we set
K = 300, α = 0.1, β = 0.1, and run 10 iterations for each
dataset. For DMAFP, we set K = 300 and the maximum
iteration number at 10. For K-means and Mini-batch K-
means, we set K = 152 (the true number of clusters) and the
maximum iteration number at 10. For Mini-batch K-means,
we set the mini-batch size at one percent of the number
of documents in each dataset. The experiments were con-
ducted on a computer with 8G RAM and 3.4GHz Processor
Speed.

Table 3 shows the time cost of GSDMM, DMAFP, K-
means, andMiniBatch K-means on these nine datasets. First,
we can see the running time of GSDMM, DMAFP, and K-
means are both linear to the number of documents. Second,
GSDMM and DMAFP can scale to the T256 set which con-
tains 256 copies of the TitleSet with about 284 million titles.
However, K-means and MiniBatch K-means cannot scale to
the T256 set. Third, We can see that MiniBatch K-means
is much faster than GSDMM, DMAFP, and K-means, espe-
cially on large datasets. We plan to explore how to speed
up GSDMM in future. One promising direction is to utilize
the incremental clustering approach discussed in Section 3.2.
We can run GSDMM on a subset of the large dataset, then
use the Naive Bayes Classifier (NBC) learned by GSDMM
to classify other documents into the existing clusters. This
approach has potential applications for texts like tweets and
news that have many duplicates.

5. RELATED WORK
In this section, we review the related work from the fol-

lowing two perspectives: model-based clustering and short
text clustering.

5.1 Model-based Clustering
Nigam et al. [20] used the Dirichlet Multinomial Mix-

ture (DMM) model for classification with both labeled and
unlabeled documents, when only unlabeled documents are
provided, DMM turns out to be a clustering model. In [20],
they proposed an EM-based algorithm for DMM (abbr. to
EM-DMM). In this paper, we proposed a collapsed Gibb-
s Sampling algorithm for DMM (abbr. to GSDMM), and
found that GSDMM can infer the number of clusters au-

tomatically with a good balance between the completeness
and homogeneity of the clustering results, and is fast to con-
verge. Yu et al. [30] proposed the DPMFS model for text
clustering that can also infer the number of clusters auto-
matically. However, DPMFS is slow to converge as discussed
in [11]. In [11], they further proposed the DMAFP model as
an approximation to the DMPFS model and a variational
inference algorithm for DMAFP. They compared DMAFP
with other four clustering models: EM-DMM [20], K-means
[13], LDA [6], and EDCM [7]. They found that DMAFP
can achieve better performance than these models especial-
ly when the number of clusters given for these models is
imprecise. In the experimental study, we compared our GS-
DMM algorithm with DMAFP, and found that GSDMM
can perform better than DMAFP on all the four datasets.
In addition, We should note that GSDMM is much simpler
than DMAFP, and we can understand how and why GSD-
MM works as well as the meaning of its parameters with the
analogy of MGP.

5.2 Short Text Clustering
Rangrej et al. [21] compared three clustering algorithms

for short text clustering: K-means, Singular Value Decom-
position and Affinity Propagation on a small set of tweets,
and found that Affinity Propagation [8] can achieve better
performance than the other two algorithms. However, the
complexity of Affinity Propagation is quadratic in the num-
ber of documents, which means Affinity Propagation cannot
scale to huge datasets with millions of documents. Banerjee
et al. [2] proposed a method of improving the accuracy of
short text clustering by enriching their representation with
additional features from Wikipedia. This method can be a
complement for our GSDMM algorithm. Shou et al. [27], T-
sur et al. [28], and Yin [29] focused on the problem of online
clustering of a stream of tweets. They all utilized an incre-
mental clustering framework that first groups a number of
tweets into clusters, then assigns the newly arriving tweets
to these clusters. In this paper, we primarily focus on clus-
tering a static collection of short documents, however, we
discussed how to use GSDMM for incremental clustering in
Section 3.2. We plan to explore this in future.

6. CONCLUSION
In this paper, we proposed a collapsed Gibbs Sampling

algorithm for the Dirichlet Multinomial Mixture model for
short text clustering (abbr. to GSDMM). We also proposed
the Movie Group Process (MGP) as an analogy of GSDMM
which can help us understand how and why GSDMM works
as well as the meaning of its parameters. We found that
GSDMM can infer the number of clusters automatically with
a good balance between the completeness and homogeneity
of the clustering results, and is fast to converge. GSDMM
can also cope with the sparse and high-dimensional problem
of short texts, and obtain the representative words of each
cluster. Thorough experimental study shows GSDMM can
achieve significantly better performance than the baseline
methods.

There are several future directions for us to explore. First,
we plan to investigate how to incorporate the global weight-
ing metrics (e.g., IDF) for words through β as discussed in
Section 3.1. Second, as discussed in Section 4.6, GSDMM
can achieve good performance and lower time complexity
when we set α = 0. However, now GSDMM cannot be de-



Datasets T1 T2 T4 T8 T16 T32 T64 T128 T256
#Docs 11,109 22,218 44,436 88,872 177,744 355,488 710,976 1,421,952 2,843,904

GSDMM 0.092 0.179 0.354 0.711 1.424 2.836 5.688 11.346 23.203
DMAFP 1.346 2.565 5.090 9.947 19.447 38.991 77.503 154.275 308.651

Time K-means 0.399 0.773 1.423 2.954 6.147 11.509 24.072 49.259 N/A
MiniBatch 0.027 0.032 0.041 0.059 0.094 0.182 0.340 1.197 N/A

Table 3: Running time of the models on nine datasets (in minutes).

rived from DMM because α is the parameter of the Dirichlet
distribution in DMM and must be larger than zero. We plan
to explore which model this new algorithm is related to in
future. Third, we also plan to study how to use GSDMM
for incremental clustering as discussed in Section 3.2.
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